Luận văn Một số thuật toán học trên bảng quyết định

MỘT SỐ THUẬT TOÁN HỌC TRÊN BẢNG QUYẾT ĐỊNH VŨ VĂN HỌC Trang nhan đề Mục lục Lời nói đầu Chương 1: Dẫn nhập. Chương 2: Mạng Nơron - Perceptron. Chương 3: Mạng Perceptron hai lớp. Chương 4: Bảng quyết định. Chương 5: Kết luận. Phụ lục A Phụ lục B Phụ lục C Tài liệu tham khảo

pdf22 trang | Chia sẻ: maiphuongtl | Lượt xem: 1778 | Lượt tải: 0download
Bạn đang xem trước 20 trang tài liệu Luận văn Một số thuật toán học trên bảng quyết định, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
2 MANG N<1-RON. PERCEPTRON ) ' tu'dngv~nhungmohinhm~ngno-randaulienkhdidautU nhungDam1940.Vaoh1cd6,hainhaloanhQcMcCullochva Pitts(19 3) g<;liY v~mQtno-rollnhu'mQtphdnIlt nguiJnglogic(logical thresholdelement)c6haitr~ngthaikhiidi.MQtphantitngu'cJngnhu'the' c6n kenhchoduli~unh~pva mQtkenhchoduli~uxu!t.Kenhchodu li~unh~pdu'<;lccoiladQngne'udauvaola 1,ho~ccoila tinhne'udauvao la O.Nhu'v~ythongtinnh~pdu'X2,U? Xn.Thongthu'ongdaynhiphannaydu'<;lccoi la nhungthanhphancua vecto x =(Xi> X2, U?xn) Tr~ngthaicuaphantitngu'cJngchobdi t6h<;lptuye'ntinhcuacae tinhi~unh~pXidemsosanhvoi mQtgiatringu'cJngs.Tin hi~uxu!tcua mQtno-rolldinhbdihamoutput: y =o(L/w/x/-s) (1) trongd6agQilahaml!y ngu'cJng:o(x)=1ne'uX>0va o(x)=0ne'uX< 0, va caeh~s6Wi=+1. Qua d6, ngu'oitan6i no-randu'<;lckich ho~tne'ut6 h<;lpI;WiXi trQi hon ngu'cJngs . Con trongtru'ongh<;lpngu'<;lcl~i, no-roll d6 du'<;lcgQi la tinh. Hai ongclingdachiraeachthucmamQtno-rollc6 th€ tht1chi~n cacpheploanlogic.Chiingh~n,ho~tdQngcuacacc6ngAND trong19 thuye'tm~chlogicho~cvoicaebQchuy€nm~ch(inverter)thid~uc6th€ di~ntiidu'oimQthamtheod~ng(1). Mllingno-ranperceptron 11 Tuynhien,c6haikhiac~nhquaDtrQngmamohlOOcuaMcCulloch va Pittsdii khongghliquye'tdu'<;1c.Thanha't,mohlnhtrendiikhonggiiii thichdu'<;1cca hiliacmacacnd-ronlien l~cvoiOOau-tie'cthay-d6 l~ila mQtth1!cte'xiiy ra trongsuo'tquatrloohQccuamQtm~ngnd-ron.Tha hai,nhii'ngm~ngnd-rondohaiongd~rakhongphiinanhdu'<;1ckhiiDang chiu16i,nha'tlakhisosanhvoikhiiDanga'yndiOOii'ngnd-ronsinhhQc. Saunay,nhovao Dang11!cuanhii'ngh~tho'ngtioo loanmoi, nhii'ngnhaphattri€n dii c6 th€ mophongmQtcachchi tie'thdnv~khii DanghQCcuaOOii'ngm~ngnd-ronvadiineudu'<;1cca liinhv1!cangd~ng mamohlnhcuahQc6khiiDanggiiiiquye't. Mo hlOOddngiiinxetdu'oidayla m~ngperceptrondoRosenblatt d~ravaoDam1948. 2.1M~ngPerceptron: M~ngperceptIonmQtlOpla mQtmohlnhddngiiinmachungtase xettrongchu'dngnay.N6 chig6mN ddnvi nd-ron,trongd6m6ind-ron c6chacDangcuatie'pnh~nthongtinquankeOO,dii'li~udiquam6ikenh d~ctru'ngbdiXl .Thu'ongthu'ongdii'li~uquam6ikeOOmangmQtrong haigiatri0 hay1.CungvoichacDanginput,nd-ronilia r trongm~ngc6 hamoutputdinhbdi: Yr=O(LiWriXi- sr) (2) voi {Wri}la t~pcactrQngso'xacdjnhchond-ronilia r vaSrlangu'ong. Khongma'tinht6ngquat,congiliac(2)c6th€ vie'thaOO: Yr = O(LiWriXi) voi Wro= Srva Xo= -1. (3) Ne'um~ngperceptIonchi g6mmQtddnvi nd-ron,ta n6i d6 la m~ngperceptIonddnnd-ron. Kie'ntrUccuamQtm~ngperceptIonhu'motittrenchu'atriiloi cho Callhoi v~cachiliacho~tdQng.Va'nd~d~tra la: voi mQt~p hii'uh~n nhii'ngthongtinnh~px, vavoimQt~pconCrchos[n,ngu'oitamuo'ntlm du'<;1Ct~pnhii'ngtrQngso'{Wri}saochoylx) =1voi mQix 6 