NGHIÊN CỨU PHÁT TRIỂN MỘT SỐ THUẬT TOÁN GIẢI BÀI TOÁN LẬP LỊCH
NGUYỄN CHÍNH THẮNG
Trang nhan đề
Lời cảm tạ
Tóm lược
Mục lục
Chương 1: Đặt vấn đề.
Chương 2: Phương pháp GPS - Phương pháp qui hoạch động.
Chương 3: Mô hình mạng vận tải.
Chương 4: Thuật toán tìm chu trình trong bài toán vận tải.
Chương 5: Bài toán phân phối quỹ phòng học.
Chương 6: Hướng mở rộng và phát triển.
Chương 7: Phần cài đặt.
Tài liệu tham khảo
25 trang |
Chia sẻ: maiphuongtl | Lượt xem: 1792 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Luận văn Nghiên cứu phát triển một số thuật toán giải bài toán lập lịch, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
CHUaNGill
A " JIII..?
MO IDNH MANG VAN TAl. .
& i1NGDVNGVAo HAl TOANV!N TAl
Trangch1A1ngnaychUngta kMo satmQt56cdslJ chity€u ala
1116lUnhmt;tngv4nuii , trangaochungta coxetatfumQt56thu4ttodn
rim lu6ngC1ICat;litrh1mt;tngtJ4nuii va mQtvai tlngd\lng cUanO.Sau
hit chungta se dung11161Unhva ph1ldt1gpooptim lu6ngaJC at;litrh1
ffit;lngv4nuii tlao~c timphtbngan qtc bih1banaduchobai todn .
tI~nuii.
... , ., A
I. BAI TOAN Md DAU
Ok d6thicohuangvacotrQngs6lamohinhti~ndvngcho
nhi~u ngdvngcoSlJdi chuy~ntrongm<)tIlli}.ng(net).Saudayla
m()tvidvminhhQa.
Xet d6 thi co htrlng,lien thongtronghinh (Hl),bi~udi~n
m()tIlli}.ng6ngd§.nm<)tlo~iluuch~t.
a
2
J
z
LUllchit d1i<JCkhdingu6ntita din ndidn sadvngla z.Ok
dinhhaynodec,d,b vae cOth~xemla cactr~mtrungchuy~n.
Ok ~nh cohudngbi~udi~ncacduOng6ngd§.nluuchit cuah~
th6ngvachifOhuongcualuuch~tphaidi.cac nhan(cacs6) ghi
trencaca}.nhchobi~tkha~ng cungclp (v~nchuy~n)cua6ng
d~n.B~iitoand~tfa la haydmcachd~crJcd~ihoaI1J(;1ngluucM't
coth~v~nchuy~nd1J(;1cti1ngu6nadin dkh zvarinhfagiatrj
/
25
e1.J.e d~ieuaeachv~nehuy~nay.DftyIam~tvi d'l bi~udi~nd~e
dU'did~ngm~tm~ngv~ntai (transportnetwork).
" .
II. ~NG V~NTAl.
2.1Dinh IDa. ng
M~t m~ngv~ncli (transportnetwork)G =(V,E)voiV lat~p
h<1pcaedinh vaE la t~ph<1pcaeeung, la m~tdo thj hihlhuong,
cotrQng56,li~nthongrheacaedi~uki~n:
i) COdungm~tdinhtrongG =(V,E),gQilanguOneungd'p,la
dlnhkhongco~nhvao.
ii) Codungm~tdinheuaG =(V,E), gQiladinhthunh~nhay
dich, ladlnhduynh§tkhongco~nh ra.
m)caetrQng56C 11euacae~nh co hudng(i,j)d~egQila kha
n~ngeungd'p eua(i,j)hayla luOngehuy~ntai tr~n~nh (i,j)tit
dinhi dtIi dinhj,C ii lam~t56khong§m.
iv) D6 thj vo huongtrt1ngUngvoi ~ng G = (V,E) Ia do thj
nh~nd11<1eb~ngeachbequahuongtr~ncae~nh .
llinh tr~nlam~t~ng v~ntaLNguonIaavadichIaz.
Kha.n~ngeungd'p tr~n~nh (a,b)la Cabb~ng3vatr~n~nh
Cbcla2.
M~tluOngchuy~nta.iF trongm~t~ng v~ntaiG dU<1edjnh
nghIaIad~il\i(/ngb~ngt6ngcaeluongehuy~ntai tr~nm8i~nh
(cohuang)khongV\t<1tquakha.n~ngehuy~ntai ala nhung~nh
do.Hemnua,phaigia.thitt th~mr~ngl11<1ngmam~tdlnhv nh~n
taival\i(/ngxua'taititdinhv phaib~ngnhautr~nt§tcl caedlnh
khongphailadinhnguOnhaydich.
2.2f)jnhnghia
ChodothjcohudngG=(V,E).~t ell Iakhan~ngehuy~ntai
eua~nh huuhuang(i,j).M~tluOng(haym~tdongehuy~ntai)F
trenG lam~tphepgallm8i~nh hftuhuang(i,j)m~ts6khong§m
FIirhea:
i) 0 ~Fil ~CiivoimQi,j .
