NGHIÊN CỨU MỘT SỐ PHƯƠNG TRÌNH NHIỆT PHI TUYẾN TRONG KHÔNG GIAN SOBOLEV CÓ TRỌNG
CHÂU ANH DŨNG
Trang nhan đề
Mục lục
Chương1: Phần tổng quan.
Chương2: Các kết quả chuẩn bị các không gian hàm.
Chương3: Nghiệm bài toán điều kiện đầu phi tuyến.
Chương4: Nghiệm T - Tuần hoàn của bài toán phi tuyến.
Kết luận
Tài liệu tham khảo
12 trang |
Chia sẻ: maiphuongtl | Lượt xem: 1883 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Luận văn Nghiên cứu một số phương trình nhiệt phi tuyến trong không gian sobolev có trọng, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
CHUaNG 3
A , , ~ A ~
NGHIEM BAI TOAN DIED KIEN DAD. .
PHITDYEN
Trong chuangnay,chungWi nghienCUllbai toangia tri bien va
band~u(1.1)- (1.4)nhusau:
1
Ut-(urr +-ur)+Fc;(u)=f(r,t),O<r<l,O<t<T,r
(3.1)
(3.2) lim .fr ur(r,t) 1<+00,ur(l,t) +h(t)(u(l,t)- uo)=0,
r~O+
(3.3) u(r,O)=uo(r),
I 1
112
(3.4) Fc;(u)=&u U,
trongd6&>O,uola h~ngs6chotruoc,h(t),f(r,t),uo(r) la cac
hamchotruocthoacacdi~uki~nsail:
(HI) UoER,
(H2) UOEH,
(H3) hE WI,oo(O,T),
(H4) f E L2(O,T,H).
Khong lamm~ttinht6ngquattal~y&=1.
Nghi~mye'ucua bat toangia tri bien va ban d~u(3.1)- (3.4)
duQcthanhl~pnhusau:
TImuEI3(O,T;V)nLOO(O,T;H)saDchou(t) thoabili loanbitn
phansau
(3.5)
d
- (u(t),v)+(ur(t),vr) +h(t)u(l,t)v(l)+(Fi (u(t)),v)dt
16
=(/(t), v)+uoh(t)v(I),Vv EV, a.e.,t E (O,T),
va di~uki~nddu
(3.6) u(O)=uo'
Khi d6tac6djnhIy sail
Dinh If 3.1. ChoT >0 va (HI) - (H4) dung.Khi do,bai loan
(3.1) (3.4) co duy nhat mQt nghi~m ytu
u EL2(O,T;V)nLOC)(O,T;H)
saocho
(3.7) tuELOC)(O,T;V),tu/ EL2(O,T;H), r2/5uEL5/2(QT)'
Chungminh. G6mnhiSubu'oc.
BuGe1. PhudngphapGalerkin.
La'y {wi},j =1,2,...la m<)tco sa tr1!cchu~ntrongkh6ng gian
Hilbert tachdu'<JcV. Ta tlm um(t)theod~ng
(3.8)
m .
um(t)=LCmj(t)Wj'
j=l
trongd6 cmj (t), 1~j ~m thoah~phu'ongtrlnhvi phanphi tuye'n
(3.9)
(U~(t),Wj) +(umr(t),Wjr) +h(t)um(1,t)Wj(1)
+(Fi (um(t)),Wj) =(/(t), Wj) +uoh(t)wj(1),1~j ~m,
(3.10) um(O)=uom'
trongd6
(3.11) Uom~ Uom~nhtrongH.
D~tha'yding voi m6im,t6nt~imQtnghi~mum(t)c6 d~ng(3.8)
thoa(3.9)va (3.10)hftukhiipnoi tren O~t~Tm,voi mQtTmnao
d6, O<Tm~T.
17
Cac danhgia tien nghil$msauday cho phepta 1a"yTm=T voi
mQlm.
Btioc2. Ddnhgidtiennghi~m.