Crvaylx) = 0 voix {l!Cr. M~ngno-ranperceptron 12 Quatrinhxacdinhnhii'ngtrQngs6{Wri}du'<;fcgQila quatrinhhQc. Va nhii'ngthu~tloanap dt}ngchoquatrinhhQcgQila thuq,thQc.N6i chung,mQtquatrinhhQCdic3nranhu'san:ngu'CJitakhdit~omQt~ptrQng s6{Wri}bandftunoino-rOllr, sand6chonhii'ngtrQngs6naylacdQngten tUngvectoinputx IDeocongtht1'c(3).DI nhien,sec6nhii'ngvectdx e Cr nhu'ngylx) =0 .Luc d6 ngu'CJita phiH di~uchinh trQngs6 {Wri}bhng s6 gia L1Wri. T~pnhii'ngtrQngs6cu6iclingdu'<;fcchQnkhichungphant1'ng dungvdi mQix eCr . Trongchu'ongnay,chungtakhaosatnhii'ngthu~t hQctrenm~ngperceptrondonno-roll. 2.2Tlnhkhatachcuakhonggiannhungvacta'hQc: B€ c6th€ xacdjnhdu'<;fC~pnhii'ngtrQngs6 {Wri}cu6icling,di~u d6mythuQcvaobancha'tciiabai loanva vaocachmah6amftunh~p. B€ giai thich, chung ta hay xet y nghia hinh hQc ciia qua trinh hQc. Nhii'ngmftuhQcx = (x],X2,"7XL) du'<;fcxemla nhii'ngvectdtrongkhong gianL chi~u,trongd6, t~ph<;fpCr sedu'<;fctachkhoi nhii'ngvectdkhacbdi sieuphiing: WrlX]+Wr2X2+ ". +WrLXL= Wo Ngu'CJitada neudu'<;fCnhii'ngphanvi dt}v~mQtkhonggiannhii'ngvectd hQcmakhongt6nt~iba'tct1'sieuphiingnaod€ tachchung. 2.3Tlnhkhatachtuye'ntinh: B6i vdihait~pmftuthll'C] vaC2 makhongth€ tachdu'<;fCbdimQt si~uphiing,ngu'CJitasemdrQngs6chi~uciiaciiakhonggianvectdthll' va anhx~t~pC] va C2 vaokhonggiannaysaochoc6 th€ tachchung bhngmQtsieuphiing. [JO :> M~ngnd-ronperceptran 13 TinhchathlnhhQCaydu'<JcgQila tinhkhatachtuytntinh.Nhu'v~y, tinhkhatachtuye'ntinhnhhmbaodamluonluonc6th~chQndu'<Jct~p cactrQngs6 {Wri}saochobai loanphanlo~icacvectdthax c6th~giiii du'<Jc. Trudckhitimhi~ucacthu~thQc,chungtahayxetquamQts61Inh vl{capd~ngcoam~ngperceptron. 2.4. MOlso'linhvileapd~ng D Vi dlf-1:Vdi mQtlOpc6giOih~nnhii'ngb~liloanvi ttr,chiingh~nOOu' xetphatbi~u:"Loandiphffntu troindnghayntu troi l{lnhvagi6 thdihuangdong".TagQinhii'ngvi ttr: Xl: "TroinAng" X2:"Troi l~nh" X3:"Gi6th6ihu'dngdong" y: "Loandiph6" va gQichantri cuachungHi1 ho~cO.The'thid~xacdinhh~illh dQng"Loandiphff"la dunghaysaingu'oitac6 nhieueachthl{c hi~n.N6ichung,ngu'oitasehmtrii'bangchantricoay: Bang2.1..Bangchantrj........................................................................... :.1::::::::::::::::::::::::.:::::::::::::::::::::::0::::::::::::::::::~::::::::- 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 1 va saud6,vdimQtth~hi~nnaod6coavectd (x],Xl,X3) ngu'oitased6i sanhvectdnayvdido8 tru'ongh<Jptrongbangchantrid~rutramQtke't lu~nvey.R6rangcachtie'pc~nnayc6dQphuc~p2£dod6khongthich M\ingno-ranperceptran 14 hQpvoi nhfi'ngtruonghQpmakhonggiannhfi'ngvectdhQcco s6chi~u khaIon. Clingvoim1;1cdichthugQnbangchantri,nguoitathilydingBang 2.1.coth<3'rutgQnthanhBang2.2nhusauday Bang2.2.a:Bangchiintrj dttqcthugQn [::::::i::I::::::::::i:i:i:::::i:::ii:::::::::::::::::::::::5.li:::::i:i::::::::::::::::::I:::::::::I::::1 0 0 * 0 0 1 0 0 0 1 1 1 1 * * 1 (*) Chiintrj ia 1ho(ic0 Tac gia Celko trong[CELKO] d~nghimQtthu~toansa d1;1ng Bang2.2.phatsinhmQtdo(;lnchuangtrinhcod(;lngnhu: IFX1THENY ELSE IFX2THEN IFX3THENY ELSEERROR ENDIF ELSEERROR ENDIF ENDIF Ca che't1;1'dQngphatsinhchuangtrinhIDeogQiy tren, ne'uth1;1'c hi~nduQc,coynghHikhad~cbi~tvi dochinhla cache'phatsinhchuang