KIỂU TÔ-PÔ CỦA MẦM ĐƯỜNG CONG GIẢI TÍCH BẤT KHẢ QUI TẠI ĐIỂM KỲ DỊ CÔ LẬP
NGUYỄN CAO TRÍ
Trang nhan đề
Mục lục
Giới thiệu
Chương1: Khái niệm cơ bản.
Chương2: Khai triển Newton - Puiseux.
Chương3: Các kết quả.
Chương4: Kiểu Tô-Pô của mầm đường cong bất khả qui
Kết luận
Tài liệu tham khảo
20 trang |
Chia sẻ: maiphuongtl | Lượt xem: 1917 | Lượt tải: 1
Bạn đang xem nội dung tài liệu Luận văn Kiểu Tô-Pô của mầm đường cong giải tích bất khả qui tại điểm kỳ dị cô lập, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
41
Chuong4
"
,,? " ,,? ~ "
KIEV TO-PO CUA MAM DUONG CONG
,,' ?
BATKHAQVI
Cho mall duOngcong (X,O) E cc2t';1idi~mki d! co l~p0, xac d!nhbai
hamgifti tfch1 E CC{x,y} batkhftqui, 1 cob~cm > atheoy, l(a,y) = ymva
m=multo(f).Khaitri~nPuiseuxcua1chomchu6inghi~mcual(x,y)=a:
Yk(X) =y((kx1/m),k = 1,..,m.
( lacanb~cmnguyenthuycuadcmV!.
4.1 (m)-no xuyen
XetmQtphiltuX vaoD,D = {xE CCilxlS;1}.Thi t';1im6idi~mXoE
D\ {a},co m nghi~m{Yk(XO)}k=l,..,mcua phucmgtrinh l(xo, y) =a.
Phil tu X\ {a}vaoD\ {a}la philkhongre nhanh(do 0 la di~mki d! co l~p
cuaX), dodo,m6iduOngx(t)c D\{a},t E [a,1]vax(a)=x(1),duQ'Cnangthanh
m duOngdi khacnhau:
{(x(t),Y1(t)),...,(x(t),Ym(t))}eX.
Mifltkhac,vi~cnghiencUuki~uto-pocuaciflp(B, B n X) duQ'cduav~nghien
cUuki~uto-pocuaciflp(51X D2,Kd, v6i K1 = (51X D2)n X = {(x,y) E (51X
42
D2)lf(x,y) = O}.Do d6,tac6th~thallisoh6abienthvct chotQad(>phucx vay
tren(51x D2)nhusail:
Cho0 <5 ::;1.
Xetx(t)=5e27rit,t E [0,1]v6'ix(O)=eo=x(l). V~y,x(t)cD.
Va Yk(t)=y((kX1/m)=y(5e27ri(t+k/m)),t E [0,1],k =1,..,m.
Khi d6,
(51x D2)nX =K1 ={ (x(t),Yk(t))E (51x D2), t E [0,1],k=1,..m}
M(>trt!diflcclingvaiquailh~dongnhatt<:tihaimifltdau-cuoicuatrt!thldong
phoiv6'im(>txuyendiflc.Di~unaychopheptabi~udienK1 trentrt!([0,1]x D2)C ]R3,
clingIa m duemgdi khacnhau:
{(t'Y1(t)),...,(t,Ym(t))}C ([0,1]X D2).
Vi dl;l4.1.1.
ChoX ={(x,y) E ((;21f (x,y) = y2- x3= 0}
Khai tri~nPuiseuxcuaf chohainghi~m:
{
Y1(X)=x3/2
Y2(X) =_X3/2
Thamsoh6abienthvct E [0,1],tadugc:
{
Y1(t) = 5e37rit
Y2(t)= -5e37rit
, 0<5::;1
Bi~udienK1trongtrt!([0,1]x D2)c ]R3Iahaiduemgtachrm
nhau:
{ (t, 5e37rit),(t, -5e37rit)}
D!nh nghia4.1.1.
MQtnO'khdvi Ia ciflp(51x D2,K), gomm(>txuyendiflcvam(>tduemgcong
dongphoivai 51vanamtrenxuyen.
43
Xet phepchieuPI : (SI XD2)~ SI. NeupIIK : K ~ Slla mQtphilb~cm >0
(m laSOdi~mlIen m6i thO'p-l(X), x E SI), thl na kha vi (SI X D2,K) duqc gQi la
mQt(m)-na,clingcanduqcgQila mQtnaqUailm vangtheokinh tuyencuaxuyen.
Vi dl;l4.1.2.
(SI XD2,Kr) lamQt(m)-na,vaimlab~ccuadathucbatkhaquif theoy.
D!nh nghia4.1.2.
MQthimkhdvi m-nh{mhlamQthQm duOngcongkhavi {Yk}k=I,..,mtrongtrl;l
(I x D2),J = [0,1]c JR:
Yk : I ~ I x]R2 co Yk(I) c I x D2,k = 1,..,m
sao cho:
1. Vt E I, himgiaovai latctttngang{t}XD2cuatrl;lI x D2tc;timdi~mkhacnhau.
D~tphepchieuP'I : I X D2 ~ I. Khi do,
{
<I 0 Yk(O) = 0 ho(jc 1
PI 0 Yk(l) = 1ho(jc0
k = 1,..,m,
Ta qui uO'cP'I 0 Yk(O) = 0 va P~0 Yk(l) =1, k =1,..,m.
