Luận văn Nhận diện cá nhân dựa trên chữ viết tay tiếng việt bằng phương pháp lọc gabor

NHẬN DIỆN CÁ NHÂN DỰA TRÊN CHỮ VIẾT TAY TIẾNG VIỆT BẰNG PHƯƠNG PHÁP LỌC GABOR BÙI TRỌNG HIẾU Trang nhan đề Lời cám ơn Mục lục Chương_1: Dẫn nhập. Chương_2: Kết cấu và trích đặc trưng kết cấu. Chương_3: Chuyển bài toán nhiều lớp về bài toán hai lớp. Chương 4: Cài đặt và thử nghiệm. Chương_5: Kết luận và hướng phát triển. Tài liệu tham khảo

pdf23 trang | Chia sẻ: maiphuongtl | Lượt xem: 1847 | Lượt tải: 0download
Bạn đang xem trước 20 trang tài liệu Luận văn Nhận diện cá nhân dựa trên chữ viết tay tiếng việt bằng phương pháp lọc gabor, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
Trang9 Chudng2 KE T CAU vA TRicR D~C TRUNG KE T CAU Trichd~ctntngla mQtchilenangquailtrQngcuamQth~th6ngnh~ndC;lngnoi chungvacuamQth~th6ngnh~ndi~ncanhandvatrenchITvie'tlaynoi rieng. Khaini~mke'tca'udu'Qcxua'thi~n(j hffuhe'tcacIOC;lianh.ddo,nolamQtda'u hi~uquailtrQngd~phantichcacanh. Chu'ongnaysetrinhbaycacthai ni~mlienquailde'nke'tca'u.Cacphu'ongphap trichcacd(ictrungkgtcduse du'Qcdu'ara clingvoi nhungdanhgia chom6i phu'ongphap.Tuy nhien,phu'ongphapma tr~ntu'ongtranhmilc xam(Gray LevelCo- occurrenceMatrice)vaphu'ongphapbi)irc Gaborsedu'Qctrinhbay chitie'tvi haiphu'ongphapnay du'QcsU'dt;mgra'tthanhcongtrongcacling dl,mg ? tu'ongtvnhu'lu~nvannay.D~cbi~tbi)irc Gaborsedu'Qclu~nvanIvachQnde thlfchi~nvi~ctrichd~ctru'ngke'tca'ucuacacanhtaili~uvie'tlaytie'ngVi~t. 2.1Ke'tci(u(Texture) [3] Trangnhi€u thu~tloanxU'ly anhva thi giacmaytinh,thu'ong ia thie'tcac cu'ongdQsangcuacacvungC1,1CbQtronganhla d€u nhu'nhau.Tuynhien,cac anhtrangthvcte'thu'ongthongth~hi~ncacvungC1,1CbQco caccu'ongdQsang d€unhu'nhau.Vi d1,1,anhcuamQtb€ m~tlambAngg6cocacvungcocu'ongdQ sangthongd€u. M~cduv~y,cacthayd6icaccu'ongdQsangIC;lihinhthanhcac m~ucotinhcha'tl~pIC;livatinhcha'tnaydu'QcgQilakgtcdutr{tcgiac[3]. Hi~nnay,ke'tca'ula mQtthai ni~mthongco dinhnghiaho~cra'tkhod~dinh nghIake'tca'u.Nhi€u taili~uv€ phantickkgtcdudu'QcbAtdffubAngcachthong Trang10 duaramQtdinhnghlachinhxacv€ k€t cffu.Clingnhu'v~y,mQts6adli<$ucod€ c~pd€n k€t cffuthu'ongboquadinhnghlav€ k€t cffuho~cchidu'aramQtdinh nghlathichhQpvoingfi'canhdangxet. Tuyv~y,sauday,lu~nvanseneura mQts6dinhnghlad~ngu'oidQcco th~ thamkhao. . Chungtaco th~xemk€t cffunhu'nhfi'ng i t~othanhmQtvungco th~thffy duQcb~ngmiitthu'ong.CffutrUccuavungnayla nhfi'ngd~cdi~mth~hi<$n cacmftul~pl~imacacthanht6t~othanhcacmftunaydu'Qcb6tritheomQt