trinh,C1;1th<3'la no phatsinhdo(;lnchuangtrinhphucV1;1vi~cl~plu~ntie'n trongdonvi maysuydi~ncuabiltcll'h~chuyengianao(Xem Chuang1). va clingdocache'phatsinhchuangtrinhd1;1'av ocdsdtri thll'c,tathilyca che'ily th1;1'cs1;1'dfft(;loduQcs1;1'dQcl~pgifi'adfi'li~uva chuangtrinh.Diiu nay cung co mQtynghiiiquantrQngnhatia trangnhangh? chuyengiama cosa tri thacthtti'lngco nhangbie'ndQngtheothi'ligian,chungtamu6nh~ Ml)ngno-ranperceptron 15 chuyengianayphiiic6 khananghQcnhanhch6ngnhatm6ikhi c6 stf bie'ndQngv~cosdtrithuc.Thu~tloannaymdranhungungdI}ngthuvi chiingh~ntrongvi~ct\f thie'tke'nhungh~CASE la nhungh~trQgiup phftntichthie'tke'h~th6ngho~cl~ptrlnhchonhungthie'thi di~ukhi~nt\f dQng.van d~conl~ila thu~tloanphatsinhchuongtrlnhay phaic6dQ phuct~pchapnh~nduQC. Cu6idIngla cachtie'pc~nno-rOll.Vdi phuongphapnay,ngucsita khonghill tri'i'bangchftntri-haycongQila banghanhdQng-nhungse duy~tquatUngth~hi~ncuavectdx d~cu6icungxftydtfngduQcham output y =a( -1 +2x]+X2+X3) HamoutputnaykhilacdQngtrentUngvectddongcuaBangquye't dinh2.2,tasethayn6phananhdungvi~cphftnlOpnhungvectdnaose chooutputla 1haysechooutputla0nhutrongBang2.2.b. DVf dl!-2: PerceptIonconc6 mQtungdI}ngkhactrongvi~cnh~nd~ng mfiumanhungn6ltfcbandaDthuQcv~Rosenblatt(1962),Minsky va Papert(1969).Vdi mQtmfiuchosan,ngucsita chie'ulen mQt ludig6mnhi~u0 vuongnho,m6i0 vuongduQcgallchobie'nXi . Bie'nXic6giatri i ne'umfiuthitc6baophu0 vuongvac6giatri0 trongtru'csnghQpnguQcl~i.M~ngperceptIonc6 Iihi~mVI} hQc phftnlo~icacmfiuhQcbhngcachduy~tquatUngthitd~cu6icung xftydtfngduQchamnguangy.Lay vi dI}tac6mQtludig6mb6n0 M~ngna-ronperceptron 16 vuongva 16mallhQcphanlo~ithanhhaiph~mtrU:Ph~mtrUfull' nh!tg6mnhiingmallco it nh!thai0 t6ik~nhauva ph~mtrUfull' hai g6mnhiingmauconl~i.C~thc3'k6tquaphanlo~ichatrang Bang2.3.dudiday: Bang2.3:Phanlo{limJug6m40 vuong Dudiday,chungtasexetnhiingthu~thQcd6i vdi mohlobperceptIon donno-roo. 2.5.Mil hinhperceptronilltn nit-ran: Trudc h6t chungta dinh nghHiham y =f(x], X2, ..~ XL) la ham nguongtuy6ndnhobiphanll'ngvdibi6nnhiphanx],X2,. . .,XL n6ut6n ~i mQts6th1;1'cTva day s6th1;1'c{w],W2,. . .,wd saochoy=1 n6u LW/X/ >T vabAng0 trongtru'onghQpnguQcl~i. Trong th1;1'ct6, chungta se coi Wo=-T vab6 sungbi6nXo=1. Khi dohamnguongtuy6ntmhselahamtheocacbi6nXo,X/,. . .,XLvacogia triy =1 n6u.EWjXj>0 vay=0 n6u .EWjXj<-0 (t6nglay theoi =0,1, ...). 2.6.Thu~thOcreinforcementchom~ngperceptronilltnnltron D6i vdi m~ngperceptIondonno-roo,co phuongphaphQcda tra thanhc6dic3'ngQila lu~thQcreinforcement.NQidungcd~phuongphap nhugall: ................................... ......................................................................................................................... ::.:::::.:II:I!I!I:I:I .................................... ................................... 11:ljl:111111111111:IIIIIIIIIIIIIIIIIIIIIII::!lj ................. ............... .................. 