MỘT SỐ THUẬT TOÁN HỌC TRÊN BẢNG QUYẾT ĐỊNH
VŨ VĂN HỌC
Trang nhan đề
Mục lục
Lời nói đầu
Chương 1: Dẫn nhập.
Chương 2: Mạng Nơron - Perceptron.
Chương 3: Mạng Perceptron hai lớp.
Chương 4: Bảng quyết định.
Chương 5: Kết luận.
Phụ lục A
Phụ lục B
Phụ lục C
Tài liệu tham khảo
22 trang |
Chia sẻ: maiphuongtl | Lượt xem: 1792 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Luận văn Một số thuật toán học trên bảng quyết định, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
2
MANG N<1-RON.
PERCEPTRON
)
' tu'dngv~nhungmohinhm~ngno-randaulienkhdidautU
nhungDam1940.Vaoh1cd6,hainhaloanhQcMcCullochva
Pitts(19 3) g<;liY v~mQtno-rollnhu'mQtphdnIlt nguiJnglogic(logical
thresholdelement)c6haitr~ngthaikhiidi.MQtphantitngu'cJngnhu'the'
c6n kenhchoduli~unh~pva mQtkenhchoduli~uxu!t.Kenhchodu
li~unh~pdu'<;lccoiladQngne'udauvaola 1,ho~ccoila tinhne'udauvao
la O.Nhu'v~ythongtinnh~pdu'X2,U?
Xn.Thongthu'ongdaynhiphannaydu'<;lccoi la nhungthanhphancua
vecto
x =(Xi> X2, U?xn)
Tr~ngthaicuaphantitngu'cJngchobdi t6h<;lptuye'ntinhcuacae
tinhi~unh~pXidemsosanhvoi mQtgiatringu'cJngs.Tin hi~uxu!tcua
mQtno-rolldinhbdihamoutput:
y =o(L/w/x/-s) (1)
trongd6agQilahaml!y ngu'cJng:o(x)=1ne'uX>0va o(x)=0ne'uX<
0, va caeh~s6Wi=+1.
Qua d6, ngu'oitan6i no-randu'<;lckich ho~tne'ut6 h<;lpI;WiXi trQi
hon ngu'cJngs . Con trongtru'ongh<;lpngu'<;lcl~i, no-roll d6 du'<;lcgQi la
tinh.
Hai ongclingdachiraeachthucmamQtno-rollc6 th€ tht1chi~n
cacpheploanlogic.Chiingh~n,ho~tdQngcuacacc6ngAND trong19
thuye'tm~chlogicho~cvoicaebQchuy€nm~ch(inverter)thid~uc6th€
di~ntiidu'oimQthamtheod~ng(1).
Mllingno-ranperceptron 11
Tuynhien,c6haikhiac~nhquaDtrQngmamohlOOcuaMcCulloch
va Pittsdii khongghliquye'tdu'<;1c.Thanha't,mohlnhtrendiikhonggiiii
thichdu'<;1cca hiliacmacacnd-ronlien l~cvoiOOau-tie'cthay-d6 l~ila
mQtth1!cte'xiiy ra trongsuo'tquatrloohQccuamQtm~ngnd-ron.Tha
hai,nhii'ngm~ngnd-rondohaiongd~rakhongphiinanhdu'<;1ckhiiDang
chiu16i,nha'tlakhisosanhvoikhiiDanga'yndiOOii'ngnd-ronsinhhQc.
Saunay,nhovao Dang11!cuanhii'ngh~tho'ngtioo loanmoi,
nhii'ngnhaphattri€n dii c6 th€ mophongmQtcachchi tie'thdnv~khii
DanghQCcuaOOii'ngm~ngnd-ronvadiineudu'<;1cca liinhv1!cangd~ng
mamohlnhcuahQc6khiiDanggiiiiquye't.
Mo hlOOddngiiinxetdu'oidayla m~ngperceptrondoRosenblatt
d~ravaoDam1948.
2.1M~ngPerceptron:
M~ngperceptIonmQtlOpla mQtmohlnhddngiiinmachungtase
xettrongchu'dngnay.N6 chig6mN ddnvi nd-ron,trongd6m6ind-ron
c6chacDangcuatie'pnh~nthongtinquankeOO,dii'li~udiquam6ikenh
d~ctru'ngbdiXl .Thu'ongthu'ongdii'li~uquam6ikeOOmangmQtrong
haigiatri0 hay1.CungvoichacDanginput,nd-ronilia r trongm~ngc6
hamoutputdinhbdi:
Yr=O(LiWriXi- sr) (2)
voi {Wri}la t~pcactrQngso'xacdjnhchond-ronilia r vaSrlangu'ong.
Khongma'tinht6ngquat,congiliac(2)c6th€ vie'thaOO:
Yr = O(LiWriXi)
voi Wro= Srva Xo= -1.
(3)
Ne'um~ngperceptIonchi g6mmQtddnvi nd-ron,ta n6i d6 la
m~ngperceptIonddnnd-ron.
Kie'ntrUccuamQtm~ngperceptIonhu'motittrenchu'atriiloi cho
Callhoi v~cachiliacho~tdQng.Va'nd~d~tra la: voi mQt~p hii'uh~n
nhii'ngthongtinnh~px, vavoimQt~pconCrchos[n,ngu'oitamuo'ntlm
du'<;1Ct~pnhii'ngtrQngso'{Wri}saochoylx) =1voi mQix 6 Crvaylx) =
0 voix {l!Cr.
