NGHIÊN CỨU CÁC THUẬT TOÁN CẢI TIẾN TRONG KHAI THÁC DỮ LIỆU
LƯƠNG HÁN CƠ
Trang nhan đề
Lời cảm ơn
Mục lục
Danh mục
Chương 1: Giới thiệu.
Chương 2: Tập phổ biến.
Chương 3: Tập phổ biến đóng.
Chương 4: Luật kết hợp.
Chương 5: Luật hạt giống.
Chương 6: Hai phép toán trên luật hạt giống.
Chương 7: Mẫu tuần tự.
Chương 8: Chương trình cài đặt.
Chương 9: Kết luận và hướng phát triển.
Tài liệu tham khảo
21 trang |
Chia sẻ: maiphuongtl | Lượt xem: 1874 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Luận văn Nghiên cứu các thuật toán cải tiến trong khai thác dữ liệu, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
24
CHUONG 3-T~PPHO BIEN DONG
3.1.CO sa TOA.NHOC r171.r221
3.1.1.Ngii' tanh cuakhai that dii'li~u
Ngucfmhcuakhaithacdfrli~ula bQbakhaini~mV =(0, I, R), trongd60 d~i
di~nchot~phfruh~ cacgiaodich,I d~idi~nchomQtt~pcacdanhml,lC,vaR la
quanh~nhiphancuacacgiaodichvacacdanhml,lCc6t6nt~itrongcO'saduli~u.
Vi v~yR ~0 x I vam6ic~pth~hi~n(0,0ER duQ'cxemla th\lcth~lienquanden
mQtgiaodich0E0 vamQtdanhml,lCi EI .
3.1.2.K~tnBi Galois
Vaingucanhkhaithacdfrli~uV =(0, I, R), chungtac6haiphepanhx~nhusail:
3.1.2.1.Anh xt;ltum(Jttijpdanhm1jCsangm(Jt tijpgiaodjch ..
t : P (I) --+P (0)
X f-7 {oEOI\iXEX,(O,X)ER}
trongd6P(I) la t~pt6 hQ'Pcacph~ntu cuat~pdanhml,lCIvai Ip(I)I=2III, va
p(<9)lat6hQ'pcacph~ntucuat~pgiaodichvai Ip(0)1=21191.
25
T~pdanhill\lC T~pcacgiaodjch
t
x
t(X)
Hinh 3.1- Anh x~t fir t~pdaubIDI}Csangt~pgiaodich.
3.1.2.2.Anhxg titm(jttgpgiaodjchsangm(jttgpdanhmlfC..
i : p(O)-+P(I)
X 14 {iEIIVxEX,(x,i)E'R}
trongd6P(I) la t~pt6 hQ'pcacph~ntll cuat~pdanhml,1CIvai Ip(I)I=2III, va
p(0) lat6hQ'pcacph~ntll cuat~pgiaodichvai Ip(0)1=2101.
T~pcacgiaodich T~p danh ffil,1C
x
i (X)
Hinh 3.2- Anh x~i fir t~pgiaodichsangt~pdaubIDI}C.
26
3.1.2.3.Nhffngtinhchdtcuacijpanhxgnay..
K@thQ'PhaianhX!;ltrentasec6duQ'chaiphepanhX!;lkhacv6inhungtinhch~thli
vi seduQ'cSUd1,mgtrongdinhnghlat~pd6ng.
Anh X!;lCit1<\S1,1'k@thQ'pclm hai anh X!;li, t theethu tl,1'nhu sail:
Cit=iot: P(I)--+P(O)--+P(I)
x I-H(X) ~ i(t(X))
C6thSduQ'cki hi~unhusail:Cil(x) =iot(X) =i(t(X)).
T~pdanhm\lC T~pcacglaDdjch
t
Hinh 3.3- Anh x\l kep Cit.