2. m di~mtc;tihai dati trl;l: {Yl(O),...,Ym(O)}C {a}X D2 va {Yl(l), ...,Ym(1)}C
{I} X D2 co cling tQadQph~ngtrongD2.
3. D~tala phepchuy~nvi mdi~m{Yl(O),...,Ym(O)}thanhmdi~m{Yl(l), ...,Ym(l)}
trongD2 thl:
dYa(l)(l)- dYk(O) I = 1,..,m;CJ(I)=k.-- ,dt dt
Vi dl;l4.1.3.
(m)-na(SI x D2,Kr) bi~udienlIen trl;lI x D2la m duOng,mam6idi~mlIen
doco tQade:>Ianluqt:
{(t,Yl(t)),..., (t,Ym(t))},t E [0,1]
lamQthimkhavi m-nhanhlOpCoo.
44
Vi do 4.1.4.
Xet:
x = {(x,y) E C21f (x,y) = y2 - X3 = a}
Khaitri~nPuiseuxcuaf chohainghi~m:
{
Y1(X) = X3/2
Y2(X) = _X3/2
Thamsoh6abienthlJct E [0,1]saochoduOngcongx(t)niimtrenbiencua
D, nghiala:
x(t) = e27rit, t E [0,1],x(O)=eo=x(l)
Va,
{
Y1(t) = e37rit
Y2(t) = -e37rit
Khi d6, (2)-nO'niimtren51x 51,biencuaxuyend~c51x D2.NO'K1 qwlnd~u
quanhtrenxuyen51x 51. Bim lienketv6i nO'K1 clingqUaild~utrenbienI x 51
cuatrl;lI x D2.
Bi~udienhinhhQctrong}R3cua(2)-nO'(51x D2,Kd vacuabim2-nhanhU'ng
v6i (2)-nO'(51x D2,Kd nhusau:
(2)-nO'trenxuyen Bim trentn;l(2nh:inh)
NO'K1 qUail2-vongtheokinh tuyencuaxuyen.Va chuyriing,thuhypphep
chieup~: 51x 51-t ({to}X 51)rv51,toE I, trenK1 :P~IKI: K1 -t {to}X 51,sexac
d!nhm9tphil b~c3. Khi d6, (2)-nO'(51x D2,Kd duqcgQila m9tnO'xuyenki~u
(2,3),nO'qUail3-vongtheoVI tuyencuaxuyen. 0
Ta di denm9td!nhnghiat6ngquatsauday.
45
D!nhnghia4.1.3.
Chohaisonguyenmvan, (m,n)= 1va1<m<n.
X6thamgi:iitich:1(x,y)=ym- xn.
(m)-na (51x D2,K1) U'ngvmham1 cod,;mgnhutrenduqcgQiIam('>tn(Jxuyln
kilu (m,n).
K1 Ia m9tna kh:ivi, qUaild6uquanhbien(51x 51)m vangtheokinh tuyen
"
vanvangtheovituyencuaxuyen.M9tnaxuyenkieu(m,n) lienketv6im9tbim
m-nhanh,m6inhanhlam9tduO'ngxoanocquail~vangquanhbien([0,1]X51)cua
trl;l([0,1]X D2).
4.2 Kieu to-pocuemamduongcongbatkhaqui
D!nhIf 4.2.1.([5],p.94)
Kilu to-pocuama'mduo'ngcongphdngheftkhdquiX tqidiemki dj co l{lp0
holmtoandu(/cxacdjnhbai caec(ipPuiseuxcua1 xacdjnhX.
Chungminh.
Gi:iSlrX duqcxacdinhbaihamgi:iitich1E C{x,y}batkh:iqui,1cob~c
m > atheoy, 1(0,y) = ymvam = multo(J).Khai trienPuiseuxcua1 lay((x),( la
canb~cmnguyenthuycuadanvi,va(m1,nd, ...,(mg,ng)lacaec~pPuiseuxcua1.
TacokhaitrienPuiseuxchu~ntacU'ngValcaec~pPuiseuxcua1 la:
2:l... ---2.:2- ~
y(x) = Xml +xmlm2 +... +xml..m9
Quidi;lOcaediem(x,y(x))U'ngValkhaitrienchu~ntacnayduqcki hi~ula
Kig),matasechU'ngminhrang,dayIam9tnaxuyen- gQila m9tn(Jxuylnl(ipva
naxuyennaydongphoiVal(m)-naxuyen(51x D2,K1)cuaX. Va didenketlu~n.
1.Mo t:inaxuyenlap(51x D2,Kf):
D~t(51x D2,Ki), 1:::;j :::;g,la(m1..mj)-naU'ngvmkhaitrienPuiseux:
2:l... ~
y(X)=Xml +...+xml..mj
46
trongdo,(ml,nd, ...,(mg,ng)Ia j ciftpPuiseuxdtiutiencuaf.
1.Bieudi~nhinhhQccua(ml..mj)-no:
- V6i j = 1,hiennhien(51x D2,Kf) la m9tnoxuyenkieu(ml,nd. (ml)-
no (51x D2,K{) qUaild~utrenbiencua xuyendiftcTo, Ia Ian c~nd~ngong cua
(51x {a})c (51X D2),qUailml vangtheokinhtuyenvanl vangtheovi tuyentren
biencuaTo.