M~ngno-ranperceptron 12
Quatrinhxacdinhnhii'ngtrQngs6{Wri}du'<;fcgQila quatrinhhQc.
Va nhii'ngthu~tloanap dt}ngchoquatrinhhQcgQila thuq,thQc.N6i
chung,mQtquatrinhhQCdic3nranhu'san:ngu'CJitakhdit~omQt~ptrQng
s6{Wri}bandftunoino-rOllr, sand6chonhii'ngtrQngs6naylacdQngten
tUngvectoinputx IDeocongtht1'c(3).DI nhien,sec6nhii'ngvectdx e Cr
nhu'ngylx) =0 .Luc d6 ngu'CJita phiH di~uchinh trQngs6 {Wri}bhng s6
gia L1Wri. T~pnhii'ngtrQngs6cu6iclingdu'<;fcchQnkhichungphant1'ng
dungvdi mQix eCr . Trongchu'ongnay,chungtakhaosatnhii'ngthu~t
hQctrenm~ngperceptrondonno-roll.
2.2Tlnhkhatachcuakhonggiannhungvacta'hQc:
B€ c6th€ xacdjnhdu'<;fC~pnhii'ngtrQngs6 {Wri}cu6icling,di~u
d6mythuQcvaobancha'tciiabai loanva vaocachmah6amftunh~p.
B€ giai thich, chung ta hay xet y nghia hinh hQc ciia qua trinh hQc.
Nhii'ngmftuhQcx = (x],X2,"7XL) du'<;fcxemla nhii'ngvectdtrongkhong
gianL chi~u,trongd6, t~ph<;fpCr sedu'<;fctachkhoi nhii'ngvectdkhacbdi
sieuphiing:
WrlX]+Wr2X2+ ". +WrLXL= Wo
Ngu'CJitada neudu'<;fCnhii'ngphanvi dt}v~mQtkhonggiannhii'ngvectd
hQcmakhongt6nt~iba'tct1'sieuphiingnaod€ tachchung.
2.3Tlnhkhatachtuye'ntinh:
B6i vdihait~pmftuthll'C] vaC2 makhongth€ tachdu'<;fCbdimQt
si~uphiing,ngu'CJitasemdrQngs6chi~uciiaciiakhonggianvectdthll'
va anhx~t~pC] va C2 vaokhonggiannaysaochoc6 th€ tachchung
bhngmQtsieuphiing.
[JO
:>
M~ngnd-ronperceptran 13
TinhchathlnhhQCaydu'<JcgQila tinhkhatachtuytntinh.Nhu'v~y,
tinhkhatachtuye'ntinhnhhmbaodamluonluonc6th~chQndu'<Jct~p
cactrQngs6 {Wri}saochobai loanphanlo~icacvectdthax c6th~giiii
du'<Jc.
Trudckhitimhi~ucacthu~thQc,chungtahayxetquamQts61Inh
vl{capd~ngcoam~ngperceptron.
2.4. MOlso'linhvileapd~ng
D Vi dlf-1:Vdi mQtlOpc6giOih~nnhii'ngb~liloanvi ttr,chiingh~nOOu'
xetphatbi~u:"Loandiphffntu troindnghayntu troi l{lnhvagi6
thdihuangdong".TagQinhii'ngvi ttr:
Xl: "TroinAng"
X2:"Troi l~nh"
X3:"Gi6th6ihu'dngdong"
y: "Loandiph6"
va gQichantri cuachungHi1 ho~cO.The'thid~xacdinhh~illh
dQng"Loandiphff"la dunghaysaingu'oitac6 nhieueachthl{c
hi~n.N6ichung,ngu'oitasehmtrii'bangchantricoay:
Bang2.1..Bangchantrj...........................................................................
:.1::::::::::::::::::::::::.:::::::::::::::::::::::0::::::::::::::::::~::::::::-
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1
va saud6,vdimQtth~hi~nnaod6coavectd (x],Xl,X3) ngu'oitased6i
sanhvectdnayvdido8 tru'ongh<Jptrongbangchantrid~rutramQtke't
lu~nvey.R6rangcachtie'pc~nnayc6dQphuc~p2£dod6khongthich
M\ingno-ranperceptran 14
hQpvoi nhfi'ngtruonghQpmakhonggiannhfi'ngvectdhQcco s6chi~u
khaIon.
Clingvoim1;1cdichthugQnbangchantri,nguoitathilydingBang
2.1.coth<3'rutgQnthanhBang2.2nhusauday
Bang2.2.a:Bangchiintrj dttqcthugQn
[::::::i::I::::::::::i:i:i:::::i:::ii:::::::::::::::::::::::5.li:::::i:i::::::::::::::::::I:::::::::I::::1
0 0 * 0
0 1 0 0
0 1 1 1
1 * * 1
(*) Chiintrj ia 1ho(ic0
Tac gia Celko trong[CELKO] d~nghimQtthu~toansa d1;1ng
Bang2.2.phatsinhmQtdo(;lnchuangtrinhcod(;lngnhu:
IFX1THENY
ELSE
IFX2THEN
IFX3THENY
ELSEERROR
ENDIF
ELSEERROR
ENDIF
ENDIF
Ca che't1;1'dQngphatsinhchuangtrinhIDeogQiy tren, ne'uth1;1'c
hi~nduQc,coynghHikhad~cbi~tvi dochinhla cache'phatsinhchuang
trinh,C1;1th<3'la no phatsinhdo(;lnchuangtrinhphucV1;1vi~cl~plu~ntie'n
trongdonvi maysuydi~ncuabiltcll'h~chuyengianao(Xem Chuang1).