AnhX!;lCti1<\Sl,1'k@thQ'pcuahai anhX!;lt, i theethutl,1'nhusail:
CII =toi: P( 0) --+P(I) --+P(0)
X ~ i(X) ~ t(i(X))
CothSduQ'cki hi~unhusail:Cli(X) =t0i (X) =t(i (X) ) .
T~pcacgiaodich
27
T~pdanhffi\lC
t
Biob 3.4- Aob x\I kep Crt.
Nhii'ngtiOOch~tcoduQ'ctirhaiaOOXI;lkep:
(1) I)<;;;;Iz~t(1)):;;;2t(1z)
(2) I <;;;;Cit(1)
(3) cit(Cit(1)) =cit (1)
(4) I) <;;;;Iz ~ cit(1))<;;;;cit(1J
(5) Cit(i(O))=i(O)
(6) O<;;;;t(1)~I<;;;;i(O)
3.1.3.Djnh nghiatip dong
(1') a) <;;;;°z~ i (0) );;2i (°z)
(2') O<;;;;Cti(O)
(3') Cti(Cti(O))=Cti(O)
(4') a) <;;;;°z~Cti(O))<;;;;Cti(OZ)
(5') Cti(t(1))=t(1)
C~I la t~pdanhm\lCtrongngii'canhkhaithacdii'li~uV la t~pdongkhivachi
khi Cit(C)=C. V~yt~pdong006nh~tchuat~pdanhm\lCI duQ'cxacdiOObilngaM
XI;lCitchot~pI. Va ki hi~uCit(1) la t~pdongcuaI.
TirdiOOnghiatrenchotacachxacdinhdQph6bi~ncoomQt~pdanhm\lCI b~tky
thongquadQph6bi~ncuacact~pdongdffxacdinh.DQph6bi~ndochiOOlab~ng
v&idQph6bi~ncuat~pdong006OO~tcochuat~pdanhm\lCI naybilngcongthuc:
sup(1)=sup(Cit(1)) .
28
3.1.4.Blnh nghiadimt~pdong
TagQiC hit~pcact~pdongtrongngil'canhkhaithacdil'li~uV v6'ik6tn6iGalois.
C~p(C,s;)lamott~phQ'Pcothut\lvadllQ'Cxemlaclant~pdongdanhml,lCdllQ'Cki
hi~uJLc'Va clant~pdongnayg6m2tiOOchAtsau:
. T6ntc;timotthutlJ boph~giil'acacthanhph~ntrenclant~pdong,ch~nghc;tn
OOllv6'ib~tkyt~pdongC)'C2EJLcthitacoC)s;C2khivachikhi C)£;C2.
. T~pconS b~tky cuacact~pdongtrenclanJLcd8ucomotch~ntren(Join)
vamotch~ndll6'i(Meet).
Join(S) =Cit
(
US;
]
vaMeet(S)=ns;
~ES ~ES
3.2.BINH NGHiA TAp PHO BIEN BONG
Mott~pdanhml,lCX lat~pph6bi6nvakh6ngt6ntc;ti~pchaX' sacchoX c X' va
sup(X)=sup(X')thit~pdanhml,lCX dllQ'CgQilat~pph6bi6ndong.
Vi dy: V6'icact~pph6bi6ntimdllQ'CtrongBang 2.11thit~pph6bi6n{a,d }va
t~p{c,a,d }kh6ngphaila t~pph6bi6ndongvi t6ntc;timot~pph6bi6nIanhan
{c,w, a,d }cocungdoph6bi6nla2.Bencc;tnhdod€ dangoo~ thAyt~p{c,w,a,
d }chinhlat~pph6bi6ndongvi kh6ngcont~pnaGIanhancungdoph6bi6n.
