LÝ THUYẾT THẾ VỊ ỨNG DỤNG TRONG TRỌNG LỰC HỌC VÀ TỪ TRƯỜNG
TRẦN HOÀI NHÂN
Trang nhan đề
Mục lục
Mở đầu
Chương1: Lý thuyết thế vị cho trường trọng lực và từ trường.
Chương2: Bài toán xác định nguồn trọng lực và nguồn từ.
Kết luận
Tài liệu tham khảo
54 trang |
Chia sẻ: maiphuongtl | Lượt xem: 2270 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Luận văn Lý thuyết thế vị ứng dụng trong trọng lực học và từ trường, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
cbi gay,nUt,dUtdo~n,ne'p16i...thuongla duongtheo
huangn~mngang.Khi do,ne'udQdi thuongla tuye'ntinh,tacoth~xemxetcac
ngu6nha'pdftnho~cngu6ntunhumQtduongcohuangkhangthayd6ivav~th~
WcdoduQcxemlanhulahaichi~uvaiphanb6m~tdQd~ngrex,y,z)=rex,z).
"£'uj.JLmUL 1luJ-euj 58 g uin 7/(Joid(f{J,mL
Cacngu6nhaichi~uIad~hlnhdungvad~thie'tI~pmohlnhhdncacngu6n
3 chi~utu'dngungm6ikhi di~uki~ndiachfftchophep.MQtchumcachlnhtn,l
songsongse t:;wnenmQtd:;mgddngiancuamohlnhhaichi~u.Khi do,dQdi
thu'ongcoth€ du'Qcxffpxi b~ng(2.2),vdi \I1mnIa h!chffpd~nt(;lidi€m mgayra
boihlnhtn,ln vdim~tdQddnvi. B~ngthuc(1.50)chotathe'hffpd~n~cuav~th€
haichi~uvdim~tdQkh6i p(x,z)
u =2yJp(S)Iog!dS,
. s r
vditichphandu'QcIffytrenm~thie'tdi~nngangS vavdi rIa khoangcachvuong
gocWithanhph§ncuav~th€ vadu'Qchoboi
r =)(X-X,)2+(Z-Z,)2.
B€ ddngian,tachuy€ndi€m quailsattOig6ctQadQvaxemphanb6m~tdQ
Iah~ng.Khi do,phu'dngth~ngdungcuatru'onghffpd~ndu'Qchoboi
(P) = au = 2 JJ z'dX'dZ'.g a YP ,2 ,2Z x +z (2.7)
Tich phanIffytheox', tadu'Qc
f[
x' x'
]g =2yp arctan--2 - arctan-L dzI ,Z' z'
vdi XI' va X2'Ia hai hamcua z', va nhu'da:chi ra tronghlnh2.4, bi€u di~nhai
du'ongriengbi~tbaaquanhchuvi cuam~tthie'tdi~nngang.Tich phanIffytheo
chi~ukimd6ngh6dQctheochuvi,tadu'Qc
x'
g =2ypr1iarctan~z'.
LJJ z'
(2.8)
Thaythe'chuvi boi cacc(;lnhcua dagiacbien,(2.8)trathanh
J2ttt/-1l tJall Inf!£ uj 59 g ~L 7IfJO-idr1lhiuL
N Zn+l X'
g =2ypI farctan~dz',
n=1Z Zn
(2.9)
trongd6ZnvaZn+!d€ chIcaode>cuahaidgumutcuac<;lnht iln cuadagiac.
p
>~\::~)"( ! /
\ \,,-~ ._-,---' /'""""'-..--z.
x
';~-e,,+ f
~~D
x
.-...---...-....-----..-
;:;:
Hinh 2.4.Xapxl vQtthi haichi~ubangdagidcN dink.
Dungduongth~ngbi€u di6n x' theo z', taduQc
, I n.x = aDz+ fJn, (2.10)
voi an
xn+!- xn
Zn+l- Zn
~n = xn - anzn
The'(2.10) vao(2.9), taduQc
g =2ypi zJ arctan( anz'~~nJ dZIn=1Zn Z
g - 2ypi
{
7t(Zn+l - Zn )+
(
Znarctan ~ - zn+larctan Zn+l
)
+
n=1 2. xn Xn+l
+ ~n2
[
log~x;+;- Z;+1 - Gt, (
arctan zn+l- arctan~
J]}
'
l+an ~x -z Xn+l xnn n
Hai s6 h<;lngd:1ulien trongda"ungo~cdon cuat6ngtie'nWi khongtrenba"t
..l2tlijn1001fhLp! ul 60 q ~l 7ItJoid(JlJull'L
ky dagiacnaG.Do d6,d£ngthuctrenc6d~ngdongianhall,
g =2ypI ~n2
[
10grn+l - an(en+l-en)
]
,
n=l1+an rn
(2.11)
vai rnva endu'Qcxacdinhnhu'tronghlnh2.4.
Lvc hapd~ncuav~tth€ haichi€u dod6phVthuQcVaGvi tri ~uaN dinh
cuadagiac.N€u tatu'dngtu'Qngc6 N du'ongth£ngvetudi€m quailsatWim6i
dinhcuadagiacthllvc hapd~nphvthuQcVaGchi€u daicuam6idu'ongnayva
g6ct~obdigiuachungvaim~tph£ngchuami€n dagiac(hlnh2.4).
2.1.2.Caemohlnhtli trtiCing
Tu tru'ongcuamQtngu6ntUdu'Qchobdi
B = -Cm\7p fM.\7 Q!dv ,
R r
(2.12)
vai M la dQtuh6a, r lakhoangcachtudi€m quailsatP taithanhphfindvcua
ngu6n.Gia tricuah5ngs6CmphvthuQcVaGh~th6ngdonvi du'QchQn.Hfiuh€t
cacnghienCUlltUtru'ongdo dQdi thu'ongcuatru'ongtoanphfinho~cthanhphfin
doncuaB. DQdi thu'ongcuatru'ongtoanphfindu'Qchoxapxi bdi
-
f
1
~T = -CmF.\7p M.\7Q-dv ,
R r
(2.13)
vai F lavectodonvi tronghu'angcuami€n tru'ong.
Tu'ongtvnhu'ly lu~nv€ cacngu6nhapd~n3chi€u,mQts6thu~ttoandu'Qc
khaosatnh5mtinhtoanmQthanhphfincuaB tu(2.12)ho~cdQdi thu'ongtru'ong
tO~lllphfinchomQtngu6ntuc6hlnhd~ngvaphanb6tuchotru'acb5ngphu'ong
phapthu~n.
J2LLijPLomL lnf!£ uj 61 q ~L ']{)oOirnJuin
B~ngcachxemme)tngu6ntunhu'la me)tt~pcaclu'ongqI'ctuhaytutich,ta
nh~ndu'Qcnhi~ucachkhacnhaud~nh~ndu'Qcacmahlnhxa'pXlchongu6ntu.
Volume of l'-tagnctizalion Vohtll'\C and Sur'facc Charge
~-Q$
L/
\/OIUlllC and Surface C:::lttTr~nt$ Poisson's Relation
('--?\
(~l~=~~~)-'f
~-~.:-/ $ D
Hinh 2.5: Bondt;mgphanb6'cuasf!tuh6a.
f)£ngthlic(2.12)ho~c(2.13)coth~tinhtoantu'ongminhchonhITngv~th~
cohlnhdangdongianvacoth~dungchophu'ongphapthu~n.Khi do,me)tngu6n
tucoth~du'QchiathanhN ph~ndongianvakhidocactinhtoandu'Qcthvchi~n
tu'ongtv nhu'd6ivoi(2.2).Bathanhph~ncuatutru'ongtrdthanh
B,J
=
N
IMjbjj,
j=l
(2.14)
trongdo, Bj la tutru'ongt<;=tidi~mquailsatthlij, Mj la de)IOncuade)tuhoacua
ph~nthlii, vabijla tUtru'ongt<;=tidi~mquailsatthli j gayrabdiph~nthli ivai de)
tuhoadonvi
bo.
1J f
- 1
= - CmV'P M.V'Q-dv ,
0 r
1
(2.15)
NSucacph~nchiadunho,chungco th~du'Qcxemnhu'code)tuhoad~u.
TrangthvctS,caca phaiconhITnghlnhdangdongian.Ch~ngh<;=tnnhu'hlnhhQp
chITnh~tho~ccacc~plu'ongcvc,d~d8danghontrongvi~ctinhtoanbi~uthlic
(2.14).
"!!.llt/-I'LlJillL /},f!R uj 62 q v4n 7IJoa1(],lJUYL
Nhu'dad~c~ptrongcacph~ntru'ac,tichphankh6icua (2.12)cothedu'QC
chuyenthanht6ngcuatichphanffi~tva tichphankh6ib~ngcachapdl,mgh<%
thlicvecto V.(~A)=V~.A+~V.A vaapdl,mgdinhly Divergence.The'tuco
d~ng
v = CmfM,VQ!dv = CmfM.nds - CmfV.M dv
R r sr Rr
=Cm fQs ds + CmfQv dv.
s r R r
(2.16)
Cactichphantrong(2.16)coclingd~ngnhu'the'ha"pd~n,vaid~ilu'Qngvo
hu'angQs va Qv tu'dnglingla bieudi6nchotutichtrenb~ffi~tvaphiatrong
cuav~tthe.Ne'udQtuhoad~u,thltichphanthlihaicua(2.16)tri<%ttieu,vathe'
vidu'Qchobdi
v = C fM.nm -ds.
s r
(2.17)
Ne'udQtuhoad~u, v~thecothehoantoandu'Qcbieudi6nbdis1,1'phanb6
cuacactutichtrenb~ffi~tcuav~the.S1,1'bi€u di6nnayd~ntaiffiQtso'cacthu~t
toan hi<%uq a,ffiQtso'trongcacthu~toandosedu'Qcd~c~pd ph~nsau.
M~tkhac,Dinhly Biot - Savartchotha"ytutru'ongcuaffiQtvongdi<%nnho
xua'thi<%nt~inhii'ngkhoangcachnhu'tru'ongcuaffiQtc~plu'ongc1,1'c.Tu do,ffiQt
phanb6cuacacc~plu'ongc1,1'ccothedu'QCxeffinhu'la cacthanhph~nkh6icua
dong di<%n
Is=Mxn
Iv =Y'xM
Ne'utlr'hoa la d~u,thl dongdi<%nkh6i tri<%ttieu va ffiQtv~ttu co thedu'QC
,I2,'tPLmin fhf!l! uj 63 g,d,L 7J()oii1(llJuin
thaythe-bdi mQtkh6i r6ngeo cimghinhd.~lllgmangdongdi~ntich trenb€ m~t
euano (hinh2.7).
Is
Hinh 2.6.. DongLuanchuyingayra d(J tith6acilavi,ltthi titd8ngnhatLatUdngdudng
wJi dongdi~ntrenb~m(itcilavi,ltthi.
1\
n Is
Hinh 2.7.. DongLuanchuyingayra d(Jtith6acilavi,ltthi titd8ngnhatLatUdngdudng
wJi dongdi~ntrenb~m(itcilavi,ltthi.