- Gia su v6i 1 ::; k ::;g, da:bietbieudi~nhinh hQccua (ml..mj)-no(51x
D2,K{),Vj ::;k. Ta sematano (51x D2,K~+I).
Kf hi~u(k+l(va(k)Iacanb~c(ml..mk+d(va(ml..mk))nguyenthuycuadan
vi,vax=Ixle27rit,t E [0,1].
tffigvaim6it E [0,1]la(ml..mk+l)giatriyk+l((k+lX),(k+lnh~nltlnIuqttatca
giatritrongt~p(ml..mk+dgiatricuacandanvD,tucIam6iIatciltngang{t}x D2
cuaxuyendiftc(51x D2)giaov6i K~+1t~i(ml..mk+ddiem.Xet cacdiemnay:
k+l(1 ) I(ml"mk+d~!.:l. (ml"mk+l)~ ~ (ml"mk+d nk+1 ~y "k+lX = "k+l Xml +... + (k+l ml"mk xml"mk +(k+l ml"mk+l xml"mk+l
l(nlm2 mk+d !.:l. (n m ) ~ n nk+l"k 1 " xml +...+1 k k+l Xml"mk + 1 k+lXml"mk+l+ "k+1 "k+1
[(
/mk+l )
nlm2"mk !.:l.
(
mk
)
nk ~
]
n nk+l
"k+l Xml +...+ (k+t Xml"mk +(k~t1Xml"mk+l.
T~p(ml..mk+dSOphuc(k+l,Ia canb~c(ml..mk+l)cuadanvi, makhi m6i
phtintutrongdo duQ'cliiy thuamk+1thi t~pnaytIlingv6i t~p(ml..mk)sophuc(k,
Ia canb~c(ml..mk)cuadanvi. Do do,taco thenhomt~p(ml..mk+dsophucthanh
(ml..mk)nhom,m6inhomco mk+lsophuc,kf hi~u(k+1,k,saDcho:
Imk+l
"k+l,k= (k
Khi do,
k+l(1 )
[
/nlm2"mk!.:l. n ~ ]
n :.'.k:t
y "k+lkX = "k Xml +...+1 kxml"mk +1 k+lxml"mk+l, "k "k+l,k
k (
1
)
nk+l
- y ((kX)+ (k+l,kXml"mk+l
[
1
]
nk+l
- yk((kX) + ((kxml"~k+l) mk+l , (mk+1,nk+d= 1.
tffigvaim6igiatri (k,cot~pg6mmk+lsophuc(k+l,kmam6iphtintutrong
1 1
dothi:(;;;~t= (k.Tucla t~p{((kXml"mk+l)mk+l}comk+lsophuc,Iacanb~cmk+l
47
1
cua(m1..mk)SOphuc((kXml..mk).
Dien gi:hhlnhhQc,trongm6ihitcat{t}X D2cuaxuyend~c(51X D2) , co
(m1..mk+1)di~mIagiaocuaduemgcongkhavi K~+lv6'i({t}XD2)nftmtren(m1..mk)
nk+l
duemgtroll,m6iduemgtrOllbankinh Ixlml"mk+l vatamt(;tim6idi~mtrong(m1..mk)
di~mgiaocuaKf v6'i({t}x D2),phanbod~utrenm6iduemgtrollIamk+1di~m.
(2)B6 d~4.2.1.1:
LuanchQnduqcIxl dunhosaDchotrenm6iIatcat({t}XD2)cua"xuyend~c
(51x D2), (m1..mk)duemgtrollmataa trenIa khanggiaonhau.
Chungminh.
TasechUngminhdug,khoangcachgiUahaidi~mbatkl cuaKf n ({t}XD2),
clingIa tamcuacacduemgtroll,Ianhon2 Hinbankinhm6iduemgtroll,tucIa Ian
nk+l
hon21xlml,mk+l v6'iIxl dunho.
D~t,
dk(lxl)= inf,lyk((kx)- yk((~x)l,
(d(k
l:;'k:;'g
nk+l
TadinchUngminh:dk(lxl)>21xlml..mk+l, v6'iIxl dunho.
Di~unaytuongduongv6'i:
;\ k
(1 I) ~ dk(lxl) 2LJ. X nk+l >,
Ixl ml..mk+l
vai Ixl dTlnho.
Qui u6'c,2l0(lxl)= dO(lxl)=O.
Ta tinh,6,k(lxl):
2lk(lxl)= 1nk+l inf
Ixlml..mk+1 (k7'=(~
nlm2..mk 2:L nk Imk nk-l ~
(k xml +... + (k - Xml..mk-l + (;kXml..mk
;-'nlm2"mk ~ /nk-lmk nk-l ,~
-"k X 1 - ... - "k Xml"mk-l - (knkXml..mk
(~- nk+l )
I
nlm2"mk-nk ,
inf, IXI ml..mk ml..mk+l X ml"mk ((;lm2"mk - (knlm2"mk) +...+
(d(k
nk-lmk-nk , ,
+X ml"mk ((;k-lmk - (knk-lmk) + ((;k - (knk)
48
nkmk+1-nk+1 nk-1mk-nk
(
n1m2..mk-1-nk-1
[ ]in!,lxl m1..mk+1 X m1..mk X m1..mk-1 ((;;k)n1m2..mk-1 - ((~mk)n1m2..mk-1 +(d(k
+. + [((;"'J"'-' - ((~m'J"'_'J)+((;' - (~n,)
nkmk+1-nk+1
in! Ixl m1,.mk+1l~k-1(lxl) +((;k - (~nk)
(d(~
- TruOnghqpk = 1:
~l(lxl)= in! Ix! nl;:?;':2n2
1
(n1 - (
'n1
I 1 1
(1#(1
Tfnhchatcuacacc~pPuiseux:n1m2<n2=}n1m2- n2 <0
n] m2-n2 1
=} Ixl m1m2 = n2-n]m2 -+ 00 khi Ixl -+0
Ixl m1m2
I
Do (1 1=(1
I
=} (1 - (1 1=0 =}~l(lxl) -+00 khi Ixl -+ o.