3.3.cAe TINH CHAT CUATAp PHOBIEN BONGrt3
3.3.1.Tinh chAt1
aiasuX lamott~pdanhml,lCph6bi6nvatAtcacacgiaodichTranscochuat~p
danhml,lCX d6ngthaimQigiaodichnaycfingchuat~pdaOOml,lCY :1=0 v6'iY n X
=(2)vakh6ngt6ntc;ti~pV' tllangt\lOOllY v6'iY c Y' (conghiala,Y lat~p16'n
nh~tcoth@co).Thitacoth@k6tlu~ la t~pX u Y lamott~pph6bi6ndongco
sup(Xu Y) =ITransl;vaOOUngt~pph6bi6nchuaX makh6ngchua'Ythikh6ng
th@lat~pph6bi6ndong.
29
Ch.mgminh:
TacoX lat~pph6bi~nvaTranslatAtcacacgiaodjchcochuaX trongTDB :
sup(X)=ITransl2::minSup.
MQigiaodjchTransnayclingchuat~pdanhm\lCY :
sup(Xu Y) =sup(X) =ITransI2::minSup.
vat~pdanhm\lCY nayth6anhii'ngdi~uki~nsau:
YnX=0
va;1Y' sacchoY c Y', Y' n X =0 vasup(Xu Y') =sup(Xu Y).
R5rangtheedjnhnghlat~pph6bi~ndong(]tren,tad~dangk~tlu~ la :
T~pdanhm\lCX kh6nglat~pph6bi~ndong.
Vat~pph6bi~nX u Y lat~pph6bi~ndongv6isup(Xu Y) =ITransI(dpcm).
Taxetm6tt~pph6bi~n(X u Z), v6i d6ph6bi~nJ3vaZ "#Y sexayra2 twang
hqpsau:
Truanghap1:n~usup(X)2::sup(Z)thisup(X)2::sup(Z)2::sup(Xu Z) =J3,
mataclingcosup(Xu Y) =sup(X)=>sup(Xu Y u Z) =J3,
vatak~tlu~nlat~pph6bi~n(X u Z) kh6nglat~pph6bi~n
dongduQ'c(theodjnhnghla).
Twanghap2 :n~usup(X)<sup(Z)thisup(Xu Z) =J3::;sup(X)< sup(Z),
mataclingcosup(Xu Y) =sup(X)=>sup(Xu Y u Z) =J3,
vatak~tlu~nlat~pph6bi~n(X u Z) kh6ngla~pph6bi~n
dongduQ'c(theodjnhnghIa).
Theok~tquatrenlanhungt~p h6bi~nchuaX makh6ngchuaY thikh6ngth~la
t~ph6bi~ndong(dpcm).
Vi d\l :
30
TrongBang 2.3tanh~nth§ynhfmggiaodichcochuat~pdanhm\lC{ c, a }thi
clingchuat~pdanhm\lC{w }.V~ycoth~k~tlu~nlitt~p{c,w, a }litt~pdongvit
clingnh~nth§ynhungffip{c,a,t }vit{c,a,d }khongth~litt~pdong.
3.3.2.Tinh chit 2
T~pdanhm\lCX litt~pph6bi~nvitt~pdanhm\lCY v6i Y c X vitsup(Y)=sup(X)
thitacoth~kh~ngdinhlitnhfmgt~pph6bi~ndongcochuaY thich~ch~ sechua
luonX hoticnhungt~pchichuaY khongchuaX thikhongth~litt~pph6bi~ndong.
Ch.mgminh:
Giasirco2t~pdanhm\lCX, (Y u Z) litt~pph6bi~nv6iY c X, Z ctX vitsup(Y)=
sup(X),tadn phaixet2truanghQ'Psau:
Truanghap1: n~usup(Y)2: sup(Z)thi sup(Y)2: sup(Z)2: sup(Yu Z)
nhtmgsup(Y)=sup(X)choth§ysup(Xu Y u Z) =sup(Yu
Z).V~y(Y u Z) khongth~litt~pph6bi~ndong.
Truanghap2 : n~usup(Y)< sup(Z)thi sup(Yu Z):::; sup(Y)< sup(Z)
nhtmgsup(Y)=sup(X)choth§ysup(Xu Y u Z) =sup(Yu
Z).V~y(Y u Z) khongth~litt~pph6bi~ndong.