2.1.2.1. Xffpxi moblobbaebi~u
Caee~ph.tonget.fe
MQtngu6ntubaehi€ueoth€ duQexa'pXlbdimQt~peaethanhphftnnho
hall,eodC;lngdongian.CaeluongevetuIa mQtvi d\ldongiannha't.Tu truong
euamQte~pluongevetu,duQe hobdi (1.69)
B
m
[(
--
)
- -
J= Cm? 3 m.r r-m r:;t:0, (2.18)
vai m = m.m la mamenluongeve,r =r.r la veetoduQedinhhuangtu
.l2uqlL luilL tj,1f£ ilj 64 I'd,,&t 7IfJom (/(JUUL
luBngclfctOidi~rnquailsat.
M~cdli tinhtoantrongthlfct€ co daichutphuct.W,tutru'ongcuarnQtv~t
th~coth~du'<;1ctinhb~ngcachchiav~tth~thanhnhungthanhphftnnho,vaighl
sala cacthanhphftnnhonaycachnhaurnQtkhmlngnhu'rnQtIu'Bngclfc.sa dl;lng
(2.18),tasuyratutruongcuarn6ic~pIu'Bngclfc.Tu tru'ongcuangu6n.tubandftu
b~ngt6ngcactutruongcuata'tCelcacluBngclfc.MarnenIu'Bngclfcrncuarn6i
thanhphftndu'<;1cchobditichcuadQtuhoavath~tichcuathanhphftndo.
xa'pXlb~nghinhhQpchii'nh~t
Chungtaclingcoth~xa'pXlrnQtngu6ntubachi~ubdirnQt~pcachlnhhQp
chITnh~t.Tu truongcuarn6ihlnhhQpchITnh~tdu'<;1cchobdiBhattacharyya(xern
[1]).M6i hlnhhQpchITnh~tdu'<;1cdinhhu'angsongsongvai cac trl;lcx, y, z giOi
hqn bdi Xl ~ X ~ X2,Yl ~ Y ~ Y2, Zl ~ Z <00,vacodQtuhoa
M =M(iMx +]My +kMz).
N€u dQ di thu'onggay ra bdi hlnh hQpdu'<;1cquail sat tqi rnQttru'ongdia
phuongdinhhuangsongsongvai F = (Fx,Fy,Fz)' thldQdi thu'ongtru'ongtoan
phftnquailsattqig6ctQadQdu<;1cchobdi
~T = CmM
[
a2310g
(
r-X'
J2 r+x'
+ 0,13I
(
r - y,
J
-og-
2 r+y'
- al2log(r +Zl)
M,F, arctan(X'2+X;{+z; ) (
x'y'
J
M F arctan 2
X
,2
y y r +rzl -
+ M F
(
X' '
]J
1X'=X2IY'=Y2
Z z arctan ~
rzl I I ,Ix'=x
I IY'=YI
(2.19)
,J21l1!lLIfflt'L litf!£ uj 65 g ~L ';J600irJlhiu'L
vOi
r2 = X.2 + y.2 + Z~.
D£ngthuc(2.19)chotagiatridithu'ongtru'ongto~mph~ncuamQtkh6ihlnh
hQpchITnh~tvoi Zl::;;Z<00.Ne'utinhtoannaydu'c)cthljchi~nhail~n,mQtl~n
cho Zl =ZtvaM =Mo vamQtl~nchoZ\=ZbvaM =-Mothl theonguyen1'1ch6ng
chat,t6ngcuahail~ntinhnaysechotatutru'ongcuakh6ihlnhhQpchITnh~tvoi
dQtuhoaMo,cohaidaylaZtva Zb.
B~ngcachchiangu6ntuthanhmQt~pcachlnhhQpchITnh~t,(2.19)coth~
du'c)csadl,mgl~pdi l~pl~inh~mdi€u chlnhmohlnhchocacngu6ntucohlnh
d~ngtuy y. Cac kh6i hlnhhQpchITnh~tclingdu'c)cdungtrongphu'dngphap
nghichd~tinhtrljctie'pvectd M tudQdi thu'ongtru'ongtoanph~ndod~cdu'c)c.
Ch6ngcaebanmong
Talwani(xem[1])dffsadl,mgtichphanbQi(2.12)d~du'arathu~ttoantinh
toantUtru'ongsinhbdi ngu6ntu co hlnhd~ngtuy '1.Phu'dngphap nay tu'dngtlj
nhu'phu'dngphapcuaTalwanivaEwingtrongtinhtoandQdi thu'ongtru'onghap
d§ncuangu6nbachi€u dffd€ c~pd ph~ntren.Ngu6ntudu'c)cxapXlbdich6ng
cacbanmong,m6ibanmongl~idu'c)cxapXlbdimQtdagiac.TudotichphanbQi
(2.12)du'c)cchuy~nthanhtichphantheox,y vat6ngtheoz.
Plouff md rQngphu'dngphap cua Talwani (xem [1]) b~ngcach thay the'
ch6ngvo h~ncacbanmongbdi mQtt~nghU'uh~ncacbanmongvoi dQdaynho.
Phu'dngphapnaybi~udi~nmQtcachchinhxachdnmohlnhcuangu6ntu.Ngoai
fa, ngu'oita condungphu'dngphapxapXl cuaTalwaniva Plouff chobai toan
al2
=
MxFy + MyFx'
al3 = MxFz + MzFx'
a23 = MyFz + MzFy,
J2I1ijl'L mi1L fJ,f!£ ill 66 g,4,L '7{)oairmullL
nguejctinhbathanhphc1ncuadQtllhoatn!ctie'ptlldQdithuongtruongloanphc1n
dod~cduejc.
Caekh6idadi~n
Ne'udQtll hoala d~u,mQtngu6ntll co th~duejcmahlnhbdicactUtich
lIen b~m~tcuangu6ntll. Dt!avaod~cdi~mnay,Bott,Barnett,Hanssenva
Wang (xem [1]), duara phuongphapxa'"pXl ngu6ntll bdi mQtkh6i .dadi~nma
m6im~tcuano la mQtdagiacph~ng.(hlnh2.8)
y
z
Hinh 2.8. MQtngu6ntitv6'ihlnhd(;mgtuyydu(femohlnh
nhumQtkhatdadi?nv6'ieaemijtLaeaedagiaephdng.
Phuongtrlnh (2.17)chota the'tll sinhbdi mQtngu6ntll co dQtll hoa d6ng
nha't,voi tll truongduejcchobdi
-
fM.n-B = - VpV = Cm zrds.
s r
(2.20)
£)~dongian,xettruonghejpg6ctQadQduejcd~tt~idi~mquailsatP. Khi b~
m~tcuangu6ntll duejcthaythe'bdiN m~tdagiacph~ng,(2.20)trdthanh
N - ;
B = CmL(M.n) f2ds,
i=\ s r,
(2.21)
J2JltP' ImlL tltf!£ £lj 67 g nil, 7{;oiiir1lJuU,
vai Sj lami[ttthli i, n)avectophaptuy€nhu'angrang oaitu'ongling.
(a)
A :;;;X
1\
.
-/~
Vr
- n;j I..P I IJ
p/ P
, con1cr j+ I
z
(0)
~
c
I
\ I
A \ I" I" \ ",\1--- - D
'-pl
Alca AlJCD '" Arca ABP' +Area BCP'
+ArcoilCOP' - Area ADP'
Hinh 2.9. (a) M{it thz1i cila kh5i da di?n trong h? tr1;lctf,JadQx, y, z.
Gia sumi[tthli i la mQtdagiac Kj dlnh(hlnh2.9).Ta quyu'acdug cac
dlnhcuaba'tkymi[ttdagiacnaod~udu'Qcxettheochi~ukimd6ngh6khinhlntli
ngoaingu6ntU.Tli P h(;ldu'ongvuonggoc vai mi[ttph~ngchlia da giac,ca:tmi[tt
ph~ngnay t(;liPi', gQi Iij la vec to donvi tli dlnhj tai dlnhj+1, Pij la vec to
donvi tUdiem P/ vuonggocvaic(;lnhj. Xet Kj tamgiacsaochomQitamgiac
clingcomQtdlnhla P/ vac(;lnhdO'idi~ndlnhnayla mQtc(;lnhcuadagiacbien.
Khi do, di~ntichcuaKj mi[ttcuakhO'ida di~nb~ngvai t6ngdi~ntichcuaKj tam
giacvai trQngsO'di[ttb~ng+1 hoi[tc-1 tliy theovec td Iij co hu'angtraihayphai
khi quailsatt(;lidiemP/. Tli do, tichphantrong(2.21)co thedu'QCthayth€ b~ng
t6ngcuacactichphanla'ytrenKj tamgiac,
f~dsr2
Sj
=
K-
I Ilij~ij ,
j=1
(2.22)
trongdo Ilij=1 n€u Ijj xPjj la clingchi~uvai nt 11..=-1n€u f xP. la ngu'ocr'IJ 1J 1J .
chi~uvai nt Ilij=0 n€u Ijj xPjj =0, va ~jj la tichphantrenmi~ntamgiact(;lO
bdidlnhPi' vac(;lnhthlij cuadagiacbien.
J!.tUpL IJmL thf!£ nj 68 g ~L ,,;/6oai(J{J;,mt
"
PH
IJ
It.(-.r-- c:rncr .J
Iv
corncr j+ I
f~'
Hinh 2.10: Mr;ittamgidctranghf trl:lct(JadQmaiu,v,w.
ChQng6ctQadQt<;tidi~mPi, tn;lctQadQmoiu,v va w songsongvoi Pij, Ijj
va n( hinh2.10).Trangh<%trt;lctQadQmoinay,cacdlnhcuami€n tamgiacco
tQadQla (0, 0, di), (uij,Vij,dj)va (Ujj,Vj,j+l,dj) voi dj 1akhmlngcachtli'P tOiPj'.
Tich phanla'ytrenmi€n tamgiactrdthanh
~ij
- fr- -dsr2
sij
U
f
ijV
fb U-p
.. +vf +d,~- IJ IJ 1 lJ d d- 3 U v,
OVa (u2+v2+dnZ
Doc lu'Qngrichphankeptren,tadu'Qc
-
[
a
[
r+p
J
1 r +V
]
-
[
1
(
r+p
J]~ij = Pij -J1+a2 log ldJ - 2"logr-v - Ijj -J1+a2 log ldJ
[ ]J
IV=V' , I
- dj a(r-Idjl) 1.]+
- n; jdJarClan( r+a2Id;1 -
IV-Vii
(2.23)
vOi va
ViP , Vi.j+lU=
va Vb = -
Uij Ujj
J2114nmln lhLfl!uj 69 q ~t 'j6oai {J(JuHl
, . v ~ 2 2 J 2 2 d2VOl a = - P = u.. +V r = u.. +V + ., 1J' 1J I .
Uij
Ne'uP n~mtrongm~tph~ngchuami€n tamgiac, (2.23)trdnensuybie'nva
truonghQpnayduQcxU'ly b~ngcachbodi mQtph~nhlnhqU(;ltnhobaaquanh
di~mPi' rakhoimi€n tamgiacdangxet,ke'tquathuduQcla
-
[
a
( (
r+p
)
1 r +V
J]
~ij = Pjj l+log - - -log-
~1+a2 28 2 r - V
- Ijj
[
1
(
1+log r +p
J]
IV=Vi,.i+1
~1+ a2 28 I ,
Iv=vij
(2.24)
trongdoE lamQts6nhotuyy.