V~y,v6iIxldonhothl~l(!xl)>2.
- Giasuv6im9is6nguyenl ::;k - 1thl~1(lxl)>2v6iIxldunho,tachUng
minhdi~unayclingdungv6il =k.
~k(lxl)=
nkmk+1-nk+1 I
in! Ixl m1..mk+1l~k-1(lxl) +((;k- (tk)
(k,i(~
TrangtruOnghqpxaunhat,thl ((;k - (~nk)=-2. Do do,
~k-1(lxl)> 2 =}~k-1(lxl)- 2 > O.Va:
nkmk+1-nk+1
Ixl m1..mk+1
1 Ixl-+O
nk+1-nkmk+1 ~ 00.
IXI m1..mk+1
=}~k(lxl) ;::: Ixlnk:~~,;.~:~+l(l k-1(lxl)l- 2) -+00khiIxl-+ O.
V~y,~k(lxl)>2v6iIxldunho. .
49
(3lKf+1IamQt(mk+1)-naxuyen:
Ta ch<;mIxldunhod~coduQ'cacdi6unhuBe;d64.2.1.1.
XetIanc~nd~ngongTk cuaduemgcongkhavi Kf magiaocuaKf vaim6i
hitcat{t}x D2cuaxuyendiftc(Sl x D2)I~pthanh(m1..mk)cfia(duQ'cxacdinhnhu
Be;d64.2.1.1).Vi duemgcongKf dongphoivmSl, nenTkdongphoivmmQtxuyen
dac.
Duemgcongkhavi Kf+1duQ'cvenQitieptrenbiencuaTknenxac~dinhduQ'c
mQtvi phoigili'abiencuaIanc~nongTk vmxuyenKf x Sl, clingvi phoigili'aTk
vaKf x D2.Codinhvi phoinay,tadongnhatTk vaiKf x D2.
TheochUngminhaBe;d64.2.1.1,m6iIatcatngangxuyenKf x Sl IamQt
duemgtroll chuamk+1di~mcuaKf+1. Nhu v~y,(Kf X D2,Kf+1) Ia mQtmk+1-na
qUaild6utrenbien(Kf x Sl) cua(Kf x D2).
(4)ChUngminh(mk+d-na(Kf x D2,Kf+1)clingki~uvmnaxuyenki~u(mk+1,nk+1):
1
Difttf = Ixl dunho,xetduemgtrollSE'tam0 bankinhf' = fml..mktrongmiftt
phingphuc<C.Choanhx~h:
h: SE'-'rKf C (Sl x D2).
t H(t'ml..mk,yk(t'))
Tabietdmg,h IadongphoivaduQ'CmarQngthanhdongphoiH nhusail:
H : SE'x D2 -'rKf X D2
(t',y') H(t'ml..mk,yk(t') + y')
Xet mQtna xuyenki~u(mk+1,nk+1)trenbiencuaxuyendiftc(SE'x D2), na
Ungvmkhaitri~nPuiseux:
Y(~k+1t')=(:nk+l ~<" 1xmk+l , ~k+1 fa din bcJcmk+1nguyenthuycuadO'nvi.
anhcuam6idi~m(t',Y(~k+1t'))quaH Ia:
, ,~
H(t', Y(~k+1t'))= (tml..mk,yk(t')+~;~i1tmk+l)
T~inhli'ngdi~mkhactren(SE'x D2),thamsox theothamsothlfct'baiquail
50
he:
x = t'ml..mk
Ch9nt'HimQtr!trong(m1..mk)tr!canb~c(m1..mk)cuax,ki hi~ugiatr!do
Ia:
, L-t = (kxml..mk
Khi do,
H(t',Y(~k+1t'))=(x,
=(x,
=(x,
L- nk+1
yk((kX) + [~k+1(kmk+lrk+1Xml"mk+l)
k n nk+l
y ((kX)+ [(k+1,k]k+1Xml"mk+l)
yk+1((k+1X)).
DayIat9adQcuadi~mcuaduangcongkhftvi Kf+1tren(Kf x D2).Nhuv~y
dongphoiH giii'ahaixuyen(5E,x D2)va (Kf x D2),clingIa dongphoigiii'anO'
K k.:! ( )
A
(5 D2)
' K k+1 A (Kk D2) Ch
' ?
( )xuyen leU mk+1, nk+1 tren E' x va 1 tren 1 x . ungto, mk+1-nO'
(Kf x D2,Kf+1)clingki~uv6'inO'xuyenki~u(mk+1,nk+d.
(5)V6'i Ixl dunho,taxaydvngduqcnO'(Kf-1 x D2,Kf).