TheochUngminhtrenthi t~p(Y u Z) khongth~lit t~pph6bi~ndongtrongca2
truanghQ'p(dpcm).
Vi d1}:
TrongBang 2.11,chungtanh~th§yt~p{c,w, a,t } litt~pph6bi~nv6i dQph6
bi~nlit3,vitt~pcon{a,t }clingcodQph6bi~nlit3.V~ynhfmgt~p{a,t }; {w,a,
t }khongth~litt~pdong.
31
3.4.Ap DUNG TiNH CHAT TAP PH6 BIEN DONG TREN CAY FP-
~
3.4.1.H~qua1( pbathi~nva lo~ibonbanhnhii'ngdaRbmyckhongcAn
xet)
N~ume>tdanhm1,lCph6bi~nd~uco xu~thi~ntrongnhi~uc~pfJist C1,lCbe>v6'iclIng
de>ph6bi~nthi ta co thSlo;;tibe va kh6ngxetd~ndanhm1,lCnaytrongnhungc~p
fJist C1,lCbe>tru6'cdo.
Chtffigminh :
Gia strta co danhm1,lCx xu~thi~nC1,lCbe>& c~pn cuat~pdanhm1,lCti~nt6 Xn co
clIngde>ph6bi~nf3&dp m cuat~pdanhm1,lCti~nt6Xmv6'i0 ~m <nvaXmC Xn.
V6'igiathi~tnaychungtacoduQ'ck~tqualasup(Xm)2:sup(Xn)2:f3.
V~ytaco X'm=XmU x vaX' n=XnU x,
guyraX'mC X' nvasup(X'm)=sup(X'n)=f3
TheoTinhchat2 cuat~pdongchoth~yX'mkh6ngthSla t~pdong,vi v~yta co thS
lo;;tibevakh6ngxetd~ndanhm1,lCxtrongc~pm.
3.4.2.H~qua2( ki~mtra onbdongcuat~ppb&bi~n)
Trangquatrinhphatsinht~pph6bi~ndong,chungtaphaidambaatinhdongcua
t~p h6bi~nb~ngcachth1,1'chi~n2 phepkiSmtra:
. Supersetchecking:t~pph6bi~nm6'inayco la t~pchav6'iclIngde>ph6bi~n
cuacact~pph6bi~ndongdiltimtru6'cdokh6ng.N~ucothi~pph6bi~n
nayduQ'cch~pnh~nvalo;;tibenhungt~p h6bi~ndongdiltimtru6'cdo.
. Subsetchecking:t~pph6bi~nm6'inayco la t~pconv6'iclIngde>ph6bi~n
cuacact~pph6bi~ndongdiltimtru6'cdokh6ng.N~ucothi t~pph6bi~n
naykh6ngthSlat~pph6bi~ndong.
32
Vai chi@nIuQ'cduy~ttheechi~uSailvam6hinhchiad~tri clIngvai Tinhchdt1cua
t?Pph6bi@ndongthich~cch~ Iakh6ngdn phepsupersetcheckingmavfu1dam
baatinhdongcuat?Pph6bi@n.
Chtfngminh:
Giasutacot?Pph6bi@ndongXmdffduQ'cxacdinhtruac,vat?PXn Iat?Pph6bi@n
dangxemxettinhdong.
V?y tacoth~phMbi~uIa cosud\mgphepsupersetcheckingkhivachikhi cot6n
t~itruanghQ'pXmc Xnvasup(Xm)=sup(Xn).Tu nh?nxetnaytacosup(Xn-Xm)=
sup(Xm),conghlaIamQigiaodichcochuaXmd~ucochua(Xn-Xm).
Nhungtrongquatrinhtimt?Pph6bi@ndongtacosud\mgTinhchdt1cuat?Pph6
bi@ndong,vi V?ych~cch~ Ia kh6ngt6nt~itruanghQ'PXmc Xnvasup(Xm)=
sup(Xn).Chonentakh6ngc~nth\,l'chi~nphepki~mtrasuperset.