11111111111111111111111 ....................................................................... .................. I!IIIIIIIIIII!III!!!!I!IIIIII .................................. .............. .................. !IIIII!IIIII!IIIIIIII ................................. .................. ::!I!!!I!::II!I!I!I!I!! ................. ............................................... :::::!!ii: ::::::::: . ... ... ............... ::::::::::B:::::::::::lil:::::: ::: 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 1 0 0 1 1 1 1 0 1 1 1 0 1 0 0 1 1 1 0 0 1 0 1 0 1 1 1 1 0 1 1 0 1 1 0 0 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 M~ngno-ranperceptron 17 Gia Saco N m~uhQCHinhungvectd x =(x], X2,...,xn)E Rll va chungthuQcmQttronghailopmachungtakyhi~uIanIu'<;1tIa G+va G-. Mvc dichcuachungta Ia xaydl;l'ngmQtanhX(;lg xacdinhlIen nhung m~uhQcvacomiengiatri Ia t~ph<;1p{a,I} saochokhichoanhX(;lnay lacdQngIenm6ix thlg(x)=1 ne'ux E G+vag(x)=0 ne'ux E G-.AOOX(;l gthu'ongIah0vaa(s)=0ne'us<0 voi mQtanhX(;ltuye'ntinhf xacdinhlIen x: y =lex)=WoXo+WjXj +W2X2 + ...+WnXn g(s)=a(f(x)) trongdoXo= 1 va cacs6thl;l'cWi( i = 0,1,2, ...,n ) du'<;1cgQiIa trQngs6cuaanhX(;lf vavectdw= (wo,WI,W2,...,w,Jdu'<;1cgQiIa vectd trQngs6.Di nhienvoimQtvectdtrQngs6w naodothlcoOOungvectdx trongG+ nhu'nga(f(x))=0vangu'<;1cI(;li iingconhungx trongG- nhu'ng a(f(x))=1.Trongnhungtru'ongh<;1pOOu'the',tanoico sl;l'khacbi~tgiua outputhl;l'cte'va outputIy tu'dng.Nhi~mvv cuathu~thQcIa voi mQt vectdtrQngs6wchQntuyybandati,sankhichohamg lacdQng!entung m~uhQcx vaconhungdieuchinhtrQngs6thichh<;1pmachungtagQila quatrlnhhQc,hamg sephanaOOdungsl;l'tachkhonggiancacm~uhQc theonghHiIag(x)=1voimQix E G+vag(x)=0 voi mQix E G- Vi dl1: Xet nhungm~uhQctrongR2va outputIy tu'dngcuachungcho trongBang2.4sanday Bang2.4:CaemJu thitvaeaeoutputly tLlang ., "'"..,....................................,.........................................................................................-...".'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'...'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'...'.'.'.'.'.'.'.'.'.'.'".".'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.''.'.'.'.'.'.'.'.'.'.'.'.'.'.' :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: '""""""$:"""""""""""""""~:""""""""""""""""'V""""""'" ::r:r ¥.trrrrr r:xIi :r::::::::::r:t::::~Jrrr 0 0 0 1 0 0 1 1 0 1 0 1 M~ngno-ranperceptron 18 Voi mQivectdmftuhQcchotren,tab6 sungthemthanhphftnXo= 1.Va ne'unhfi'ngtrQngsachQnd lftndftulien la w(O)=(0.5,1,-1) thioutputhl1cte'cuanhfi'ngvectdmftuhQcchotrongbangsan: Bang2.5:CacmJu thitmarQngXo,outputly tLlangvaputputthl!Cte ,---~H---,~'HH'~-- """" " ,.................................................,..., , , ," ,." , ,..................................." ",., " ,"""""""""","""""""""""""""'" ,.................................. ::1:::;11111:1:::::::11:11111:1::11::1:1::::::::::::::::::::::;:::i~:::::::::::::I:llllliiliiiiil:~::ii:::::::i:::::::::I:iillii:i::ii:i 1 1 0 0 0 1 0 0 1 0 1 1 1 1 0 1 0 1 1 1 Co haivectdduQcphanlOpsai,dolahaivectd(1,0,0)va(1,1,0) . Quyt~chQcthanh3.'tduQcgQila hQcdiaphLlongphatbienla chungtase di€u chinhtrQngsangaykhiphathi~ncosl1phanlopsaiIDeoquyt~c: Va quyt~chQcthahaila hQctoanc¥cduQcphatbienb~ngcong thacdi€u chinhtrQngsa w(k+1)=w(k)+ 8 (LXi -Lxj) voi mQiXi E r w va Xj E T"w Trongcahaiquyt~c,tagQi8 la h~s8tdcdQhQc.Ta gQiquyt~c thahailahQcloancl;lcvi anhx~tuye'ntinhf voivectdtrQngsaw sephai lacdQngtrent3.'tcanhfi'ngvectdX