Luận văn Nghiên cứu ảnh hưởng của độ cứng thép X12M đã qua tôi đến chất lượng bề mặt và mòn dụng cụ khi tiện cứng

LỜI NÓI ĐẦU Có thể nói hệ đếm là lí thuyết toán học đầu tiên xuất hiện do nhu cầu thực tiễn của cuộc sống, được hình thành và phát triển song hành với sự phát triển của văn minh nhân loại. Trong cuộc sống ta luôn phải sử dụng hệ đếm (cơ số 10) để tính toán. Hệ đếm cơ số 2, cùng với các hệ đếm cơ số 10, cơ số 8, . là cơ sở làm việc của máy tính điện tử. Lí thuyết hệ đếm (cơ số bất kì) còn liên quan đến nhiều lĩnh vực khác của toán học: lí thuyết chia hết, toán rời rạc, phương trình nghiệm nguyên và phương trình hàm, qui nạp toán học, các bài toán trò chơi, . Mặc dù hệ đếm đóng vai trò rất quan trọng trong cuộc sống hàng ngày cũng như trong học tập, những kiến thức về hệ đếm còn ít được quan tâm giảng dạy trong trường phổ thông. Vì vậy phần lớn học sinh có thể sử dụng thành thạo những ứng dụng của hệ đếm (máy tính điện tử, máy ảnh số, máy nghe nhạc, .) nhưng không có các kiến thức sơ đẳng về hệ đếm. Thí dụ, phần lớn học sinh biết sử dụng máy tính điện tử khoa học để làm các phép toán, không chỉ các phép toán số học, mà còn các phép toán cao cấp (lấy modulo, tính theo công thức truy hồi .), nhưng không hiểu cơ chế thực hiện các tính toán trên máy. Luận văn Hệ đếm và ứng dụng trong toán phổ thông có mục đích trình bày các kiến thức cơ bản của hệ đếm và một số ứng dụng của hệ đếm trong giải toán phổ thông (các tiêu chuẩn chia hết trong hệ đếm bất kì, phương pháp hệ đếm giải một lớp các bài toán thi vô địch quốc gia và quốc tế). Luận văn gồm hai chương. Chương 1 trình bày các kiến thức cơ bản của hệ đếm và tính toán trên máy: Khái niệm hệ đếm, đổi biểu diễn của một số từ hệ đếm cơ số này sang hệ đếm cơ số khác, tính toán số học trong hệ đếm cơ số bất kì; Sử dụng máy tính khoa học (Caculator, Vianacal Vn-570MS, Casio fx570MS, Casio fx-570ES, .) và phần mềm tính toán Maple để đổi biểu diễn của một số từ hệ đếm cơ số này sang hệ đếm cơ số khác và tính toán số học trên hệ đếm cơ số bất kì. Cuối chương trình bày sơ lược nguyên lí trao đổi thông tin trên máy tính điện tử. Chương 2 trình bày hai ứng dụng của hệ đếm trong toán phổ thông. Một số tính chất chia hết trong hệ đếm cơ số 10 được mở rộng sang cho hệ đếm cơ số bất kì trong §1 của Chương. Điều này cho phép nhìn lại các qui tắc và tiêu chuẩn chia hết trong hệ đếm cơ số 10 và ứng dụng để giải một số bài toán chia hết. Ứng dụng của hệ đếm trong giải toán được minh họa bởi nhiều bài toán thi học sinh giỏi Quốc gia và Quốc tế trong §2 của Chương, qua đây ta cũng thấy rõ mối quan hệ giữa hệ đếm với các vấn đề khác của toán phổ thông (phương trình hàm, phương trình nghiệm nguyên, dãy truy hồi, .). Những bài thi vô địch đã có trong [7] và [8] không được trình bày ở đây. Vì vậy, kết hợp § này với [7] và [8], số lượng bài toán là đủ nhiều để có thể coi Hệ đếm như một phương pháp giải các bài toán gặp trong phương trình hàm, phương trình nghiệm nguyên, . MỤC LỤC Trang Lời nói đầu .2-3 Chương 1 Hệ đếm .4 §1 Khái niệm hệ đếm với cơ số bất kỳ .4 §2 Qui tắc đổi biểu diễn của một số từ hệ đếm cơ số này sang hệ cơ số khác . 9 §3 Đổi biểu diễn của một số từ hệ đếm cơ số này sang hệ đếm cơ số khác 11 §4 Sử dụng máy tính đổi biểu diễn của một số từ hệ đếm cơ số k1 này sang hệ đếm cơ số k2 .22 §5 Tính toán số học trong hệ đếm cơ số bất kỳ .30 §6 Thực hiện tính toán số học trên máy tính .38 §7 Sử dụng phép chia để đổi biểu diễn của một số từ hệ đếm cơ số k1 sang hệ đếm cơ số k2 .43 §8. Sơ lược về ứng dụng của hệ đếm trong máy tính điện tử .46 Chương 2 Ứng dụng của hệ đếm trong toán phổ thông 52 §1 Tính chất chia hết 52 §2 Sử dụng hệ đếm trong giải toán 65 Kết luận .94 Tài liệu tham khảo .95

pdf77 trang | Chia sẻ: maiphuongtl | Lượt xem: 2170 | Lượt tải: 2download
Bạn đang xem trước 20 trang tài liệu Luận văn Nghiên cứu ảnh hưởng của độ cứng thép X12M đã qua tôi đến chất lượng bề mặt và mòn dụng cụ khi tiện cứng, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
tục và cắt gián đoạn. Khi tăng vận tốc cắt, mòn do hạt mài và lý hoá trở nên chiếm ƣu thế với cắt liên tục và tạo nên vùng mòn mặt trƣớc. Sự hình thành các vết nứt do ứng suất nhiệt biến đổi theo chu kỳ là cơ chế mòn chủ yếu dẫn đến vỡ lƣỡi cắt khi cắt không liên tục. Hình 3.3. Ảnh hưởng của vận tốc cắt đến cơ chế mòn khi cắt liên tục (a) và khi cắt gián đoạn (b) Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 39 - 3.3.1. Mòn do dính Khi hai bề mặt rắn, phẳng trƣợt so với nhau, mòn do dính xảy ra tại chỗ tiếp xúc ở đỉnh các nhấp nhô dƣới tác dụng của tải trọng pháp tuyến. Khi sự trƣợt xảy ra, vật liệu ở vùng này bị trƣợt (biến dạng dẻo), dính sang bề mặt đối tiếp hoặc tạo thành các mảnh mòn rời, một số mảnh mòn còn đƣợc sinh ra do quá trình mòn do mỏi ở đỉnh các nhấp nhô. Giả thuyết đầu tiên về mòn do trƣợt là sự trƣợt cắt có thể xảy ra ở bề mặt tiếp xúc chung hoặc về phía vùng yếu nhất của hai vật liệu tại chỗ tiếp xúc. Có giả thuyết rằng nếu sức bền dính đủ lớn để cản trở chuyển động trƣợt tƣơng đối, một vùng của vật liệu sẽ bị biến dạng dƣới tác dụng của ứng suất nén và ứng suất tiếp, và sự trƣợt xảy ra mạnh dọc theo các mặt phẳng trƣợt này tạo thành các mảnh mòn dạng lá mỏng. Nếu biến dạng dẻo xảy ra trên diện rộng ở vùng tiếp xúc đôi khi mảnh mòn sinh ra có dạng nhƣ hình nêm và dính sang bề mặt đối tiếp. Đối với dụng cụ cắt, mòn do dính phát triển mạnh, đặc biệt trong điều kiện nhiệt độ cao. Các vùng dính bị trƣợt cắt và tái tạo liên tục theo chu kỳ, thậm chí trong khoảng thời gian cắt ngắn, hiện tƣợng mòn có thể gọi là dính mỏi. Khả năng chống mòn dính mỏi phụ thuộc vào sức bền tế vi của các lớp bề mặt dụng cụ và cƣờng độ dính của nó đối với bề mặt gia công. Cƣờng độ này đƣợc đặc trƣng bởi hệ số cƣờng độ dính Ka , là tỷ số giữa lực dính riêng và sức bền của vật liệu gia công tại một nhiệt độ xác định. Với đa số các cặp vật liệu thì Ka tăng từ 0,25 đến 1 trong khoảng nhiệt độ từ 900 ÷ 13000C. Bản chất phá huỷ vật liệu ở các lớp bề mặt do dính mỏi là cả dẻo và giòn. Độ cứng của mặt dụng cụ đóng vai trò rất quan trọng trong cơ chế mòn do dính. Khi tăng tỷ số độ cứng giữa vật liệu dụng cụ và vật liệu gia công từ 1,47 đến 4,3 lần thì mòn do dính giảm đi khoảng 300 lần [8] Trent [25] đã chỉ ra rằng dao thép gió bị biến dạng dẻo mạnh dƣới tác dụng của ứng suất tiếp trên vùng mòn mặt trƣớc ở nhiệt độ khoảng 9000C. Khi mặt dƣới của phoi dính chặt vào mặt trƣớc thì ứng suất tiếp cần thiết để tạo ra sự trƣợt của các lớp phoi bị biến cứng cũng đủ để gây ra