3.5.THUAT ToAN CLOSET+ rt31.rt91.rtl
3.5.1.Phepchi~uth1!cfir dumlen
- D\,l'atrenthut\,l'cuafJist toanCI)C(CI)CbQ),b~td~ubkg danhml)CcodQ
ph6bi@n h6nh~th6amill_supvak@thucb&ngdanhml)CcodQph6bi@n
Iannh~t,I~nIuQ'tchQntungdanhml)Ch~tgi6ng.
- TrenFP-treetoanCI)C(CI)CbQ),chungtab~td~uduy~ttungnuttunhii'ngnut
chua danhml)Ch<;ltgi6ng ti@ndk Ien d@nnut g6c cua diy d6ngthai xay
d\,l'ngfJist CI)CbQvaFP-treeCI)CbQcuadanhml)Ch<;ltgi6ngnay.
- N@ufJist CI)CbQkh6ngcon danhml)Cnaothi quayIui mQtbuac va th\,l'c
hi~nti@p.
3.5.2.Phepchi~uaofir trenxu&ng
- D\,l'atrenthu t\,l'cuafJist toanCI)C,b~td~ubkg danhml)Cco ~Qph6bi~n
Iannh~tvak@thucb&ngdanhml)CcodQph6bi@n h6nh~th6amill_sup,
I~nIuQ'tchQntungdanhml)Ch<;ltgi6ngtrongfJist toanCI)C(CI)CbQ).
33
- TrenFP-treetoC:mC1.1C,chungtaduy~ttUngnutb~td~utunutchuadanhm1.1C
h<;ltgi6ngxu6ngdk d~nnuthicuacayvaxayd1,1'I1gClist C1.1Cb6cuadanh
m1.1Ch<;ltgi6ngnay.Ghinh~nvi tri cuanutcontn,rcti~pvai nhii'ngnutchua
danhm1.1Ch<;ltgi6ngnaytrongClist C1.1Cb6.
- N~ufJist C1.1Cb6khongcondanhm1.1Cnaothi quaylui m6tbuacva th\l'c
hi~nti~p.
3.5.3.Ki~mtrasubsetb~ngdiy k~tqua
MotacAutrucdayk~tqua:
Sud1.1ngdu trucduli~ucayg6m2 c~pchim1.1Cd~lull tmt~pph6bi~nd6ng.C~p
chim1.1Cthunh~td\l'atrentencuat~pdanhm1.1Ctheethut\l'cuaClist.C~pchim1.1C
thuhaidin cutrend6ph6bi~ncuatungdanhm1.1Cc6thamgiavaot~pph6bi~n
dongk~tqua.
Ngochrakhib6sungt~pph6bi~nb&ngcachl~nIUQ1themnutvaotrongcay,n~u
nutdiic6thil~ygiatri Iannh~thayvi tinhtichlUy.
Cachtht'fcki~mtra tinhdongtrendayk~tqua:
Giasut~pph6bi~ndangxetXnkhonglat~pd6ng:3t~pd6ngXmsacchoXnC
Xmvasup(Xn)=sup(Xm)ho~ctac6th~n6i2t~pXnvaXmc6nhii'ngquailh~sau:
. XnvaXmc6 clingd6ph6bi~n.
. T~tcacacdanhm1.1CtrongXnd~un&mtrongt~pXm.
. Cacph~ntu trongXnvaXmc6clingm6tthut\l'chungtrongfJist.
D1.1'av onh~nxettrentaxayd1.1'nghamki~mtrasubsetnhusau:
N{jidunghamCheckSubset-ResultTreeO
DduVaG:Caykit quaRTreeluutrCi'tgpph6bidndong,vatgpph6bidnFl.
Ddura:Kdtlugntgpph6bdnFl cola tgpph6bdndongkh6ng.