trongtungbuochQc.Bdi cooouthe' thit~ibuochQcthakchungtamoicothexacdinhduQchait~phQpr w vaT-w.Trongvi dl;lchungtadangxet,cacbuocdi€u chinhtrQngsatrong suatquatrlnhhQcloancl;lcduQcphanaOOquaBangsan: w(k) neuphan lcJpdung w(k+1)= w(k) + &Xi neuXi Erw w(k) - &Xi neu Xi E T"w M\lngno-ranperceptron Bang2.6:Cac buochQc * 0 w 0.5 1 -1 N/A (1,0,0)(1,1,0) ~w -2 -1 0 w -1.5 0 -1 ~w 1 1 1 w -0.5 1 0 ~w -1 -1 0 w -1.5 0 0 ~w 1 1 1 w -0.5 1 1 ~w -2 -1 -1 w -2.5 0 0 ~w 1 1 1 6 w -1.5 1 1 tJ : khongc6 1 2 3 4 5 19 (1,1,1) N/A N/A (1,1,0) (1,1,1) N/A N/A (1,1,0)(1,0,1) (1,1,1) N/A N/A N/A QuatrinhhQCcha'mdti't~i badcthti'6VIkhi docact~ph<jpr va T- cact~ph<jpr6ng,mcHikhongconvectOmfiuhQcnaobiphanIdpsai. Theod5iquatrinhhQCcuamQtm~ngperceptronddnnd-ronnha minhhQatren,mQtCallhoid~trala li~ucoxayratru'CJngh<jpsaumQts6 huuh~nbadcdi~uchinhtrQngs6,chungtal~iquaytrdv~dungvdimQt tr~ngthainaodo makhongbaagiCJd~tde'ntinhtr~nghoanchinhv~ trQngs6?Tacodinhly sauday BinhIV 2.1 TrongsudtquatrlnhhQccila mi)tm{lngperceptrondanna-ron, nguiJitakhongbaagiiJ quaytrov~cungmi)ttr{lngthainhi~uhan mi)ttanneubili loanc6liJi giai. M~cdudinhly chobie'tdingtrongquatrinhhQc,m~ngkhongbaa giCJquaytrdv~cungmQtr~ngthai,nhangdi~udokhongconghHilaqua trinhhQcsecha'mdti'tsaumQts6huuh~nbadchQc.Tuynhien,chungta co dinhly saudaykhiingdjnhstfhQitl}.cuaquatrinhhQccuam~ng perceptronddnnd-ron. M~ngno-ranperceptron 20 Blnh IV 2.2 Trong trulJnghf/phQctoimCf:lChayhQcdiq.phuong,cac trQngsd w(k)sf!hQitf:lv~vectow ntu khonggian cac mt1uhQcia khd tach tuytn tinhva ntu cac diiu ki~nsauvi h~sd tdcdQhQcdUf/cthod man: 1. 2. c:(k) >o. limZZk=lc:(k)=co khim ~ co 3. limZZk=iCc:(k)l/(ZZk=lc:(k)l=0 khim~ co [VLENTURF] conchirar~ng5t!hQin,.cuaquatrinhhQcvftncon baodamne'uc:(k)=1 / k hay th~mchi c:(k)=k. Ne'ut~pcacmftuhQc khongkhatachtuye'nHnhthi 5ieuph~ngtachkhonggianmftu5edao dQngquanhmQtvai vi trid:Jcbi~tne'uh~56c:(k)dtt<;jcchQnla hAng56 hayla mQtday56tang. 2.7. PhU'o'ngphapbangch6t Ke'tquachinhcuachttdngnayla vi~cungdl;lngphttdngphapbang chdt,v6ndungchonhllngbai loanquyho~chtuye'ntiOO(Xemtai li~u [SDGWICK]),nhAmtill cactrQng56chohamngtt5ngtuye'nHOOma khongcftnquacacbttdcdi~uchinhtrQng56OOttronghaithu~thQcdi~ phttdnghayloancl;lCn6itrongtie'ttrUdc.Trudche'tchungtadinhnghia the'naolamQtbangch6t. Cho 5[n mQtmatr~nA =(aij)nhttdttdiday aQl aO2 aOL all al2 alL aNI aN2 aNL M~ngno-ranperceptron 21 Khi dobangch6tungvdiph~ntt1'a[p,q]Ia IDatr~nco duQcbhng cachbie'nd6i IDatr~nA theodongsaochothuduQcIDatr~nIDaph~ntt1' t~idongp thlbhng1vatatcacacph~ntt1'khaclIencQtqthlbhngo. £)6rninhhQaphudngphapbangch6t,chungtaxetke'tquaphan ldpcuab6nvectdchotrongbangsau: ttttt:rr:Hft:rrrr:::tttt:I:trrrrr':'t::t::::::::ti ,:::IIiQ::::::::::::::::::::l~-:l:::::::::::::III~~:::l::::::::::::::l::oo::::l:::::: 1 I 0 0 0 I 0 0 1 1 1 1 0 1 0 1 Chungtarnu6nurnrnQtanhx~tuye'ntinhf vdi cactrQngso'{Wi} saochokhif lacdQngIentUngvectdthl: f(1,0,0) =Wo f(1, 0, 1)=Wo+Wz f(1, 1,0) =Wo+WI f(1,1,1)=Wo+WI +Wz Chungtasexacdinhnhfi'ngtrQngso'{wo,Wj, wz}saocho: Wo<0 Wo+Wz<0 Wo+WI <0 (1) Wo+WI +Wz>0 VI tachic~nurnrnQtnghi~rncuah~batphudngtrlnh(1)nentaxeth~ batphudngtrlnhd~cbi~t: M~ngna-ronperceptron 22 