26
ii) Voi m6idinhj (kh6ngphailangudnhaydkh)
L Fij =L Fji (1.1). .
1 1
Trongd6t6ngd~cliy tr~nmQidinhi voigiathi~tlan~u
(i,j)kh6ngphaila m~tc~nhthi Fij =0
Ta gQiFiilam~tludng(chuy~ntai)tr~nc~nh(i,j)tit i d~nj.
Voi m6idlnhj tagQi:
L Fij.
1
la lU<ingchuy~ntai vaochodinhj va
L F..J1.
1 '
lalU<ingtaixua'tratit dlnhj.
Tinh chit bi~udi~nb~ngphUdngtrlnh (U) dU<icgQila SlJbaa
roanlU<jngchuy~ntai tr~nludng.
Trongvi d'Str~n:
cae phepgall : Fab= 2,
Fbc= 2I
Fez= 3,
Fad= 3,
Fck:=1,
Fde= 2,
Fez= 2 xacdjnh m~tlu6ngtr~nm~ng.
Xemdongtai vaodinhd taco Fad=3
trongkhi dongxua'tratitd la Fck:+F de =1+2=3.
I-nnh sauxuit pharotit ~ng cho trongvi d'Str~nminh hQa
ludng(chuy~ntai)vitan~ucua1Il4ng.C~nhdU<icdanhnhanX,vne'u
x la lU<ingtai vaodinhvay la hilng tai xuit phatra titdinh.
27
al... .
.2
Trong vi dq nay, IU<;1ngcli xu~tra tit nguOna Ia
Fab+ Fad=2+3
b~ngIU<;1ngh~pvao euadfchz :
Fez+ Fez= 3+ 2
vi cl 2d~ub~ng5.
Djnh Iy sanehoth~y ke'tquaIt/ll11gxwfttit ngu6n
11/{1ngnhQpvaochodfch z nayIu~ndung.
z
a lu6nbang
2.3Djnh 11
N€u F lizmQtlu6ngchuylntdi (hiLmtdi)trongmQtmq.ngv4ntd~
ItlQ'ngxudttit a lu6nbang11lI,1ngnhQpvaocooz.
Nghiala:
L Fai = L Fiz..
1
Chungminh:
~t V Iat~pcaedlnh.Tae6:
L (L Fij) = L (L FiJ
je V ieV je V ieV
trongkhim8itOngkepla :
L Fe
eeE
trong06E lat~ph<jp'caeqnh.
Baygio,
0=L (L FiJ .. L F;J
jeV ieV ieV
.
1
28
- (1;Fiz"LFzJ+(1;FIz"L FaJ+ 1; (LF1j"L FP)
ieV ieV ieV ieV jeV ieV ieV
(j "*a,z)
= L FIz" L Fai
je V ieV
VI FIi = 0 = Fai voi mQii eV va theo djnhnghla ta co :
L Fii .. L Fji =0 nlu jeV \ {a,z}
ie V ieV
2.4Djnh nghia
Cho F la rn~tluOng(ehuy~ntai)trenrn~trnangv~ntaiO. Oia tri
eualu6ngb~ng:
F = L Fai = L Fh
ie V ieV
Trongvi dl1trengiatri euaF ill 5.
2.5Phatbi~u1mtoantren~ v~ uii: ,
Baitoantrenrn~trnq.ngv~ntaicothephatbi~unhusau:
Chom~ngv~ntai0, haydrnluOng(ehuy~ntai)cogiatri Ionnhit
trongO.Nghiaill trongtit cl caeluOngehuy~ntai tren0, haydm
lu&ngehuy~ntaicogiatri Ionnhit.
BaitoandrnluOngehuy~ntaiaJ.ed~itrenrnq.ngv~ntai co nhieu
ungdl1ngthtJetl nhuvi dl1sau:
Vi d1}:
M~ngcaetr~rnbornnujegiiia2 thanhph6A vaB duqeeungca.'p
nudetit 3 rn~ehnguOn uoela wi,w2,w3.Khan~ngthunh~neua
h~th6ngtrunggianduqctho trencaee~nh.Caedinhb,e,dla cae
tr~mbdmtrunggian.
29
b
6 4
A
wl
w2
w3
DOthi tr~nchuaphiiiIa m~hlnh mq.ngv~ntai vi conhi~u
nguOnvaovanhi~udfchnh~n.Chungtacoth~chuy~nm~hinhh~
th6ngnaythanhm~hinh mq.ngv~nt:HtUdngdUdngb~ngcach
choth~mvaom"t nguOnph~(gia:supersource)va m"t dfchph~
(dkhgia: supersink)voikhanangcuacq.nhtUdngungla m"tllic;1ng
v~cungIon.Thuongbi~uthikhan~ngthu.. nh~nv~cungIondo
b~ngiatrj M.
b
a
.It
A
\111
2
2.6tat cAt. DuOngtmglu6ng.Djnhly Ford..FulKerson
Djnhnghia:
Chomq.ngv~ntai(G,V)codinhnguOns vadinhdfcht.Ta gQilat
clt(x,x')la m"teachphanhoq.cht~phQpcaedinhV cuamq.ngthanh2
t~pX vaX'=X\V , trongdodinhngtiOnthu(kt~pX condinhdfcht thu"c
t~pX'.Khan~ngthongquacualatcAt(X,x')la 56:
30
c(x,x')= L Ctj
ieX,jeX'
M"t !atc~tc6khan~ngth~ngquanhonh~tdrlQcgQila !atc~tht;p
nh~t.