2.1.2.2. Xa'pXlmohinhhaichi~u
Nguoi ta sU'd\lngkhai ni~mb€ m~ttiI'tich d~xay d1!ngmQts6 thu?ttoan
choma hlnhV?tth~hai chi€u va thaythe'cac d(;lngthie'tdi~nc~tngangcuaV?t
th~bdicacdagiacN-dlnh.Ne'uV?tth~la tiI'hoad€u, dQtiI'hoacoth~duQcthay
the'bdicactUtichtrenb€ m~tcuano(hlnh2.11).
x x
CB
-~~~\~
z z
Hinh 2.11.Xdpxl cilamQtvt;'itthi hai chiiu v6'icae ddih?p vahc;mtittich.
Khi do,bai toanduQcchuy~nthanhvi~ctinhtoanl1!ctiI'cuaN daiph~ngtiI'
tich,mdrQngva h(;lntheohuang+yva -yo TiI' truongcuamQtV?ttiI'd€u vai th~
tichR vab€ m~tS duQcchobdi (2.20),
J2tttJn olin tJlf!£ u] 70 g r&L 'Jf5oO1 (j{JUUL
-
f
M.n-
B = Cm~rds.
s r
Ding thlicnayWongtl!nhuchotrUonghfipd~ncuamQtvor6ngclInghlnhd(;lng
S
a(S) -
g = -y ~rds,
s r
vai a(S) la m~tdQm~trendonvi di<%ntich,trongdotittruongd~uc;;uamQtv~t
th~titvaith~tichR coth~du<;jctinhb~ngcachthaythe'-M.~ choa(S) va Cm
choy.
(a)
(b)
,.
~x (c) \0 ~
Hinh 2.12. (a)Ddi ndmngangmiJr(3ngvahc;mrheatrl!cy.
(b) thanhv~tthi dili vahc;mrheatrl!cy cdtm(itphdngx,z t(li (x' , z')
X6tmQtdaihypphing,n~mngangvaim~tdQb~m~tla a, mdrQngvoh(;ln
theohuang+yva-y, codQrQngcuadaitit(Xl,z') tai (X2,z') (hlnh2.12a).MQt
thanhph~ndx cuadaihypc~tm~tphingX, z t(;li(x', z') va Wongduongvai
thanhv~tth~dai vo h(;lndQctheotrl;lcy co kh6i lu<;jngtrendonvi chi~udai
A=adx(hlnh2.12b).Nhudffd~c~pd ph~ntruac,thanhv~tth~ co truonghfip
d~nquailsatt(;lig6ctQadQla
g = -2YA~r
J!.llijn 'Jan tnLfl!uJ 71 g P4.n7!6oiL1rnJuiI"
" -
= 2YA x l+z'k
X'2 '2'+z
(2.25)
Truongha'pd§n cuadai h(fpn~mngangdu<;5ctinhb~ngcachd~tA=crdx
trong(2,25)vala'ytichphantheox,
Xz ,
gx = 2ycrf '2X '2 dx'x +z
XI
r ~
= 2ycrlog~,
rl
Xz dx'
g = 2ycrz'f---;z- '2z X +z
XI
= 2ycr(81-82),
g
[
- r -
]= 2ycrilog r~+k(81- 82) ,
(2.26)
trongd6ri var2la khoangcach tUdi~mP taic(;tnh1va2,81va82 la cacg6c
giuatn:lcx va cacduongn6ic(;tnh1,c(;tnh2 tuongung(hlnh2.12b).£)~ngthuc
(2.26)la truongha'pd§ncuamQtdaih(fpn~mngang.T6ngquat,vaiba'tky dai
h(fpnao,chungtaquaydaih(fpmQtg6ctuyyvavaihaivectodonvi Ii va ;
lin IU<;5tlaphapvectovavectochIphuongcuadaih(fptuongung(hlnh2.12c).
- -
Vec to s luonc6huangsongsongvai daih(fptITc(;tnh1tai c(;tnh2.Vec to n
vuongg6cvaidiEh(fpvadu<;5cdinhhuang
nX = sz,
nz = -sx'
Thanhphincuatruongha'pd§ntheohuang~ van du<;5cchoboi (2.26)
r
gs = 2ycrlog~,
rl
gn = - 2ycr(81- 82),
£llIpl (WI flu.a uj 72 g ~I '7()tJitirnluitrl
Thanhph~ntheohuangxvaz duQc hoboi
gx = l.g
= sxgs+nxgn
= sxgs+szgn
[
- r -
]= 2ycrSxlog r~-sz(8t -82) .
gz = k.g,
= szgs+nzgn
= szgs- sxgn
[
- r -
]= 2ycrSzlog~-sx(8t-82) .
D~ngthuctrencho ta h/c ha'pdfincuaffiQtdeliv~tth€ hyp dai vo h(;ln.D€
chuy€n v€ truonghQptUtruong,chungta chi c~nd<1ity =Cmvacr=-M.n
B, = -2Cm(M.~{S,lOg~ - S,(8,-82)}
(2.27)
-
[
- r -
]Bz = -2Cm(M.n) szlogr~ - sx(8\-82) .
(2.28)
D~ngthuc(2.27) va (2.28)bi€u di€n choh;tctu cuaffiQtdelihyptu tich,
chungcoth€ duQCsadlJngN l~nd€ tinhtminh;tctucuaffiQtv~th€ hlnhlangtrlJ
N-dlnh
N
B = I(rn\x+kB\z)'i=\
(2.29)
J2tLlpL tJiUL thLJ-eu] 73 q P4n '7{JoOi(](J,iYL
vai B1xva BIz la cacthanhph~ncuaB gayra bdi m~t1.Tru'ongtoanph~ndu'Qc
tinhbdi
N
~T = I(FxBlx +FzBlz)'1=1
(2.30)
vai Fx va Fz la thanhph~ntheohu'angx, z cuatru'ongxungquanb,khangbi
nhi~ulo<;ln.Ma hlnhhaichi~ud~dangxaydvnghdnnhi~usovai mahlnhba
chi~u,chungthu'ongdu'QCsadl;lngm6ikhidi~uki~ndiav~tly chophep.
2.2. Phuongphap nghjch
Trongph~ntru'ac,taco cacquailh~giuangu6nva tru'ongthe'sinhrabdi
ngu6n.Vdi R la vungchuangu6n,rex, y, z) la di~mquailsatd~tngoaiR,
Q (x', y', z') la di~mla"ytichphann~mtrongR, r la vec td du'Qcdinhhu'angtu
Q Wi P. Ta co tru'ongha"pd~ntheophu'dngth~ngdung
g(P) = J
z-z'
- y p(Q)~dv,
R r
(2.31)
tutru'ongtheophu'dngth~ngdung
Bz(P) =
8
J
1
- Cm- M(Q).V -dv8z Q rR
=
CmfMr~Q)[3;(Z-ZI)-rkJdv,
R
(2.32)
dQdi thu'ongtoanph~nxa"p Xl
-
J
1
~T(P) = -CmF.VpM(Q)VQ-dv
R r
= C fM(Q) [3(F.;);- FJdv,m r3R (2.33)
.l2tltPl lfflfil tJllJP ilj 74 q ~l '7fJLJmf'J1Jtml
trongd6,p(Q)vaM(Q) l~nluQtla phanb6m~tde)vade)tli'h6acuangu6n.Vec
todonvi F lahuangcuatli'truongkhongbinhi~u,vectodonvi k duQcdinh
huangth~ngdung.H~so"y vaCmlacach~ngso"dfid~c~ptrongchuang1.
Phuongtrlnh(2.32)va(2.33)c6dc.lUgchungla
fer)=fs(Q).G(P,Q)dv.
R
(2.34)
Chungta sexemxetdangdi~udinhhuangcuade)tli'h6atrongme)twi
truonghQp. Gia sU'de)tli'h6aduQchoantoancamungboi truongxungquanh.
Lucd6,de)tli'h6aseg~nnhutheome)thuangduynha"tne-ude)camlad~nghuang
va khonggiantli'dangxetkhongquaIOn.Trongnhfi'ngtruonghQpnay,trong
(2.32)va (2.33),tac6th€ d~tM(Q)=M(Q)M vachuy€nvectodonvi vaotrong
da"ungo~c.Cacphuongtrlnhtli'(2.31)de-n(2.33)c6dc.lUgt6ngquat
fer) =fs(Q).\V(P,Q)dv,
R
(2.35)
trongd6fer) la giatri truongthe-tC;liP, s(Q)motame)tdC;liuQngv~tly (phanb6
m~tde)ho~cde)tli'h6a)tC;liQ. Phuongtrlnh(2.35)la me)tphuongtrlnhFredholm,
trongd6\V(P,Q)vaG(P,Q)duQCgQilacachamGreen.
Phuongtrlnh(2.35)th€ hi~nra slj khacnhaucuaphuongphapthu~nva
phuongphapnghich.Pheptinhloanthu~n h~mml;lcdichtinhloanfer) tli'cac
hams(Q),\V(P,Q)vavungngu6nR chotruac.Gia tri fer)duQchoanloanduQC
xacdinhtUcacthongtinv~hams(Q),\V(P,Q)va vungngu6nR. N6i khacdi,
phuongphapthu~nc6 duynha"tnghi~m.Tuy nhien,c~nchuy r~ngm~cdu
phudngphapthu~nluauchoduynha"tnghi~mv~m~tloanhQC,nhungmohlnh
cacngu6ntli'hayngu6nha"pd~nxaydljngtheophuongphapthu~nthlkhongduy
nha"t.NguQcIC;li,trongphuongphapnghich,hamfer) chotruacboi cacphepdo
J2tl4rl luin flute uj 75 q v&l 7f5omrn.Juirl
d(,lctrongtht!cte',tudo tatlms(Q)hayR. BfLitmlnxacdinhs(Q)la bili loan
ngl1(Jctuytntinh,trongkhibaitoanxacdinhR labililoanngl1(Jcphituytn.
Xet bai toantuye'ntinh.D~ngthuc (2.35)coth€ vie'tl(,lidu'aid(,lngma
tr~n
N
fj =:L>j\Vjj,
j=l
i =1,2,...,L (2.36)
Khi L>N, ngu'oitadungphu'ongphapblnhphu'ongt6i thi€u d€ tlm N gia
tri cuaSj' Di~unaykhongdonghlndokhokhand:1utieng~pphaila nghi~mcua
bai toanthu'ongkhongduynhc1t.Ngayca khi ta bie'tf(P) chinhxac,ta clIng
khongth€ xacdinhnghi~ms(Q)mQtcachduynhc1t.St!duynhc1tcuabaitoanco
th€ du'Qcxacdinhbdi st!t6nt(,lihaykhongnghi~mkhongt:1mthu'onga(Q) trong
Ja(Q)\V(P,Q)dv= O.