Wo< -1 Wo+ W2< -0.5 (2) wo+wI<-0.5 Wo +WI +W2 >0.5 B~ dungphu'dngphapbangeh6t,taphatbi~ubai toan:"TImmQtgia trj cothl!cua Wo+WI +W2 sao cho cac Wi thoabtitdangthac(2)".Be'ndfiy bailoandu'Qegiaiquacaebu'de: Bltoc1:TITh~bfttphu'dngtrlnh(2),tathftyr~ngt6nt~inhfi'ngiatriYo, Yi>Y2,Y3 >0 saoeho: wo+Yo=-1 Wo+W2+YI =-0.5 (3) Wo+WI+Y2= -0.5 Wo+WI+W2- Y3=0.5 Bltoc2: L~pmatr~ntrQngso'g6mtftteanhfi'ngh~so'euah~phu'dng trlnh(3) -1 -1 -1 0 0 0 0 0 1 0 0 1 0 0 0 -1 1 0 1 0 1 0 0 -0.5 1 1 0 0 0 1 0 -0.5 1 1 1 0 0 0 -1 0.5 Mi;lngno-ranperceptron 23 Dongthnnha'tcuamatr~nchinhlacach~s6cuawo,Wj,Wztrongh~thnc Wo+WI+WzduQCIa'ynguQcda'u.Trangcactinhloanti6ptheodongthn nha'tcuamatr~nh~s6chico lacdvngki€m ITak6tqua. Blloc3:L~pbangch6tchonhfi'ngphantii'manga[p,q]voip,qchQnthich hQp. - Bangch6tcuaa[2,1] 0 -1 0 0 1 0 0 -0.5 0 0 -1 1 -1 0 0 -0.5 1 0 1 0 1 0 0 -0.5 0 1 -1 0 -1 1 0 0.0 0 1 0 1 -1 0 -1 1.0 Ti6p theochungta Hmnghim WI trongvectcJcQtthnhai bhng cachlily bangch6tchophantd'a[4,2] 0 0 0 1 0 0 -1 -0.5 0 0 -1 1 -1 0 0 -0.5 1 0 1 0 1 0 0 -0.5 0 0 -1 -1 0 0 1 -1.0 0 1 0 1 -1 0 -1 1.0 Nhutrongbuoctren,d6ivoi nghim thnba,talily bangch6tcho phantd'a[1,3]vathuduQcmatrn sail: 0 0 0 1 0 0 -1 0.5 0 0 -1 1 -1 0 0 -0.5 1 0 0 1 0 0 0 -1.0 0 0 0 -2 1 0 0 -1.5 0 1 0 1 -1 0 -1 1.0 M~ngnO'-ronperceptron 24 Be'ndaytaco th~chQnnghi~mdin tlmHi (wo,Wj,wz)=(-1.0,1.0, 0.5)va nghi~mnay thoaHnhchill Wo+ WI + Wz=0.5. Ghi tri naydu<Jc ki~mtrabhngphftntU'cu6itrongdongdftuliencuamatr~n.SaukhichQn du<JcaetrQngso'Wi thlhamnguongcuall(j-ronsecod~ng: Y = a(-1 +Xl +0.5xz) D~dangki~mchungthilyhamnayphananhdungbangChaDtricuabai loan. Vi~ccaid~tthu~tloand~chQndu<Jcbangch6tcu6iclingkhong khoHim.Viln d~Ia eachchQncaehhngso'd ve'phiiicuah~bittphuong trlnh(2).KhongphaibittcueachchQnnaoclingd~uchoke'tquamong mu6n.Chiingh~ntrongbittdiingthuccu6icuah~bittphuongtrlnh(2),ta chohhngso'd ve'phaibhng1.Cl;lth~chungtacoh~bittphuongtrlnh: Wo<-1 Wo +Wz <-0.5 Wo+WI <-0.5 Wo+WI +Wz>1 vaclingvoigiathuye'tt6nt~inhii'ngiatrikhongamYo,yj,Yz,Y3saocho tacoh~: Wo +Yo=-1 Wo +Wz+ YI =-0.5 Wo+WI +Yz=-0.5 Wo+ WI + Wz- Y3=1 thlchungtasecomatrn h s61a: -1 -1 -1 0 0 0 0 0.0 1 0 0 1 0 0 0 -1.0 1 0 1 0 1 0 0 -0.5 1 1 0 0 0 1 0 -0.5 1 1 1 0 0 0 -1 1.0 M~ngnet-ranperceptran 25 Lftn luQtlily bangch6tchonhfi'ngphftntU'manga[2,l], a[4,2],a[1,3] thi bangch6tcu6icling: Cactn,mgso'chobdibangnayla (-1.0,1.5,0.5)nhunghamnguBngtuye'n tinh y =a( -1.0+1.5xj+0.5x2) thikhongphananhdungbangChaDtrio DI nhien,chungtaphiiidi~uchinhcachchQnve'phaicuah~biltphUelng trinh(2).Biingcachnao?Nh~nxetriingcactrQngso'Wimu6nla nghi~m duQcchQnthiphaithoabiltdiingthuc: -Wo<Wj +W2< -2wo. daDde'nvi~cchQnWoco mQtgia tri IonhelD.Chiingh~nco the'chQnWo< -1.5. 