M~nhat!:.
Gid trj cUa1T1QiluAngF trong1TU;1ngloonnM hdnhot;'fcbd:ngkhdndng
tMngquaala latcdt(X;X')tUyY trongnO: F 5 c(X;X').
H~quii :
Gid trj luAngchU')inuIi C1/CdQitrongm(lngkMng4JtbltquO.kM ndng
tMngquacudmQt'fatcdth{!pnhdt.
FordvaFulkersonchungminh~nggiatrj luOngcv.cd~itrong~ng
dungb~ngkhan~ngth6ngquacualatc~th~pnh~t.
Gia si1F la m"t lu6ngtrong~ng G=(V,E).Tit m~ngG dv.ngd6 thj
G'=(V,E')trongd6 t~ph\1pcaccungE' va caetrQngs6tr~ncaeeungd~e
nnhtheoquit~esau:
a)N~u(i,j)thu"eE voi F(i,j)=0 thi (i,j)thu"eE' voi trQngsfSla~j.
b)N~u(i,j)thu"eE voi F(i,j)=Ctj thi (j ,i) thu"e E' voi trQngsfSla
F(i,j).
c)N~u(i,j)thu"eE voi0 < F(i,j)< ~j thi (i,j)thu~E' voi trQng
s61aCj .. F(i,j)va0,i) thu"eE' voitrQngsfSF(i,j).
CaeeungcuaG' dOngthOiding la eungeuaG d1iQegQila cung
thu4n, caeeungcon~i gQila cungnghich.DOthi G' d~e gQila do thi
t~nglu6ng.
Gia si1P =(5=i<J,i 1, , i Ie=t) Iam~tduongdi tit 5d~nt trongdo
thit!1ngluOngG'.GQi0 lagiatrj nhonh~teuacaetrQng56euacaeeung
tr~nduongP CJtr~n.Ta:>caydv.ng.lu6ngmoiF* tr~n~ng G theoquyt~e:
{
F(i,j) +8
F. (i,j) = F(i,j) - 8
F(i,j)
nln(i,j)thu~cP vaIacungthu~n
n~u(i,j)thu~eP va Ia eungnghjeh
nlu(i,j)khdngthu~cP
31
C6 th~ki€m chungd\!;1cF* la luongtrongm~ngva F* =F +o.
C3chbie'nddi luOngrheac6ngthucnaygQila t~ngluOngdQcrheadu'Ong
P.TagQiatbYngtdnglu6ngF l1z111QiatfJngai tit ngu6ns dena£Cht tr~na6
thila tdnglu6ngOF.
llI.nruA T ToAN TIM LUONGVAN TAl CUe BAl.. .. .
3.1Djnh 'nghia:
ChoF la m"t luOngtrong~ng v~ntai G-(V,E) co dinhnguOns,
dkh la dinh t. M"t luOngv~ntai cvc d~itrongG la m"t luOng
chuy€ntaicogiatri Ionnh§'t.Trongtru'Ongh<lpt5ngquat,co th€
c6nhi~uluOngchuy€ntaic6cunggiatrj Ionnh§'t.Saud~ychung
taduaram"tthu~troandmm"tluongevcd~i.
y tlidngth~t toaDv~cln ban demgian nhu sail: chungta
b~td~ub?ingm"t luOngnaod6 va l~pdi ~p ~i vi~ct~nggia tri cua'
luongchode'nkhi khongth€ t~ngduqcnua.Ke'tquanh~ndUQcchfnh
laluOngevcdq.icftndID.
LuOngb~tdftuc6 th€ chQnla luOngtrongdo IUQngchuy€n la
o. Nhu v~ym"t ludngchuy€n tai ban dftuc6 th~dUQckhdi tq.O
b?ingeachgall bandftula chot§'tcl cacgiatri Fii=0 voi mQidinh
I vaj.
~ t~nggiatri cualudngdaco,chungtaphaidmdu'Ongtit
nguOnvaosde'ndkh t vat~ng iatrj cualudngdQctheaduongnay.
D~,th§yludngnayrheacacgiathie't.cuabai roannhungkhong
ph:Hla ludngc~ndill,vi kill d6 khongc6 IUQngluuch§'tnaotit
nguOnsde'nt.
ChotmJCm"tludng, chungtaco th€ cli tie'nsaocholudng
moitit sde'nt lagiatrjd1i</C~ngleDsovoi ludngdac6.Di Dillen,
dBtie'nnayphairheamanmQiyellcftucuagiathie'td6ivoi m"t
luOngchuy~ntaL~c bi~t,ntu luOngnh~pv?wm"tdinh b§'tky
(trusvat)d\J(/ct~ng iatrj haybi giam giatri thi ludngxu~tratit
dinhd6clingphaidu<lct~nghaybigiamm"teachtUdngung.