Nhuv~ytadfidvngduqcnO'xuyenKt ki~u(m1,n1)trenbiencuaxuyend~c
To- IaIanc~ndC;lngongcua{a}x D2trong(51x D2).Saildo,xetIanC~llldC;lngong
T1cuaKt. Lanc~nT1viphoiv6'imQtxuyend~c(Kt xD2),trenbiencuaxuyend~c
(Kt x D2),taxaydvngnO'(Kt x D2,Kn ki~u(m2,n2)'Theoeachnhuv~y,tadvng
duqcnO'(Kf-1 x D2,Kf) ki~u(mg,ng),lingv6'ic~pPuiseuxthu9cuaf. (m)-nO'tim
duqcIamQtnO'xuyenki~u(mg,ng),duqcg9iHimQtno'xuye'nl(ip(gIan).
II. Chlingminhcaem-nO'(51x D2,Kd va(51x D2,Kf) Iaclingki~u:
D~t(51x D2,Kij)) va (51x D2,KFJ), 1 ::;j ::;g, Iacae(m1..mj)-nO'IanIuqt
lingv6'ikhaitri~nPuiseux:
. ..':.L ~
y(J)(x) = alOxml+... +ajOXml"mjva,
. ..':.L ~
y[J](x)= la10lxml+ ... + lajolxml,.mj
Trongdo,a10,..,ajOIa caeh~sotrongcaesohC;lngtuanglingtrongkhaitri~n
Puiseuxcuaf.
51
PhanI, tadiixaydlJIlgdugcnaxuyenl~p(51X D2,Kf), 1 ~ k ~ g,naKf
qUailtrenbiencuaIanc~nd~ngongTk-1cuaKk-1mat~im6ilatci\tngangTk-1,
tadugcm9tilia trollbankfnhIxl ml~~mk.
V6i cachlamhoantoantuangtl;r,taclingdlJIlgdugcna (51x D2,KIk]),1 ~
k ~ g, bangcachxetIanc~nd~ngongT[k-1]cuaKIk-1])saochom6ilat ci\tngang
~
cuaT[k-1]tadugcm9tiliatrollbankfnhlakollxlml..mk.ChUngminhm9tketquatuang
tvB6d~4.2.1.1,vaiIxl dunho,tanh~ndugcm9tna(51xD2,KIk])cling~i~uvaina
xuyenki~u(mk,nk)'Quatrlnhl~pchodenc~pPuiseuxthug,(m)-na(51x D2,KIg])
lam9tnaxuyenki~u(mk,nk)'
(1)ChUngminhcac(m)-na(51x D2,K~g])va(51x D2,K~g))laclingki~u:
CachxaydlJIlgcho(51xD2,KIg])Iam9tnaxuyenl~p,hlnhanhlam9tduemg
congqUaild~ulientiepnhau.
Cach~sophucaiOva laiOl,1 ~i ~g,satkhacnhaum9tg6cquayquanh0,
clingvaitfnhchatqUaild~ulientiepnhaucuana (51x D2,KIg]),thl(51x D2,Kig))
chfnhlana (51x D2,KIg])quaym9tg6cquanhO. Va nhuv~y,(51x D2,KIg])va
(51x D2,Kig))Iaclingki~uto-po.
(2)ChUngminhcac(m)-na(51x D2,Kf) va(51x D2,K~g])laclingki~u:
D~chUngminh(51x D2,Kf) va (51x D2,KIg])clingki~u,tachUngminhton
t~idongphoih : 51XD2 -+51x D2vaanhx~thuh~phlKf :Kf -+KIg]clinglam9t
dongphoi.Dongthaih camsinhm9tphepdongnhattu-51x {O}den51x {O}vatu-
51x 51den51x 51.
MQilatci\t({t}x D2)cua(m)-na(51x D2,Kf) vacua(m)-na(51x D2,KIg])
ladongnhat.Dod6,taxaydlJIlgm9tvi phoih,
h: (51 X D2) ~ ({t}X D2) -+ ({t}x D2) C (51 X D2) thoa:
. hbien m di~mcua Kf n ({t}x D2) thanhm di~mcuaKIg]n ({t}x D2).
. hcamsinhphepdongnhattu-({t} x {O})den({t} x {O})va tu-({t} X 51)den
({t}X 51).
V6i vi phoih naythlh=hhoantoandugcxacdinh.
** D~c6vi phoih, tadlJIlgtruemgvec-taV C }R3lapCOOtrongl~nc~ncua
52
tr1;1({t}X D2) X [0,1]nhusau:
Xet tr1;1C = ({t}X D2)X[0,1],vaquailh~dongnh~thitcat({t}xD2)x {a}c
({t} x D2) cua nO'(51 x D2,Kf) v6i Iat cat ({t} x D2) x {1}C ({t} x D2) cua nO'
(51 x D2,KIg]).
Ki hi~uA Iat9ad9theotr1;1c({t}x {a})x [0,1]C C, va{5ih=1,..,mIa m do~n
th~ngnoi tudi~m(t,yg((~x(t)))dendi~m(t,y[g]((~x(t)))xacdinhbCri:
y = yg((;x) +A[y[g]((;x) - yg((;x)J, a ::;A ::;1
((gIacanb~cmnguyenthuycuadonvi)
V6i Ixldunho,trongmotanO'(51x D2,Kf) va(51x D2,KIg]),mdi~mcua
mbinO'trenIatcat({t}x D2)Iadoixlingnhauvalamchomdo~n{5ih=1,..,mtUng
doim9trOinhau,khongglaDv6itr1;1c({t}x {a})x [0,1]vaciingkhongglaDvoibien
({t}X 51)X [0,1]cuatr1;1C. Nhuv~y,taciingxaydvngduqcmIanc~nd~ngong
{Tdi=l,..,mcuado~n{5ih=1,..,mtuonglingsaDchotUngdoim9t,Ianc~nIi vaTj rOi
nhau,khongglaDvoitr1;1c,ciingkhongglaDv6ibien({t}X51)X [0,1]cuatr1;1C.