R
Khi phu'ongtrlnhnayconghi~mkhongt:1mthu'ong,thlnghi~ms(Q),ne'u
co, la khongduynhc1t.Lop tc1tca a(Q)du'QcgQila nhancua\V(P,Q) va vung
ngu6nR.
D€ kh3:cphl;!cst!khongduynhc1tnghi~m,ngu'oitathu'ongtlmcachdongian
hoacac gia thuye'tv~ngu6n.Ch~ngh(,lnta co th€ gia sa dQtu hoacuangu6nla
d~uho~cngu6ndu'QcmdrQngvoh(,lntheomQthu'ang.Chuydingnhil'nggiadinh
nay thu'ongcho phepgiambot s61u'Qngcuacac nghi~md€ It!achQn.MQtcach
tie'pc~nkhacla HmcachxacdinhmQtsO'd~cdi€m, khiac(,lnhcuangu6nchung
chomQinghi~m.Ch~ngh(,lnhu'HmcachxacdinhdQsaut6idacuangu6n.
2.2.1. Bai tminngu'Qctuye'ntinh
Theo (2.35),tru'onghc1pd~nhay ttttru'ongla phl;!thuQctuye'ntinhvaom~t
""21tiJ-fILmYL thf!£ .Ill 76 g ~L 76o.itifllJuirL
dQhaydQtuh6avadod6,baitmlnxacdinhphanb6m~tdQhaydQtuh6atudfi'
ki~ncuatnI'ongha'pd~nhaytu tru'ongsinhra boi ngu6ndu'<jcgQiIa bai toan
ngu'<jctuye'ntinh.
Phu'dngtrlnh(2.4)matathanhph~ntheophu'dngth~ngdungcuatru'ongha'p
d~ncuamQtv~tth€ voim~tdQd€u. Ne'uhlnhd(;lngcuav~th€ du'<jcbie'thltich
phantrong(2.4)c6 th€ du'<jctinhboi phu'dngphaptie'n0 ph~ntru'oc.DQ di
thu'ongha'pd~ndu'<jcdot(;liN di€mroinhaula
gi =P\Vj i =I,2,...,N ,
trongd6 h~ngsO'P c6 th€ du'<jcxac dinhboi pheph6i guytuye'ntinhddngian.
(xem[1]).
Chungta c6 th€ xetbai toanphuct(;lphdnb~ngcachchiav~tth€ thanhcac
ph~nnhohdnva sadl:mgphu'dngphapblnhphu'dngt6i thi€u d€ tinhtoanphanb6
m~tdQcuatungph~n.Cachtie'pc~nnayclingdu'<jcxemxettrongph~nsaucho
tru'ongtutru'ong.
2.2.1.1. D{)tit'hoacuam{)tfing
TrongmQts6mahlnhtlmdQtuh6acuadaybi€n b~ngphu'dngphapngu'<jc,
Bot,BottvaHutton,EmiliavaBodvarsson(xem[1])giadinhr~ngdQtuh6ala
haichi€u, trongd6mahlnhngu6ntunaybaag6mmQtdaycaca dagiac(hlnh
2.13),voicaca du'QCs~pxe'pl(;lisaDchodinhcuam6ia tu'dngungvoidinhcua
,
tangtu.
Trong (2.36),dQdi thu'ongtru'ongtoanph~nt(;lidi€m i du'Qcvie'tl(;lithanh
N
~Tj = LMj\Vjj
j=l
i =I,2,...,L, (2.37)
trongd6Mj la dQIOncuadQtuh6aaj, \Vjjla dQdi thu'ongtru'ongtoanph~nt(;li
J2tt4rt tJiit't Ihf!£ uJ 77 g PAn ';/{;tffli(}{J,.tin
di~mi gayraboi0j voidOtithoadonvi.vt tniicua (2.37)baag6mto~mbOcac
d<;lilU<;5ngdfidodU<;5c.Ma tr~n\!Iijcoth~du<;5cHnhtoanvoi (2.30).Tit do,chIco
duynha'tmOtd<;lilu<;5ngchuaxacdinhtrong(2.37)la N giatri cuadOtithoa,va
n€u N <L, nhii'ngd<;lilU<;5ngayco th~du<;5ctinhb~ngphuongphapblnhphuong
t6i thi~u(xem[1]).
.6Ti ......
Hinh 2.13: Mo hinhnguf/caatangtadaybiin.Dr)dj thuimgtruimg
formphdn,11;duf/cdophia trenhangcaacac0, miJrr)ngvoht;mvuonggac
wJi m{itgilly.MtJi 0 La tahaadiu vaidr)tahaaMj.
Voi mOtdOSailchotruoccuat~ngtit,BottvaHutton(xem[1])khaosattinh
6ndinhcuaphuongphapnghich.Nhuminhhatronghlnh2.14,hd~~Ti=O0
kh~pnoi,tritt<;linhii'ngdi~mdon,noi~Ti=1nTvadung(2.37)d~tinhdOtithoa.
...
«1)
1-
0 -. --- 0
[IIIITIII1TTT I I I I IU.l.lITilIIIII]IITIIJ = 2 "V
II
""
J
(b)
s=
~
c£
.!2
.~ 0
a:;c::
OJ)
~
0/\-\/=3
"
-'~i~-----
-3
Hinh 2.14: nghifmkhongtJndjnhciladr)tahaacilatangta (a) dr)dj thuimgtruimg
loan phdn Lakhong tra tc;zicac diim d(/fl. Tdng Latgp h(fpcac 0 vai dr)rr)ng W va d{ittc;zi
dr)sauD. Dr)daycilatangLa2W. (b) Ke'tquaciladr)tahaakhiD/W=3.
R6rang,mOtnghi~mth\fcchoMj gayradOdi thuongd~cbi~tnaylaxa'pXl
J21u!-1'LtJiiI't Ihq.£ ui 78 grAn 7!fJoiIirmuHt
khongvoi mQij. D~thaythe'hQtimnghi~mdQtuhoakhongth\ickhacnhau
(hinh2.14)valu'Qngbie'nd6iph\!thuQcvao dQsaucuat~ngvadQrQngcuacac
0 (hinh2.15).
BottvaHuttonducke'theokinhnghi~mr~ngne'udQrQngcua0nhohondQ
mQthayhail~nsovoidQsaucuat~ng,thinghi~mngu'Qccua (2.37)1akhong6n
dinh.
J§-
.~3 -
::;;N
'::::: 2 ..
:!::!
~
~
i 1-
J2o~. :! :."
D/W
Rink 2.15:Duongcongbiiu diJn chocaegiatrj thudu(1cilacaethinghi~m otaiJ
hinh2.15.Th1!chi~nbiJi BottvaHutton[38J,
Ly do cua tinh khong6n dinh nay co th~tha'ydu'oidc,mgd<;lis6. Vie't l<;li
(2.38)
M6i cQtcuamatr~n\Vij bi~udiencho dQdi thu'ongtru'ongtoanph~ndQc
theomQtprofintrenmQt0 don,la 0j. Ne'udQrQngcua0 la nhosovoi dQsau,thi
profintren0donj sera'tgi6ngvoiprofintren0j+1ho~c0j-l. Noi cachkhac,dQ
rQng0 nhothi caccN g~nnhaucuamatr~n\Vijla g~ngi6ngnhau.Haytheo
(2.37) d d<;lngma trn, ta co
-
T1 \VII \VII ... \VII M1
T2 \VII \V12 ... \VIN M2
T3 = \V21 \V22 ... \V2N M3
TL \VLJ \Vu ... \VLN MN
j;!1lJ/1LOii1L Ihf!£ uj 79 q,d,L 760-m{J{J,mL
ngonngud£.lis6thlmatr~nla xffu.:£)6hi6udu'<;5csv anhhu'angcuatru'ongh<;5p
nayde'nnghi~mMj, taxetmQttru'ongh<;5pdongiancua (2.38),
Zl =al1X + a12Y,
Zz=aZlx+allY,
~
trongd6Zl,zzlad£.liu'<;5ngdodu'<;5c,al1,a12,azJ,azzlacacd£.liu'<;5ngdffbie'tvax,y
lacacgiatric~nxacdinh.Nhu'chiratronghlnh2.16,haid~ngthlicnayxacdinh
haidu'ongth~ngtrongm~tph~ngx,y,voi nghi~m(xo,Yo)chinhla tQadQgiao
di6mcuachung.
( _\.
\.'"I (0)
'Y
x x
xo
Hinh 2.16: Saisf)'cuaZlhoi;icZ2tamchocaeduimgthllngdickchuyfntenhoi;icxuf)'ng
(a)Ntu caeduimgldn nettflOvoinhaum(Jtgacl6'n,thisai sf;'nhocuaZl vaZ2khong
lamanhhuangnhi~udennghi?m.(b)Ntuhaiduimgtagdnsongsongvoinhau,thisaiso'
nhocuaZlvaZ2seanhhUClngrfitl6n dennghi?m.
Cacsais6trongphepdoZlva Zzgayrasvdichchuy6nsongsongcuacac
du'ongth~ngbi6udi€n. Ne'uhai du'ongth~ngt£.lOvoi nhaumQtg6cIOn(hlnh
2.16(a» thl sv dichchuy6ntrenkh6nganhhu'angnhi~ude'nvi~cxac dinh
nghi~m(xo,Yo).Tuynhien,ne'uhaidu'ongth~ngla g~nsongsongvoinhau(hlnh
2.16(b»sais6dlinhocuaZlhayZzsegayrasail~chdangk6trongvi~cxacdinh
nghi~m(xo,Yo),vanghi~mlakhong6ndinh.
Hai du'ongse g~nsongsongvoi nhaune'uall ~ a21 . Du'oid£.lngt~ngtli'
a12 a22
J2tUP'Loiit'Lfhf!£ ul 80 goPAn7txfflirmw.n
(hlnh2.13)tlnhtr~ngnayseKayrane'ugiatri tru'ongt~idi€m i gayrabdi0j la
g~ngi6ngvoigiatrjtru'ongt~idi€m i gayrabdi0 0+1)vane'ugiatrj tru'ongt~i
di€m i gayrabdi0j lag~ngi6ngvoigiatritru'ongt~idi€m (i+l) gayrabdi0j.
Phu'ongtrlnh(2.38)chila tru'ongh<JpmdrQngN chi~ucuatru'ongh<Jpkhao
satneutren.Hangva CQtcua\!fijt~othanhcachamdutrOll.Tu do, cacpheptinh
thu~nchocac~Tj tuMj choke'tquala mN hamtrolltrongkhi cacpheptinh
ngu'<Jcl~ithlkhong.Honfilla,dQsauhoncuat~ngtucom6ilienh~voidQrQng
cuaO.Ne'udQrQngcua0 la ra'tnhosovoidQsaucuat~ng,matr~n\!fijtrdthanh
xa'uvamQtslj thayd6inhocua~TisegayramQtsais61Ontrongcactinhroan
Mj.