32
Phuongphapdmml>tluOngevedq.idti<JCb~td~ub~ngluOng
cogiatri 0 vaCattitn li~nti€p ehodtn khi ml>thamt6iuudu<;1e
thanhl~pnhuv~y.
Thu4ttoonMaxFlow:
begin
Khltitq,o: bdtadubanglu6ngcogidtrj O.
far i c V do
far j € V doF(ij) =0
Dung=False; ~
whilenot(Dung)do
if (TIma1l(1ca1liJnguY:nglu6ngP) then(uY:nglu6ngdQctheoP)
dse
Dung=TruE;
end;
~ dm dU<;1ed1iJngt~ngluOngtrongOF co th~dungth~t
tmindm kitm theoehi~url>nghaydm kitm theoehi~usauba:td~u
ticdinh s .FordFulkersonsUdv.ngthu~ttoangall nhan dm luOng
e1.jedq.inhusau:
3.2Tht4t toanFord..Fulkerson
BLEdtadubang mqtlu6ngchdpnhQ.na1l(lctrong 7Tl(Ing,co thi!
ludng cOgid tri o. .
B2.TIm a1liJnguY:nglu6ngbangcachgdnnhiin chocaetIlnh.
M6i ainhtrongkhi thtlc~ thu4ttodnloon thuQc1 trong3 trQngthai:
* Ch1iacOnhdn.
* CO nhiinch1iaxet.
* CO nhiinad xet
Nhdnala mqtainhg6m2 phdnthuQC1JWtronghaid4ngsau:
[+P(i),s(i)] ~c [..p(i),s(i)]
DQng[+p(i),E(i)]chira la cdnuY:nglu6ngth£ocung(P(i);)vdi
G(i)la l71l;fngldn Mdt co thl tdngtheocungnay.
DQng[~P(i),E(i)]chi ra la cdngidm lu6ngtheocung(i , P(i) ) vdi
G(i)la l71l;fngldn nlu1tco thl gidmtheocungnay.
33
Dflutienchic6aiM ngu6ns lit atl(fcgannhdn00a6 lit nhdn
cht/axet,conmQiainhcon14icht/ac6nhdn.
Tt'(s chungtagannhdnchocaeainhk ~ vdin6va nhdnala
ngu6ns khia6£fathanhnhdnan.xet.
Titp theo, tit m6ialnhk c6 nhdncht/axetchungta 14igan
nhdnchotdtcdcaeainhchtlac6nhdn~ vdik va nhdna1adinhk £fa
thanhan.xet.
Quatrlnhat/1lC14P14ichoah1khi:
+ HoQczaafcht trClthanhc6nhdn.
+ ho<iczatdtcdcae01nha~ c6nhdnvazanhdnad xet
nhungt vtinkMngc6nhdn.
Trangtnli1ng1u;tpthtlnhdtchUngta rimatl(fcatftngtdnglu6ng
cOntnIi1ng1u;tpthll2 chungta kMngrimatb;fcatftngtdnglu6ng(n6i
cachkhdczachungta ad rima141Clu6ngC1/CaQi)
McSikhirimat/1lCatftngtdnglu6ng, chungtasetdnglu6ngtheo
a11iJngama1lt;1ca6,saua6 x6atatcd caenhdnva vdi lu6ngmill thu
atlQ'Cchungta 14i.stld¥ngeachdanhnhdntrencaeainhat rimatldng
tdnglu6ng.
ThuQ.ttodnketth1i.ckhid6ivdiluAnghi?nhanhchungta khOng
rim atlQ'CatlCJngt1ing lu6ng.
3.3Phddngphap~ng ludnglu6ngvQ.ntii hi~nhanh
ChotntJcm~tluOngv:)nt:HF cO2eachdi cli titn no:
each1la dmm~tduong5=Xb Xl, ..., Xn= t tU s dtn t sao
eholuOngdQctheom6icungtrongdu<1ngdo la nho hdnsovoi kh:i
n~ngthu n~n ( FIc-1,It< CIc.1,It)voi mQi k giua1va n..1LuOngcOthi
dtl<leamt~ngtr~nmOicung trongduClngdo bhngeachlamevctiiu
giatri CIc-1,It.. FIc.1,Itvoi mQik giua1 va n..l , saoeho khi luongda
d1iCJet~ngthl dQctheotoaDb~driOngco It nhft'tm~teung
thul)edudngdo taco :
FIc-l,k= CIc.1,Itva khongcon cungnaocOthi t~ng.
3.411n1tVcgallnhanrlm duCJng~ng lu6ng.
34
lhuroc ~'indPad:- :1;
p[i],E.{i]la nMn cUadlnh"11Odei.
vf la danhsdchcaedlnhc6nhdnchttaxet.
C[iJ[j] la kM ndngtMngquacUacung(ij) td ~j la cacdInh
ala d6tN.