va clingdocache'phatsinhchuangtrinhd1;1'av ocdsdtri thll'c,tathilyca
che'ily th1;1'cs1;1'dfft(;loduQcs1;1'dQcl~pgifi'adfi'li~uva chuangtrinh.Diiu
nay cung co mQtynghiiiquantrQngnhatia trangnhangh? chuyengiama
cosa tri thacthtti'lngco nhangbie'ndQngtheothi'ligian,chungtamu6nh~
Ml)ngno-ranperceptron 15
chuyengianayphiiic6 khananghQcnhanhch6ngnhatm6ikhi c6 stf
bie'ndQngv~cosdtrithuc.Thu~tloannaymdranhungungdI}ngthuvi
chiingh~ntrongvi~ct\f thie'tke'nhungh~CASE la nhungh~trQgiup
phftntichthie'tke'h~th6ngho~cl~ptrlnhchonhungthie'thi di~ukhi~nt\f
dQng.van d~conl~ila thu~tloanphatsinhchuongtrlnhay phaic6dQ
phuct~pchapnh~nduQC.
Cu6idIngla cachtie'pc~nno-rOll.Vdi phuongphapnay,ngucsita
khonghill tri'i'bangchftntri-haycongQila banghanhdQng-nhungse
duy~tquatUngth~hi~ncuavectdx d~cu6icungxftydtfngduQcham
output
y =a( -1 +2x]+X2+X3)
HamoutputnaykhilacdQngtrentUngvectddongcuaBangquye't
dinh2.2,tasethayn6phananhdungvi~cphftnlOpnhungvectdnaose
chooutputla 1haysechooutputla0nhutrongBang2.2.b.
DVf dl!-2: PerceptIonconc6 mQtungdI}ngkhactrongvi~cnh~nd~ng
mfiumanhungn6ltfcbandaDthuQcv~Rosenblatt(1962),Minsky
va Papert(1969).Vdi mQtmfiuchosan,ngucsita chie'ulen mQt
ludig6mnhi~u0 vuongnho,m6i0 vuongduQcgallchobie'nXi .
Bie'nXic6giatri i ne'umfiuthitc6baophu0 vuongvac6giatri0
trongtru'csnghQpnguQcl~i.M~ngperceptIonc6 Iihi~mVI} hQc
phftnlo~icacmfiuhQcbhngcachduy~tquatUngthitd~cu6icung
xftydtfngduQchamnguangy.Lay vi dI}tac6mQtludig6mb6n0
M~ngna-ronperceptron 16
vuongva 16mallhQcphanlo~ithanhhaiph~mtrU:Ph~mtrUfull'
nh!tg6mnhiingmallco it nh!thai0 t6ik~nhauva ph~mtrUfull'
hai g6mnhiingmauconl~i.C~thc3'k6tquaphanlo~ichatrang
Bang2.3.dudiday:
Bang2.3:Phanlo{limJug6m40 vuong
Dudiday,chungtasexetnhiingthu~thQcd6i vdi mohlobperceptIon
donno-roo.
2.5.Mil hinhperceptronilltn nit-ran:
Trudc h6t chungta dinh nghHiham y =f(x], X2, ..~ XL) la ham
nguongtuy6ndnhobiphanll'ngvdibi6nnhiphanx],X2,. . .,XL n6ut6n
~i mQts6th1;1'cTva day s6th1;1'c{w],W2,. . .,wd saochoy=1 n6u LW/X/
>T vabAng0 trongtru'onghQpnguQcl~i.
Trong th1;1'ct6, chungta se coi Wo=-T vab6 sungbi6nXo=1. Khi
dohamnguongtuy6ntmhselahamtheocacbi6nXo,X/,. . .,XLvacogia
triy =1 n6u.EWjXj>0 vay=0 n6u .EWjXj<-0 (t6nglay theoi =0,1, ...).
2.6.Thu~thOcreinforcementchom~ngperceptronilltnnltron
D6i vdi m~ngperceptIondonno-roo,co phuongphaphQcda tra
thanhc6dic3'ngQila lu~thQcreinforcement.NQidungcd~phuongphap
nhugall:
................................... .........................................................................................................................
::.:::::.:II:I!I!I:I:I
.................................... ...................................
11:ljl:111111111111:IIIIIIIIIIIIIIIIIIIIIII::!lj
................. ............... ..................
11111111111111111111111
....................................................................... ..................
I!IIIIIIIIIII!III!!!!I!IIIIII
.................................. .............. ..................
!IIIII!IIIII!IIIIIIII
................................. ..................
::!I!!!I!::II!I!I!I!I!!
................. ...............................................
:::::!!ii: :::::::::
. ... ... ...............