2.2.1.2. Xacdinhhu'ongcuade)tithoa
De)tITboa d~u
Trongnhi~utru'ongh<Jpdiacha'tquantn;mg,ngu'oitacoth€ giasudingv~t
th€ la tuhoad~umalingdl;lngthu'ong~pcuabairoanngu'<Jcd~ngnay13bai
roanxacdinhdQtuhoacuamli bi€n. Khi do,cacphepdo d~cv~dQsauva dQdi
thu'ongtru'ongroan ph~nthu'ongdu'<Jcthljc hi~ntren m~tbi€n. Nui bi€n nay
thu'ongdu'<Jcgiasula tuhoad~uvadu'<JCgiOih~nbdihait~ng: t~ngtrenvat~ng
du'oi.
Phu'ongtrlnh(2.33)du'<Jcvie'tl~id~ng
-
R
a 1 a 1 a 1
]
~T(P)=-CmF.Vp Mx(Q)--+M y(Q)--+Mz(Q)-- dv.
ax'r ay'r az'r
Khi M lad~u,taco
~T(P)
= M,[-CJVP 1:'1V]...
.I211fjrLtJiiI'L tJu,£ uj 81 q ni.n 7J{;oQ1(J{J,jyL
+ M,[ -CJ\7p I~'1v]
+ Mz
[
-CmF.Vpf~~v
]8z'rR
ilT(P) = Mx~x(P) + MA/P) + Mz~z(P) ~ (2.39)
voi ~X, ~Y' ~z la s6h,;mgtichphantuongling,la'ytheod~nghinhhQccuanui
bi~n.Gia sa dQdi thuongcua truongto~mphftnduQCdo t~iN vi tri khacnhau,
(2.39)co th~duQcvie'tl~i(j d~ngmatr~n
ilT,
ilT2
~lx
~2x
~lY
~2Y
~lz
[
Mx
]
~2z M. y
I Mz~Nz
(2.40)=
ilTN ~Nx ~NY
Ba CQtcuamatr~n ~jjtrong (2.40)bi~udi€n cho dQdi thuongtruongtoaD
phftnt~icacvi tri khacnhau,giasadQtuhoadonvi theocachuang x, y, z tuong
ling.M6i thanhphftncuamatr~nco th~duQctinhb~ngcachsad\lngphuong
phapthu~n,nhungd~lamduQcdi€u naydoihoiphaicoslfxa'pxi hinhd~ngv~t
th~theocacmahinhdongian,ch~ngh~nnhula mQtt~pcackh6ihQpchii'nh~t,
mQtch6ngcacbanmong,haymQtch6ngcactftng.Lucdo, (2.40)choN phuong
trinhtheo3 bie'nmatagQila bathanhphftncuadQtuhoavachungcoth~duQc
tinhb~ngky thu~tbinhphuongt6i thi~u(xem[1]);tlic la, timMx,My,Mz saD
cho d?i IU<;1ng
N
2 "'" ' 2
E = L.i(ilTj -ilTj)
i=l
la nhonha't,voi ilT' j, i=1,2, ...,N la cacgiatridQdi thuongdoduQc.Honnii'a,
~I2Il1P'LmYL fhf!£ vj 82 q nin 7It5oidrmum
b~ngcachtrudi truongdiaphuongF(P), (2.39)trdthanh
~T(P) = Mx~x(P)+ My~/P) + Mz~z(P)- F(P)
Cac d<:;tiluQngkhacnhauco th€ duQcdnh d€ daubgia kha nangtrungkhit
giua ma hlnh don gian nay voi du li~u do duQc. Truong ph~n du,
e = ~T - ~T' vathamsf)I I I
N
LI~Til
r - i=l- N
Lied
i=l
duQcdungd€ daubgiasvsaikhaccuamahlnh.
D()tit boakhongd~u
Trongth1!ct€, conhi~uIi dod€ dftnd€n d('>tuhoala khangd~u.Nui bi€n
coth€ duQchlnhthanhlientl,lcclingnhucacthanhph~nhoahQCvakhoangcha't
khangd6ngnha'tcuanuibi€n gayranhungthayd6idangk€ cuatruongtu.
M('>tsf)nghiencUudia ly chophepta phanngu6ntu thanhcacph~nroi
nhau,m6iph~nla d('>tuhoad~u.Khi do,nguoitavftncoth€ dungphuongphap
blnhphuongtf)ithi€u d€ Hmd('>tuhoatrongm6iph~n.
M('>tcachti€p c~nkhacduQcd~xua'tbdi Parkeret al. (xem[1])b~ngcach
thayvi~cxemxetd('>tuhoathanhhaithanhph~nd6ngnha'tvakhangd6ngnha't,
saDcho thanh ph~nkhang d6ng nha'tnh6 d€n milc co th€. Y tudngnay duQctom
Hitnhusail
D('>dithuongtruongtoanph~ncuanuibi€n duQc hobdi (2.33)
-
f
1
~T(P) = -CmF.Vp M(Q),VQ-dv
R r
Duoi d<:;tngdongianhon
J2um'LtJiULlime uj. " . 83 g uin 7HJo-ai(llJULI'L
~Ti = - JM(Q).Oj(Q)dv
R
(i =1,2,..., L), (2.41)
trongdochIsfSi d~chIcacdi~mquailsatroi nhau.HamM(Q) trongdAngthuc
trenla mQthamvecto.T~pta'tCelcachamtithoanayt~onenmQtkhonggian
Hilbertvoh~nchi€u.HamGreenGj(Q)trong(2.41)gifSngvoivectotQadQtrong
khonggian3 chi€u, va duQCgQila hamtQadQ.Tich trongcuahaithanhph~n
A(Q)vaB(Q)cuakhonggianHilbertnaydu<Jchobdi
(A,B) = JA(Q).B(Q)dv
R
tuongtt,I'nhutichvohuangcuahaivecto.Tit do, (2.41)du<Jcvie"tduoid~ngtich
vohuang
~Tj = (M,OJ, (2.42)
va ~Tj trdthanhhamtuye"ntinhcuaM(Q). "DQIon"cuamQtthanhph~nduQc
dobdichuffn
1
IIAII = (A,A)2
1
= [pAl'dvr
vadQsaikhaccuahaithanhph~nduQc hobdi IIA- BII.
TrongphuongphapcuaParkeret aI.,dQtit hoaM(Q) trong (2.41)duQc
phantichthanhhaithanhph~nd6ngnha'tvakhongd6ngnha't,
M(Q) = Mo + MN(Q),
voiMola mQtvectoh~ngsfS.Phuongtrlnh(2.42)trdthanh
~Tj = (Mo,GJ + (MN,GJ (i=I,2,...,L) (2.43)
Thanhph~nM(Q) cogiatrjnhonha'tla MN(Q)la dQtithoag~nd€u voiba't
kyMochotruoc.
J2Wp'Lo£ULl~ uj 84 g ,,4,'L7I{joOit'IlhtiIL
Xettruongh<jpModffbie't.Lucdo,thanhph~nMN(Q)cochufinnhonha'tvai
di~uki~nthoa (2.43)vaimii=I,..,L.,khita'tcacacd(,\ilu<jngd~ubie'tngo(,\itru
MN(Q).Parkeretal. chIrar~ngdQtuhoanaycoth~du<jcbi~udi€n b~ngkhai
tri~nhamGreen,
L
MN(Q) = IajG/Q).
j=1
(2.44)
Ta't ca cach~sO'khaitri~naj 0=1,2,...,L) d~udu<jcxacdinh.The' (2.44)
VaG(2.43),tadu<jc
L
~Ti = (Mo,G)+ Ia/Gj,G)
j=1
L
= (Mo G. ) + "aT.., I L.J J 1J
j=1
(2.45)
tich trong lij duila matr~nGram.Ta'tca cacd(,\ilu<jngtrong (2.45)d~u
dffxacdinh, L h~sO'khaitri~nIa xacdinhmQtcachduynha'tbdi Cj lakhongsuy
bie'n.Vec toh~ngMola chuaxacdinhtronglingdl;lngdQtuhoanuibi~n,vala
d(,\ilu<jngcgntinh. Bai toand~trala : TIm Mo vaMN(Q)d~ MN(Q)cochufin
nhonha't.MothuQckhonggiancon3 chi~ucuakhonggianHilbert,va co th~
du<jcvie'tduaid,;mgtudngtvnhu(2.44)
3
Mo = IPkXk
k=1
(2.46)
vai Xk, k = 1,2,3 ladQtuhoaddnvi theo3huangtrvcgiao.The't6ngtrenVaG
(2.45)tadu<jc
3 L
~Ti = IPk(Xk,G) + Ialij
k=1 j=1
(2.47)
Tu do,chungtasetlmcacthamsO'PI. P2,P3,aI. a2,..., aL d~
,.e,'.tP'LomL 1Ju,.el{j 85 q uin ';J()OO1fllhtin
I
(
L L
J
2
11M-Moll = ~ajGj' ~akGk
(2.48)
la nhonha't,vaigiathuye'trangbuQcla (2.47).Ta'tcacacd<;lilu<;1ngtrong(2.47)
va(2.48)d~udffxacdinh,tnIL+3thamsf)~J,~2,~3,aJ, a2,..., aL.Parkeretal.
[210] dua ra cach xac dinh nhungtham sf) tren b~ngphuongphap nhan tU'
Lagrange.Vai (L+3)thamsf)nay,huangtuh6ad~u,du<;1cchobdi (2.46).ChuY
dog, ne'udQtu h6a thvcsv d~u, (2.48)tri<$ttieu, (2.47) gian lu<;1cthanhd<;lng
(2.39).
2.2.2. Bili toaDngtiqcphituye'n.
Truongthe'd ve'traicua(2.35)la mQthamtuye'ntinhcuasvphanbf)khf)i
lu<;1nghaycha'tu.Ch~ngh<;ln,Svga'pdoidQIOncuadQtuh6a,lamga'pdoidQ
IOn cuadQdi thuongtruongtoanphgn,trongkhiSvga'pbadQtuh6aselamga'p
badQIOncuadQdi thuongtru'ongtoanphgn.MQtcacht6ngquat,mQth<$dU<;1c
gQila tuye'ntinhne'un6thoaman:Ne'ufl(P) la truonggayrabdisvphanphf)i
ngu6nSI(Q), fir) la tru'ongayrabdisvphanphf)ingu6nS2(Q),thltruonggay
rabdisvphanphf)iasl(Q)+bs2(Q)chidongianla truongafl(P)+bf2(P).(a,b la
h~ngsf))
Di~unayse khongdungchocacthongsf)khaccuangu6n.Truongthe'
khonglahamtuye'ntinhcuadQsail,dQday,hayhlnhd<;lngcuangu6n.Ta'tcacac
thamsf)trenduCJchuatrong\V(P,Q)vatronggiOih<;lncuatichphantrenth€ tich
R d (2.35).PhuongphapngU<;1cduaracachdnhtoancacthams6tren,vadU<;1c
gQila cacphuongphapkhongtuye'ndoh,nhungtrongthvcte'cacphuongphap
khongtuye'ntinhd§nde'nsvdongianh6acacgiathuye't,madi~ud6l<;liamcho
baitoantrdnentuye'ntinh.
J2tltpL om'LIhLf-R-uj 86 g ~L ';J(Joai{J{hmL
2.2.2.1. ffinh d~ngngu6n
Caephu'dngphapl~p
Nhudad~c~pd ph~ntruac,mohinhphuongphapthu~nduQcxaydl!ng
theo3 buacxU'ly. DQdi thuongduQctinhtumohinhvaduQCsosanhvOidQdi
thuongquansatduQC.Mo hinhseduQcdi~uchinhvahoanthi~ntheo~sl!sosanh.