Bd d~4.2.1.2:
Ton t~im9ttruangvec-tO'V lOpCOOtrongIanc~ncuatr1;1C trong]R3thoacac
tinhch~tsau:
. Thanhphancuavec-tO'V theohu6'ngtr1;1ccuaC Ia hang1.
. T~im9idi~mx trongIanc~ncuatf1;1cvabien({t}x 51)x [0,1]cuatr1;1C,V(x)
songsongvoitr1;1ccuatr1;1C.
. T~im9idi~mx thu9CIanc~nIi cua5i,1::;i ::;m,V(x)songsongvoi5i.
Chungminh.
Trong]R3,taxaydvngphilmachotr1;1C gom:t~pmacua0 chuatr1;1c({t}x
{a})x [0,1],bien ({t}x 51)X [0,1]vaphankhongglaDv6'icac5i,1::; i::; m; vam
t~pmaTi cua5i,1::;i ::;m.
R6rang,diaphuongtrongt~pmacua0 haytrongt~pmaTi,1::;i ::;m,cling
tont~itwangvec-tO'thoacacdi~uki~ntren.
53
Truemgvec-taduqcdvngtucactruemgvec-tO'diaphuongnaynhb'm(>tphan
ho<;tchdonvi lapCOOtheophuma. .
** V6i truemgvec-taV lap CoovUaKaydvng,tuongtv nhuchUngminh
dinhIy diu trucnon,tahoantoanxacdinhduqcvi ph6iit tu ({t}X D2)X {O}vao
({t}XD2)x {I}thoacacyellCalldfld~tfa.Nghialaclingxacdinhduqcdongph6i
h gilracacc~p(51x D2,Kf) va(51x D2,Kig]).
(3)Nhuv~ytadflchUngminhduqc(51x D2,Kf) va(51x D2,Kig])la..clIngki~u.
TheoketquachUngminha do<;tnILl thl (51x D2,Kig])va(51x D2,Kig))laclIng
ki~u.Suyfa, (51x D2,Kf) va(51x D2,Kig))laclIngki~u.
Ml;1cdichcuatalachUngminh(51x D2,Kf) va(51x D2,Kd clIngki~u,do
v~y,tachiconcanchUngminh(51x D2,Kig))va(51x D2,K1) laclIngki~u.
(42ChUngminh(51x D2,K~g))va(51x D2,K1) laclIngki~u:
D~chUngminhduqcdi~unay,tacanKaydvngduqcm(>tdongph6ih : (51X
D2) -+ (51x D2),clingdongph6igilraK1 vaKig). Dongthaih camsinhm(>tphep
dongnhattrenbien(51x 51)vadongnhattrentUnglatcat({t}XD2)cua(51x D2).
Sosanhkhaitri~nPuiseuxy(x)vay(g)(x),chungsaikhacnhautoidala (g+1)
nhomcacsohnglambiend<;tngchutit nO'Ung
v6'iy(x) sov6'inO'xuyenl~p(51x D2,Kig)) Ungv6'iy(g)(x).
Dov~y,tasephanbi~thaitruemghqp:
a.Neuy(x) y(g)(x).Talayh laphepdongnhat.
ChUngminhketthuc.
b.Neuy(x)=I-y(g)(x),d~tZ(x) = y(x) - y(g)(x)=I-o.
Ta tienhanhchUngminhtuongtVnhuIL2 (nhusail).
Trang]R4,ki hi~uT = (51XD2)X [0,1]va'\ la tQad(>theo[0,1].5lam(>tm~t
trangT duqcxacdinhbOiphuongtrlnh:
J(x, y,'\)= II (y- ['\Y((gx)+ (1- ,\)y(g)((gx)J) =O.
(m=l
T<;ti,\ = 0 :
54
J(x, y,0)= II (y- y(g)((gx))=O.
(m=l
T(;li),= 1:
J(x,y,1)= II (y- y((gx)) =f (x,y) =O.
(m=l
Nhu v~y,thu hypcua 8 t(;li(81X D2) X {a}la dongnhatv6i K~g),va t(;li
(81X D2)X {1}la dongnhatvmK1.
Ch9ncact9ad(>cua]R4la: t (U'ngvmx = Ixle27rit),Re(y),Im(y)va),.
Phuongtrlnhf(x, y,),) = 0 dugctachthanh:
{
Re~x,y,),)=0
Imf(x,y,),)=0
*Trenm~t8, chi ton t(;lim(>ts6 hii'uh(;lnduangcongn(>itieptren8 lam 8
kh6ngchinhqui.Cacduangcongnaydugcxacdtnhla giaocua8 v6ihii'uh(;lnsieu
m~t({ti}X D2)X [0,1],1:::;i:::;N.
D~codugcketquanay,tatinhh(;lngcuamatr~ A dumday,lamatr~ncon
cuamatr~nJacobicuaSt(;lidi~mbatki thu(>c8.