::::::::::B:::::::::::lil:::::: :::
0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 1 0 0 1 0
0 0 1 0 0 1 0 1 0 1
0 0 1 1 1 1 0 1 1 1
0 1 0 0 1 1 1 0 0 1
0 1 0 1 1 1 1 0 1 1
0 1 1 0 0 1 1 1 0 1
0 1 1 1 1 1 1 1 1 1
M~ngno-ranperceptron 17
Gia Saco N m~uhQCHinhungvectd x =(x], X2,...,xn)E Rll va
chungthuQcmQttronghailopmachungtakyhi~uIanIu'<;1tIa G+va G-.
Mvc dichcuachungta Ia xaydl;l'ngmQtanhX(;lg xacdinhlIen nhung
m~uhQcvacomiengiatri Ia t~ph<;1p{a,I} saochokhichoanhX(;lnay
lacdQngIenm6ix thlg(x)=1 ne'ux E G+vag(x)=0 ne'ux E G-.AOOX(;l
gthu'ongIah0vaa(s)=0ne'us<0
voi mQtanhX(;ltuye'ntinhf xacdinhlIen x:
y =lex)=WoXo+WjXj +W2X2 + ...+WnXn
g(s)=a(f(x))
trongdoXo= 1 va cacs6thl;l'cWi( i = 0,1,2, ...,n ) du'<;1cgQiIa
trQngs6cuaanhX(;lf vavectdw= (wo,WI,W2,...,w,Jdu'<;1cgQiIa vectd
trQngs6.Di nhienvoimQtvectdtrQngs6w naodothlcoOOungvectdx
trongG+ nhu'nga(f(x))=0vangu'<;1cI(;li iingconhungx trongG- nhu'ng
a(f(x))=1.Trongnhungtru'ongh<;1pOOu'the',tanoico sl;l'khacbi~tgiua
outputhl;l'cte'va outputIy tu'dng.Nhi~mvv cuathu~thQcIa voi mQt
vectdtrQngs6wchQntuyybandati,sankhichohamg lacdQng!entung
m~uhQcx vaconhungdieuchinhtrQngs6thichh<;1pmachungtagQila
quatrlnhhQc,hamg sephanaOOdungsl;l'tachkhonggiancacm~uhQc
theonghHiIag(x)=1voimQix E G+vag(x)=0 voi mQix E G-
Vi dl1:
Xet nhungm~uhQctrongR2va outputIy tu'dngcuachungcho
trongBang2.4sanday
Bang2.4:CaemJu thitvaeaeoutputly tLlang
., "'"..,....................................,.........................................................................................-...".'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'...'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'...'.'.'.'.'.'.'.'.'.'.'".".'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.''.'.'.'.'.'.'.'.'.'.'.'.'.'.'
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
'""""""$:"""""""""""""""~:""""""""""""""""'V""""""'"
::r:r ¥.trrrrr r:xIi :r::::::::::r:t::::~Jrrr
0
0
0
1
0
0
1
1
0
1
0
1
M~ngno-ranperceptron 18
Voi mQivectdmftuhQcchotren,tab6 sungthemthanhphftnXo=
1.Va ne'unhfi'ngtrQngsachQnd lftndftulien la
w(O)=(0.5,1,-1)
thioutputhl1cte'cuanhfi'ngvectdmftuhQcchotrongbangsan:
Bang2.5:CacmJu thitmarQngXo,outputly tLlangvaputputthl!Cte
,---~H---,~'HH'~-- """" " ,.................................................,..., , , ," ,." , ,..................................." ",., " ,"""""""""","""""""""""""""'" ,..................................
::1:::;11111:1:::::::11:11111:1::11::1:1::::::::::::::::::::::;:::i~:::::::::::::I:llllliiliiiiil:~::ii:::::::i:::::::::I:iillii:i::ii:i
1
1
0
0
0
1
0
0
1
0
1
1
1
1
0
1
0
1
1
1
Co haivectdduQcphanlOpsai,dolahaivectd(1,0,0)va(1,1,0) .
Quyt~chQcthanh3.'tduQcgQila hQcdiaphLlongphatbienla chungtase
di€u chinhtrQngsangaykhiphathi~ncosl1phanlopsaiIDeoquyt~c:
Va quyt~chQcthahaila hQctoanc¥cduQcphatbienb~ngcong
thacdi€u chinhtrQngsa
w(k+1)=w(k)+ 8 (LXi -Lxj) voi mQiXi E r w va Xj E T"w
Trongcahaiquyt~c,tagQi8 la h~s8tdcdQhQc.Ta gQiquyt~c
thahailahQcloancl;lcvi anhx~tuye'ntinhf voivectdtrQngsaw sephai
lacdQngtrent3.'tcanhfi'ngvectdX trongtungbuochQc.Bdi cooouthe'
thit~ibuochQcthakchungtamoicothexacdinhduQchait~phQpr w
vaT-w.Trongvi dl;lchungtadangxet,cacbuocdi€u chinhtrQngsatrong
suatquatrlnhhQcloancl;lcduQcphanaOOquaBangsan:
w(k) neuphan lcJpdung
w(k+1)= w(k) + &Xi neuXi Erw
w(k) - &Xi neu Xi E T"w
M\lngno-ranperceptron
Bang2.6:Cac buochQc
*
0 w 0.5 1 -1 N/A (1,0,0)(1,1,0)
~w -2 -1 0
w -1.5 0 -1
~w 1 1 1
w -0.5 1 0
~w -1 -1 0
w -1.5 0 0
~w 1 1 1
w -0.5 1 1
~w -2 -1 -1
w -2.5 0 0
~w 1 1 1
6 w -1.5 1 1
tJ : khongc6
1
2
3
4
5
19
(1,1,1) N/A
N/A (1,1,0)
(1,1,1) N/A
N/A (1,1,0)(1,0,1)
(1,1,1) N/A
N/A N/A
QuatrinhhQCcha'mdti't~i badcthti'6VIkhi docact~ph<jpr va
T- cact~ph<jpr6ng,mcHikhongconvectOmfiuhQcnaobiphanIdpsai.