BabuacxU'ly seli[Lpdi li[Lpl~ichode'nkhimohinhmaithoamanyellc~udi[Ltfa.
ChungtasexemxetchungtheophuongphapnguQc.
c;
---r--r,
CO]J
. . -, .
L_J .: " II
- '.', ',' ',_11\
Hinh 2.17..Ma hinhthittdi~nngangcuaLuuvifCtramtich,trongphu(jflgphapcuaBatt.
Luu vifcdu(Jcgia thuyttLamiJrQngvah(;lnvadu(Jcchia thanhcackhoihQpchilnh(jt,
mJi khathQptrenmQttru(mgdilm.
MQtvi dl,1duQcduarabdiBottd~danhgiad~ngthie'tdi~nngangcuahtu
vl!ctr~mtich.Trangphuongphapnay,htuvl!cduQcgiathuye'tlamdrQngvoh~n
theomQthuangvacom~tdQd~u.Ltfuvl!cduQcchiathanhN kh6ihQpchii'nh~t,
mdrQngvoh~ntheohuangsongsongvai Itfuvl!Cva mdrQngtheochi~uSailtj,
j=1,2, ...,N (hinh2.17).Chi co N truongdi~mgi (i=1,2, ...,N) dctheocacprafin
vuonggocvai Itfuvl!cduQcxet,va m6i truongdi~mco tamphiatrenm6ikh6i.
Gia thuye'tm6ikh6ila mQtphie'nvoh~ntheochi~ungang.Truongha'pdfincua
phie'nvoh~nduQcchobdi
g = 21typtk,
vai p,t la m~tdQvadQdaycuaphie'nvoh~n,k lavectodonvi theohuang
J2tltPL miLLlltf!£ £{j 87 g 1'&11';J{)oiLi(/(j,nLL
th£ngdung.Luc d6,dQdaycuam6iphie'nvoh(;lndu<;5cdoboi
gj
(I) - - ,
tj - 27ty~p
j =1,2, ..., N.
ChI s6trenchIs61:1nl~p.Nen phuongphap3buocsed~nWi Yi<%cchlnhsaa
dQdaycuakh6i.Cacbuocdu<;5ctie'nhanhnhusan,yoi k d€ chI s61:1nJ~p
1. Truong gjk) du<;5ctinht(;lim6idi€m quailsatgayra boi tit.cacackh6i,
giasar~ngdQdaydu<;5ctinhtheophepl~pke'truoc.
2. Ph:1ndu gj - gjk) du<;5ctinh t(;lim6i di€m quail sat.
3. Sv xip Xl phie'nYOh(;ln du<;5csa d\lllg cho toi khi uoc lU<;5ngdu<;5cdQ
day maioSv hi<%uchlnhcho m6i kh6i du<;5ctinh duOigia thuye'tdng
m6ikh6ila mOtphie'nYOh(;lnyoimOtdQdaytinhtheoph:1ndu,tucla
dQdaymoicuaphie'nYOh(;lndu<;5ctinhtheocongthuc
( (k))
t~k+l)= gj - gj +t~k)
J 27ty~p J
Ba buoctrendu<;5cl~pdi l~pl(;lichode'nkhi mohlnhmoi la thoamanyell c:1u.
Cordellva Hendersondahoanthi<%nphuongphapnayb~ngcachsad\lllg
dli li<%ud <;5cdo(ho~cnQisuy) trenmOtm(;lngluoicackh6ichlinh~t,lucd6cac
ngu6ndu<;5cxemxettrongkhonggian3 chi€u. Cac ngu6ndu<;5cmohlnhnhumOt
b6 cackh6i chli nh~t,m6i kh6i c6 truonghip d~nrieng(hlnh2.18).DQ daycua
kh6i tj, j =1,2, ...,N du<;5cdinhnghIac6 lien quailWi mOtb€ m~tthamchie'u,d6
la b€ m~tc6 th€ du<;5cxemch£ngh(;lnnhum~tdlnh,ho~cm~tday cuatoanbQ
cac kh6i. Tu'ongtv nhuphuongphapBott,dQday kh6i band:1udu<;5cuoc lu<;5ng
b~ngcachgiathuye'tm6ikh6i la mOtphie'nYOh(;ln.Do d6,ty s6
J2tltP'L (JaIL /hf!£ uj 88 g uin 360mrmuitt
t~k+l) ~
--L- = (k)
t~k) gjJ
du'Qcsu d\lngd€ di€u chInhl<;LidQday cuaphie'nvo h<;Lnxa'pxl. Phu'ongphap3
bu'ocsetinhtoan,sosanh,di€u chInht<;Lim6ibu'ocl~p.
R.:.:::nccsurfacc;
Hinh 2.18: mahinh3chducilaphU{fflgphapZ{IpdoCordellva
Henderson d~xuat. DI) day cila khaT-phf:lthul)cvao b~m{Itthamchitu chung.
TruOngh5pdJn quansatdu(Jcdo trenml)tZullichilnh{jt.
M9t cachtie'pc~nhoikhacdu'Qcdu'arabdi JachensvaMoring.Gi6ngnhu'
haiphu'ongphaptren,hQu'oclu'Qngcacd<;Lnghtuvf!cvoim~tdQtr~mtichthffp,
nhu'nghQcotinhde'nkhanangm~td9thayd6icuat~ngn€n. Phu'ongphapnay
chiaphepdotru'ongha'pd~nthanhhaiph~n: thanhph~ngayrabdibanthanhill
vf!cvathanhph~ngayra sf!bie'nd6im~tdQcuat~ngn€n. Xet g bi€u di~ncho
tru'onghffpd~ndu'Qcquailsat,saukhidalo<;Libocactru'ongdiaphu'ong.D~tg=
gb+gd,vOigbla d9di thu'onghffpd~ngayrabdit~ngn€n vagdla dQdi thu'ong
gayrabdicaclOptrffmtichm~td9tha'p.Phu'ongphapdu'Qctie'nhanhtheocac
bu'ocsau:
1. Bu'ocl~pthunha'tgiasur~nggbdu'QcxacdinhChId nhungvi tridinh
xutrent~ngcosdtr6ilenvatinhtoanmQtb€ m~tnhanvoinhungdu
J.!.tU!1'LtJiit'L fJu,£ uj 89 grAn '3tJoa1rmum
li<%unay,nhuchIrabaiduongnetg~ch(hlnh2.19).Dieunayl~pnen
xa'pXlthlinha'tgb(l)chotruongha'pd~ncuat~ngcosagb.
2. gdduQCxa'pxIl~n thlinha'tbai pheptrUcuatruongha'pd~nquailsatg
cho gb(l).Ph~ndu mOi gd(l)duQCsa d\lngd~Omxa'pXl thli nha'tcho
chieusaucuat~ngcosasad\lngphepxa'pXlphi€n banvQh~ntuong
ttfnhuphuongphapBott.
3. Hi<%ulingha'pd~ncuahillvtfccoth~duQctinhbaimQts6phuongphap
khacnhau.La'ytruongha'pd~nt~ngcdsatrltchok€t quaOmduQccho
taphepxa'pXlk€ ti€p cuatruongha'pd~nt~ngcdsa gb(2).
Iteration1
\ /\
CdGravityV Observ
Iteration1
,
/
I /
,
Hinh 2.19..ChiaphdnducuatntilnghapdJn thanhhaiphdn,thanhphdngayra
biJisf!thayd6imtJtdQtrongtangcosiJvathanhphdngayrabiJihtuvf!C.Cacnot
chambiiu thichophepdotrenphdntr8ileucuatangcosiJ,cachlnhtrimlanlim
trenbi m(ittramrich.
Ba buGCnayduQcl~pdi l~pl~ichod€n khi nghi<%mla thoamanyell c~ud~t
fa. H<%qua la : OmduQChlnhd~ngcuaIttuvtfctr~mtichm~tdQtha'pva truong
ha'pd~ncuat~ngcosakhongchillanhhuangcuaIttuvtfc.
.1211f/l'LomL tluJ-e .uj 90 g"&L dVomrnJuuL
Tuye'ntinhhoahili tminphituye'n.
M~cdli tntongthe'phl;!thuOcphi tuye'nvao cacthongsO'tv nhiencua
ngu6n,nhungSvphl;!thuOcnayla "gffntuye'ntinh"khichiconhii'ngthayd6inho
trencacthongsO'.Ch~ngh(;ln,truongthe'cuamOthlnhkhO'idagiacphil thuOcvao
tQadOcuacacdinhcuadagiactheohamarctangva logarit(xem (2.23),(2.27),
(2.28)),tucla truongthe'lamQthamphituye'ncuatQadOcacdinhdagiac,mO'i
quailht%phituye'n aycoth€ lamchotuye'ntinhb~ngcachthayd6ichutit cac
thongsO'.Vi dl;!truongha'pd~nva tITtruonggay ra bdi mOtt~pcac hlnhkhO'ida
giac co th€ du<;1ckhai tri€n theochu6iTaylor dva tren thay d6i tQadOcua da
giac.Ne'usVthayb6i tQadOla nho,thlchu6iTaylorco th€ du<;1crutgQn,ham
phl;!thuOcvaosvthayd6inaydodotrdnentuye'ntinh.MOtthu~toandu<;1cd€
xua'tnh~mxacdinht~pcachlnhkhO'idagiacto'tnha'tlingvdimOtdOdi thuong
chotrudc,vdi cacd(;lngthie'tdit%ngangcuacachlnhkhO'idu<;1cchinhl~pbdi
IU<;1nghotrongphuongphapblnhphuongto'ithi€u tuye'ntinh.
Cachtie'pc~nnaydU<;1cmotatheocacd(;lngkhacnhauchocadOdi thuong
ha'pd~n(xemCorbato,AI-Chalabiva Colestrong[1])va dOdi thuongtIT(xem
Johnson,McGrathva Hood,Rao va Babutrong[1]).Cac d€ c~psail tomt~t
phuongphapd€ xua'tbdiJohnson.
Phuongtrlnh (2.2) va (2.30)cling ca'pthanhphffnha'pd~ntheo phuong
th~ngdungvadOdi thuongtrtiongloanphffntuongling cuamOthlnhkhO'ivo h(;ln
mdrOngtheomOthuangvdim~tdOhaydOtIThoad€u vacothie'tdit%nladagiac
N-dinh(hlnh2.20).D~tAi la mOttrongL phepdoroi r(;lCcuadOdi thuongha'p
d~nhaydOdithuongtIT.
Ai = A(x~,ZI' X2'Z2'..., XN' ZN'Xi' z)
Jl.tuJ-rLoibL I~ uj 91 g nhL JfJoai (J{JuUL
= A(Xi,Zi'W) i =1,2,...,L
vai (Xi,Zj)la vi tricuaphepdothui. (x\' Z'i) la tQadQcuaN dlnhcuadagiac,
vaduQckyhi~ubdimQtmang2Nchi€u w.Honnlia,coth~xemcacdlnhcuada
giaccoth~dichchuy~ntheohuangtuyy.