Tabietrang,rank(A) ::J2t(;linhUngdi~mthu(>c8 madet(A)=0(dayladi~m
ki dt cua8). Ta setinhdtnhthucdet(A)t(;lidi~mthu(>c8 co y = ),Y((gx)+ (1-
),)y(g)((gx):
ReM,(x,y,),) Re¥y(x,y,),)
det(A)=
ImM,(x,y,),) Im¥y(x,y,),)
Tu day,nh~nxetrangdet(A)= 0{::}Im(Y((gx)- y(g)((gx))=ImZ((gx)=0
Nhuv~y,d~coketlu~nv~di~mthu(>c8 nay,tachicantimnhUng iatrtcua
t d~ImZ((gx)=O.
aRe!(x y),) aRe!(x y ),)a). " a ey"
A=I
I ' (x,y,A)E 8.
aIml( ),) aIm!(x y A)a). x,y, aRey"
55
Xethaitruemghqp:
[I]Z((l)x)cohfiuhans6'hflnf.?
Vai giathietnay,ImZ((gx)duqcvietd~ng:
<00
ImZ((gx) =L ajsin(bjt+Cj,k)
j=l
Trangdo,aj,bjt,Cj,kE IR;Cj,knh~nm giatr~khacnhauUngv6'i(gnh~nm gia
tr~canb~cm cuadonv~.
Khi do,ImZ((gx)= 0t~imQtsohfulh~ngiatr~t E [0,1],ki hi~ucaegiatr~
naylati,1::;i ::;N.
V~ylatadaxacd~nhduqccaegiatr~cuat lamm~tS khongchinhqui.
Clingchuydmg,ImZ((gx)=I0v6'iIxidunho.
[Ii] Z((l)x)co v6hanso'hflnf.?
D~ty((g))(x)gomcaeso h~ngdtlutien,lay denso h~ngagOXml~gmgcuakhai
tri~nPuiseuxy(x).
Sailday,tasechUngminhrang,cae(m)-na(Sl x D2,K1) va (Sl x D2,Ki(g)))
Ungvai khaitri~nPuiseuxy(x) vay((g))(x) Iaclingki~u.
TuongtvBdd64.2.1.1,v6'iIxl dunho,chUngminhduqcsvtont~imQtIanc~n
d~ngongT' cuaKi(g))chuaK1 saochoT' vi phoivaimQtxuyend~c.D~t(S{,x D2)
la xuyend~cnay,vaH la vi phoi:
H : (S{,x D2)-+T'c (Sl x D2) saGcho:
(t',y) H(t'm,y((g))(x)+y)
R5 rang,H bien(S{,x {O})thanhKi(g)),dongthaibienduemgcongxacd~nh
bai (t',y(t')- y((g))(t'))thanhK1.
Ma rQngH thanhdongphoiH' :T -+T bienKi(g))thanhK1, vathuhyptren
bien:H'I&T: aT -+aT la dongnhilt.
Sailcling,marQngH' thanhdongphoiii : (Sl x D2) -+ (Sl x D2)vai phep
dongnhilttren(Sl x D2)\T.
Tont~idongphoiii, chUngtocae(m)-na(Sl x D2,Kd va(Sl x D2,Ki(g)))
56
Ia clingki~u. .
Sauday,tatiept1;lchUngminhchotnranghqpZ((gx)covoh(;lnsoh(;lng(y(x)
co voh(;lnsoh(;lng)bangcachtheml~nluqttUngsoh(;lngcuanhomthu(9+ 1)cua
y(x) vaoy((g»(x).Nhu v~y,clingchUngminhchotruanghqpZ((gx)co hii'uh(;lnso
h(;lngm(>tcacht6ngquat.
Ta da tlm duqcN gia tti ti,1 ::; ti ::; N, tuc la tlm duqcN duangcong
5 n ({ti} x D2) x [0,1],1 ::;ti ::;N trongT lam 5 khongchinhqui. Lo<;yN duang
congnayrakhoiT bangcachd~t:
T = T\{5 n ({ti}x D2) X [0,1],1::;ti ::;N}
Khi do,vai t E [0,1]\{t1,..,tN}thlm duangcong5 n ({t}x D2) x [0,1](tren
tUnglat cat)la chinhqui.
M~tkhac,tUngduangcongtrongm duangcong5 n ({t}x D2) x [0,1],t co
dinh,chinhla m(>tdo(;lnthing trongtr1;l({t} X D2) X [0,1]duqcxacdinhberi:
y =AY((glxle27rit)+ (1- A)y(g)((glxle27rit)
Do v~y,t(;lim(>tdi~mbatkl thu(>c5 n T, m~tphingtiepxucvm5nTchua
do(;lnthingcothanhph~nt9ad(>theoAkhacO.
Trong]R4\{5n({ti}x D2)x [0,1],1::;ti::; N},t(;lim(>tIanc~ncuaT, tadvng
duqctruangvec-tO'lapCOOthoa:
. Thanhph~ncuaV theotr1;lct9ad(>A lahang1.
. T(;liIanc~ncuabien51x 51X [0,1]cuaT, V songsongvai tr1;lct9ad(>A.
. Vai m6igiatrit,V namtrong({t}x D2)X [0,1].
. T(;lim6idi~mthu(>c(5 n T), V tiepxucvai (5 n T).