Ta se1~n1u'Qtthi€t 1~phaidanhgiatiennghil$mdu'oiday.Kh6
khanchinhd ph~nnay1asf)h~ngphi tuye'n
Fl(um(t))=I Um(t)11/2Um(t) thalli gia vao phu'dng trlnh do d6
vil$cdanhgiatinhbich~nvaquagioih~ncuasf)h~ngnaycling
1am(>tkh6khan.Tuynhien,voi sf)h~ngphituye'nCl;lth~tfong
tfu'onghQpnaykh6nggayfa nhi~utfdng~isovoi sf)h~ngphi
K ~ "
tuyentongquat.
a) Danbgia1.Nhanphu'dngtrlnhthlij cuahl$(3.9)voi cm/t)
vat6ngtheoj, tac6
(3.12) ~llum(t)112+21Iumr(t)f +2u~(1,t)dt
1
+ 2 Sri Um(r,t) 15/2dr°
=2(1-h(t))u~(1,t)+2(f(t),um(t))+2iioh(t)um(1,t)
Tli ba"td£ngthlic(2.9),tasur fa rang
(3.13) 211Umr(t) 112+ 2u~(1,t) 211Um(t) II~.
Ta surtli (3.12),(3.13)ding
(3.14)
1
~IIUm(t)112 +II Um(t)II ~+2SriUm(r,t)15/2dr
m °
~211- h(t)1[,811Um,(t) !I'+(2+1/,8)11Um(t) 112]
+211fer) 1I11um(t) II+ 21iioh(t) I~II Um(t)11v
~ 2( 1+IIh IILoo(o,T)) [fill Um(t) II~ +(2+1/P)IIUm(t)112]
18
+11/(1)112+IIUm(t)112+2~luillhll~(O,T) +2Pllum(t)II~
=~liioI21IhI1200+IIJ(t) 112+2/3(2+llhIILOO(OT») llum(t)II~2/3 L (O,T) ,
+[1+2(2+11/3)(1+llhIILoo(O,T»)]llum(t)112,'\ /3>0
ChQn/3>0 saocho
(3.15) 2/3(2+II h IILOO(O,T»)~ 112.
Tir (3.14),(3.15)taduQc
1
(3.16) ~llum(t)112+.!.llum(t)II~+2frlum(r,t)15/2dr
dt 2 0
,;;2~lulllhll~(O'T)+11/(1)112
+ [1 + 2(2 + 11/3)(1+ IIh lIroo(O,T»)]II um(t) 112 .
Lffytichphan(3.16)theot,vasad1;lng(3.10),(3.11)taco
t t 1
(3.17) lIum(t)112+.!.~lum(s)ll~ds+2fdsfrlum(r,s)15/2dr
20 0 0
t
~lluoml12 +~liioI2 11h11200 + ~IJ(s)112 ds
2/3 L (O,T) ;1
t
+[1+2(2+11/3)(1+II hIILoo(O,T»)]~Iurnes) 112ds
0
t
~M ?)+ M}l) ~IUrnes)112ds,
0
trongdo M}l),M}l)1acach[lngs6 chi ph1;lthuQcvao T va duQc
chQnnhusail:
M}l) = 1+ 2(2 + 11/3)(1+ II h II LOO(O,T»)'
Mf2) 211uoml12+C~I ill II hII~oo(O'T»)T+JI/(S) 112dy, '1m.
Nhob6d~Gronwall2.13,tir(3.17)taduQc
19
(3.18)
t t 1
II Um(t)112 +~JII UrneS)II ~ds+2IdsSriUm(r,s)15/2dr
20 0
(2)
(
(1)
)~MT exptMT ~MT, '\1m,'\It, O~t~Tm~T,
Tm=T.nghla 1a
b)Danhgia2. Nhan(3.9)voi t2C~j(t)vat6ngtheoj, taco
21Itu~(t)112+
~
[
II tumr(t)r+h(t)t2u;(1,t)+4t2frl Um(r,t)15/2dr
]m 5 0
=2tllUmr(t)112+u;(1,t)~[t2h(t)]dt
1
+~tfrlum(r,t)15/2dr+2(tf(t),tu~(t))
5 0
+2uo~[t2h(t)um(1,t)]- 2uoum(1,t)~[t2h(t)]
dt dt
TJ:chphan(3.19)theobie'nthaigiantu0 de'nt saildo s~pxe'p1(;li
cacs6h(;lngtaduQc
(3.19)
t
(3.20) 2~lsu~(s)112ds+lltumr(t)r +t2u;(1,t)
0
1
4 2f I 1 5/2+-t r Um(r,t). dr
5 0
t t
=[1- h(t)]t2u;(1,t)+2fsllUmr(s)112ds+ f[s2h(s)]/u;(1,s)ds
0 0
tit
+8 fsds frlum(r,s)15/2dr+2 f(sf(s),su~(s))ds
5 0 0 0
t
+2Ui2h(t)um(1,t)- 2uof[s2h(s)ium(1,s)ds
0
Dungbit dAngthuc(2.9),taco
(3.21) Iitumr(t)r +t2u;(1,t)~~lltum(t)II~,'\ItE[O,T],'\1m.