F[i][j]la lu6ngc/wylnuii tT~cung(i,j)tit i dht j.
begin
pfs]= S j E.{sJ=Mi M la gidtTjt'6cUngldn.
PathFound=TRUE.,
whilE(Vf kh6.crdng)do
begin
Ldyi tit t4PVT
for (j th~ct4PV\vf) do
begin
if (C[i][j]>0)&& (F[i][j]<C[i][j])then
begin
p[jJ=i;
E.[j ] = nUn{E.(I],C[iJ[j] , F[i][j)};
vf =VT u {j};//11Q.pj vaodanhstich
// cticdInhc6 nhdn.
if j =t then thOOt
end;
if (qi][j] >' 0)&& (F[i]U] >0)then .
begin
p[j] =, ~
G(j ] =min {E.[i],F[i][jJ};
VT = VTu {j}; //11Q.pj t'ao
//sdchcticdlnh.c6nhdn.
if j =t thenthOOt
end;
end;
end.,
PaxhFound= FALSE;
end;
35
~ ~6iCfmr dinp'1116
3.5Thti tQcding lu(,us -"-- _.~ hU~.._.Jng.
Thti tQcT3DILFlow;
begin
j = pet];
i=t;
tang= f.(t ];
while(i 1=5)do
begin
if 0>0)thenF[i]U] = Ffi][j] +tang;
else
begin
j = ..j;
F[i]U].. tang;
end;
i = j ;
j = p[i];
end;
end;
3.6Thu tQcMaxFlow(Ford..Fulkerson).
{
for ( i E V) do
for (j E V) doF[iJU]=0 II KhltitQ.oluAng0
Dung= TRUE;
do{
Find_Path;IlclmattitngtitngluAng
if (PathFaund)thenTang_Flow II trit node5
elseDung = FALSE;
} while(Dung TRUE~
"LuAngc¥caQitrang1I1IJng1i.zF[i][j], (i,j) E V'
" latcdt~p nMt 1i.z(VT, V\VT) "
};
36
Vi dv.xetm~ngv~ncli sau:
s
5
t
Va hinh sauminhhQam~tlu6ngtrong~ng:
9
3.J
t
ffinh tr~ndayminhhQam()tlubnghi~nhanh.Tr~ndb thj
co2duongtitsde'nt la (s,A,c,t) valubng(s,B,D,t).
~a~:
Trang mQtmdngvt;intd~neutrbl a1liJngai tit nguAndenainh aich
comQtCtJnhcungcdpady htlhngWi hay~t cq.nhrdng theohtlhngtpu1:J
lid thi luAngvt;inchuylntheoa1limga6 la C1/Caq.i.
Tr~nc:k lubngv~ntaiquacaeduong(s,A,C,t)va (s,B,D,t),
d~ucochuaeungvatrongd6coeungkhan~ngthu
nh~n.Vi v~ylubngdQetheehaicungnaykh6ngth~cli tie'ndUQe
nua(theom~nhd~tr~n).
37
Tr~nd1iC1ng(s,A,D,t)co kha n~ngthu nh~ncuam6i cung
trongd~ngthl IanhdnIu6ngtaihi~nhanh.TdngIannhfttco thi
t~ngIu6ngla 1vi Iu6ngtai tr~ncungkhongthi Vli<;1tqua3.
Ktt quasaukhi t~ngIu6ngnaynhusau:
s
3.3
t
Saucli titn nay,kttquanh~nd~c cho tdngcua Iu6ng
chuy~ntaitU5lend~ 6.
each 2 :COnhungdtiJngkhacmaIu6ngco th~cli thi~n
dUQcnhu trongIu6ngchuy~ntiB ban d~uta khaosat duong
(s,B,A,D,t).Ktt quat~ngIu6ngrheaduongnayla :
3.3
s t
Ngaycl trongt:ntOnghClPkh6ngco duongmalu6ngchuy~n
tiHtrendo co th~cM titn d~c,ding co th~co nhungphridngphap
khacd~cli titn lu6ngtUngu6nsdtn dicht.
Vi dq.sauminhhQadieunay
B t
38
Trongdo thj nay:kh6ngcoduongnaotits dtn t maluong
chuyintaico thi caititn.Nhungntu luong(X,Y)dUC1cthugQnl~i
thl luOngtitX dtn t c6 thi t~ng.Bu truchovi~cgiaml~ng nh~p
vaochoY titSde'nY c6thi t~ng.Dodotadat~ngluOngtitsde'nt
, varheadoluOngchuyintaicuachungtat~ngtit4 l~ndUC1c7.
s t
Chungtat6ngquathoa2phuongphapnaynhusan:
GiasUc6mOtduongtits de'ndinhY, mOtduangtitdinhX
de'nt va mOtduongtitX de'nY voi giatti luOngchuy~ntiHla s6
duong.