quylu~tnaodo[3]. . MQtvungtrongmQtanhco mQtk€t cffuc6 dinhn€u mQtt~pcacth6ngke Cl,lcbQho~ccactinhchfftCl,lCbQkhaccoth~nhinthffydu'Qcla c6dinh,thay d6ich~m,ho~cg~nnhu'cochuky [3]. . MQtk€t cffuanhdu'Qcmotabdi s61u'Qng,ki~ucuacacthanht6t~onenk€t cffuvasl1b6tricacthanht6naytheokhonggian[3]. . Khai ni<$mk€t cffuxuffthi<$nphl,lthuQcvao ba y€u t6: (i) mQtthutl1Cl,lCbQ naodo du<Jcl~pl~itrenmQtvung IOn(so sanhtheokich thu'occua thutl1), (ii) thut1!hinhthanhb~ngsl1b6tri khongngftunhiencuacacthanht6,va (iii)cacthanht6la cacthl1cth~gi6ngnhautheomQtcachtho[3]. . Ke'tcffula mQtthuQctinhbi~udi~nsl1b6tri theokhonggiancuacacpixel trongmQtvung[8]. . Ke'tcffuth~hi<$ndcactinhchfftnhu'tho,mill,vad€u [8]. . Ke'tcffula sl1l~pl~icacph~ntti'k€t cffucdbandu'<JcgQila texel(TEXture ELement).TexelchuamQts6pixelvoimQtsl1b6tritheochuky,g~nnhu'co chuky,ho~cngftunhien.K€t cffucuacacanhtl1nhienthu'ongla ngftunhien trongkhik€t cuacacanhnhant~othu'ongtheomQtquicachnhfftdinhho~c Trang11 c6chuky.K€t cc1ucoth~la tho,mill,trail,d€u, tuy€ntinh,cod~ngs6ng,co d~ngh~tV.v...[8]. . Cac vungc6 k€t cc1ula cac m~utnli dai theokhonggiand1,1'atrens1,1'l~pl~i nhi€u hayit cuamQtthanhto'naod6 [8]. . K€t cc1ula mQtt~pcac tinh chc1tIan c~nCl;1CbQtheocac milc xamcuamQt vunganh[19]. . K€t cc1u lanhii'ng lmaconngu'oicamnh~n hu'la k€t cc1u [14]. . Theotudi~nWebster:k€t cc1ula d~cdi~mcc1utruccuacacsQidu'Qcd~tl~i vOinhau.Cc1utrucnayd~ctru'ngchomQtv~tli~u,mQtdO'itu'Qngtheocac kichthu'oc,hlnhdang,cachbO'tri,va s1,1'candO'igiii'achungvoi nhau[20]. Ifmh2.1saudayseth~hi~nmQtsO'lo~ianhk€t cc1ukhacnhau. ffinh2.1Caclo~ianhk€t cc1ukhacnhau. Trang12 Xacdinhcactinhcha'tc6th€ camnh~ndu'<;jccuake'tca'utrongmQtanhIa mQt bu'ocdffutienquailtrQngd€ di de'nmQtmohinhtoanchoke'tca'u.Cacthayd6i cu'ongdQsangtrongmQtanh,n6ichung,Ia cacd~ctru'ngke'tca'uthichh<;jpdu'Di illQtthayd6iv~tIy naod6theomQtb6icanhquailsat(ch~nghc;tnhu'soi,da trenbffibi€n, ho~cg<;jnu'Dc). Mo hinhchosv'thayd6i v~tIy nay Ia ra'tkh6. Vi v~y,ke'tea'uthu'ongdu'<;jcd~c tru'ngbdisv'thayd6ihaichi€u cuacu'ongdQsangth€ hi~ntronganh.£>i€unay clingchochungta tha'ydu'<;jc,khongc6mN dinhnghlake'tca'unaochungva chinhxacdu'<;jcdi~ndc;ttbflngngontucuathigiacmaytinh. Tuynhien,c6mQtsO'cactinhcha'trv'cgiaccuake'tca'udu'<;jcneusauday,nhin chung,Ia dung.