20
Dungcaeba'td~ngthuc(2.6),(2.8),(2.9)va voi 13>0 nhu'tfong
(3.15),tadanhgiakhongkh6khancaes6h(;tng(j v€ phili cua
(3.20)nhu'sau
(3.22) [1- h(t)]t2u;(I,t)
,:; (I +II hIILw(o,T))[piltum,(t)112 +(2+1/ P)II tum(t) 112J
::;(1+II h IILoo(O,T))[fJlltum(t) II~ +(2+1/13)t2MT 1
t t
(3.23) 2IsilUmr(S)112ds+ I[s2h(s)]/U~(1,s)ds
0 0
,;[ 2T +311(t2h)tw(o,n]]1Um(S)II~ds0
::;2MT
[
2T+3
11
(t2hi
ll ]
,
Loo(O,T)
(3.24)
t
21ito I[s2h(s)] / um(1,s)ds
0
t
::;2F3litol ll (t2hi ll rllum(s)llv
ds
Loo(O,T)JI0
::;21itolll (t2hi ll ~6tMT 'LOO(O,T)
(3.25) 21uot2h(t)um(t) I,,; PII tum(t) II ~+;(uillhIIL~(O.T)r.
t t t 2
(3.26) 21 J(sf(s),su~(s))ds ::; III sf(s) 112ds + ~lsu~(s)1Ids
0 0 0
Do d6,tu (3.20)- (3.26)suyfa
t
(3.27) ~Isu~(s) 112ds +~II tum(t) II~
0 4
::;(1+II h !lroo(O,T))(2+1/fJ}t2MT +2MT(2T +311(t2hi!lroo(O,T))
16 t t
+- III SUm(S) IIv ds +III s f(s) 112ds
5 0 0
+~(uJIIh Ilno,T) r +21 uolll(t2h) / 11t"(O.T).J6t MT
21
t t
~M?) + 16]1surn(s)IIv ds ~M~4)+.!. ]1surn(s)II ~ds,
3 0 40
trongdo M?) ,M~4)=M?) +2~6la cach~ngs6chiphl;lthuQcT
Dob6d€ Gronwall,tu(3.27)suyra
t 2 1
(3.28) ~Isu~(s)II ds +-II turn(t)II~~M~4)et~Mf4)eT =M?).
0 4
M~tkhac,tu(3.18)tacodanhgia
t 1
f n 3/5 1
5/3
(3.29) dsJlr F}(urn(r,s)) dr
0 0
t 1
= Ids frlurn(r,s)15/2dr ~.!.MT~MT
0 0 2
Bu'dc3. Quagidi h(ln
Do (3.18),(3.28),(3.29)ta suyfa, t6n t~imQtday con cua day
{urn}v~nkyhi~ula {urn}saocho
(3.30)
(3.31)
(3.32)
(3.33)
(3.34)
urn~ u trong LOO(O,T;H)ye"u*,
urn~ u trongL2(O,T;V) ye"u,
turn~ tu trong LOO(O,T;V)ye"u*,
(turn)/~ (tu)/ trongL2(O,T;H) ye"u,
r2/5urn~ r2/5u trong L5/2(QT) ye"u.
Dung b6 d€ 2.11v€ tinh compactcua J.L.Lions, ap dl;lngvao
(3.32),(3.33)taco th€ trichra tu day {urn}mQtday conv~nky
hi~ula {urn}saocho
(3.35) turn~ tu m~nhtrongL2(O,T;H).