Cacbu:acthlfchi?n:
34
Bmyc1: ChQnph~ntll cu6iclingtrongXnvaxacdinhvi tri xu~thi~ncuan6tren
dp chi ml,lCthunh~t.Saud6 dl,l'avaobangchi ml,lCthuhaitimgiatri
trlingvai sup(Xn).
Bmyc2:N~uc6thixacdinhnuttrencayvaduy~tti~nd~nlennutg6cvaki@mtra
xemt~tcacacph~ntll trongXnc6xu~thi~nh~trongc~utruccaymlyhay
kh6ng?
Bmyc3:N~ukh6ngh~t,k~tlu~ndaylat~pph6bi~nd6ngvataphaib6sungvao
cay.NguQ'cl<;lithikh6nglat~p h6bi~nd6ng.
3.5.4.Ki~mtrasubsetbiingcityFP-tree
N~ut6nttdanhml,lCc6thutl,l'nh6hanthutl,l'Iannh~trongt~pdanhml,lC
dangchi~ud6ngthaixu~thi~ntrongmQigiaodichchuat~pdanhml,lCdangchi~u
thik~tlu~nt~pdanhml,lCdangchi~ukh6ngth@lat~pph6bi~nd6ng.
Dl,l'avaonh~nxettrentaxaydl,l'nghamki@mtrasubsetnhusau:
Ni)idunghamCheckSubset_FP-treeO
Dduvao:FP-treeloanqlc, va ttlPph6 bi€n FI.
Ddura:K€t lu(jnt(jpph6 bi€n FI co la t(jpph6 bi€n dongthong .
CacbtdlCthlfchifn:
BtrO'c1: max=Thu tl,l'Ian nh~trongs6cacdanhml,lCtrongFI theofJist toanCl,lC.
BtrO'c2:Duy~tl~nluQ'tcacgiaodichTj c6chuat~pph6bi~nFI naydl,l'atrenFP-
treevaghinh~n hfu1gdanhml,lCc6xu~thi~ntrongb~tkygiaodichTj va
c6thutl,l'nh6hanmaxtheofJist toanCl,lCclingvai itchliiyde>ph6bi~n.
BtrO'c3:N~uc6danhml,lCnaoduQ'cxacdinh&buac2 c6de>ph6bi~nb~ngvaide>
ph6bi~ncuat~pph6bi~nFI thi t~pFI kh6ngphaila t~pph6bi~nd6ng.
NguQ'cl<;li,n~ukh6ngc6danhml,lCnaoc6dQph6bi~nitchlii~trongbuac
2 b~ngvaide>ph6bi~ncuat~pFI thik~tlu~nt~pFI lat~pph6bi~nd6ng.
35
3.5.5.Thuit toaD
l)@t6iUtihoav6inhfi'nglOc;licO'sO'dfrli~ukhacnhau,thu~ttoanCLOSET+sechQn
h,raphepchi~uth1,1'ctu du6itenn~ucO'sO'dfrli~ucoti l~nencaoho~cphepchi~u
aotutrenxu6ngcoti l~nenth~pkhichuy@nquaFP-tree.
N{jidunghamCLOSET+0
Ddu viw: C(Jsirdfrli~ucacgiao djch TDB vanglfO71gph6 bi~nminSup.
Ddura: T(ipcac t(ipph6 bi~ndongFC! thoanglfO71gph6 bi~nminSup.
Cac blfCrCth1!chi~n:
B1fCYC1: Treeo=createFPtree(TDB,minSup).
B1fCYC2: N~uTreeoco ti l~nencaothi si'rd\mgphepchi~uth1,1'ctu du6i tenva gQi
thut\lCCheckSubset_ResultTreem6i l~nphatsinhmQtt~pph6bi~ndong
d@ki@mtratinhdongcuak~tqua.
BtrO'c3:N~uTreeocoti l~nenth~pthisi'rd\lngphepchi~uaotutrenxu6ngvagQi
thut\lCCheckSubset_FP-treem6il~nphatsinhmQt~pph6bi~ndongd@
ki@mtratinhdongcuak~tqua.