0 0 0 0 0 0 -1 1.0 0 0 1 -1 1 0 0 0.5 1 0 0 1 0 0 0 -1.0 0 0 0 -1 1 1 1 -1.0 0 1 0 0 -1 0 -1 1.5 0 0 0 0 0 0 -1 1.0 0 0 1 -1 1 0 0 1.0 1 0 0 1 0 0 0 -1.5 0 0 0 -1 1 1 1 -0.5 0 1 0 0 -1 0 -1 1.5 M~ngno-ranperceptran 26 Luc nayhamnguongtuye'ntinhchQnduQc: t =a( -1.5+ 1.5x]+X2) chungta co th~ki~mchungd~danghamnguongnayphananhdung bangchantrio 2.8.ChUfnhiQ'C I~pbangch6t: £)~co cainhinmangtinhcachthu~tgiaidO'ivdiphuongphapneu trongvi dl;llIen,chungtadungtrudcva'nd~din philitimmQtchie'nluQc chovi~cxacdinhxemphantit alp, q] naGse duQcchQnd~l~pbang chO't.Trentinhthanapdl;lngphuongphapdonhinhcuanhii'ngbai loan quyho~chtuye'ntinh,chie'nluQcchQnphantitmangalp,q] d~l~pbang chO'tphaichochungtanhii'ngtrQngsO'{Wi}saDchohamml;lclieu LWi tangdande'ngiatri ldnnha't,noicachkhaccacthu~tgiaiphaichoduQc gia tri {Wi}Ia tQadQdinhcuadonhinh.Theo [SDGWICK],co mQtsO' chie'nluQcchQnphantitalp,q] d~l~pbangchO't,machungtasedung mQtphuongphapnhumatadudiday: CQtq duqcchr,mne'udduVaGtfli dong0 ia s6 am.Dongp duqcchQn trongs6 nhangdongco dduVaGtfli cQtq ia s6 duangva ia pht1nt11 chothuangs6 wJi phdnt11cu6itrendAngmQtdongmanggicitrj nho nhdt. Chungtahayxeml~imatr~nh~sO',tatha'ycQt1 co datiVaGt~i dong0 Ia -1. -1 -1 -1 0 0 0 0 0 1 0 0 1 0 0 0 -1 I 0 1 0 1 0 0 -0.5 1 1 0 0 0 1 0 -0.5 1 1 1 0 0 0 -1 0.5 M~ngnd-ronperceptron 27 V~ycQt1dU<;1CchQn.Baygiod~chQnph~nhi'trendong,chungta chQndong2 (tinhtu0)vi ph~ntUa{2][l]chothuongsavaiph~nhi'cuai trenclingdongc6 ghl tri la 0.5la ghi tri nhonha't.Va thlJ'chi~nphep bie'nd6itheodongd~trdthanhmatr~n £)~till bangchatlingvai mQtph~nhi'naod6trencQt2, chungta se chQnIlJ'agiuahai ph~nhi' la a{3,2]haya{4,2]?Ne'uchQnph~nhi' a{3,2]d~l~pbangchatchungtatha'ydng vi ph~ntti'cuaitrendong3 b~ng0 chonenbangchatdU<;1cl~ptuph~nhi'a{3,2]thonglamchogia tri cuaph~ntti'cuaicuadong0 tanglen.Trongkhi phuongphapbang chatla till nhungbangchattheohuanglamchoph~nhi'cuaicuadong0 tangd~nlen de'ngiatri Iannha't.Do d6chungtase till bangchatcho ph~ntti'a{4,2] Va quatrinhchQnph~ntti'trongbangchatd buacthak d~l~p bangchatchobuacthak +1tie'pl\!Cchode'nbangchatcuaila bangc6n cQtd~uliendiidU<;1cchuiinhoa. 0 -1 0 0 1 0 0 -0.5 0 0 -1 1 -1 0 0 -0.5 1 0 1 0 1 0 0 -0.5 0 1 -1 0 -1 1 0 0.0 0 1 0 1 -1 0 -1 1.0 0 0 0 1 0 0 -1 -0.5 0 0 -1 1 -1 0 0 -0.5 1 0 1 0 1 0 0 -0.5 0 0 -1 -1 0 0 1 -1.0 0 1 0 1 -1 0 -1 1.0 M\tngno-ranperceptran 28 2.9. Nh~nlet Trongphuongphapbangch6ttren,buoctimcachhngso'd~di€n tacacrangbuQcnhutrongh~biltphuongtrinh(2)cuatie't2.7.du<;lcthV'c hi~nbellngoaithu~tloanvaxemnhubuocphantichsobQ.H~nche'cua phuongphaptrend ch6nochuachomQtthut1;1cnaogiupcaid~tcach~ so'cuah~biltphuongtrinh(2)mQtcachheuristic,makhi lingd1;1ngcho cacmfiuhQccoso'chi~uIOnthibuocnaydatrdthanhmQthachthlicIOn. Vi d1;1trongtie't2.7tu'ongd6idongianvi ch~ngquabangchantri cuabailoanchinhIa dinhnghiacualoantitlOgicAND, so'chi~ucuacac vectomfiuhQcquanhosovoi cacbai loanthV'cte',chonenvi~cdi~u chinhcacgiatri cuacQtcu6iclingtrongmatr~nkhongt6ncongnhi~u l~m(thu~tgiaimotatrenkhongh~noigi v~chie'nIU'<;lcdi~uchinhcac hhngso'nay).D6ivoibailoansan,voi so'chi~ucuavectomfiuhQcbhng 3 chungtaco 8rangbuQcva truockhi ch~ythachuangtrinh,vi~cchQn hhngso'trongdi~uki~nrangbuQcdoihoinhfi'ngdanhgiate'nhi Vidl1:HaytimmQthamnguongtuye'ntinhth~hi~nbangchantri: 1.11111:1:11;111111111111111111111111111111.111.111111i.IIIII:III.i.III.:li.II..li:.:.:I:.II::~i::.:::I:..: Chungtakhdit~omatr~nd~tll'dotimbangch6tla . 