sự trƣợt trong các lớp vật liệu dụng cụ trong vùng mòn gây ra mòn do dính. Điều này cũng phù hợp với quan điểm của Loladze Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 40 - khi cho rằng mức độ biến cứng của các lớp dƣới của phoi thép các bon khi biến dạng dẻo với tốc độ biến dạng cao ít phụ thuộc vào nhiệt độ. 3.3.2. Mòn do hạt mài Trong nhiều trƣờng hợp, mòn bắt đầu do dính tạo nên các hạt mòn ở vùng tiếp xúc chung, các hạt mòn này sau đó bị oxy hoá biến cứng và tích lại là nguyên nhân tạo nên mòn hạt cứng ba via. Trong một số trƣờng hợp, hạt cứng sinh ra và đƣa vào hệ thống trƣợt từ môi trƣờng. Theo Loladze, mòn dụng cụ cắt do hạt mài có nguồn gốc từ các tạp chất cứng trong vật liệu gia công nhƣ oxides và nitrides hoặc những hạt các bít của vật liệu gia công trong trong vùng tiếp xúc giữa vật liệu dụng cụ và vật liệu gia công tạo nên các vết cào xƣớc trên bề mặt dụng cụ. Môi trƣờng xung quanh có ảnh hƣởng lớn đến cƣờng độ của mòn do hạt mài. Ví dụ, khi gia công cắt trong môi trƣờng có tính hoá học mạnh, lớp bề mặt bị yếu đi và các hạt mài có thể cắm sâu hơn ở vùng tiếp xúc và tăng tốc độ mòn. Armarego cho rằng khả năng chống mòn do hạt mài tỷ lệ thuận với các tính chất đàn hồi và độ cứng của hai bề mặt ở chỗ tiếp xúc [1]. 3.3.3. Mòn do khuyếch tán Nhiệt độ cao phát triển trong dụng cụ, đặc biệt là trên mặt trƣớc khi cắt tạo phoi dây là điều kiện thuận lợi cho hiện tƣợng khuyếch tán giữa vật liệu dụng cụ và vật liệu gia công. Colwell đã đƣa ra nghiên cứu của Takeyama cho rằng có sự tăng đột ngột của tốc độ mòn tại tại nhiệt độ 9300C khi cắt bằng dao hợp kim cứng. Điều này có liên quan đến một số cơ chế mòn khác, đó là hiện tƣợng mòn do khuyếch tán, oxy hoá hoặc sự phân rã hoá học của vật liệu dụng cụ ở các lớp bề mặt. Theo Brierley và Siekmann, hiện nay mòn do khuyếch tán đã đƣợc chấp nhận rộng rãi nhƣ một dạng mòn quan trọng ở tốc độ cắt cao, họ chỉ ra các quan sát của Opitz cho thấy trong cấu trúc tế vi của các lớp dƣới của phoi thép cắt bằng dao hợp kim cứng chứa nhiều các bon hơn so với phôi. Điều đó chứng tỏ rằng cácbon từ cacbide Vonfram đã hợp kim hoá hoặc đã khuyếch tán và phoi làm tăng thành phần các bon của các lớp này. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 41 - Trent cho rằng, do dính hiện tƣợng khuyếch tán xảy ra qua mặt tiếp xúc chung của dụng cụ và vật liệu gia công là hoàn toàn có khả năng. Dụng cụ bị mòn do các nguyên tử các bon và hợp kim khuyếch tán vào phoi và bị cuốn đi. Khuyếch tán là một dạng của ăn mòn hoá học trên bề mặt dụng cụ, nó phụ thuộc vào tính linh động của các nguyên tố liên quan. Tốc độ mòn do khuyếch tán không chỉ phụ thuộc vào nhiệt độ cao mà còn phụ thuộc vào tốc độ của dòng vật liệu gần bề mặt dụng cụ có tác dụng cuốn các nguyên tử vật liệu dụng cụ đi. Khi cắt thép và gang, Ekemar cho rằng tƣơng tác giữa vật liệu gia công và vật liệu dụng cụ có thể xảy ra. Thành phần chính của của các lớp phoi tiếp xúc với dụng cụ là austenite với thành phần các bon thấp khi nhiệt độ cùng tiếp xúc đủ cao. Austenite này hoà tan một số các nguyên tố hợp kim của dụng cụ trong quá trình cắt. Trái lại, Ahman và đồng nghiệp lại cho rằng, khuyếch tán không có ảnh hƣởng trực tiếp đến mòn. Các kết quả tính toán vào thực nghiệm của họ đã chỉ ra rằng ảnh hƣởng của khuyếch tán đến mòn dụng cụ thép gió ở chế độ cắt thông thƣờng là không đáng kể. 3.3.4. Mòn do oxy hoá Dƣới tác dụng của tải trọng nhỏ, các vết mòn kim loại trông nhẵn và sáng, mòn xảy ra với tốc độ thấp và các hạt mòn oxide nhỏ đƣợc hình thành. Bản chất của cơ chế mòn này là sự bong ra của các lớp oxy hoá khi đỉnh các nhấp nhô trƣợt lên nhau. Sau khi lớp oxy hoá bị bong ra thì lớp khác lại đƣợc hình thành theo một quá trình kế tiếp nhau liên tục. Tuy nhiên, theo Halling thì lớp màng oxít và các sản phẩm tƣơng tác hoá học với môi trƣờng trên bề mặt tiếp xúc có khả năng ngăn ngừa hiện tƣợng dính ở đỉnh các nhấp nhô. Khi đôi ma sát trƣợt làm việc trong môi trƣờng chân không thì mòn do dính xảy ra mạnh do lớp màng oxit không thể hình thành đƣợc. 3.4. Mòn dụng cụ CBN Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 42 - Kevin Chou và Evans [14] trong quá trình nghiên cứu về mòn dụng cụ CBN khi tiện gián đoạn thép M50 đã xác định đƣợc dạng mòn chính trong quá trình này. Và đặc biệt, hai ông cũng chỉ ra đƣợc ảnh hƣởng của hàm lƣợng CBN đến mòn. Hai ông cho rằng hàm lƣợng CBN trong dụng cụ thấp hay cao sẽ cho các dạng mòn khác nhau. Trái với công thức tuổi bền dao của Taylor, tuổi bền của dao CBN – L tối ƣu hoá khi tốc độ cắt trung bình. Ngƣợc lại, với dao CBN – H thì tuổi bền dao giảm dần khi tăng tốc độ cắt. Hơn nữa, dao CBN – H ít hỏng hơn dao CBN – L trong quá trình tiện gián đoạn, nó cho thấy sự nhất quán trong việc giảm tuổi bền dao khi tăng tần số gián đoạn. Khi độ cứng và độ bền cứng của dụng cụ CBN – H cao hơn thì phản lực lớn hơn, mòn cơ học sẽ trở thành yếu tố chính trong quá trình cắt gián đoạn. Tuy nhiên, sự dính kết kim loại trong dụng cụ CBN – H có độ dính cao với vật liệu phôi, và do đó sự tăng nhiệt nhanh sẽ thúc đẩy mòn khi tốc độ cắt cao. Cũng trong một nghiên cứu khác của Kevin và đồng nghiệp sử dụng hai loại mảnh dao CBN – 4 với chất kết dính là Co và CBN – L với chất kết dính là TiN và một lƣợng nhỏ Co tiện thép AISI 52100 cho thấy mòn mặt sau tăng theo quy luật gần nhƣ tuyến tính với chiều dài cắt, tuy nhiên tốc độ mòn mặt sau của dao CBN – H cao hơn. Poulachon và đồng nghiệp [13] khi tiến hành thí nghiệm tiện cứng với thép 100Cr6 (AISI 52100) đã chỉ ra rằng, ban đầu sự phá huỷ lƣỡi cắt (lƣỡi cắt tròn) đƣợc phân tích mòn mặt sau, mòn chỉ xảy ra và tăng nhanh ở mặt sau. Sau đó mòn mặt sau ổn định và không đổi, trong khi đó mòn lõm bắt đầu xuất hiện trên mặt trƣớc, đây là dạng mòn do hạt mài. Cuối cùng, mòn dụng cụ trở nên không điều khiển đƣợc và dẫn tới sự hỏng mũi dao. Mòn lõm xuất hiện lần đầu khi tốc độ cắt cao hơn. Nguyên nhân có thể là do lớp dính kết của dụng cụ bị mài mòn bởi các hạt các bít cứng của thép 100Cr6, điều này làm cho các hạt CBN bị tách ra khỏi lớp dính kết. Khi tăng tốc độ cắt dẫn đến tăng nhiệt cắt, khi đó mòn dụng cụ cũng tăng. Và do vậy tuổi bền dụng cụ cũng giảm nhanh. Cũng theo Poulachon và đồng nghiệp [13] thì cơ chế cơ chế mòn chính của dụng cụ CBN là mòn do hạt mài (abrasion), gây ra bởi các hạt cácbít hợp kim cứng Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 43 - trong phôi. Tốc độ abraision phụ thuộc vào bản chất của cácbít, kích cỡ và sự phân bố trong vật liệu gia công v.v… Các vật liệu gia công