Khi d6luOngdQctheoduangtitX de'nY coth~c6th~du~c
rutgQnlq.i(giamdi) vacacluOngtitX de'nt vatitsde'nY c6 th~
d1i<lct~ngcung56IU<Jng.LUC1ngayIagiatti nhonha'tcuaIuongtit
X de'nY vahi~ugiUakhan~ngthunh~nvaluOngchuy~ntai trong
cacdudngtitsde'nY vatitX de'nt. ..
3.7PhAncai~t thutttoantr~n.
Xet~i th~t toandan~utr~n(Jday:
Thu tIIc MaxFlow (Ford..FuIkerson).
1.{
2.
3.
4.
5.
6.
7.
8.
9.
far ( i c V) do
far (j €! V) doF[i]U] =0 II KhlfitQ.Olu6ng0
Dung=TRUE;
do
{
Find_Path;Ilclmd1litngtdngludng
if (PathFaund)thenTang_Flow II tril nodes
elseDung=FALSE;
39
10.
U.
11
13.};
} whiL<
. e(Dung TRUE);
"Lu6ngate d(zitTangffl(,1ngld F[i][j], (~j) fE V"
" latctit~p Mdt ld (VT,V\VT)"
Ph~~chu yiu cua th~troanla l~nhd dong 567.Khi m~t
nodedadU<;1cd~tvaom~tdu'Ong~ng ludngno khOngth~dU<;1cnoi
rt)ngd~dungvaom~tdti1ngt~ngludngkhac.
Khi caid~t,chungtadung:
1).M~t mcingeaccd hi~u(flags)onpath[node]chi dinh mt)t
nodethu~chaykhOngthu~cvaomt)td1iCJng.Day nayding chi djnh
nhungnodenao la nodescu6i cuam~td1iCJngsaccho co th~khai
tri~nb?ingeachct)ngthemnhungnodek~voi no.
2). Dayendpath[node]d~chi djnh m~tnodeco phciila node
cu6icunghaykhOngcuam~td\iJng t~ngluOng.Voi mOinodetren
mt)tduongt~ngluOng th~t roanphciigiu l~inhunggl nodetniOc
no trendti<Jngt~ngluOngdo vachi~ucuacung.
3).Day precede[node]tro din nodetruacnodedo trendudng
t~ngluOngcuano va
4)Dayforward[node]co gi3.trj TRUE niu va chi niu cungdi
titprecede[node]din node.
S).Dayimprove[node]chi dinh s61u<;lngmaluongchuy~ntai
toi nodeco th~duqct~ngdQctheeduongt~ngludngcuano.
Th~t loan rim m~tiIufJng tanglu6ng trI s iIt!D.t Dba'saw
liGan cooendpath[node],anpath[node]gid trj FALSE 00imQinode.
endpath[s] =TRUE;
anpathfs]=TRUE;
II Tinh lu6ngCIJcaq.itit s ma cdea1Jilngddn co thl chuylntdi.
improoe[s]=tdng cde C[s][node]trro tOt cd cde ainh node.
while((anpath[t] FALSE) &&
( t6ntq.i~t nodend 00iendpath[nd] TRUE) {
endpath[nd]= FALSE;
while(t6ntq.inodei tlu3a(anpath[i]FALSE) &&
i
L
40
adjacent(nd,I) = TRUE)&& (f[ndlfi]< C[nd][i]»{
II dOngtil nd deni co tM tdng,aQ:ti tltlO a11CJng
onpath[i]= TRUE;
endpath[i]=TRUE;
precede[i]= nd;
forward[i] TRUE;
x =C[nd][i].. f[nd][i];
improve[i]= (improve[nd]<x)? im[rove[nd]: x;
}1/ while(tdntQ.inodei thOa(on-
while(tdntQ.imQtnodei saocoo (onpath[i] FALSE) &&
adjacent(i,nd)= TRUE) && (f[i][nd]> 0 » {
// dOngtil i aenndco tM gidm,aQ:ti tlCtoatlltng
onpath[i]= TRUE;
endpath[i]= TRUE;
precede[i]= nd;
forward[i]= FALSE;
improoe[i]= (improve[nd]<f[iJ[ndl)? imrooe[nd]: f[i][nd];
}II (tdntQ.imQtnodei saocoo (onpath[i] FALSE) &&
}II while(onpath[t]-
if (onpath[t]= TRUE)
"TIma1lt;fcatlltngtdnglu6ngtits dent";
else
'I Lu6ng~ hanhLa lu6ng C1JcdQ£';
Ngaykhi dmdU<jcduongt~ngludngtits de'nt, tacoth~xacdjnh
duangt~ngludngMi :
x = improve[t]i
nd=t;
whil£(nd1 s) {
preLl= precede[nd];
(forward[nd]= TRUE) ? (f[pred][d]+= x) : (f[nd][Pred]..=x);
nd= pred;
}II whil£
41
Xetv£d\lCItrangtr~ vaimt,lngtJ4nwi sau:
3
5
s t
M,1ngMY g6m6 111M,l1aMsdtit0 aen5.DUngmatTQn~