Theodinhly Riesz- Fischer,tu (3.35)taco th€ la'yra tu {urn}
mQtdayconv~nky hi~ula {urn}saocho
(3.36) urn(r,t)~u(r,t) a.e. (r,t)trong QT=(O,I)x(O,T).
22
Do Fi (u)= I U III 2 u lien Wc, lien
(3.37) Fi(um(r,t))~ Fi (u(r,t)) a.e. (r,t) trongQT'
Ap dlJng b6 d~ 2.12, vdi N = 2, q = 5/3,
Gm=r3!5Fi(um)=r3!5IumI1l2um,G=r3!5Fi(u)=r3!5IuI1l2u.
Tu (3.29),(3.37)suyra
(3.38)r3!5luml1l2um~r3!5IuI1l2utrongL5!3(QT)ye'u
Gia sa cpE c1([O,T]),cp(T)=O.Nhanphu'dngtrlnh(3.9)vdi cp,
saild6 tichphantungphftntheobie'nt, tadu'<jc
T T
- \uom'wi )cp(O)- f\ um(t)'Wi )cp!(t)dt + f\ umr (t), wi r)cp(t)dt
0 0
(3.39)
T T
+ fh(t)um(1,t)w;Cl)cp(t)dt+ f\Fi (um(t)),wi)cp(t)dt
0 0
T T
=f\1(t),wi )cp(t)dt+Uofh(t)w;Cl)cp(t)dt,1~j ~m
0 0
D~ qua gidi hC;lncua so'hC;lngphi tuye'nFi(um(t))trong(3.39)ta
sadlJngb6d~sail
Bfl d~3.1.Taco
T T
lim f\Fi (um(t)),wi )cp(t)dt = f\Fi (u(t)),wi )cp(t)dtm-++00
0 0
Chung minh. Chti yding (3.38)tu'dngdu'dngvdi
TIT 1
(3.40) fdt fr3!51uml1l2umdr ~ fdt fr3!51u 1112udr
0 0 0 0
!
\7'E (L5!\QT)) =L5!2(QT)'
Mi;Hkhac,tac6
T Tl
(3.41) f\Fi (um(t)),wi)cp(t)dt=f Sri umIII 2umWi(r)cp(t)dr dt
0 00
23
T 1
f f(
3/5
1 1
1/2
)(
2/5 )= J r Urn Urn r w;Cr)lp(t drdt.
00
Do (3.40), ta chungminh =r2/5w;Cr)lp(t)E L5/2(QT).
Th~tv~y,do bfftd~ngthuc (2.7), ta co
TIT 1
f~ 5/2 ff
.
i 1
5/2
(3.42) JI1 drdt= r w;Cr)lp(t) drdt
00 00
1 T
f
1/4
1
r
1
5/2 ~
1
5/2
= r- -vrw;Cr) drJllp(t) dt
0 0
5121 T
~(21Iwjllv) fr-1/4drfllp(t)15/2dt0 0
T
15 /,..
11 11
512 ~ 5/2
=3-v2 Wj v Jllp(t)1 dt<+oo.0
Dodo,b6d~3.1.ducJcchungminh.
Cho m~ +00tfong(3.39),tu (3.11),(3.30),(3.31)vab6d~3.1
tasuyfa u thoaphuongtrlnhbie'nphan
T T
- (uo,Wj)lp(O)- f(u(t),Wj)lpl(t)dt+f(ur(t),Wjr)lp(t)dt
0 0
T T
(3.43) +fh(t)u(1,t)w;Cl)lp(t)dt+f(Fi(u(t)),Wj)lp(t)dt,
0 0
T T
=f(/(t),Wj )lp(t)dt+uofh(t)w;Cl)lp(t)dt ,
0 0
V rpE C1([O,T]) ,lp(T) =0, Vi =1,2,...,m.