Theod5iquatrinhhQCcuamQtm~ngperceptronddnnd-ronnha
minhhQatren,mQtCallhoid~trala li~ucoxayratru'CJngh<jpsaumQts6
huuh~nbadcdi~uchinhtrQngs6,chungtal~iquaytrdv~dungvdimQt
tr~ngthainaodo makhongbaagiCJd~tde'ntinhtr~nghoanchinhv~
trQngs6?Tacodinhly sauday
BinhIV 2.1
TrongsudtquatrlnhhQccila mi)tm{lngperceptrondanna-ron,
nguiJitakhongbaagiiJ quaytrov~cungmi)ttr{lngthainhi~uhan
mi)ttanneubili loanc6liJi giai.
M~cdudinhly chobie'tdingtrongquatrinhhQc,m~ngkhongbaa
giCJquaytrdv~cungmQtr~ngthai,nhangdi~udokhongconghHilaqua
trinhhQcsecha'mdti'tsaumQts6huuh~nbadchQc.Tuynhien,chungta
co dinhly saudaykhiingdjnhstfhQitl}.cuaquatrinhhQccuam~ng
perceptronddnnd-ron.
M~ngno-ranperceptron 20
Blnh IV 2.2
Trong trulJnghf/phQctoimCf:lChayhQcdiq.phuong,cac trQngsd
w(k)sf!hQitf:lv~vectow ntu khonggian cac mt1uhQcia khd tach
tuytn tinhva ntu cac diiu ki~nsauvi h~sd tdcdQhQcdUf/cthod
man:
1.
2.
c:(k) >o.
limZZk=lc:(k)=co khim ~ co
3. limZZk=iCc:(k)l/(ZZk=lc:(k)l=0 khim~ co
[VLENTURF] conchirar~ng5t!hQin,.cuaquatrinhhQcvftncon
baodamne'uc:(k)=1 / k hay th~mchi c:(k)=k. Ne'ut~pcacmftuhQc
khongkhatachtuye'nHnhthi 5ieuph~ngtachkhonggianmftu5edao
dQngquanhmQtvai vi trid:Jcbi~tne'uh~56c:(k)dtt<;jcchQnla hAng56
hayla mQtday56tang.
2.7. PhU'o'ngphapbangch6t
Ke'tquachinhcuachttdngnayla vi~cungdl;lngphttdngphapbang
chdt,v6ndungchonhllngbai loanquyho~chtuye'ntiOO(Xemtai li~u
[SDGWICK]),nhAmtill cactrQng56chohamngtt5ngtuye'nHOOma
khongcftnquacacbttdcdi~uchinhtrQng56OOttronghaithu~thQcdi~
phttdnghayloancl;lCn6itrongtie'ttrUdc.Trudche'tchungtadinhnghia
the'naolamQtbangch6t.
Cho 5[n mQtmatr~nA =(aij)nhttdttdiday
aQl aO2 aOL
all al2 alL
aNI aN2 aNL
M~ngno-ranperceptron 21
Khi dobangch6tungvdiph~ntt1'a[p,q]Ia IDatr~nco duQcbhng
cachbie'nd6i IDatr~nA theodongsaochothuduQcIDatr~nIDaph~ntt1'
t~idongp thlbhng1vatatcacacph~ntt1'khaclIencQtqthlbhngo.
£)6rninhhQaphudngphapbangch6t,chungtaxetke'tquaphan
ldpcuab6nvectdchotrongbangsau:
ttttt:rr:Hft:rrrr:::tttt:I:trrrrr':'t::t::::::::ti
,:::IIiQ::::::::::::::::::::l~-:l:::::::::::::III~~:::l::::::::::::::l::oo::::l::::::
1
I
0
0
0
I
0
0
1
1
1
1
0
1
0
1
Chungtarnu6nurnrnQtanhx~tuye'ntinhf vdi cactrQngso'{Wi}
saochokhif lacdQngIentUngvectdthl:
f(1,0,0) =Wo
f(1, 0, 1)=Wo+Wz
f(1, 1,0) =Wo+WI
f(1,1,1)=Wo+WI +Wz
Chungtasexacdinhnhfi'ngtrQngso'{wo,Wj, wz}saocho:
Wo<0
Wo+Wz<0
Wo+WI <0
(1)
Wo+WI +Wz>0
VI tachic~nurnrnQtnghi~rncuah~batphudngtrlnh(1)nentaxeth~
batphudngtrlnhd~cbi~t:
M~ngna-ronperceptron 22
Wo< -1
Wo+ W2< -0.5 (2)
wo+wI<-0.5
Wo +WI +W2 >0.5
B~ dungphu'dngphapbangeh6t,taphatbi~ubai toan:"TImmQtgia trj
cothl!cua Wo+WI +W2 sao cho cac Wi thoabtitdangthac(2)".Be'ndfiy
bailoandu'Qegiaiquacaebu'de:
Bltoc1:TITh~bfttphu'dngtrlnh(2),tathftyr~ngt6nt~inhfi'ngiatriYo,
Yi>Y2,Y3 >0 saoeho:
wo+Yo=-1
Wo+W2+YI =-0.5 (3)
Wo+WI+Y2= -0.5
Wo+WI+W2- Y3=0.5
Bltoc2: L~pmatr~ntrQngso'g6mtftteanhfi'ngh~so'euah~phu'dng
trlnh(3)
-1 -1 -1 0 0 0 0 0
1 0 0 1 0 0 0 -1
1 0 1 0 1 0 0 -0.5
1 1 0 0 0 1 0 -0.5
1 1 1 0 0 0 -1 0.5
Mi;lngno-ranperceptron 23
Dongthnnha'tcuamatr~nchinhlacach~s6cuawo,Wj,Wztrongh~thnc
Wo+WI+WzduQCIa'ynguQcda'u.Trangcactinhloanti6ptheodongthn
nha'tcuamatr~nh~s6chico lacdvngki€m ITak6tqua.