~B ~B
.\" x
.:
Rink 2.20.. Xapxl cilamQtngu6nhaichdu blingmQthinhkhatmiJrQngvah{lnvcJithief
difn nganghinhdagiac. Vecf{JM va BfahinhchituciladQtah6avatatnt(rngxung
quanhfenm{itph/lngx, z.
GQiAi va Ai tuongungIa dQdithuongquailsatvadQdithuongdoduQct~i
mQtdi~mquailsat.ChungtaseHmvectoWsaDchoblnhphuongsais6
L 2
E2 = 2:[Ai -Ai(W)]
i=l
(2.49)
la nhonha't.Bdi Ai la mQthamphi tuye'ncuaw, chungtakhongth~sadvng
phuongphapblnhphuongt6ithi~u.Thaythe',chungtased6icacthanhph§ncua
WmQtluQngnho.Ne'uthayd6itrongWla nho,Ai sela hamg§ntuye'ntinhd6i
vai nhlingsl,thayd6inay.
Chu6iTaylorla congcvthichhQpd~thl,tchi~ncongvi~ctren.Vi dV,giatri
cuahamf(x,y)coth~duQcngo~isuytheo(x+~x,y+~y)bdichu6i
.£tapLoillL thf!£-uj 92 g PAn7/f;oidfJlJuin
f(x +~x,y+~y) = f(x,y) + 8f(x,y)~ + 8f(x,y)~y + ...
ax ay
voicacs6h~ngb~ccaDhondtiQclo~ibobdi~x va~y dtiQCla'ydunho.
(k) 9 - ? (
"" "
)
?
Ttiongtl!,chungta xem w Ia biendiencua xI' zl' X2'Z2'..., xN' ZN 0
phepl~pthilk.Lucdo,khaitri€n chu6iTaylorcuadQdi thtiongt~idiemi la
2N 8
Ai(W(k+l») ~ Ai(W(k») + L-Ai(w(k»)~W~)
m=lawm
(i =1,2, ...,L) (2.50)
voi ~W(k)= W(k+l)- W(k) ChuY/ r~ng A. (W(k+l») la mothamtuye'ntinhcuam m m . I .
~w~)voi m=1,2,...,2N.Tilc lachungtadiituye'ntinhhoabairoanphituye'n.
Thay the'(2.50)vao (2.49)tadtiQc
L
[
2N
]
2
E2 =L Ai -Ai(w(k») - L~Ai(W(k»)~W~)
i=1 m=l8wm
Bi€u thilc Ai(W) dii dtiQcsuyra cl;1th€ tu (2.22)va (2.30), chungtaco th€ Hm
bi€u thilcd~ohamriengcuachung.Do do,chotrtiocmQtmangkhdidfiucua
thams6 W(k)thl cac iin s6cfinHmtrong trenla ~Wffi(k) , m=1,2, ...,2N. B€ Hm
caciin s6naysaDcho E2la nhonha't,chungtatinhcacd~ohamriengcuaE2
rheaWj,j=I,2,...,2N, vaxeth~
t
[
Ai - Ai(W(k») - I:~Ai(W(k»)~W~)
]
.
[
~Ai(W(k»)
]
=0 (j =1,2, ...,
i=l m=lawm awj
2N.)
?
trongdochungtal~itie'ptl;1Clo~ibocacs6h~ngb~ccaD.d d~ngmatr~ntaco
2N
a. ="G .~W(k)J ~ ffiJ m
m=l
(2.51)
J2tUP'LtnUL lluJ-e uj 93 f1,d,L 7HJoa1t1lJuin
voi
aj =I[Ai -Ai(W(k»)J~Ai(W(k»)
i=\ 8wj
(2.52)
Gmj =I
[
~Ai(W(k»)~Ai(W(k»)
]i=\ 8wm 8wj
(2.53)
cacbu'ocdu'<Jctie"nhflllhnhu'sau
1. ChQn mQt t~p cac gia tri ban dffu cua tQa dQ cac dlnh
W = (x\, ZIpx'z,z'z,...).Gia sar~ngtfitcacacdlnhcuadagiac1a
co th6dichchuy6ntuyy. Trongthl;tcte"thl tased6hffuhe"tcacdlnh
cuadagiac1ac6 dinh,chidichchuy6nmQtvai dlnhtrongquatrlnh
tinhloan.
2. T' h A .( (k»)
, 8 A .( (k») ,.. - 1 2 L ' - 1 2 2NIn I W va - I W VOl 1- , ,..., va m- , ,..., .
8wm
3. Tinhaj va Gmjtheo(2.52)va(2.53).
4. TImmatr~n ghichdaotrong(2.51)d6tinh~W(k).
5. Bi€u chlnhWchophuh<Jpvoi yell cffud~tfa.
Bu'oc2 du'<Jcl~pdi l~pl~ichode"nkhi nghi~mOmdu'<Jc1ahQitv, tucla, cho
de"nkhi E2du'<Jcnit gQntOimQtmuctheoly thuye"tchIra hay~Wm,m =1,2,...,2N
aunho.
v~uth~compact
Bfitky sl;tphanph6ikh6i1u'<Jnghaychfittii'cuatru'onghfipd~nhaytru'ong
tii'tu'ongling,du'<JcOmd6thoaman(2.35).Phu'ongtrlnh(2.35)la rangbuQcchu
ye"u.Chungtacoth6du'athemvaomQtvairangbuQckhac.Vi~cthemvaocac
./211ijPLtJ-ii#L1Ju,e uJ 94 g ~L ']{)oa;r1lJuYL
rangbuQcdalamql'cti~uhoahaycvcd(;lihoamQtvai thuQctinhvahu'angcua
.ngu6n.Ch~ngh(;ln,LasvaKubikdamatavi~clamsaod~tlmmQtv~th~vai
th~tichnhonha'thoamancacrangbuQc.H9 chia ngu6nthanhN kh6ichlinh~t,
haiho:)cbachi~u.llinh 2.21chotru'ongh<jp2chi~u,giclsadingm~tdQcuam6i
kh6i la d6ngnha't.Cho bi~ttru'ongha'pdin dodu'<jct(;liL vi tri roi r(;lc\rangbuQc
(2.35)du'Qcvi~tl(;li(j d(;lng
N
gj =L\VjjPj + ej,
j=l
(i =1,2, ...,L) (2.54)
g; 7
/' --...." '"
,,'" -. ." ""-~ -. "'.-'" ""Oo-- _..-
-..r_- - =+-++=--+3:- ,-J - ==£:1::~-:._- . ,. ~.:-->-+-g=t-._' ::-'-~~--::t:--,:::1:- - =i=i:::.::1=:J::j.:: p~./ ",/
Hinh 2.21..Mi~nngu8ndu(lcchiathanhcaekhatchflnh(tt,veJiso'Lu(lngcaekho'ivu(lt
quaso'Lu(lngcaephepdo.CJ day,xetngu8nLahai chiiu,
vai ej, i =1,2, .."L, la cacsaiso'cuam6iphepdo.N~uL >N, chungtacoth€
sad1,mgphu'dngphapblnhphu'dngt6i thi~ud~tlmm~tdQchom6ikh6i,di~u
naydadu'Qcd~c~ptrongcacphgntru'achotutru'ong.Vai L <N va doihoi
phgnkhackhangcuami~nngu6nnhod~nmilccoth~,mi~nla svdanhgiahlnh
d~ngcuav~th~compactla thoamanL phepdotru'ongha'pdin noitren.
N~ud:)t
2
{
o
I' Pj1m =
E~O pf+E 1
(Pj=0)
(pj :;t:0)
-
1:::, -'-- .-4
£'UpL IJiUL IhLfl! uj 95 gnin 7tJoairnltan
thlth~tich(haydi~ntich)cuav~th~duQcchobdi
N p~
V = ~VlimL ~ 'E~O . 1P. +EJ= J
vai~V la th~tichcuamQtkh6irieng(ho~cdi~ntichcuamQthlnhchii'nh~trieng
trongtruonghQphaichi€u).Thu~tminhIedodbihoiphaiQfcti~uhaad<;liluQng
vahuang
N p2 L
q =L 2 j + Lwie~,
j=l pj +E i=l
(2.55)
trongdoL bi~uthucrangbuQccua (2.55),vaiEduQcchQndunhovaWi, i=1,2,
...,L lahamnhi€u.
Dodo,nghi~mOmduQclac1;l'cti~uhoacath~tichcuav~th~vat6ngtrQng
cuablobphuongphgndu. N giatq cuaPj coth~b5ngkhongho~ckhackhong.
Caca khackhongtrongmi€n ngu6nclingcffpmQtuacluQngcuahlnhd<;lngcua
v~th~compactthoamancacphepdotruonghffpdftn.
2.2.2.2. Dt)saungu6n
CacphuongphapdaubgiadQsitucuangu6ntuhayngu6nhffpdftncoth~
duQcchiathanhhailOp:MQtlopphuongphapphilotichmQtdQdi thuongdon,co
l~p. Lop phuongphapcon l<;liphilo dch profin cuanhi€u ngu6n.MQt vai vi d\l
cuam6ilo<;liseduQcnghiencUud phgnduaiday.
PhuOngphapPeters
Ne'udQdi thuongtUduQCgayra bdi mQtv~tth~hai chi€u theochi€u dQc,
co dQtu hoad€u theochi€u dQCva dQsitulOn,hie do dQsitucuav~tth~co th~
duQctinhxa'pXlb5ngphuongphapd6thi (hlnh2.22).
J211fj.lL tJiUL thf!£- £Ii 96 grAn ';j{joQir1lJuUL
Ve haidu'ongth~ngsongsong voih~s6gocb~ngYzgradientclfcd~icua
dQdi thu'ong,mQtdu'ongtie'pxucvoidi€m clfc cuadQdi thu'ong,du'ongconl~i
tie'pxucvoi di€m clfc ti€u cuadQdi thu'ong.Khmlngcachtheophu'ongn~m
nganggiuahaidu'ongth~ngla ty l~thu~nvoidQsancuav~tth€. H~s6tyl~la
1.2chonhungv~tth€ mongva la 2.0chonhungv~tth€ day;giatq 1.6thu'ong,
duQCsadl;lngchungchocacv~th€ khac.
" ,,'I "x "
/~I" "...r-.. "
//J
/
/
/
/
/
/
,-
/
,-
//~
// / J
'
/ .
/
J
/ b
// b / ' a
// 20" ;'
x =1.2 d if body very thin
x =2.0 d if body very thick
x =J.6 d for intermediate thickness
Rinh 2.22: Minh hQachophu(JflgphdpPeters
Phu'ongphapPeterdoihoinhi6uslfdongianhoacacgiathuye'tv6v~th€.
Tuynhienphu'ongphapthlfchi~nd€ dang,chicc1ngia'"yvevabutchIchungtaco
th€ daubgiasoluQcvanhanhchongdQsancuangu6ntrongnhi6utr~ngthaidia
ch§tkhacnhau.