Dodotaco
T T
- (uo,v)lp(O)- f(u(t), v)lpl(t)dt + f(ur(t), Vr)lp(t)dt
. 0 0
T T
(3.44) + fh(t)u(1,t)v(1)lp(t)dt+ f(Fi (u(t)),v)lp(t)dt
0 0
T T
=f(/(t), v)lp(t)dt+Uofh(t)v(1)lp(t)dt,
0 0
24
'\IcpE C1([0, T]), lp(T) =0,'\IvE V
La'y cpED(O,T), tu (3.44)suyra
T d T
(3.45) f[-(u(t),v)]cp(t)dt+ f(ur(t),vr)cp(t)dt
0 m 0
T T
+ fh(t)u(l,t)v(l)cp(t)dt+ f(Fi (u(t)),v)cp(t)dt
0 0
T T
= f(/(t), v)cp(t)dt+Uofh(t)v(l)cp(t)dt,'\IcpED(O,T),'\IvEV .
0 0
Dodotaco
d
(3.46 -( u(t),v)+(ur(t),vr)+h(t)u(l,t)v(l)+(Fi(u(t)),v)dt
=(/(t), v)+uoh(t)v(l), '\IvEV
dungtrongD(O,T)vadodoh~uhe'trong(O,T).
Cho lpE c1([O,T]),cp(T)=o.Nhanphuongtrlnh(3.46)vdi cp,sail
dotichphantungph~ntheobie'nthaigiantadu<jc
T T
- (u(O),v)cp(O)- f(u(t), v)cp/(t)dt+ f(ur(t),vr)cp(t)dt
0 0
T T
(3.47) + fh(t)u(l,t)v(l)cp(t)dt+ f(Fi (u(t)),v)cp(t)dt
0 0
T T
=f(/(t), v)cp(t)dt+Uofh(t)v(l)cp(t)dt,
0 0
'\IcpE C1([0,T]),cp(T)=0,'\IvEV.
So sanh(3.44),(3.47)tadu<jc
(3.48) - (u(O),v)cp(O)=-(uo,v)cp(O)
'\IcpE C1([0,T]), cp(T)=0,'\IvE V,
ma(3.48)tuongduongvdidi~uki~nd~u
(3.49) u(O)=uo'
Ta chu yding,tu(3.30)- (3.34),taco
uEL2(0,T;V)nLOO(0,T;H),tuELOO(O,T;V)va
25
/ 2
( . )
2/ S Ls/2(Q )tu E L O,T,H, rUE T .
V~yst!t6nt<;tinghit%mdU<;1cchungminh.
Bu'oc4. Tinh duynha'tnghit%m
Trudche't,tacfinb6dSsailday.
B6 d~3.2.Gidsaw Ianghifmytucuahailoansau
1 -
(3.50)Wt-(wrr +-wr)=f(r,t), O<r<l, O<t<T,r
(3.51) Ilim vlrwr(r,t) I <+00,wr(1,t)+h(t)w(1,t)=O,
r~O+
(3.52) w(r,O)=O,
{
wEL2(0,T;V)n LOO(O,T;H),
(3.53)
. twELOO(O,T;V),tw/EL2(O,T;H).
Khido
t
(3.54) ~llw(t)112+ Kllwr(s)112+h(s)w(1,s)]ds
2 0
t
- f(J(s), w(s)}ds=0, a.e.t E(O,T).
0
Chti thich.B6dS3.2la t6ngquathoacuab6dStrongcu6nsach
cuaJ.L.Lions [2]chotruongh<;1pkh6nggianSobolevco trQng.
Chungminhcuab6dS3.2cothS!lmtha'ytrong[8].
GiasauvavIa hainghit%mye'ucuabaitoan(3.1)- (3.4).Khi
do w =u - v la nghit%mye'"ucuabaitoan(3.50)- (3.52)vdive'
phai J(r,t)=-lu(t)I1/2u(t)+lv(t)I1/2v(t).Dungb6dS3.2,ta
cod~ngthucsail
(3.55)
t
~llw(t)112+ f[llwr(s)112+h(s)w2(1,s)]ds
2 0
t
=- f(1 u(s) 11/2U(S)-I V(S)11/2V(S),W(S))ds:::;0,
0
26
do tinhchiltdondi~utangcua I u11/2u. Tir (3.55)ta suyfa ding
w =O.Tlnh duy nhilt du'<;1cchungminh.
V~ydinhly (3.1)du'<;1cchungminhKong.
27