Blloc3:L~pbangch6tchonhfi'ngphantii'manga[p,q]voip,qchQnthich
hQp.
- Bangch6tcuaa[2,1]
0 -1 0 0 1 0 0 -0.5
0 0 -1 1 -1 0 0 -0.5
1 0 1 0 1 0 0 -0.5
0 1 -1 0 -1 1 0 0.0
0 1 0 1 -1 0 -1 1.0
Ti6p theochungta Hmnghim WI trongvectcJcQtthnhai bhng
cachlily bangch6tchophantd'a[4,2]
0 0 0 1 0 0 -1 -0.5
0 0 -1 1 -1 0 0 -0.5
1 0 1 0 1 0 0 -0.5
0 0 -1 -1 0 0 1 -1.0
0 1 0 1 -1 0 -1 1.0
Nhutrongbuoctren,d6ivoi nghim thnba,talily bangch6tcho
phantd'a[1,3]vathuduQcmatrn sail:
0 0 0 1 0 0 -1 0.5
0 0 -1 1 -1 0 0 -0.5
1 0 0 1 0 0 0 -1.0
0 0 0 -2 1 0 0 -1.5
0 1 0 1 -1 0 -1 1.0
M~ngnO'-ronperceptron 24
Be'ndaytaco th~chQnnghi~mdin tlmHi (wo,Wj,wz)=(-1.0,1.0,
0.5)va nghi~mnay thoaHnhchill Wo+ WI + Wz=0.5. Ghi tri naydu<Jc
ki~mtrabhngphftntU'cu6itrongdongdftuliencuamatr~n.SaukhichQn
du<JcaetrQngso'Wi thlhamnguongcuall(j-ronsecod~ng:
Y = a(-1 +Xl +0.5xz)
D~dangki~mchungthilyhamnayphananhdungbangChaDtricuabai
loan.
Vi~ccaid~tthu~tloand~chQndu<Jcbangch6tcu6iclingkhong
khoHim.Viln d~Ia eachchQncaehhngso'd ve'phiiicuah~bittphuong
trlnh(2).KhongphaibittcueachchQnnaoclingd~uchoke'tquamong
mu6n.Chiingh~ntrongbittdiingthuccu6icuah~bittphuongtrlnh(2),ta
chohhngso'd ve'phaibhng1.Cl;lth~chungtacoh~bittphuongtrlnh:
Wo<-1
Wo +Wz <-0.5
Wo+WI <-0.5
Wo+WI +Wz>1
vaclingvoigiathuye'tt6nt~inhii'ngiatrikhongamYo,yj,Yz,Y3saocho
tacoh~:
Wo +Yo=-1
Wo +Wz+ YI =-0.5
Wo+WI +Yz=-0.5
Wo+ WI + Wz- Y3=1
thlchungtasecomatrn h s61a:
-1 -1 -1 0 0 0 0 0.0
1 0 0 1 0 0 0 -1.0
1 0 1 0 1 0 0 -0.5
1 1 0 0 0 1 0 -0.5
1 1 1 0 0 0 -1 1.0
M~ngnet-ranperceptran 25
Lftn luQtlily bangch6tchonhfi'ngphftntU'manga[2,l], a[4,2],a[1,3] thi
bangch6tcu6icling:
Cactn,mgso'chobdibangnayla (-1.0,1.5,0.5)nhunghamnguBngtuye'n
tinh
y =a( -1.0+1.5xj+0.5x2)
thikhongphananhdungbangChaDtrio
DI nhien,chungtaphiiidi~uchinhcachchQnve'phaicuah~biltphUelng
trinh(2).Biingcachnao?Nh~nxetriingcactrQngso'Wimu6nla nghi~m
duQcchQnthiphaithoabiltdiingthuc:
-Wo<Wj +W2< -2wo.
daDde'nvi~cchQnWoco mQtgia tri IonhelD.Chiingh~nco the'chQnWo<
-1.5.