£>6Ia: . Ke'tca'uIa mQttinhcha'tcuacaevung.Ke'tea'ueuamQtdi€m Ia khongxae dinh.Vi v~y,ke'tea'uIa mQtinheha'tngil'eanhvavi~exaedinhn6phailien quailde'ncaegiatrimuexamtrongmQtIane~nthuQekhonggiananh. . Kichthu'oeuaHine~nnayph\!thuQera'tIOnvaoki€u euake'tea'uho~ekleh thu'ocuacaethanhto'tc;tOnenke'tea'u. . Ke'tca'ulienquailde'nphanb6theokhonggianeuacaemuexam.Do v~y, cachistogramhai ehi€u ho~ecaematr~ntu'angtranhmuexamIa nhil'ng congC\!c6th€ du'<;jcsud\!ngd€ phantichke'tea'u. . Ke'tca'utrongmQtanhc6 th€ du'<;jcearnnh~ntheocaet1I~ho~edQphangiai khacnhau.Vi d\!,xet mQtke'tea'udu'<;jeth€ hi~ntrongmQtbuetu'onggc;teh. Khi dQphangiai tha'p,ke'tea'udu'<;jeearnnh~nnhu'ladu'<;jehinhthanhbdi cae viengc;tchriengIe trentu'ong,caechi tie'tbell trongeuaviengc;tehbi ma't. KhidQphangiaieaohall,chimQtsO'it caeviengc;tehdu'<;jenhintha'y,ke'tea'u du'<;jcearnnh~nseth€ hi~ncaechitie'tbell trongvien gc;teh. Trang13 . MQtvungduQccarnnh~nla c6ktt ca"ukhi s6cacd6ituQngthanht6 trong vungIOn.Ntu chic6rnQts6it cacd6ituQngthanht6xua"thi~nthld6la rnQt nh6rncacd6i tu'Qngchukhongphaila rnQtanhc6 ktt ca"u.N6i rnQtcach khac,ktt ca"u duQccarnnh~nkhi cacrn~u rnangynghIariengIe khongxua"t hi~n. . Ktt ca"ulienquaildtnh~th6ngtmgiaccuaconnguoi.Trong[7],cacnghien CUllv€ thigiaccuaconnguoidachungtodingvo naothigiacc6th~duQc mohlnhnhurnQt~pcackenhdQcl~p,rn6ikenhduQcxacdinhboi rnQtffn s6vahuangnha"tdinh.B6 clingla rnQtrongnhungly dod~sadvngbQlQc Gaborchovi~ctrichdi,ictrungktt ca"u. Ke'tca"uanhc6rnQts6cactinhcha"tc6th~carnnh~nduQcd6ngrnQtvaitroquail trQngtrongroota ktt ca"u.Nhungtinhcha"tsailcuaktt ca"ud6ngrnQtvai tro quailtrQngtrongroota ktt ca"u:d~udijn,m~tdC),tho,min,g6gh~,hili hoa, tuye'ntiob,cohuang,tdns6,phav.v... Trangcactinhcha"tneu0 tren,c6rnQts6tinhcha"tla khongdQcl~p.Vi dv,tinh cha'ttffns6khongdQcl~pvai tinhcha"trn~tdQva tinhcha"thuangchiapdvng chocaeke'tca'uc6huang. R5rang,carnnh~nktt ca"uc6 nhi€u lieu chutfnkhacnhau.B6 clingla ly do khongc6rnQtphuongphapbi~udi~nktt ca"urnQtcachdffydu chocacdlJ-ng khacnhaucuaktt ca"u. Ke'tca'uduQCsadvng0 caclOpbai loannhuphanlOpcacanh,tachcacanh thanhcaevung,xayd\ingcaccanhbachi€u titcacanhhaichi€u, va t6nghQp ke'tca'u. Nhu'daneu0 phffntruac,lu~nvanxerntai li~uvitt lay titngVi~tcuarnQtca nhan hu'rnQtanhktt ca"u.Dov~y,bailoannh~ndi~ncanhand\iatrenchITvitt laytie'ngVi~tla rnQtbailoanthuQClOpbailoanphanlOpcacktt ca"u. Trang14 Conhi€u phuongphaptrichd~ctrungk€t ca'u.Sauday,lu~nvanse trlnhbay tomluQccaclOpphuongphaptrichd~ctrungk€t ca'u. 2.2Cacphtidngphaptrichd~ctrlingke'tca'u Cacphtidngphaptho'ngke: cacphuongphapnayla'ycacthongtinv€ k€t ca'u cuaanhb~ngcactinhcha'th6ngke