3.6.vi DU
Quatrinhtimt~pph6bi~ndongb&ngcachsi'rd\lngphepchi~uth1,1'ctutrenxu6ng
tuO'ngt1,1'nhutrongthu~ttoanFP-growthapd\lngthemhaitinhch~tcuat~pdongva
haih~quatrenFP-treev6iphepki@mtratrenciiyk~tquat~pph6bi~ndong.Vi v~y
trongvi d\lnaykh6ngminhhQathu~ttoanCLOSET+v6i phepchi~uth1,1'ctu du6i
tenmakhaosatv6iphepchi~uaotutrenxu6ngv6ingmJngminSup=1.
Chi~DtreDtapdaDhfiDC(c : 6):
36
----------------
---,r--- !
! !
, !
, I
, ,
I I ,
I I I
I : ,
I " !
! / I
, " I
, '" IL ~
mnh 3.5- f_listeyeb(}ehi~utrent~pdaubmye{e}.
K~tquat~pph6bi~ndongphatsinhduQ'cla : (c :6).
Chi~utrentapdaubmue(ew: 5):
,"
/--1--,
--- I I
,-- I
I , I :I I I I
I ,/ I "
! I "
I 1,/
I \ ...r' ,
I " II ""- --'I ----- ------
mnh 3.6- f_listeyeb(}ehi~utrent~pdaubmye{ew}.
K~tquat~pph6bi~ndongphatsinhduQ'clei: (cw:5).
37
Cbi~utrentapdaubmuc(cwa: 4):
r--
I
I
I
I
I
L j
Hinb 3.7- Clist cycb{)cbi~utrent~pdaubmyc{cwa}.
KStqua~pph6biSndongphatsinhduQ'cla : (cwa:4).
Chi~utrentapdaubmuc(cwad: 2):
------
mnb 3.8- Clist cycb{)cbi~utrent~pdaubmyc{cwad}.
38
K~tquat~pph6bi~ndongphatsinhduQ'c18.: (cwad:2).
Chi~utreo tap daub mue(ewadt : 1) :
I
J,
I
I
I
I
I""""
moh 3.9- Clist eyeb{)ehi~utreot~pdaubmye{ewadt}.
K~tquat~pph6bi~ndongph<itsinhduQ'c18.: (cwadt:1).
Chi~utreotapdaubmue(ewat: 3) :
I,,I
I
I
I
I"""-----
moh 3.10- f_listeyeb{)ehi~utreot~pdaubmye{cwat}.
39
KStquat~pph6biSndongphatsinhduQ'cla : (cwat:3).
Chi~uireDtapdaubmuc(cwd: 3) :
------
Hinh 3.11- Clist c\lcb{)chi~uireDt~pdaubm\lc{cwd}.
KStquat~pph6biSndongphatsinhduQ'cIi : (cwd:3).
Chi~uireDtapdaubmuc(cwdt: 1):
40
,I,I
I
I
I
I""------
Hinh 3.12- f_listC\lCb{)chi~utrent~pdanhm\lc{cwdt}.
Trongl~nchi~umlYkh6ngt~orat~pph6bi~ndong.Vi khi ki~ffitmtanh~nth~y
t6nt~idanhffi\lC{a}thuocph~ntrensov&idanhffi\lC{t}vaxu~thi~ntrongffiQi
giaodichchuat~pdanhffi\lC{cwdt}.D~nd~nk~tquala t~pph6bi~n(cwdt:1)
kh6nglat~pph6bi~ndong.
Chi~utrenHipdanhmuclcwt: 3) :
TheaH? qua1 thit~pdanhffi\lCnaykh6ngdn xetvi danhffi\lCxu~thi~nhail~n:
t~il~nchi~utrent~p{cw}vat~p{cwa}v&iclIngdoph6bi~nla3.