Theoketquavli'athuduqctren(5n T), taxaydvngduqctruangvec-tO'dia
phuangthoacaeyellc~utren.Saudo,tuangtVchUngminhdinhly Calltruenon,ta
dvngtruangvec-tO'toanC1;lCnham(>tphanho(;lchdanvi lapCoo.
Vm truangvec-tO'da dvng,ta hoantoanxac dinh duqcvi phoi h' : (51x
D2)\{m.Ndie'm}-+ (51x D2)\{m.Ndie'm}.Merr(>ngh' thanhdongphoih : (51X
57
D2) -+ (51x D2),bientUngdi~mcuaKig)trenm6ilat(trongN lat)tOth<;1ncua
(51x D2) thanhm<)tdi~mtucmgUng(trongmdi~m)cuaK1 trenlattucmgUngtrong
(51x D2).V~y,h la dongphoithoacacyellCalldad~tra bandati.
Ton t<;1idongphoih dakhepl<;1ichUngminh(51x D2,K1) va (51x D2,Kig))
clingki~utrongtatcacactruemghqpcuakhattri~nPuiseuxy(x).
III. Ketlu~n:
ChomamduemgcongphlmgX batkhaquit<;1idi~mki d!co l~pb, tahoan
toanxacd!nhduqccacc~pPuiseuxcuaf xacd!nhX. Tucacc~pPuiseuxnay,xily
dvngm<)tnaxuyenl~p(51x D2,Kf) nhumotaa I.
M~tkhacki~uto-pocuamam(X,0) duqcxacd!nhbCrlki~uto-pocua(m)-na
xuyen(51x D2,Kd. (m)-naxuyen(51x D2,K1)vanaxuyenl~p(51x D2,Kf) la
clingki~uto-po,theochUngminhaII.
Nhuv~y,ki~uto-pocuamamduemgcong(X,0) hoantoanduqcxacd!nhbat
cacc~pPuiseux. 0
Nh~nxet4.2.1.([5],p.ll2)
PhanI trongchUngminhD!nhly 4.2.1damotach~tchebangtoanh9Ccach
xilydvngm<)tnaxuyenl~ptucacc~pPuiseux.Tudo,coth~chUngminhduqcrang,
hatnaxuyenla clingki~uto-pokhivachikhi chungduqcdvngtuclingcacc~p
Puiseux.
Djnh ly 4.2.2.([5],p.ll1)
ChohaimdmduO'ngcongphdngbatkhdquiX vaX' tgidiemO. 0 fadiem
chinhquicuaX. Khi do,X vaX' facungkiiu to-pokhivachikhi0 dingfadiem
chinhquicuaX'.
Chungminh.
Tabietrang,nalienketvOlX lanatamthuemg,X vaX' clingki~uto-po,nen
(m')-nalienketVOlX' clingki~uto-povOlvOlnatamthuemg.Di~unaychixayra
khim'= 1vadodo,0 phailadi~mchinhquicuaX'. Di~unguqcl<;1iladung,theo
D!nhly 1.4.1. 0
Dfnh ly 4.2.3.([5],p.ll1)
58
Hai mcimduCingcongphdngbatkhdquiX vaX' tqzidiemki dj cott;2p0 ta
cungkilu to-ponlu vachinlu chungcocungCClc(ipPuiseux.
Chltngminh.
Neuhaimam(X,O) va(X',0) clIngki~uto-po,thlnO'(51x D2,Kl) lienket
v6iX vanO'(51x D2,K~)lienketv6iX' Ia clIngki~u,nhuvi;ly,cacnO'xuyenl~p
tUO'llgtl'ngcuaX vaX' Ia (51XD2,Kf) va(51xD2,Kt) laclIngki~u.Di~unaychi
KayrakhichungcoclIngcacc~pPuiseux.Di~unguqcl(;lihi~nnhienth€oDinh19
4.2.1. 0
Vi dl;!4.2.1.
Chocacc~psotvnhien:(2;3),(2;7),thoacacdi~uki~ntrongNhi;lnxet2.2.1,
khaitri~nPuiseuxchu~ntilctl'ngv6i cacc~p(2;3),(2;7) la:
3 7 3 7
y(x)=x"2 +x~ =x"2 +x"4.
Mo tahlnhh9CcuanO'xuyenl~p(5x D2,Kf) nhusau:
Trenxuyen(5 x D2,Kf), nO'Kt IanO'xuyenki~u(2,3)quaild~ulIenxuyen,
qUail2vangtheokinhtuyenva3vangtheovi tuyen:
NO'xuyenki~u(2,3)
Bim 2-nhanhtu'dnglingtrentn;!
T(;lilatciltngangxuyen:
DlJIlgm<)tIanc~nd~ngongT1cuanamabankinhm6iIatcatngangT1 Ia
m<)thlnhtrail bankinh Ixl m~;"2.Chli yding,v& Ixl dunh6thlT1 namhoanloan
trongxuyen51x D2.
Lanc~nd~ng6ngT1cuanaKj'
Uin c~nd~ng6ngtu'onglinglIentr\!
TrenIanc~nT1,tadlJIlgnaxuyenKl ki6u(2;7)qUail2 vangtheokinhtuyen
va7 vangtheoVItuyencuaT1:
60
~
........
/ ~
NO'xuyenKl2trenIanc~nongTI
,"""""""...,..
Bi~'tadng'iing't~6~' tn~
Lit dlt ngangxuyen51x D2(chuyvmIxldlinh6):