khác nhau nhƣng có cùng độ cứng sẽ gây ra mòn dụng cụ với tốc độ và cơ chế khác nhau. Hơn nữa, mòn dụng cụ và cơ chế tạo phoi đƣợc chỉ ra bằng thực nghiệm rằng, có sự tồn tại tƣơng đƣơng giữa tốc độ cắt và độ cứng của vật liệu gia công. Việc chọ lựa hàm lƣợng CBN và chất kết dính đóng vai trò quan trọng đối với tuổi bền của dụng cụ, nó phụ thuộc vào tính chất của vật liệu gia công. Độ cứng của vật liệu gia công và sự tồn tại của các hạt các bít trong vật liệu gia công là yếu tố quyết định cơ chế mòn dụng cụ, phụ thuộc vào độ bền liên kết của các hạt CBN Huang và Liang [22] quan sát mòn trên mặt trƣớc trong quá trình tiện cứng thép ổ lăn 52100 bằng mảnh CBN hàm lƣợng thấp đã rút ra kết luận, các cơ chế mòn chính trong tiện cứng là mòn do hạt mài (abrasive wear), mòn do dính (adhesive wear) và mòn do khuyếch tán (diffusion wear). Dựa trên mô hình về các thông số hình học trong quá trình cắt, vận tốc bóc tách phoi, sự phân bố nhiệt độ và phân bố ứng suất, lƣợng mòn mất đi do hạt mài, do dính và do khuyếch tán tƣơng đƣơng với mòn do lõm. Với mô hình này, hình dáng dụng cụ, điều kiện cắt và các đặc tính của vật liệu làm dao và phôi đã đƣợc yêu cầu để dự đoán sự tiến triển của mòn lõm dụng cụ. Mô hình dự kiến là thực hiện thí nghiệm với thép ổ lăn 52100 sử dụng dao KD050 có hàm lƣợng CBN thấp. So sánh giữa dự đoán và kết quả thí nghiệm cho thấy mô hình dự đoán thấy có sự chênh lệch 15% trong tổng lƣợng mòn mất đi trong điều kiện mòn phát triển ổn định. Mòn do dính là cơ chế mòn chính trong toàn bộ nghiên cứu về điều kiện cắt này. Mô hình dự kiến trƣớc này có thể giúp cải thiện tối ƣu hoá quá trình cắt và thiết kế dụng cụ cắt trong tiện cứng. 3.5. Ảnh hƣởng của độ cứng phôi đến mòn dụng cụ và tuổi bền dụng cụ Theo [4], tuổi bền của dụng cụ là thời gian làm việc liên tục của dụng cụ giữa hai lần mài sắc, hay nói cách khác tuổi bền của dụng cụ là thời gian làm việc liên tục của dụng cụ cho đến khi bị mòn đến độ mòn giới hạn (hs). Tuổi bền dụng cụ là nhân tố quan trọng ảnh hƣởng lớn đến năng suất và tính kinh tế trong gia công cắt. Tuổi Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 44 - bền của dụng cụ phụ thuộc vào chính yêu cầu kỹ thuật của chi tiết gia công. Vì thế phƣơng pháp dự đoán tuổi bền cơ bản có ý nghĩ cho mục đích so sánh [1]. Phƣơng trình cơ bản của tuổi bền là phƣơng trình Taylor: V.T n = Ct [3.3] Trong đó: T là thời gian (phút) V là vận tốc cắt (m/phút) Ct là hằng số thực nghiệm Phƣơng trình Taylor mở rộng bao gồm cả ảnh hƣởng của lƣợng chạy dao S và chiều sâu cắt t đƣợc viết nhƣ sau: V.T n .s a .t b = Kt [3.4] Liu và đồng nghiệp [9] tiến hành thí nghiệm về mòn mặt trƣớc và mặt sau một cách rộng rãi bằng cách sử dụng năm phôi ( thép GCr15) có độ cứng khác nhau (HRC30, 40, 50, 60, 64) đã rút ra đƣợc ảnh hƣởng của độ cứng phôi đến mòn dụng cụ. Mòn mặt sau ωf ở các độ cứng khác nhau đƣợc biểu diễn trên hình 3.4, ở độ cứng HRC40, 50 mòn lớn nhất, mòn lõm cũng có quy luật tƣơng tự, mòn dụng cụ nhỏ hơn khi độ cứng phôi lớn hơn hoặc nhỏ hơn khoảng từ 40÷50HRC. Quy luật này chứng tỏ rằng mòn dụng cụ lớn nhất khi độ cứng phôi nằm trong dải từ 40 ÷ 50 HRC và ở nhiệt độ cao hơn. Do đó, dụng cụ PCBN không thích hợp để cắt phôi ở độ cứng giới hạn, cắt vật liệu ở độ cứng cao thì sử dụng dụng cụ PCBN là thích hợp nhất. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 45 - Hình 3.4. Mòn mặt sau ở các độ cứng khác nhau [9] Để nghiên cứu quy luật mòn của dụng cụ PCBN, Liu và đồng nghiệp [9] đã tiến hành thí nghiệm với thép ổ lăn GCr15 (AISI E52100) ở các độ cứng khác nhau từ HRC40 ÷ 60 cùng với sự thay đổi tốc độ cắt. Mòn ở độ cứng 60HRC đƣợc biểu diễn trên hình 3.5 Phƣơng trình tuổi bền dụng cụ thu đƣợc sau thí nghiệm là: + Khi ap = 0,5mm, f = 0,15mm/vòng, HRC60, mòn mặt sau ωf = 0,2mm, mối quan hệ giữa tốc độ cắt và tuổi bền dao là: VT 0,689 = 1177, hệ số tƣơng đối r = 0,98 + Khi ap = 0,2mm, f = 0,08mm/vòng, HRC40, mòn mặt sau ωf = 0,15mm, mối quan hệ giữa tốc độ cắt và tuổi bền dao là: VT 0,662 = 752, hệ số tƣơng đối r = 0,99 Từ các hệ số tƣơng đối của hai phƣơng trình trên có thể thấy rằng mối quan hệ giữa tuổi bền dao và tốc độ cắt phù hợp với phƣơng trình Taylor dƣới các điều kiện thử nghiệm, hệ số tuổi bền 0,689 (HRC60) và 0,662 (HRC40) lớn hơn nhiều so với dụng cụ cắt carbides và dụng cụ Ceramics. So sánh hệ số trong các phƣơng trình tuổi bền với hai loại độ cứng khác nhau thấy rằng ảnh hƣởng của tốc độ cắt đến tuổi bền dao ở độ cứng HRC60 nhỏ hơn ở độ cứng HRC40. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 46 - Hình 3.5. Biểu đồ mòn ở độ cứng 60HRC [9] Lou và đồng nghiệp [10] đã nghiên cứu về cơ chế mòn trong quá trình tiện thép hợp kim cứng AISI 4340 bằng dụng cụ CBN và dụng cụ ceramics. Mòn mặt sau dụng cụ sau mỗi lần cắt thép AISI 4340 ở các độ cứng khác nhau trong 5 phút với tốc độ cắt vc = 100m/phút, lƣợng chạy dao f = 0,1mm/vòng và chiều sâu cắt t = 0,2mm đƣợc biểu diễn trên hình 3.6. Mòn mặt sau của dụng cụ P10 thấp hơn khi thép có độ cứng thấp hơn, tuy nhiên khi cắt thép có độ cứng cao hơn, mòn dụng cụ tăng dần. Với dụng cụ ceramics và dụng cụ CBN, mòn giảm khi độ cứng phôi tăng cho đến khi nó tăng tới một gá trị tới hạn, và vào khoảng HRC50, mòn bắt đầu tăng. Cơ chế mòn này có thể bị ảnh hƣởng bởi lực lực cắt và nhiệt cắt. Từ hình vẽ ta thấy rằng mòn dụng cụ CBN lớn hơn dụng cụ Ceramics, điều này có thể là do kết quả của lớp dính trên lƣỡi cắt, dẫn đến việc làm giảm đi chất kết dính giữa các hạt CBN, đây có thể là nguyên nhân dẫn đến việc lớp dính dễ dàng bị bóc tách khỏi bề mặt dụng cụ. Thời gian cắt (phút) m/p m/p m/p m/p ■vc=200m/ph ▲vc=160m/ph ♦vc=110m/ph ●vc=75m/ph M ò n m ặ t sa u ( m m ) Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 47 - Hình 3.6. Biểu đồ mòn của các dụng cụ ở các độ cứng khác nhau (thời gian gia công là 5 phút [10] Sự thay đổi lực cắt cùng với độ cứng vật liệu phôi khi gia công bằng dụng cụ CBN và dụng cụ ceramics làm cho mòn mặt sau cũng thay đổi, điều này đƣợc biểu diễn trên hình 3.7 Hình 3.7. Ảnh h ưởng của độ cứng phôi đ ến lực cắt ( v = 100m/phút; S = 0,1mm/vòng; t = 0,2mm) [10] M ò n m ặ t sa u ( m m ) Độ cứng (HRC) L ự c că t (N ) Độ cứng (HRC) Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 48 - Ta có thể thấy rằng lực cắt chính (principal force) và lực đẩy (thrust force) giảm khi tăng độ cứng và đến độ cứng khoảng HRC50 thì lực cắt bắt đầu tăng. Lực cắt của dụng cụ ceramics lớn hơn lực cắt của dụng cụ CBN, thêm vào đó nhiệt cắt cao trong quá trình cắt dẫn đến hệ số dẫn nhiệt của dụng