Chi~utrenHipdanhmuclca : 4):
TuO'ngt\J,theoH? qua1thit~pdanhffi\lCnaykh6ngc~ xetvi danhffi\lCxu~thi~n
hail~n:t~il~nchi~utrent~p{c}vat~p{cw}v&iclIngdoph6bi~nla4.
Chi~utren tap danh muc (cd: 4) :
41
--1
I
I
I
I
I
I
I
I
I J
I,
I
I
I
I
I
I"'"
,,'"---"
mnh 3.13- Clist cyc b{)chi~utren t~pdaub myc {cd}.
K~tquat~pph6bi~ndongphatsinhduQ'clit: (cd:4).
Chi~utren taDdaub muc (cdt : 2) :
I
I
I
I
I
I
I"
'"
'"
,,'"----
mnh 3.14- Clist cycb{)chi~utrent~pdaubmyc{cdt}.
42
K~tquat~pph6bi~ndongphatsinhduQ'cla : (cdt:2).
Chi~utrentapdaubmue(et: 4) :
IIA1 ..IB...
\
\,
\
\ II
I
I
I
I
I
I'
I'""""
Hinh 3.15- Clist eyeb(}ehi~utrent~pdaubmye{ct}.
K~tquat~pph6bi~ndongphcitsinhduQ'cla : (ct:4).
Chi~utrentapdaubmue(w : 5):
TheoH? qua1 thit~pdanhml,lCmlykhongC§llxetvi danhml,lCxuAthi~nhaiIdn:
t~ifJist toimCl,lCvaIdnchi~utrent~p{c}v&iclIngde>ph6bi~nla5.
Chi~utrenHipdaubmue(a : 4):
TheoH? qua1 thit~pdanhml,lCnaykhongcdnxetvi danhml,lCxuAthi~nhIDIdn:
t~ifJist toanCl,lCval~nchi~utrent~p{c}v&iclIngde>ph6bi~nla4.
Chi~utrentapdaubmue(d : 4):
TheoH? qua1 thit~pdanhml,lCnaykhongcdnxetvi danhml,lCxuAthi~nhail~n:
t~ifJist toanCl,lCval~nchi~utrent~p{c}v&iclIngde>ph6bi~nla4.
I Chi~utrentapdaubmue(t : 4):I
43
TheoH? quit1 thit~pdanhm\lCll!iykh6ngc~nxetvi danhm\lCxu~thi~nhail~n:
tph6bi~nla4.
K~tQuadiDDhBbi~ndonS!thudIrO'ckhi thuchi(~nthuattminCLOSET+ :
Bang 3.1- K~tquat~pphBbi~ndongthoangIro-ngminSup=1.
1
2
3
4
5
6
7
8
9
10
6
5
4
2
1
3
3
4
2
4
100.00%
83.33%
66.66%
33.33%
16.66%
50.00%
50.00%
66.66%
33.33%
66.66%
c
c,w
C,W,a
C,w,a,d
C,w, a,d,t
C,w, a,t
c,w, d
c,d
c,d,t
c,t
K~tQuadiDDhBbi~ndonS!th~bien ireD dim:
mnh 3.16- Dimt~pdongv6'iminSup=1
44
3.7. KET LuAN
R5 rangv6'inhungthu~itto{mtlmtdpph6bi~ndong(ch~nghl:lnnhu:CLOSET+,
CLOSET, CHARM, Pascal,A-ClosevaClose,...) conhi~uUtidi@msov6'inhung
thudto{mtlmtdpph6bi~nnhusau:
. Ph<itsinhluQ'ngtdpdanhm\,1Ck~tquaithannhi~ul~n.
. B6 batnhi~ut6hQ'pkhongck thi~tkhi apd\,1ngcactinhch~tcuatdpph6
bi~ndong.
. ValacO'So'choquatrinhsinhludthl:ltgi6ng(mQtkhaini~mm6'iv6'inhi~u
lQ'ichduQ'ctrinhbaytrongChuang5).