DQsaucticd~i
ChungtaxetmQtvaiphu'ongphapthu~nti~n,HnhloannhanhchongdQsan
clfcd~icuacacngu6n,du'Qcphattri€n bdiSmith,Bottva Smith(xem[1]).Cac
phu'ongphapnaydlfatrend~ohamb~cnh§t,b~chai,b~cbacuadQdi thu'ong
h§pd§nvadQdi thu'ongtu,du'QcdodQctheoprofin(hlnh2.23).Chungd~cbi~t
r§t hi~uquaVI chungkh6ngdoi hoi gia thuye'tnaov6 hlnhd~ngcuav~tth€
ngu6n.
J21lf/l'L milL f~ ui 97 g Nin ';/{Jo.QirnJuuL
.A(:\")",.....-
\ d .::-\ (:.:, I
~ \ d:t::: I""<%..
L
I
dA(_:)
IrL>.: '..a...
--0----
Hinh 2.23.. DQsauqtc d(licilangu8ndlfatrend(lohambljcmQt,bljchai,bljcbaciladQ
di thuCln.Profile A(x) bilu ddn dQdi thuClngtithaydQdi thuClnghapJan.
BQ saugiai h(;lntheoSmith, Bott va Smithdu'<Jctomta:tnhu'du'Oidaycho
ca dQdi thu'ongtUva dQdi thu'ongha"pdftn.Trong cac ba"td&ngthucnay A(x)
bi~udi€n la profincuadQdi thu'ongha"pdftnho~cdQdi thu'ongtu.Trongtru'ong
h<Jptru'ongha"pdftn,A(x)bi~udi€n thanhphftnha"pdftnth&ngdung.Trongtru'ong
h<Jptu tru'ong,A(x) bi~udi€n cho thanhphftncua tu tru'ongsongsongvai
; = (;x,;y,;z)(ch&ngh(;lnA(x)la dQdi thu'ongtru'ongtoanphftn,; la vecto
theohu'angcuatru'ongKungquanh),thams6dladQsaucuangu6n.Ky hi~u
A =A(x), A' = dA(x) A" = d2A(x) Alii - d3A(x)
dx ' dX2' - dX3
chIs6"max"d~chIgiatri IOnnha"tthudu'<JcdQctheotr\lCx. Thams6/)'wla ml'a
dQIOncuaffiQtdQdi thuongd6iKung,tucla,khoangcachgiuavi tridQdi thuong
d(;ltgiatri qtcd(;livavi tridQdi thu'ongd(;lt'12giatriqtcd(;li.Gia triqtcd(;licua
ffi~tdQhaydQtuhoaduQckyhi~uboiPmaxhayMmax.Cach~thucsauduQcsuy
ratrongh~EMU
Vi) di thliunghill'dlin3chilu
,.8ujn oiULIhf!P uj 98 g,d,L 'dtJoaifllIuin
TruiJngh(1pchung
d :s;5.40 YPmax
I
A"
I max
d2 :s;6.26 YPmax
I
A"'
I max
TruiJngh(lpm(itd()hoimtoimduang(ho(ichoimtoimamntudauthayd6ithich
h(lp)
A
d :s;1.5jA1' '\Ix
d2 < A- -3-
A" ' '\Ix E {A"<O}
A
d :s;0.86~
A' max
d :s;2.70 YPmax
I
A"
I max
d2 :s; 3.13 YPmax
I
A"I
I max
EJi)dj thlldnghapdan2 chiiu
M(itd()hoimtoimduangho(ichoimtoimam.
d < A
- jA1'
'\Ix
d2 < A- -2-
A" ' '\Ix E {A"<O}
d :s;0.65 Amax
IA'lmax
'£'upL oillL 1Ju,.euj 99 g ~L 71&a1t1lJuin
d ~ f'j,w (dQdtthuangdoLxang)
81)dj thlilingtit3 chi€u
Khongcosf!rangbuQcnaochodQtithoa
1-2 -2 -2- M
d ~ 6.28(4rx +3ry + 3rz)21Afaxmax
1
2 -2 -2 -2 - M
d ~ 9.73(3rx+2ry + 2rz)2, rxA" max
DQtahoasongsongvacoClAngchdu tc;zimQidilm
1-2 -2 -2 - M
d ~ 3.14(4rx+3ry + 3rz)21A'C:x
1
2 -2 -2 -2 - M
d ~ 4.87(3rx+2ry + 2rz)21 rxA" max
r vaM cohuangthangdang
M
d ~ 5.18 max
IA'lmax
d2 ~ 6.28 Mmax
I
A"
I max
r vaM cohuangthangdang,tc;zimQidilm M coClAngchiiu
M
d ~ 2.59~
IA'lmax
d2 M~ 3.14 max
IA"lmax
81)dj thlilingtit2 chi€u
JlJltpt luU'L Ihlf1!-uj 100 gNin 7IJoairmHut
Kh6ngco sZ;trangbuQcnaochodQtithoa
I
d ~ 8(;~+ ;~)2Mmax
IA'lmax
I
2 -2 -2 - M
d ~ 9.42(rx + rz)2
1
m
l
ax
A"
max
M songsongvacungchiiu tt;limQidilm
I
-2 -2 - M
d ~ 4(rx + rz)2~
IA'lmax
I
2 -2 -2 - M
d ~ 4.7l(rx + rz)2
1
m
l
ax
A"
max
PhuongtrinhEULER
Cac phu'ongphapu'oc1u'<;1ngdQsaud~c~pd trenla thichh<;1pchodQdi
thu'ongayrabdicacngu6ndon,col~p.MQtlOpcackythu~tkhacxemxetdQdi
thu'ongha'pd§:nhaydodi thu'ongtitgayrabdinhi~ungu6ntu'ongd6idongian.
Ch~ngh<;tn,phu'ongphapu'oclu'Qngvi tri cuamQtv~tth€ dongian(donqfc,
lu'ongclfc,...)titmQtvaiphepdocuatru'ongtitho~ctru'onghffpd§:n,coth€ ap
dl;lngVaGmQtprofindaib~ngcachchiaprofinthanhcac0 cuacacphepdolien
tl;lc,m6i0 la mQtu'oc1u'<;1ngdonchovi tri ngu6n.
Phu'ongtrlnhEulerd d<;tngt6ngquatdu'<;1cchobdi
LVf =-nf
Cachamf thoaphu'ongtrlnhEulerdu'<;1cgQila thufinnhfftb~cn,ne'uchung
clingthoaLaplace,chungcoth€ du'<;1cbi€u di~ntrongtQadQcfiunhu'lat6ngcua
cachamdi~uboam~tcfiu.£)<;tohamcuabfftkyhamthufinnhfftnaGclinglaham
J2,ItPL tJdIL Ihq.e uj 101 g nin 7J{}oQ1rnJuln
thu~nha't.Ch£ngh(;ln,la'yd(;lohamriengtheox cahaivficua Euler
a a a a
-[r.Vf] = -f +r.V-f = -n-fax ax ax ax
r.V
[
~f
]
= -(n+1)~fax ax
vad§:ntoi :x f la thu~nha'tb~c(n+1)
D€ tha'y,ham! =Vr thoaphu'dngtrlnhEulervoin=1.Do dothficuamQt
cha'tdi6m(haymQthinhc~ud6ngnha't)la thoaphu'dngtrinhEuler.Bdivi tru'ong
thfi cua cac lo(;lingu6ndi6mkhac(c~plu'ongqic ...)chuad(;lohamcua Vr nen
chungcGngthoa phu'dngtrlnh Euler. DQ di thu'ongtru'ongtoan ph~ncua c~p
lu'ongqI'ctu(ho~chinhc~uvoi dQtuhoad6ngnha't)du'<;1cchobdi
- 1
~T =Cmb'v(m.-)r
voi b la vectdddnvi songsongvoitru'ongxungquanh,vam la momenlu'ong
cl;l'c.D€ tha'yding~T thoamanphu'dngtrlnhEulervoi n=3.Thams6n trong
phu'dngtrlnhEulerdu'<;1cgQila chIso'e[{utruehay tYl~suygiam.Bang2.1du'a
rachIso'diutruechotunglo(;lingu6nkhacnhau
n Ki~ungu6n
1 Du'ongkh6i
2 Du'onglu'ongcl;l'c
2 Cha'tdi6m(hinhc~uvoi m~tdQd€u)
3 Lu'ongcl;l'cdi6m(hinhc~uvoi dQtuhoad€u)
Bang2.1.."chislYdiu true"cilacaelo(lingu8nhapdJn vangu8ntitkhacnhau.
Phu'ongtrinhEulerdfidu'<JCsad\lngbdimQts6tacgiadungd€ phantich
caedQdi thu'ongtuvadQdi thu'ongha'pd~n.Ch~ngh(;ln,xetdQdi thu'ongtru'ong
toaDphelntrenmQtv~tth€ dongiannhu'hlnhceluhayhlnhtr\l.B~t~Tila di€m
thlii cuamQtnghiencUututrenmQtv~th€ dongian,voidi€m dot(;li(x,y,z) va
tamcuav~tth€ t(;li(xo,Yo,zo).The'vao Euler tadu'<Jc
r
x- x
]
[
~~Ti' ~~Ti' ~~Ti
]
y-y~ =n~Ti
ax Oy oz
z-zo
Gia sa chungta dfi do du'<Jcho~ctinhdu'<JcgradientcuadQdi thu'ong
tru'ongtoaDpheln.Phu'ongtrinhtrenchicob6nffnlaXo,Yo,Zovan, baffndelucho
tavi tri cuav~tth€. Chungtaco th€ thudu'<Jcnhi€u theoyell Celli,b~ngcachvie't
nayt(;licacvi tridokhacnhau
a
-~Tiax
a
-~T2ax
a
-~T1
Oy
a
-~T2
Oy
a
-~T1oz
a
-~T2oz
r
x- xo
l [
Sf,
]~=:: =n !1~:
vasad\lngphu'ongphapblnhphu'ongt6ithi€u d€ tlmnghi~m.Ne'uvi tricuav~t
th€ du'<Jcbie't,chungtacoth€ tlm nvabie'tdu'<Jcd(;lngngu6n(xemBarongo[1]).
M~t khac,ne'uchungta nghi ngo d(;lngv~tth€ ngu6n,chungta co th€ chnn
thichh<Jpvagiai tlmvi tri v~tth€.
M~cduphu'ongtrinhEulerclingca'pmQtcachhfi'uhi~ud€ xacdinhvi tri
cuav~tth€ ngu6n19tu'dng,nhu'v~tth€ ngu6nd(;lngCelli,d(;lnghlnhtr\l,nhu'ng
phu'ongphapnayco mQtvai h(;lnche'khi apd\lngchocacd(;lngv~tth€ ngu6n
khac.Trongcactru'ongh<Jpnay,n coth€ khongphaila h~ngs6d6ivoidQsauva
J2lLi):n tJiUL fJu,.e uj 103 g'nilL '7l5oidrmuYL
vi tri cuav~tth~ngu6n,bCiivi f khongchila dt;lohamcua1/rmala tichphan
trentoanbQphanb6 ngu6n.Ravat(xem[1])chi ra r~ngphuongphapnayap
dlJngdu<;1ckhi dQdi thuongco h~so'suygiamty l~voi khoangcachtinhtu
ngu6n.