0 0 0 0 0 0 -1 1.0
0 0 1 -1 1 0 0 0.5
1 0 0 1 0 0 0 -1.0
0 0 0 -1 1 1 1 -1.0
0 1 0 0 -1 0 -1 1.5
0 0 0 0 0 0 -1 1.0
0 0 1 -1 1 0 0 1.0
1 0 0 1 0 0 0 -1.5
0 0 0 -1 1 1 1 -0.5
0 1 0 0 -1 0 -1 1.5
M~ngno-ranperceptran 26
Luc nayhamnguongtuye'ntinhchQnduQc:
t =a( -1.5+ 1.5x]+X2)
chungta co th~ki~mchungd~danghamnguongnayphananhdung
bangchantrio
2.8.ChUfnhiQ'C I~pbangch6t:
£)~co cainhinmangtinhcachthu~tgiaidO'ivdiphuongphapneu
trongvi dl;llIen,chungtadungtrudcva'nd~din philitimmQtchie'nluQc
chovi~cxacdinhxemphantit alp, q] naGse duQcchQnd~l~pbang
chO't.Trentinhthanapdl;lngphuongphapdonhinhcuanhii'ngbai loan
quyho~chtuye'ntinh,chie'nluQcchQnphantitmangalp,q] d~l~pbang
chO'tphaichochungtanhii'ngtrQngsO'{Wi}saDchohamml;lclieu LWi
tangdande'ngiatri ldnnha't,noicachkhaccacthu~tgiaiphaichoduQc
gia tri {Wi}Ia tQadQdinhcuadonhinh.Theo [SDGWICK],co mQtsO'
chie'nluQcchQnphantitalp,q] d~l~pbangchO't,machungtasedung
mQtphuongphapnhumatadudiday:
CQtq duqcchr,mne'udduVaGtfli dong0 ia s6 am.Dongp duqcchQn
trongs6 nhangdongco dduVaGtfli cQtq ia s6 duangva ia pht1nt11
chothuangs6 wJi phdnt11cu6itrendAngmQtdongmanggicitrj nho
nhdt.
Chungtahayxeml~imatr~nh~sO',tatha'ycQt1 co datiVaGt~i
dong0 Ia -1.
-1 -1 -1 0 0 0 0 0
1 0 0 1 0 0 0 -1
I 0 1 0 1 0 0 -0.5
1 1 0 0 0 1 0 -0.5
1 1 1 0 0 0 -1 0.5
M~ngnd-ronperceptron 27
V~ycQt1dU<;1CchQn.Baygiod~chQnph~nhi'trendong,chungta
chQndong2 (tinhtu0)vi ph~ntUa{2][l]chothuongsavaiph~nhi'cuai
trenclingdongc6 ghl tri la 0.5la ghi tri nhonha't.Va thlJ'chi~nphep
bie'nd6itheodongd~trdthanhmatr~n
£)~till bangchatlingvai mQtph~nhi'naod6trencQt2, chungta
se chQnIlJ'agiuahai ph~nhi' la a{3,2]haya{4,2]?Ne'uchQnph~nhi'
a{3,2]d~l~pbangchatchungtatha'ydng vi ph~ntti'cuaitrendong3
b~ng0 chonenbangchatdU<;1cl~ptuph~nhi'a{3,2]thonglamchogia
tri cuaph~ntti'cuaicuadong0 tanglen.Trongkhi phuongphapbang
chatla till nhungbangchattheohuanglamchoph~nhi'cuaicuadong0
tangd~nlen de'ngiatri Iannha't.Do d6chungtase till bangchatcho
ph~ntti'a{4,2]
Va quatrinhchQnph~ntti'trongbangchatd buacthak d~l~p
bangchatchobuacthak +1tie'pl\!Cchode'nbangchatcuaila bangc6n
cQtd~uliendiidU<;1cchuiinhoa.
0 -1 0 0 1 0 0 -0.5
0 0 -1 1 -1 0 0 -0.5
1 0 1 0 1 0 0 -0.5
0 1 -1 0 -1 1 0 0.0
0 1 0 1 -1 0 -1 1.0
0 0 0 1 0 0 -1 -0.5
0 0 -1 1 -1 0 0 -0.5
1 0 1 0 1 0 0 -0.5
0 0 -1 -1 0 0 1 -1.0
0 1 0 1 -1 0 -1 1.0
M\tngno-ranperceptran 28
2.9. Nh~nlet
Trongphuongphapbangch6ttren,buoctimcachhngso'd~di€n
tacacrangbuQcnhutrongh~biltphuongtrinh(2)cuatie't2.7.du<;lcthV'c
hi~nbellngoaithu~tloanvaxemnhubuocphantichsobQ.H~nche'cua
phuongphaptrend ch6nochuachomQtthut1;1cnaogiupcaid~tcach~
so'cuah~biltphuongtrinh(2)mQtcachheuristic,makhi lingd1;1ngcho
cacmfiuhQccoso'chi~uIOnthibuocnaydatrdthanhmQthachthlicIOn.
Vi d1;1trongtie't2.7tu'ongd6idongianvi ch~ngquabangchantri
cuabailoanchinhIa dinhnghiacualoantitlOgicAND, so'chi~ucuacac
vectomfiuhQcquanhosovoi cacbai loanthV'cte',chonenvi~cdi~u
chinhcacgiatri cuacQtcu6iclingtrongmatr~nkhongt6ncongnhi~u
l~m(thu~tgiaimotatrenkhongh~noigi v~chie'nIU'<;lcdi~uchinhcac
hhngso'nay).D6ivoibailoansan,voi so'chi~ucuavectomfiuhQcbhng
3 chungtaco 8rangbuQcva truockhi ch~ythachuangtrinh,vi~cchQn
hhngso'trongdi~uki~nrangbuQcdoihoinhfi'ngdanhgiate'nhi
Vidl1:HaytimmQthamnguongtuye'ntinhth~hi~nbangchantri:
1.11111:1:11;111111111111111111111111111111.111.111111i.IIIII:III.i.III.:li.II..li:.:.:I:.II::~i::.:::I:..:
Chungtakhdit~omatr~nd~tll'dotimbangch6tla .