cụ ceramics nhỏ hơn. Do đó, lực kết dính giữa phoi - dụng cụ sẽ lớn hơn. Đây là nguyên nhân là cho lớp kết tủa trên lƣỡi cắt đến dễ dàng hơn. Lớp bảo vệ sẽ làm giảm sự mài mòn dụng cụ và do đó mòn mặt sau cũng nhỏ hơn. Sự thay đổi nhiệt cắt cùng với độ cứng của vật liệu làm phôi đƣợc biểu diễn trên hình 3.8. Trong trƣờng hợp dụng cụ CBN, nhiệt cắt ở độ cứng HRC50 là lớn nhất. Nhiệt cắt tăng khi độ cứng phôi tăng. Tuy nhiên, khi độ cứng phôi vƣợt quá 50HRC, phoi trở nên mỏng hơn và hình dạng của nó thay đổi theo dạng răng cƣa. Hiện tƣợng này cũng đã đƣợc Narutaki và Yamane, Komanduri và đồng nghiệp công bố. Hình 3.8. Ảnh hưởng của độ cứng phôi đến nhiệt cắt [10] Hơn nữa, trong suốt quá trình cắt, góc trƣợt tăng khi độ cứng tăng (hình 3.9). Độ mỏng phoi giảm khi độ cứng phôi tăng, kết quả dẫn đến góc trƣợt tăng. Khi độ cứng phôi lớn, vật liệu dễ gẫy, điều này là nguyên nhân trong suốt quá trình cắt, yêu Độ cứng (HRC) N h iệ t c ă t (C ) Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 49 - cầu năng lƣợng va chạm nhỏ hơn. Đây là nguyên nhân xuất hiện phoi dạng răng cƣa. Khi hiện tƣợng này xảy ra, nhiệt cắt không tăng mà sẽ giảm đi. Hình 3.9. Ảnh hưởng của độ cứng phôi đến góc trượt [10] Cụ thể hơn, khi tiện phôi có độ cứng dƣới 50HRC bằng dụng cụ ceramics và dụng cụ CBN, nhiệt cắt tăng khi độ cứng vật liệu phôi tăng, điều này làm cho phôi mềm hơn nên lực cắt giảm đi. Hơn nữa, lực dính kết phoi - bề mặt dao ở nhiệt độ cao hơn sẽ tăng, đây có thể là nguyên nhân làm cho lớp dính kết trên bề mặt dụng cụ sẽ tăng, lƣỡi cắt đƣợc bảo vệ và mòn dụng cụ giảm. Tuy nhiên, trong trƣờng hợp gia công vật liệu có độ cứng trên 50HRC, nhiệt cắt bắt đầug giảm. Do đó, độ mềm của phôi nhỏ hơn và lớp dính trên bề mặt dụng cụ ít hơn. Hơn nữa, ứng suất trƣợt cao và xuất hiện biến dạng trên phoi răng cƣa. Do đó, lực cắt bắt đầu tăng và mòn dụng cụ cũng tăng lên. 3.6. Kết luận Trong hầu hết các quá trình cắt kim loại, khả năng cắt của dụng cụ sẽ giảm dần, đến một lúc nào đó dụng cụ sẽ không cắt đƣợc do mòn hoặc hỏng hoàn toàn. Mòn dụng cụ là chỉ tiêu đánh giá khả năng làm việc của dụng cụ bởi vì nó hạn chế tuổi bền của dụng cụ. Mòn dụng cụ ảnh hƣởng trực tiếp đến độ chính xác G ó c tr ƣ ợ t ( đ ộ ) Độ cứng (HRC) Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 50 - gia công, chất lƣợng bề mặt và toàn bộ khía cạnh kinh tế của quá trình gia công. Sự phát triển và tìm kiếm những vật liệu dụng cụ mới cũng nhƣ những biện pháp công nghệ mới để tăng bền bề mặt chính là nhằm mục đích làm tăng khả năng chống mòn của dụng cụ [1]. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 51 - Chƣơng 4 NGHIÊN CỨU ẢNH HƢỞNG CỦA ĐỘ CỨNG THÉP X12M ĐÃ QUA TÔI ĐẾN CHẤT LƢỢNG LỚP BỀ MẶT VÀ MÒN DỤNG CỤ KHI TIỆN CỨNG 4.1. THÍ NGHIỆM 4.1.1. Yêu cầu đối với hệ thống thí nghiệm: - Đáp ứng đƣợc yêu cầu của vấn đề lý thuyết cần nghiên cứu. - Đảm bảo độ chính xác, độ tin cậy và độ ổn định. - Đảm bảo việc thu thập và xử lý các số liệu thí nghiệm thuận lợi. - Đảm bảo tính khả thi. - Đảm bảo tính kinh tế. Hệ thống thiết bị thí nghiệm phục vụ cho đề tài đƣợc đặt tại xƣởng cơ khí của thầy cô giáo: Thạc sỹ Lê Viết Bảo - Thạc sỹ Nguyễn Thị Quốc Dung. Khoa Cơ khí - Trƣờng ĐHKTCNTN. 4.1.2. Mô hình thí nghiệm Mô hình thí nghiệm đƣợc sử dụng thể hiện trên hình vẽ Hình 4.1. Mô hình thí nghiệm 1. Mâm cặp ; 2. Mũi chống tâm ; 3. Dao ; 4. Chi tiết gia công 4 1 nct 3 2 S t Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 52 - 4.1.3. Thiết bị thí nghiệm. 4.1.3.1. Máy Thiết bị đƣợc thí nghiệm trên máy tiện CNC – HTC 2050 (Trung Quốc) (hình 4.2) Hình 4.2. Máy tiện CNC – HTC 2050 4.1.3.2. Dao Mảnh dao CBN hình tam giác ký hiệu TPGN 160308 T2001, EB15 chỉ ra trên hình 4.3 với L = 16mm, LC = 9,25mm, T = 3,18mm, R = 0,8mm. Chất kết dính TiC, cớ hạt 2μm γ = 110, λ = 110 (góc tạo thành khi đã gá mảnh lên than dao và thân dao lên máy) (T: Mảnh tam giác, P: góc sau bằng 110, G: cấp dung sai của mảnh, N: kiểu cơ cấu bẻ phoi, L = 16mm, chiều dày ≈ 0,3mm, R = 0,8mm) Sử dụng thân dao: MTENN2020K16 – N (hãng CANELA) (hình 4.4). Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 53 - Hình 4.3. Mảnh dao PCBN sử dụng trong nghiên cứu Hình 4.4. Thân dao MTENN 2020 K16 – N 4.1.3.3. Phôi Thép X12M đƣợc sử dụng trong thí nghiệm có chiều dài L = 300mm, đƣờng kính Ø60, tôi thể tích đạt các độ cứng theo yêu cầu + Phôi 1: Độ cứng 45 – 47 HRC + Phôi 2: Độ cứng 54 – 56 HRC + Phôi 3: Độ cứng 60 – 62 HRC Thành phần hoá học của thép X12M qua phân tích đƣợc kết quả nhƣ trong bảng 4.1. Nguyên tố hoá học C Si P Mn Ni Cr Mo Hàm lƣợng % 1,4916 0,35893 0,01118 0,24042 0,21245 11,393 0,38025 Nguyên tố hóa học V Cu W Ti Al Fe Hàm lƣợng % 0,17987 0,33828 0,0000 0,00625 0,02485 85,396 Bảng 4.1. Thành phần các nguyên tố hoá học thép X12M Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 54 - 4. 1.3.4. Chế độ cắt Chú ý tới khả năng của máy, mảnh dao và điều kiện gia công tinh sử dụng trong xƣởng thực nghiệm ta chọn đƣợc bộ thông số chế độ cắt nhƣ sau: V = 110 (m/ph) S = 0,12 (mm/vòng) t = 0,15 (mm) 4.1.4. Thiết bị đo khác 4.1.4.1. Máy đo độ nhám bề mặt Sử dụng máy đo độ nhám Mytutoyo SJ – 201 (Nhật Bản). Các thông số kỹ thuật cơ bản: Hiển thị LCD. Tiêu chuẩn DIN, ISO, JIS, ANSI. - Thông số đo đƣợc: Ra, Rz, Rt, Rq, Rp, Ry, Pc, S, Sm. - Độ phân giải: 0,03μm/300μm; 0,08μm/75μm; 0,04μm/9,4μm. - Bộ chuyển đổi A/D: RS232. - Phần mềm điều khiển và xử lý số liệu MSTATW324.0. 4.1.4.2. Thiết bị phân tích bề mặt và kim tƣơng - Sử dụng kính hiển vi điện tử, TM – 1000 Hitachi, Nhật Bản, có độ phóng đại 10000 lần (Khoa vật lý trƣờng Đại học sƣ phạm Thái Nguyên). 4.2. TRÌNH TỰ THÍ NGHIỆM 4.2.1. Chuẩn bị - Chuẩn bị phôi và mảnh dao trƣớc khi thí nghiệm: + Đánh số thứ tự các phôi (3 phôi) từ 1 đến 3 (độ cứng phôi đo đƣợc nhƣ trên) + Đánh số thứ tự các mảnh dao (9 mảnh) nhƣ sau: 1, 2, 3, 4, 5, 6, 7, 8, 9 - Dùng 9 mảnh dao (một chế độ cắt) cắt 3 phôi. Cứ sau 3 lần cắt (3 dao cắt 3 phôi) lấy mẫu một lần. Sau 9 lần cắt lấy đƣợc 9 mẫu. Mang 9 mẫu phôi và 9 mảnh dao đi chụp hình SEM kiểm tra topography lớp bề mặt phôi và mòn mảnh dao. 4.2.2. Trình tự thí nghiệm - Gá phôi số 1 vào chấu cặp sao cho đảm bảo độ đồng tâm cao. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 55 - - Gá mảnh dao số 1 vào thân dao trên máy, kẹp chặt, chọn điểm chuẩn phôi, dao và chế độ cắt trên màn hình điều khiển. Cho dao chạy hết chiều dài ứng với 3 lần cắt (L = 750mm). Dừng máy tiến hành đo nhám bề mặt (chi tiết vẫn phải kẹp chặt trên chấu cặp). Đo nhám ở 3 vị trí khác nhau rồi lấy giá trị trung bình của 3 lần đo ta đƣợc trị số Ra, Rz. Tháo phôi và mảnh dao đặt vào vị trí đã đánh dấu trƣớc. - Gá phôi số 2 vào chấu cặp và dao số 4 vào thân dao trên máy, quá trình thí nghiệm đƣợc lặp lại nhƣ với phôi số 1. - Phôi số 3 cũng đƣợc tiến hành thí nghiệm tƣơng tự nhƣ với phôi số 1 và phôi số 2. Mảnh dao dùng để cắt là mảnh số 7. - Sau khi cắt lần đầu với 3 phôi, dùng máy cắt dây cắt lấy ba mẫu trên 3 phôi, đánh số thứ tự 1, 4, 7 - Ở lần cắt thứ 2 với 3 phôi trên, quá trình thí nghiệm đƣợc lặp lại tƣơng tự. Dao và mẫu phôi đƣợc đánh số thứ tự: 2, 5, 8 và đƣợc đặt vào các vị trí đƣợc đánh dấu trƣớc. - Ở lần cắt thứ 3 cũng với 3 phôi trên, quá trình thí nghiệm đƣợc lặp lại tƣơng tự. Sau khi gia công xong dao đƣợc đặt vào vị trí đánh dấu trƣớc và phôi đƣợc mang đi cắt lấy mẫu, đánh số thứ tự mẫu phôi và dao là 3, 6, 9 - 9 mảnh dao và 9 mẫu phôi đƣợc quan sát và phân tích trên kính hiển vi điện tử TM – 1000 để kiểm tra mòn mảnh dao và kiểm tra chất lƣợng bề mặt phôi sau những lần cắt khác nhau. 4.3. KẾT QUẢ THÍ NGHIỆM 4.3.1. Xây dựng quan hệ giữa thông số nhám bề mặt với độ cứng phôi. Bảng thông số nhám đo đƣợc khi gia công các phôi có độ cứng khác nhau: Phôi số Mảnh dao số Chiều dài cắt (mm) Thông số nhám Ra (Rz) Lần đo 1 Lần đo 2 Lần đo 3 Trung bình 01 250 0,39 (3,41) 0,45 (2,92) 0,42 (3,41) 0,42 (3,25) 500 0,38 0,40 0,41 0,40 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 56 - (45-47HRC) 01 (2,47) (2,23) (2,31) (2,34) 750 0,42 (3,18) 0,39 (3,47) 0,46 (2,92) 0,42 (3,19) 02 250 0,59 (3,69) 0,63 (4,12) 0,62 (4,37) 0,61 (4,06) 500 0,69 (3,82) 0,76 (5,06) 0,73 (4,35) 0,73 (4,41) 750 0,62 (4,25) 0,64 (4,09) 0,63 (4,26) 0,63 (4,20) 03 250 0,51 (3,06) 0,45 (2,76) 0,43 (2,36) 0,46 (2,73) 500 0,36 (2,23) 0,43 (3,09) 0,37 (2,30) 0,39 (2,54) 750 0,47 (4,19) 0,54 (4,38) 0,38 (2,46) 0,46 (3,68) 02 (54-56HRC) 04 250 0,56 (4,30) 0,63 (4,66) 0,57 (3,81) 0,59 (4,26) 500 0,46 (3,54) 0,47 (3,44) 0,50 (3,77) 0,48 (3,58) 750 0,93 4,19 0,94 (5,15) 0,94 (4,28) 0,94 (4,54) 05 250 0,61 (4,01) 0,66 (3,90) 0,60 (3,10) 0,62 (3,67) 500 0,53 (3,67) 0,63 (4,12) 0,52 (3,89) 0,57 (3,89) 750 0,72 (5,50) 0,79 (5,71) 0,83 (6,40) 0,78 (5,87) 250 0,69 0,68 0,71 0,69 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 57 - 06 (3,73) (3,95) (4,02) (3,90) 500 0,54 (3,78) 0,49 (3,20) 0,53 (3,58) 0,52 (3,52) 750 0,79 (5,55) 0,80 (5,24) 0,84 (5,96) 0,81 (5,58) 03 (60-62HRC) 07 250 0,48 (3,52) 0,52 (3,88) 0,50 (3,53) 0,50 (3,64) 500 0,66 (3,59) 0,69 (3,69) 0,67 (3,78) 0,67 (3,69) 750 1,04 (4,72) 1,04 (4,15) 1,08 (5,21) 1,05 (4,69) 08 250 0,67 (4,38) 0,72 (4,54) 0,67 (3,85) 0,67 (4,26) 500 1,18 (6,23) 1,18 (6,27) 1,18 (6,75) 1,18 (6,42) 750 1,29 (9,90) 1,28 (9,41) 1,31 (10.33) 1,29 (9,88) 09 250 0,50 (3,27) 0,45 (2,91) 0,59 (3,73) 0,51 (3,30) 500 0,74 (4,13) 0,76 (4,02) 0,77 (4,34) 0,76 (4,16) 750 0,99 (5,79) 1,02 (,581) 1,05 (6,17) 1,02 (5,92) Bảng 4.3. Độ cứng phôi và các thông số nhám Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 58 - 4.3.2. Các hình ảnh chụp về mòn dao và topography bề mặt phôi ở các độ cứng khác nhau và ở các lần cắt khác nhau Hình 4.5. Hình ảnh của mảnh dao CBN và mẫu phôi khi cắt lần đầu chụp trên kính hiển vi điện tử (độ cứng phôi 45 – 47 HRC) a), b) Mặt trƣớc của dao c), d) Mặt sau của dao e),f) Bề mặt phôi sau lần cắt thứ nhất ứng với chiều dài cắt L = 750 mm a) b) c) d) e) f) Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 59 - Hình 4.6. Hình ảnh của mảnh dao CBN và mẫu phôi khi cắt lần thứ 2 ứng với chiều dài cắt L = 750 mm (Độ cứng phôi 45 – 47 HRC) a), b) Mặt trƣớc của dao c), d) Mặt sau của dao e), f) Bề mặt phôi sau lần cắt thứ 2 ứng với chiều dài cắt L = 750 mm a) b) c) d) e) f) Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 60 - Hình 4.7. Hình ảnh của mảnh dao CBN và mẫu phôi khi cắt lần thứ 3 ứng với chiều dài cắt L = 750 mm (Độ cứng phôi 45 – 47 HRC) a), b) Mặt trƣớc của dao c), d) Mặt sau của dao e), f) Bề mặt phôi sau lần cắt thứ 3 ứng với chiều dài cắt L = 750 mm a) b) c) d) e) f) Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 61 - Hình 4.8. Hình ảnh của mảnh dao CBN và mẫu phôi khi cắt lần thứ nhất chụp trên kính hiển vi điện tử (độ cứng phôi 54 – 56 HRC) a), b) Mặt trƣớc của dao c), d) Mặt sau của dao e), f) Bề mặt phôi sau lần cắt thứ nhất ứng với chiều dài cắt L = 750 mm a) b) c) d) e) f) Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 62 - Hình 4.9. Hình ảnh của mảnh dao CBN và mẫu phôi khi cắt lần thứ 3 chụp trên kính hiển vi điện tử (độ cứng phôi 54 – 56 HRC) a), b) Mặt trƣớc của dao c), d) Mặt sau của dao e), f) Bề mặt phôi sau lần cắt thứ 3 ứng với chiều dài cắt L = 750 mm e) f) a) b) c) d) Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 63 - Hình 4.10. Hình ảnh của mảnh dao CBN và mẫu phôi khi cắt lần thứ nhất chụp trên kính hiển vi điện tử (độ cứng phôi 60 – 62 HRC) a), b) Mặt trƣớc của dao c), d) Mặt sau của dao e), f) Bề mặt phôi sau lần cắt thứ 3 ứng với chiều dài cắt L = 750 mm a) b) c) d) e) f) Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 64 - 4.4. Phân tích kết quả thí nghiệm 4.4.1. Mòn dụng cụ CBN 4.4.1.1. Phân tích thí nghiệm Độ cứng của vật liệu gia công ảnh hƣởng trực tiếp đến quy luật phát triển nhiệt độ trong vùng cắt và tốc độ mòn mặt sau. Nghiên cứu của Liu và đồng nghiệp [9] cho thấy khi gia công thép ổ lăn GCr15 (AISI E52100), mòn mặt sau tăng nhanh khi tăng vận tốc cắt. Khi thay đổi độ cứng phôi từ 30 HRC đến 64 HRC thì mòn đạt tốc độ cao nhất ở độ cứng 50 HRC. Ở độ cứng HRC40, 50 mòn lớn nhất, mòn lõm cũng có quy luật tƣơng tự, mòn dụng cụ nhỏ hơn khi độ cứng phôi lớn hơn hoặc nhỏ hơn khoảng từ 40÷50HRC. Quy luật này chứng tỏ rằng mòn dụng cụ lớn nhất khi độ cứng phôi nằm trong dải từ 40 ÷ 50 HRC và ở nhiệt độ cao hơn. Do đó, dụng cụ PCBN không thích hợp để cắt phôi ở độ cứng giới hạn, cắt vật liệu ở độ cứng cao thì sử dụng dụng cụ PCBN là thích hợp nhất. Các nghiên cứu của Kevin và đồng nghiệp [14], cho thấy kích cỡ của các hạt các bít trong thép gia công đóng vai trò quyết định với tốc độ mòn do cào xƣớc trên mặt sau của dao. Poulachon và đồng nghiệp [13] khẳng định cơ chế mòn chính của dụng cụ CBN là mòn do cào xƣớc do các hạt các bít trong vật liệu gia công gây ra. Tốc độ mòn do càc xƣớc phụ thuộc chủ yếu vào bản chất của các hạt các bít, cỡ hạt và sự phân bố của chúng. Cơ chế mòn do khuyếch tán quan sát đƣợc trên mặt trƣớc của dụng cụ CBN khi tiện thép tôi cứng bề mặt, pha CBN bị suy giảm trên vùng mòn mặt trƣớc do CBN bị khuyếch tán vào mặt dƣới của phoi. Các vấn đề về mòn và cơ chế mòn trên mặt trƣớc và mặt sau của mảnh dao CBN khi tiện thép X12M qua tôi ở các độ cứng khác nhau sẽ đƣợc trình bày dƣới đây. 4.4.1.2.Kết quả thí nghiệm mòn dụng cụ CBN Kết quả quan sát các mảnh dao trên kính hiển vi điện tử (phần trên) cho thấy chúng đều bị mòn cả mặt trƣớc và mặt sau. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 65 - Ở độ cứng phôi 54 – 56 HRC, khi tiện lần đầu ứng với chiều dài cắt L = 750 mm, trên mặt trƣớc của dao xuất hiện sự bám dính của vật liệu gia công lên bề mặt với bề rộng xấp xỉ 100 μm (hình 4.5a), cung mòn bắt đầu xuất hiện trên lƣỡi cắt chính với bề rộng xấp xỉ 30 μm (hình 4.5b). Trên vùng mòn mặt trƣớc này không nhìn thấy hình ảnh của các hạt CBN nhƣ vùng chƣa bị mòn, lớp bề mặt có cấu trúc sóng. Đây là hình ảnh mòn vật liệu dòn theo cơ chế biến dạng dẻo bề mặt do hạt cứng cày trên bề mặt dƣới tác dụng của ứng suất pháp rất lớn ở vùng lƣỡi cắt gây ra. Kết quả quan sát cũng cho thấy, vật liệu gia công dính trên vùng mòn mặt sau thành những mảng lớn. Hình ảnh vật liệu gia công dính trên vùng mòn mặt sau thể hiện trên hình 4.5c. Chiều cao mòn đạt hs ≈ 15 μm. Khi tiện lần thứ 2 ứng với chiều dài cắt L = 750 mm, chiều dài cung mòn trên mặt trƣớc của dao gần nhƣ không thay đổi (hình 4.6a). Trên mặt trƣớc của dao vẫn xuất hiện sự bám dính của vật liệu gia công. Có thể thấy vật liệu gia công dính tập trung ở vùng phoi thoát khỏi mặt trƣớc của dụng cụ. Trong vùng này, có một mảng nhỏ không có sự bám dính của vật liệu gia công mà thấy rõ sự xuất hiện của các hạt CBN. Hiện tƣợng này có thể đƣợc giải thích nhƣ sau: một phần của lớp bám dính của vật liệu gia công đã bị kéo đi trong quá trình gia công kéo theo lớp dính kết giữa các hạt CBN. Bề rộng của cung mòn trên lƣỡi cắt chính vẫn giữ nguyên không đổi (khoảng 30 μm) thể hiện rõ trên hình 4.6b. Trên mặt sau, vật liệu gia công vẫn bám dính thành mảng lớn. Chiều cao mòn cũng tăng lên hs ≈ 40 μm. Đến lần cắt thứ 3 ứng với chiều dài cắt L = 750 mm, bản chất mòn trên cả mặt trƣớc và mặt sau không thay đổi, chiều dài cung mòn trên lƣỡi cắt chính và bề rộng cung mòn gần nhƣ là không thay đổi. Vật liệu gia công bám dính trên cả hai mặt có xu hƣớng tăng lên. Trên mặt sau, bề dầy của lớp vật liệu này lên đến 60 μm (hình 4.7c, hình 4.7d). Khi độ cứng phôi đạt 54 – 56 HRC, ở lần cắt thứ nhất, trên vùng mòn mặt trƣớc, chiều dài cung mòn trên lƣỡi cắt chính không thay đổi đáng kể, sự bám dính của vật liệu gia công gần nhƣ không còn, sự bám dính này chỉ tập trung rất ít ở vùng phoi thoát khỏi mặt trƣớc của dụng cụ chứ không phải gần vùng lƣỡi cắt (hình 4.8a). Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 66 - Trên vùng mòn mặt trƣớc này cũng không nhìn thấy hình ảnh các hạt CBN nhƣ vùng chƣa bị mòn, lớp bề mặt có cấu trúc sóng lớn và đều nhau, khoảng cách giữa hai nhấp nhô liên tiếp là 30 μm, chiều cao nhấp nhô khoảng 10 μm chỉ ra trên hình 4.8a), 4.8b). Hiện tƣợng mòn mặt sau thay đổi căn bản nhƣ trên hình 4.8c), 4.8d), không còn hiện tƣợng dính của vật liệu gia công trên bề mặt vùng mòn mà chỉ có vùng mòn rất gồ ghề. Ở lần cắt thứ hai và thứ ba, ứng với chiều dài cắt L = 750, hiện tƣợng mòn trên mặt trƣớc và mặt sau không thay đổi so với ở lần cắt thứ nhất. Trên mặt trƣớc của dao ở gần chỗ thoát phoi vẫn có hiện tƣợng bám dính nhẹ của vật liệu phôi. Bề rộng cung mòn trên lƣỡi cắt chính vẫn giữ không đổi, xấp xỉ khoảng 30 μm. Mòn mặt sau tăng lên chút đỉnh. Khi gia công phôi ở độ cứng 60 – 62 HRC, hiện tƣợng mòn mặt trƣớc và mặt sau của dụng cụ cắt không thay đổi so với dụng cụ cắt khi gia công phôi ở hai độ cứng trên. Từ các kết quả thí nghiêm có thể thấy vùng mặt trƣớc của dụng cụ có thể chia thành ba vùng rõ rệt theo phƣơng thoát phoi thông qua mức độ dính của vật liệu gia công với mặt trƣớc. Vùng một nằm sát lƣỡi cắt với những vết biến dạng dẻo bề mặt do các hạt cứng trong vật liệu gia công gây nên, vùng hai tiếp theo với sự dính nhẹ của vật liệu gia công trên mặt trƣớc, vùng ba là vùng phoi thoát ra khỏi mặt trƣớc, ở đây vật liệu gia công dính nhiều trên bề mặt. Theo các kết quả nghiên cứu của Tren [25] thì vung một là vùng ngay sát lƣỡi cắt là vùng mà các lớp vật liệu gia công sát mặt trƣớc dính và dừng trên mặt trƣớc tạo nên vùng biến dạng thứ hai trên phoi. Tuy nhiên, các hình ảnh bề mặt cho thấy hiện tƣợng biến dạng dẻo bề mặt do cào xƣớc theo hƣớng thoát phoi gây mòn tạo nên mặt trƣớc phụ với góc trƣớc phụ âm. Vật liệu gia công ở vùng gần mặt sau do hiện tƣợng tự hãm có thể trƣợt ngƣợc lại tạo nên lớp trắng trên bề mặt gia công. Đây là phát hiện mới về bản chất tƣơng tác giữa vật liệu gia công và vật liệu dụng cụ ở vùng kề lƣỡi cắt cần đƣợc tiếp tục nghiên cứu. Vùng hai là vùng dính của vật liệu gia công với mức độ tăng dần về phía vùng thoát phoi khỏi mặt trƣớc. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 67 - Vùng ba vật liệu gia công dính nhiều trên mặt trƣớc với các vết trƣợt của vật liệu phôi, đây là vùng ma sát thông thƣờng với hệ số ma sát f = const phù hợp với mô hình của Zorev [2]. Tuy nhiên mòn không xuất hiện đầu tiên ở vùng này nhƣ trong kết quả của các nghiên cứu gần đây khi sử dụng mảnh dao tiện CBN khi gia công thép hợp kim qua tôi. Điều này chứng tỏ mòn vật liệu CBN ít chịu ảnh hƣởng của nhiệt độ cao phát sinh trên vùng ma sát thông thƣờng trong nghiên cứu này. Tƣơng tác ma sát giữa bề mặt gia công và bề mặt sau của dụng cụ là tƣơng tác ma sát thông thƣờng kèm theo sự bám dính của vật liệu gia công và các vết cào xƣớc trên bề mặt sau của dụng cụ. Mòn trên bề mặt này là mòn dƣới dạng sliding wear. Theo Trent và Wight [25], khi gia công bằng dao CBN hiện tƣợng biến dạng lƣỡi cắt không xảy ra, mòn mặt trƣớc và mặt sau đồng thời tồn tại, vùng mòn mặt trƣớc rất gần lƣỡi cắt. Trong nghiên cứu này mòn dụng cụ xuất hiên trên cả mặt trƣớc và mặt sau khi gia công phôi ở các độ cứng khác nhau. Tuy nhiên, vùng mòn mặt trƣớc không nằm gần lƣỡi cắt mà phát triển từ lƣỡi cắt tạo thành mặt trƣớc phụ tƣơng đối phẳng và phát triển dần theo hƣớng thoát phoi. Trên vùng mòn nhiều haạtCBN bị tách ra khỏi bề mặt do tƣơng tác của vật liệu gia công làm yếu pha thứ hai của vật liệu dụng cụ theo nhƣ kết quả nghiên cứu của Kevin và đồng nghiệp [14]. Tuy nhiên cơ chế mòn do khuyếch tán với cào xƣớc do Poulachon và đồng nghiệp [13] đề xuất dƣờng nhƣ không còn phù hợp với các kết quả nghiên cứu này. Hình ảnh 4.5b), 4.6b), 4.7b), 4.8b), 4.9), 4.10b) khẳng định biến dạng dẻo bề mặt do các hạt cứng và các ôxít khác ttrong vật liệu gia công dƣới tác dụng của ứng suất pháp rất lớn ở vùng gần lƣỡi cắt gây nên là cơ chế mòn chính trên mặt trƣớc. Mòn mặt sau cũng phát triển theo quy luật thông thƣờng trong cắt kim loại. Cơ chế mòn mặt sau tƣơng đối phù hợp với kết quả nghiên cứu của Kevin và đồng nghiệp [14] nhƣ trên hình 4.5c), 4.10c). Quan sát các kết quả thí nghiệm có thể thấy khi độ cứng phôi tăng thì mòn mặt sau tăng (hình 4.7c, hình 4.9c, hình 4.10c). Mòn mặt sau đƣợc đo và thể hiện trên hình 4.11. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 68 - 0 10 20 30 40 50 60 45 - 47 54 - 56 60 - 62 ĐỘ cứng (HRC) Hình 4.11. Mòn mặt sau ở các độ cứng khác nhau ( L = 750 mm) Từ đồ thị mòn có thể thấy khi độ cứng của phôi tăng thì mòn mặt sau cũng tăng theo. Kết quả này phù hợp với nghiên cứu của Liu [9] và Lou [10]. Có thể thấy rằng nếu nhƣ mòn trên mặt trƣớc và sau phát triển theo cơ chế khuếch tán, suy yếu pha thứ hai dẫn đến bóc tách các hạt CBN nhƣ các nghiên cứu mới đây thì tuổi bền của các mảnh dao CBN có thể cao hơn nhiều lần so với thực tế. Hiện tƣợng bong từng mảng vật liệu dụng cụ trên mặt trƣớc tạo thành dạng vảy và bong vật liệu dụng cụ ở mặt sau là nguyên nhân cơ bản rút ngắn tuổi bền của dụng cụ cắt. Các cơ chế mòn này có thể liên quan đến nhiệt, số chu kỳ cào xƣớc của hạt cứng trong vật liệu gia công đồng thời dính trên bề mặt tiếp xúc của mặt trƣớc và mặt sau cũng nhƣ sự kết hợp với tác dụng ôxy hoá từ môi trƣờng. 4.4.1.3. Kết luận Các kết quả nghiên cứu cho thấy khi tiện tinh thép X12M bằng dao CBN, mòn mặt trƣớc và mặt sau là hai dạng mòn chủ yếu. Cơ chế mòn mặt trƣớc chủ yếu là do biến dạng dẻo do tác dụng cào xƣớc của các hạt cứng trong thép và sự tách ra khỏi bề mặt của các hạt CBN và do mỏi dính với sự bóc tách của từng mảng vật liệu trên mặt trƣớc. Cơ chế mòn mặt sau là quá trình bóc tách của các hạt CBN do pha thứ hai của vật liệu dụng cụ bị yếu đi khi tƣơng tác với vật liệu gia công. Cơ chế mòn mặt sau có thể liên quan đến nhiệt, số chu kỳ cào xƣớc của hạt cứng và dính M ò n m ặ t s a u ( μ m ) Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 69 - kết hợp với tác dụng ôxi hoá của ôxi từ môi trƣờng tạo nên các mảng dạng vẩy và bong ra khỏi mặt sau. 4.4.2. Phân tích chất lƣợng bề mặt phôi thép X12M ở các độ cứng khác nhau và ở các lần cắt khác nhau 4.4.2.1. Phân tích nhám bề mặt Từ bảng thông số nhám ở trên, dùng phần mềm excel vẽ đồ thị quan hệ giữa nhám bề mặt và độ cứng phôi tƣơng ứng với chiều dài cắt L =750 mm. Hình 4.12. Đồ thị quan hệ giữa độ cứng phôi và nhám bề mặt ở các lần cắt khác nhau (L = 750 mm) Từ đồ thị có thể thấy khi độ cứng của phôi tăng thì nhám bề mặt cũng tăng theo. Tuy nhiên ,mức độ tăng là không đồng đều. Ở lần cắt thứ nhất, nhám bề mặt tăng nhanh khi độ cứng của phôi tăng từ 45 HRC đến 54 HRC. Khi tăng độ cứng phôi lên 62 HRC, nhám bề mặt vẫn tăng nhƣng không tăng nhanh nhƣ trƣớc. Ở lần cắt tiếp theo, nhám bề mặt tăng chậm khi tăng độ cứng lên 54 HRC. Tuy nhiên R a ( μ m ) 0 0.2 0.4 0.6 0.8 1 1.2 1.4 45 - 47 54 - 56 60 - 62 Độ cứng Tiện lần 1 Tiện lần 2 Tiện lần 3 R a ( μ m ) Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 70 - nhám bề mặt lại tăng nhanh khi gia công phôi ở độ cứng 62 HRC. Đến lần cắt thứ 3 thì nhám bề mặt tăng đồng đều hơn. Sự tăng nhanh của nhám bề mặt này có thể liên quan đến sự phát triển của chiều rộng vùng mòn mặt trƣớc và chiều cao vùng mòn mặt sau và sự xuất hiện của các mảng dạng vảy trên vùng mòn mặt sau. 4.4.2.2. Phân tích các hình ảnh chụp topography bề mặt Đối với quá trình gia công bằng tiện (gia công cơ nói chung) chất lƣợng bề mặt bị ảnh hƣởng nhiều do tác động của quá trình tạo phoi, lực cắt, nhiệt cắt… Để đánh giá chất lƣợng bề mặt một cách chính xác và đầy đủ ta cần khảo sát cấu trúc và cơ lý tính của lớp bề mặt. Cùng với độ nhám bề mặt, cơ lý tính lớp bề mặt có ảnh hƣởng rất lớn đến khả năng làm việc của bề mặt chi tiết máy. Do vậy cùng với việc khảo sát về độ nhám thì nghiên cứu cấu trúc bề mặt cho ta đánh giá chính xác hơn ảnh hƣởng của độ cứng phôi đến chất lƣợng bề mặt. Trong các hình trên (4.5e, 4.5f, 4.6e, 4.6f, 4.7e, 4.7f, 4.8e, 4.8f, 4.9e, 4.9f, 4.10e, 4.10f là hình chụp topography bề mặt của các phôi ở các độ cứng khác nhau sau khi gia công ở các lần cắt khác nhau. Trên bề mặt gia công hình thành nhiều nhóm các vệt dài và các nhóm này cách nhau một khoảng xấp xỉ bằng 0,12mm. Các khoảng cách này có thể chính là lƣợng chạy chạy dao. Sử dụng cùng một bộ thông số chế độ cắt (v = 110m/phút, S = 0,12mm/vòng, t = 0,15mm) thấy rằng khi độ cứng phôi tăng thì mòn mặt sau tăng đồng thời nhám bề mặt cũng tăng theo. Qua kết quả chụp topography bề mặt ta thấy rằng độ cứng tế vi cũng nhƣ sự biến dạng của lớp bề mặt đều phụ thuộc vào độ cứng phôi. Tuy nhiên sự biến dạng của lớp bề mặt gia công này là không nhiều, điều đó có nghĩa là chiều sâu của lớp biến cứng bề mặt (lớp trắng) là không nhiều. 4.5. Kết luận Các kết quả nghiên cứu cho thấy khi tiện tinh thép X12M bằng dao CBN, mòn mặt trƣớc và mặt sau là hai dạng mòn chủ yếu. Cơ chế mòn mặt trƣớc chủ yếu Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 71 - là do biến dạng dẻo do tác dụng cào xƣớc của các hạt cứng trong thép và sự tách ra khỏi bề mặt của các hạt CBN và do mỏi dính với sự bóc tách của từng mảng vật liệu trên mặt trƣớc. Cơ chế mòn mặt sau là quá trình bóc tách của các hạt CBN do pha thứ hai của vật liệu dụng cụ bị yếu đi khi tƣơng tác với vật liệu gia công. Cơ chế mòn mặt sau có thể liên quan đến nhiệt, số chu kỳ cào xƣớc của hạt cứng và dính kết hợp với tác dụng ôxi hoá của ôxi từ môi trƣờng tạo nên các mảng dạng vẩy và bong ra khỏi mặt sau. Ba cơ chế mòn chính khi tiện cứng thép X12M qua tôi khi thay đổi độ cứng phôi là mòn do dính, mòn do cào xƣớc và mòn do nhiệt. Mòn do nhiệt là dạng mòn chính do dãn nở nhiệt cục bộ của lớp vật liệu dụng cụ trên mặt sau kết hợp với quá trình ôxy hoá ở nhiệt độ cso làm bong các mảnh vật liệu dụng cụ ra khỏi bề mặt. Mòn phát triển nhanh hơn ở vùng dƣới lƣỡi cắt phụ làm tăng nhám bề mặt và phá huỷ lƣỡi dao. Mòn mặt sau từ lƣỡi cắt chính là mòn do dính và mòn do cào xƣớc gây ra bởi các hạt CBN khi bị bong ra từ vật liệu dụng cụ và các hạt các bít trong vật liệu gia công. Tốc độ mòn tỉ lệ với độ cứng vật liệu gia công. Khi độ cứng vật liệu gia công tăng thì mòn dụng cụ cắt cũng tăng đồng thời nhám bề mặt cũng tăng theo. Việc trên bề mặt phôi hình thành nhiều nhóm các rãnh dài, cách nhau một khoảng 0,12mm và đƣợc cho là lƣợng chạy dao cần đƣợc tiếp tục nghiên cứu để tìm ra bản chất của hiện tƣợng này. Từ kết quả nghiên cứu có thể thấy khi gia công tinh thép X12M đã qua tôi ở chế độ cắt (v = 110m/phút, S = 0,12mm/vòng, t = 0,15mm) thì không nên sử dụng phôi có độ cứng cao vì ở độ cứng cao dụng cụ sẽ bị phá huỷ nhanh và chất lƣợng bề mặt phôi không tốt. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 72 - 4.6. PHẦN KẾT LUẬN CHUNG VÀ HƢỚNG NGHIÊN CỨU TIẾP THEO CỦA ĐỀ TÀI 4.6.1. Phần kết luận chung Qua nội dung đã thực hiện của luận văn, tác giả rút ra đƣợc các kết luận sau: - Đánh giá tổng quan các nghiên cứu gần đây trong lĩnh vực tiện nói chung và tiện cứng nói riêng trên khía cạnh về lý, hoá, nhiệt, chất lƣợng bề mặt, mòn và tuổi bền… - Giới thiệu các nguyên nhân gây mòn trong tiện cứng đồng thời kiểm nghiệm và phát hiện những vấn đề mới vềmòn mảnh dao CBN - Tìm đƣợc bản chất tƣơng tác ma sát trên mặt trƣớc của dụng cụ. 4.6.2. Hƣớng nghiên cứu tiếp theo của đề tài Kết quả nghiên cứu của đề tài chỉ dừng ở một chế độ công nghệ, một kiểu mảnh dao, một loại vật liệu và một bộ thông số chế độ cắt nhất định. Vì vậy cần tiến hành thí nghiệm một cách tổng quan hơn để tìm ra các quy luật rộng hơn trong cơ chế mòn mảnh CBN nói chung và chất lƣợng bề mặt phôi. Nghiên cứu ảnh hƣởng của hình dạng lƣỡi cắt đến chất lƣợng bề mặt và mòn dụng cụ? Nghiên cứu ảnh hƣởng của lực cắt đến chất lƣợng bề mặt và tuổi bền dụng cụ. Những gợi mở trên giúp các nhà nghiên cứu có thêm dữ liệu để kiểm tra, đánh giá và phát hiện mới về lĩnh vực tiện nói chung và tiện cứng nói riêng. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 73 - TÀI LIỆU THAM KHẢO [1]. Phan Quang Thế (2002), Luận án Tiến sĩ. “Nghiên cứu khả năng làm việc của dụng cụ thép gió phủ dùng cắt thép cacbon trung bình”, Trƣờng Đại học Bách khoa Hà Nội. [2]. PGS.TS Phan Quang Thế, Th.S Nguyễn Thị Quốc Dung (2008). “Tương tác ma sát giữa phoi và mặt trước của dao gắn mảnh PCBN khi tiện tinh thép 9XC qua tôi”. Tạp chí khoa học và công nghệ các trƣờng đại học (60). [3].PGS.TS Phan Quang Thế, Th.S Nguyễn Thị Quốc Dung (2008). “Ảnh hưởng của vận tốc cắt đến mòn và cơ chế mòn dụng cụ gắn mảnh PCBN khi tiện tinh thép 9XC qua tôi”. Tạp chí khoa học và công nghệ các trƣờng đại học (62). [4]. Bành Tiến Long, Trần Thế Lục, Trần Sĩ Tuý. (2001), Nguyên lý gia công Vật Liệu, Nhà xuất bản Khoa học và Kỹ thuật, Hà Nội. [5]. Trần Thế Lục (1988). “Giáo trình mòn và tuổi bền của dụng cụ cắt”, Khoa cơ khí - Trƣờng Đại học Bách Khoa Hà Nội. [6]. Trần Văn Địch, Nguyễn Trọng Bình, Nguyễn Thế Đạt, Nguyễn Viết Tiếp, Trần Xuân Việt (2003), “Công nghệ chế tạo máy”, NXB Khoa học và kỹ thuật. [7]. Trần Hữu Đà, Nguyễn Văn Hùng, Cao Thanh Long (1998), “Cơ sở chất lượng quá trình cắt”, Trƣờng Đại học Kỹ thuật Công nghiệp Thái Nguyên. [8]. Nguyễn Mạnh Cƣờng(2007). “Nghiên cứu ảnh hưởng của chế độ cắt đến chất lượng bề mặt gia công khi tiện tinh thép X12M qua tôi bằng dao gắn mảnh PCBN”. Luận văn thạc sĩ kỹ thuật chuyên ngành công nghệ chế tạo máy. Trƣờng Đại học kỹ thuật công nghiệp Thái Nguyên. [9]. X.L. Liu, D.H. Wen, Z.J. Li, L.Xiao, F.G. Yan. Cutting temperature and tool wear of hard turning hardened bearing steel. Journal of Materials Processing Technology 129 (2002) 200 – 2006. [10]. S.Y. Lou, Y.S. Liao, Y.Y. Tsai. Wear characteristics in turning high hardness alloy steel by ceramic and CBN tools. Journal of Materials Processing Technology 88 (1999) 114 – 121. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 74 - [11]. Abdullah Kurt, Ulvi Seker. The effect of chamfer angle of polycrystalline cubic boron nitride cutting tool on the cutting forces and the tool stresses in finishing hard turning of AISI 52100 steel. Materials and Design 26 (2005) 351 – 356. [12].Tug˘rul O¨ zel*, Yig˘it Karpat. Predictive modeling of surface roughness and tool wear in hard turning using regression and neural networks. International Journal of Machine Tools & Manufacture 45 (2005) 467–479. [13]. G. Poulachon , A. Moisan , I.S.Jawahir. Tool-wearmechanisms in hardturning with polycrystalline cubic boronnitride tools. Wear 250 (2001) 576– 586. [14]. Y. Kevin Chou , Chris J. Evans. Cubic boron nitride tool wear in interrupted hard cutting. Wear 225–229 (1999) 234–245 [15]. Tugrul Ozel, Tsu-Kong Hsu, Erol Zeren (11August 2004). Effects of cutting edge geometry, workpiece hardness, feed rate and cutting speed on surface roughness and forces in finish turning of hardened AISI H13 steel. ORIGINAL ARTICLE. [16]. H A Kishawy and M A Elbestawi. Tool wear and surface integrity during high-speed turning of hardened steel with polycrystalline cubic boron nitride tools. Intelligent Machines and Manufacturing Research Centre, McMaster University, Hamilton, Ontario, Canada (755 - 767) [17]. Patrik Dahlman, Fredrik Gunnberg, Michael Jacobson, The influence of rake angle, cutting feed and cutting depth on residual stresses in hard turning. Journal of Materials Processing Technology 147 (2004) 181 – 184. [18]. Meng Liua, Jun – ichiro Takagia, Akira Tsukudab, Effect of tool nose radius and tool wear on residual stress distribution in hard turning of bearing steel, Journal of Materials Processing Technology 150 (2004), 234 – 241. [19]. Jiang Hua, Rajiv Shivpuri, Xiaomin Cheng, Vikram Bedekar, Yoichi Masumoto, Fukuo Hashimoto, Thomas R. Watkins. Effect of feed rate, workpiece hardness and cutting edge on subsurface residual stress in the hard turning of Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên - 75 - bearing steel using chamfer + hone cutting edge geometry. Materials Science and Engineering A394 (2005) 238 - 248 [20]. Dilbag Singh P. Venkateswara Rao. A surface roughness prediction model for hard turning process. ORIGINAL ARTICLE. [21]. J. M. Zhou, M. Andersson, J. E. Stahl. The monitoring of flank wear on the CBN tool in the hard turning process, ( 27 June 2003). [22]. Yong Huang, Steven Y. Liang. Modelling of CBN tool crater wear in finish hard turning, (16 June 2004). [23]. R K Kountanya. Optimizing PCBN cutting tool performance in hard turning. Applications Development Organization, Diamond Innovations Inc., 6325 Huntley Road, Columbus, OH 43229, USA. [24]. John E. Bringas, Editor (2004). “Handbook of comparative world steel standards”. Printed in USA, August 2004 [25]. Tren E.M. and Wright P.K. (2000), Metal Cutting, Butterworth- Heineman, USA. [26]. Doyle E.D, Horne J.C. and Tabor D(1997), Prictional Interaction between Chip and Rake face in Continuous Chip formation, Proceedings of Royal Society London, A.336, pp.173 - 183

Các file đính kèm theo tài liệu này:

  • pdfdoc248.pdf