bilu dihl ta co matTQndq.ng
Ke'tquakhi thvehi~nehUdngtrlnhtaco :
Ke'tquaChuongtrlnh
TIm Lu6ngCveDq.iTrongM~ngV~nTai
= 000---
BaitminM~ngV~nTaibiiudi~nd~id~ngmatr~nk~:
0 1 2 3 4 5
####I####~###~#~##~######~#~#~#####
0 I 0 5 4
11 0 0 0
21 0 0 5
31 0 0 0
41 0 0 0
51 0 0 0
0 0 0
3 6 0
0 2 0
0 0 4
0 0 3
0 0 0
42
s A B C D T
s 0 5 4 0 0 0
A 0 0 0 3 6 0
B 0 0 0 0 2 0
C 0 0 0 0 0 4
D 0 0 0 0 0 3
Ktt quat~ngluOngIftntha: 1
0 1 2 3 4 5
"""I'~"""""'~"""""""""""""""'""",
0 1 (5,3)
1I (3,3)
21
31 ' (4,3)
41
Ktt quat~ngluOngIftntha:2
0 1 2 3 4 5
"""I""""""""""""""""""""""'~'""",
0 1 (5,5)
11 (3t3) (6,2)
21
31 (4,3)
4 I (3,2)
Ktt quat~ngluongIftntha: 3
0 1 2 3 4 5
"""~"""""""""""""""""""""",,,"""
0 I (5,5) (4,1)
11 (3,3) (6,2)
2I - (2,1)
3 I (4,3)
4 1 (3,3)
BangKtt Qua:
0 1 2 3 4 5
"""I"""~""""""""""'"
01** 5 1 ** ** **
11** ** ** 3 2 **
21** ** ** ** 1 **
31** ** ** ** ** 3
41** ** ** ** ** 3
Giatri lu6ngCtJCd~iF = 6
43
3.8MOtvai ~ dQIlgcuachudngtrinh ~n.
3.8111n~d\Jn~vaobai tminv~ntai.
M~tvi d'l thu~e16pe:k bai tmine6 th~gi~iiquy~tnhu m~t
bai roanehuy~ntai la bai roanv~ntai trongIV thuy~tqui hoq.eh
tuyin tfnh.
Cho St.SzI-ISm va Tl, Tz J-ITn la 56caengu6nva caedkh
trldnglinggiuacaethveth~eungbanchit sedUJeph§.nph6i.M8i Si
e6m~tngu6neungd'p hifu hq.nla Ai va m8idkh e6m~t56nhu
eftuhifu hq.nla Tj . HdD.Quae6 m~tchi phi la ~j tr~nm8i ddD.vi
thveth~khi mu5neunge~ptitSi de'nTr Trangth~hi~nddD.gi:in
nha'tkhonge6 vi~ehq.neh~v~56lUdnghangph:ii eungtip tit St
de'nTj ,ngoaivi~eph:iitranhvi phq.mcaerangbu~eMi A vaBj.
Bai roand~tra la ph:iiph§.nph6inguy~riv~tli~utitngu6n
d~ndkh nhuthe'naod~ehora t5ngchi phiv~nehuy~nla nho
nha'tmakhongVUQtquanhudu ti~pnh~neuam~tdkh vakhong
vuqtquakh:i n~ngeungca.'peuam~tnguOn.
Bairoannaye6th~dU<;lekh:iosat nhulabairoandmluOngt:ii
e6- chi phiC1jeti~ueuagiatri C1jedq.itrongmq.ngtronghlnh (ill).
C~pthli tV (x,y)n6i v6i m8ieunge6V nghialax lakvhi~u
kh:i n~ngtie'pnh~nva y la chi phi eho m8i ddD.vi.
44
Ntu duC1ngv~nchuyenchuyentit Stdtn Tj kh~ngdu'Qc
phep(bi c1m)thl vai c~pi, j cungn6i trtdngungsedu'QCbequa(x6a
di hayc6 thechovaon6 m<}tchi pmcvcIan).TuongtIJ ntu c6 m<}t
giai h~ntr~nve kh6i htQngv~nchuy~ntit Stdtn Tj thl kha n~ng
tie'pnh~nhftuh~nd~c n6i vai cungthich h<;1p.Trong tru'Ongh<;1p
nayc6 the x:lyra t1tcl nguOncungc1psekh~ngdii cho nhu ca.u.
DUthe'naodi ch~ngnila,loi giaicuabai tminchuy~ntai sedu'QCbe
di vi~ctim tdng56c\jcd~imathaybhngchi pmcvcti~u.
Sa d1lngphUdtlgphapdm luOngc\jc dq.ichungta tim dUcJc
phUdngan banda.uchobai roanv~ntai:
Vi d1l: .
Xetbairoanv~ntaitimmillchipm:
Duavemq.ngv~ntaivaimatr~nkenhtisau:
Mq.ngv~ntait\t1ngungvrn.b~iroan
1 2 3 4 5 6 7 8
"""1,"""""""""""""""""""""""""",
110
210
310
410
0 0 300 .300.300.300 0
0 0 150150 150 150 0
0 0 250 250 250 250 0
0 0 0 0 0 0 100
45
B1 B2 B3 B4
100 125 125 350
AI 3 6 7 8
300
A1 6 9 7 5
150
A3 12 8 n 9
250
51 0 0 0
61 0 0 0
71 0 0 0
0
0
0
0
0
0
0 125
0 125
0 350
0
0
0
Ke'tquathu~ttoanFord..Fulkerson
TIm Phutnlgan DduTi~ncuaBTVT.