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1
M~ngno-ranperceptron 29
Sankhich~ychn'ongtrlnhtrenmatr~nd6,tathudn'<;fcvectotrQng
s6w=(-2.5,4.0,1.5,1.5) vahamngn'ongtuy€ntinhc6d~ng:
y =0( -2.5+ 4x] + 1.5x2+ 1.5X3)
Va cho y lacd(>ngtencacvectomfiuhQcthitathudn'<;fcbangsan
d~sosanhvdibangchantrichotrongbailoan:
-1 -1 -1 -1 0 0 0 0 0 0 0 0 0.0
1 0 0 0 1 0 0 0 0 0 0 0 -2.5
1 0 0 1 0 1 0 0 0 0 0 0 -1.0
1 0 1 0 0 0 1 0 0 0 0 0 -1.0
1 0 1 1 0 0 0 -1 0 0 0 0 1.5
1 1 0 0 0 0 0 0 -1 0 0 0 1.5
1 1 0 1 0 0 0 0 0 -1 0 0 1.5
1 1 1 0 0 0 0 0 0 0 -1 0 1.5
1 1 1 1 0 0 0 0 0 0 0 -1 1.0
1 0 0 0 -2.5 0
1 0 0 1 -1.0 0
1 0 1 0 -1.0 0
1 0 1 1 0.5 1
1 1 0 0 1.5 1
1 1 0 1 3.0 1
1 1 1 0 3.0 1
1 1 1 1 4.5 1
Mj;lngno-ranperceptron 30
R6ranghamnguongtuye'ntinhthuduQcphananhdungbangchan
tricuabailoan.
Cuo'iclIngthivande conI~iIa voi nhungbai loanvi ill'naothi
bangchantrico th~duQcphananhnhomohinhperceptIondonno-roll
con nhungbai loannao thi khong?Voi nhungbai loan ma so'chien
khongIon Iitm,thi ve nguyentitc,co th~ITaIoi chocall hoi trenb~ng
nhungkhaosattrennhunghamrangbuQccuabai loan.Lay vi d1;lcho
tru'onghQpduoiday,ta sechungminhr~ngkhongth~phananhbang
chantrib~ngmQthamnguongtuye'ntinh,tlicIa mohinhperceptIondon
no-rollkhongapd1;lngduQc.
Vidl1:Ta xethamy =I(x],Xz,X3)du'QcxacdinhIa duQcxacdinhIa y=1
ne'utrongcacXico mQtso'Ie cacgia tri 1, va y =0 trongcac
truonghQpkhac.Bangchantricuabailoandu'Qcth~hi~nnhu'san:
... ............"""""""""""""""""""""",........................................................................................................................................................................................................................................................................................................................................................................................................."""""""""""""""""""""""""""...............................................................................................
:::::::::::~:l::::::::::::::::::::::]{g:::::::::::::::::::::::~a:::::::::::::::::::::::::::M::::::::::::::
Chungtasechungminhrhngkhongth~!lmmQthamngu'ongtuye'ntinh
chobangchantritrenne'udungmohinhperceptIondonno-roll.
Chung ta them mQt gia tri Xo=1 va gQi {Wi}( i > 0 ) Ia nhung
trQngso',the'thiquabangchantritren,taconhungbatdiingthuc:
0 0 0 0
0 0 1 1
0 I 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1
M!,mgno-ranperceptron 31
(vii) Wo+Wi+ Wz<0
(viii) Wo+Wi +Wz+W3>0
C(>ngtheov€ hai ba'td!ng thuc(ii) va (iii) taduQC:2wo+ Wz+ W3
>0,k€t hQpvoiba'td!ngthuc(i) thlduQc:Wo+Wz+W3 >O. Mauthuftn
voiba'td!ngthuc(iv).Di~udochungtodingkhongth€ dungmohlnh
perceptIondonno-ronchobailoandiineu.
2.10.Cuoichuang
Trongchuongnay,chungtadiidi€m quahaiphuongphaphQccua
m~ngperceptIondonno-ronIDeonguyenly "thii'vasii'a".Chungtadiid~
ram(>tphuongphaphQcmak€t quavi~chQCduQchoanta'tngaysaukhi
duy(HquacacmftuhQc.Congcv chinhtrongphuongphapnayHiphep
giaim(>th~phuongtrlnhtuy€ntinhvoicach~sO'trong{a,1 },doclingla
m(>tcongcvmachungtasesii'dvngkhixetm(>tsO'thu~thQcdO'ivoiki€n
trUcm~ngperceptIonhi~ulOpbon.
(i) Wo<0
(ii) Wo+W3 >0
(iii) Wo+Wz>0
(iv) Wo+Wz+W3<0
(v) Wo+Wi>0
(vi) Wo+ Wi + W3< 0