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 1 M~ngno-ranperceptron 29 Sankhich~ychn'ongtrlnhtrenmatr~nd6,tathudn'<;fcvectotrQng s6w=(-2.5,4.0,1.5,1.5) vahamngn'ongtuy€ntinhc6d~ng: y =0( -2.5+ 4x] + 1.5x2+ 1.5X3) Va cho y lacd(>ngtencacvectomfiuhQcthitathudn'<;fcbangsan d~sosanhvdibangchantrichotrongbailoan: -1 -1 -1 -1 0 0 0 0 0 0 0 0 0.0 1 0 0 0 1 0 0 0 0 0 0 0 -2.5 1 0 0 1 0 1 0 0 0 0 0 0 -1.0 1 0 1 0 0 0 1 0 0 0 0 0 -1.0 1 0 1 1 0 0 0 -1 0 0 0 0 1.5 1 1 0 0 0 0 0 0 -1 0 0 0 1.5 1 1 0 1 0 0 0 0 0 -1 0 0 1.5 1 1 1 0 0 0 0 0 0 0 -1 0 1.5 1 1 1 1 0 0 0 0 0 0 0 -1 1.0 1 0 0 0 -2.5 0 1 0 0 1 -1.0 0 1 0 1 0 -1.0 0 1 0 1 1 0.5 1 1 1 0 0 1.5 1 1 1 0 1 3.0 1 1 1 1 0 3.0 1 1 1 1 1 4.5 1 Mj;lngno-ranperceptron 30 R6ranghamnguongtuye'ntinhthuduQcphananhdungbangchan tricuabailoan. Cuo'iclIngthivande conI~iIa voi nhungbai loanvi ill'naothi bangchantrico th~duQcphananhnhomohinhperceptIondonno-roll con nhungbai loannao thi khong?Voi nhungbai loan ma so'chien khongIon Iitm,thi ve nguyentitc,co th~ITaIoi chocall hoi trenb~ng nhungkhaosattrennhunghamrangbuQccuabai loan.Lay vi d1;lcho tru'onghQpduoiday,ta sechungminhr~ngkhongth~phananhbang chantrib~ngmQthamnguongtuye'ntinh,tlicIa mohinhperceptIondon no-rollkhongapd1;lngduQc. Vidl1:Ta xethamy =I(x],Xz,X3)du'QcxacdinhIa duQcxacdinhIa y=1 ne'utrongcacXico mQtso'Ie cacgia tri 1, va y =0 trongcac truonghQpkhac.Bangchantricuabailoandu'Qcth~hi~nnhu'san: ... ............"""""""""""""""""""""",........................................................................................................................................................................................................................................................................................................................................................................................................."""""""""""""""""""""""""""............................................................................................... :::::::::::~:l::::::::::::::::::::::]{g:::::::::::::::::::::::~a:::::::::::::::::::::::::::M:::::::::::::: Chungtasechungminhrhngkhongth~!lmmQthamngu'ongtuye'ntinh chobangchantritrenne'udungmohinhperceptIondonno-roll. Chung ta them mQt gia tri Xo=1 va gQi {Wi}( i > 0 ) Ia nhung trQngso',the'thiquabangchantritren,taconhungbatdiingthuc: 0 0 0 0 0 0 1 1 0 I 0 1 0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 1 1 M!,mgno-ranperceptron 31 (vii) Wo+Wi+ Wz<0 (viii) Wo+Wi +Wz+W3>0 C(>ngtheov€ hai ba'td!ng thuc(ii) va (iii) taduQC:2wo+ Wz+ W3 >0,k€t hQpvoiba'td!ngthuc(i) thlduQc:Wo+Wz+W3 >O. Mauthuftn voiba'td!ngthuc(iv).Di~udochungtodingkhongth€ dungmohlnh perceptIondonno-ronchobailoandiineu. 2.10.Cuoichuang Trongchuongnay,chungtadiidi€m quahaiphuongphaphQccua m~ngperceptIondonno-ronIDeonguyenly "thii'vasii'a".Chungtadiid~ ram(>tphuongphaphQcmak€t quavi~chQCduQchoanta'tngaysaukhi duy(HquacacmftuhQc.Congcv chinhtrongphuongphapnayHiphep giaim(>th~phuongtrlnhtuy€ntinhvoicach~sO'trong{a,1 },doclingla m(>tcongcvmachungtasesii'dvngkhixetm(>tsO'thu~thQcdO'ivoiki€n trUcm~ngperceptIonhi~ulOpbon. (i) Wo<0 (ii) Wo+W3 >0 (iii) Wo+Wz>0 (iv) Wo+Wz+W3<0 (v) Wo+Wi>0 (vi) Wo+ Wi + W3< 0

Các file đính kèm theo tài liệu này:

  • pdf4.pdf
  • pdf0.pdf
  • pdf1.pdf
  • pdf10.pdf
  • pdf11.pdf
  • pdf2.pdf
  • pdf3.pdf
  • pdf5.pdf
  • pdf6.pdf
  • pdf7.pdf
  • pdf8.pdf
  • pdf9.pdf
Tài liệu liên quan