===== 000==
Ke'tquaphftnph6ibuoc:1
1 2 3 4 5 6 7 8
~ I """""""""""""""""""""""""""""""""""""..
0 100 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 100
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
Ke'tquaphanph6ibuoc: 2
1 2 3 4 5 6 7 8
~~~..~I """""""""""""""""""""""""""""""""
0 100125
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
Ke'tquaphanph6ibuoc:3
1 2 3 4 5
110 0 0 100 125
210 0 0 0 0
310 0 0 0 0
0 0 0
0 0 0
0 0 0
0 0 100
0 0 125
0 0 0
0 0 0
~~~~~~~~~................................................................................................
6 7 8
75 0
0 0
0 0
0
0
0
11 0 0
21 0 0
31 0 0
41 0 0
51 0 0
61 0 0
71 0 0
110 0
21 0 0
31 0 0
41 0 0
51 0 0
61 0 0
71 0 0
46
410 0 0 0 0
510 0 0 0 0
610 0 0 0 0
710 0 0 0 0
Ktt quaphftnph6ib~c:4
1 2 3 4 5 6 7
0 0 100
0 0 125
0 0 75
0 0 0
~~~~~~I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~",,~~
8
110 0 0 100 125 75 0 0
21 0 0 0 0 0 50 0 0
310 0 0 0 0 0 0 0
4 I 0 0 0 0 0 0 0 100
51 0 0 0 0 0 0 0 125
6 I 0 0 0 0 0 0 0 125
710 0 0 0 0 0 0 0
Ke'tquaphftnph6ibuOc: 5
1 2 3 4 5 6 7
~~~~~~~~,~~~,~~~,~~,~~~~~,~~~",~~""~,~~~~~~~~~~,~,,,~
8
110 0 0 100 125 75 0 0
2I 0 0 0 0 0 50 100 0
310 0 0 0 0 0 0 0
4 I 0 0 0 0 0 0 0 100
51 0 0 0 0 0 0 0 125
6I 0 0 0 0 0 0 0 125
7I 0 0 0 0 0 0 0 100
Ktt quaphftnph6ibuoc: 6
1 2 3 4 5 6 7 8
~~~~~I~~~~~~~~~~~~~~~~~~~~~~'~~~~~~~~~'~~~~~~~~~~~~~~'~",
11 0 0
21 0 0
31 0 0
41 0 0
51 0 0
61 0 0
71 0 0
0 100 125 75
0 0 0 50
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0
100 0
250 0
0 100
0 125
0 125
0 350
47
Suyraphtidnganevebienband§.udmd~ ehobairoan:
T6ngChi Pill euaPhtidngan : 5900'
3.8.2Ung dv.ngV3.0Bai toanprumcdng:
Ne'um = n va ne'ucaebi~uthi euaA va B illn hi</td1i</ex m
1acaenhanvienva eongvi~ethi eungm~tmohinh nhuv~ytatie'p
e~nva nh~ndll</ebai roanphaneongddngian,trongdo m ng\iOise
dll</egallvoi m eongvi~esaoehon~ngsuit hoq.td~ngdq.thi~uqua
nha't(trongtI1.1dngh</pnayUiila d~do gia tti hoanthanheongvi~e
khi gallehong\iOi lameongvi~ej). Kha n~ngtie'pnh~nd1i</ed:)t
ehob~ngdonvi.
Trongbairoanphaneongvi m6inhanvienchi co th~lam
m~tvi~eva m6ivi~echi dll</CthtJchi~nMi m~tnguai.Ne'um~t
ngtiOinaodokhongth~lamduqem~tvi~en3.0dothieunglienke't
48
BangKe'tQua:
1 2 3 4 5 6 7 8
.I............................
110 0 0 100 125 75 0 0
210 0 0 0 0 50 100 0
310 0 0 0 0 0 250 0
410 0 0 0 0 0 0 100
51 0 0 0 0 0 0 0 125
610 0 0 0 0 0 0 125
710 0 0 0 0 0 0 350
B1 B2 B3 B4
100 125 125 350
AI
300 100 125 75
A2
150 50 100
A3
250 250
giuachungcoth~boqua.Khi m()tngtt(jinaodokhongth~lamm()t
vi~cnaodothlcungn6ichungtacoth~chochiphila m()thhngso'
khal&nn6i 2 dlnhdo.TrongtniJngh\1pnhubaitoanv~ntai co
nhungndic~n(nhuc~u)l~ikhongco th~co hangd~nh~n(cung
khongdtid.u),thi tUmgungtrongbaitoanphancongnay,cungco
nhungvi~ckhongcongu)ith\jchi~n.
~;;;;;;;~;;;;;;;;;;;~~;;;;;;;; III ~;;;;;;;;;;;~;;;;~;;;~;;;;;