cvcbQcuacacmilcxamcuapixel.Hai phuongphaptieubi€u cholOpcacphuongphapnayla:phuongphapmatr~n tuongtranhmilcxamva phuongphap hamtV'tuongquail.Chi ti€t v€ phuong phaphamtV'tuongquailduQctrlnhbaychiti€t trong[3]. CacphtidngphaphlnhhQc:cacphuongphapnaymatak€t ca'unhuladuQc hlnhthanhtITcacthanhto't",-onenk€t ca'u(texels)vachungduQcb6tritheomQt quylu~tnaodo.Hai phuongphaptieubi€u cholOpcacphuongphapnayla: phuongphaplatdaVoronoiva phuongphapca'utruc. Chi ti€t v€ haiphuong nayduQctrlnhbaytrong[3]. Cacphtidngphapd1}'atren mohlnh:cacphuongphapnaydV'atrenvi~cKay dl!ngmQtmahlnhchoanh.Ma hlnhnaykhangchid€ matak€t ca'umacond€ t6nghQpno.Haiphuongphaptieubi€u cholOpcacphuongphapnayla:phuong phapmahlnhvungng~unhienMarkovvaphuongphapmahlnhfractal.Chi ti€t v€ haiphuongnayduQctrlnhbaytrong[3]. Cacphtidngphapxii ly tin hi~uso'(congQilit cac phtidngphapIQc):cac phuongphapnaybi€u di~nanhtheomQtd",-ngmoisaochocactinhcha'tcuak€t ca'utrdnend~nhlntha'ybon.Cacphuongphaptieubi€u cholOpcacphuong phapnayla phuongphapIQctrongmi€n khanggiananh,IQctrongmi€n t~nsO' (biend6iFourier)vad~cbi~tlaphuongphapbqlQcGabor. Trang15 2.3Nh~nxetv~caelopphuongphaptriehd(ietrtingktt ea'u Cacd~ctIlingk€t ciu du'cbi h~nch€ trong cacungdl;1ngthlfct€ docacrangbuQcv~lo~ik€t ciu. Ch~ngh~nk€t ciu phai chinhqui(phaichuacacthanht6r6 rangva phaidu'<jcb6tri theornQtquylu~t nha'tdinh). Ohanianva Dubes [20]dffnghienCUllhi<$uquacua cac phu'dngphaptrichd~c tIlingk€t ciu. HnghienCUllcac d~ctru'ngk€t ciu voi tieu chi hi<$uqua la :" Cacd~ctru'ngnaochoty 1<$chinhxaccaotrongphanlOpcacanhk€t ciu 7". OhanianvaDubelsdffdung4 d~ctru'ngfractal,16d~ctru'ngrnatr~ntu'dngtranh milcxarn,4 d~ctru'ngvungng~unhienMarkovd€ sosanh.K€t quasosanhcho tha'ycacd~ctru'ngrnatr~ntu'dngtranhrnucxarnchod 1<$caonhit, ti€p d€n Ia cacd~ctru'ngfractal. Benqnh do,hai phu'dngphaptrichd~ctru'ngk€t ciu b~ngrnatr~ntu'dngtranh milcxarnvab~ngb(Jirc Gaborla haiphu'dngphapn6ib~cnhit,chok€t quat6t trongcacungdl;1ngtu'dngtlfnhu'tronglu~nvannay.Cacungdl;1ngdola:nh~n di<$ncanhandlfatrenchl1'vi€t tayti€ng Anh [9],nh~ndi<$ncanhandlfatrenchl1' viettayti€ng Trung [25],nh~ndi<$nca nhandlfa trenvan rna:t[23],nh~ndi<$n ngonngl1'va kich ban dlfa tren cac anh tai li<$u[9], nh~nd~ngFont dlfa tren phantichk€t ciu toanCl;1C[23],nh~nd~nggu'dngrn~tb~ngb(Jirc Gabor[13]. Dov~y,sauday,lu~nvanse trlnhbaychi ti€t v~haiphu'dngphaptrichd~c tIlingketca'ub~ngrnatr~ntu'dngtranhrnucxarnvab~ngb(Jirc Gabor. 2.4Triehcaed(ietrtingke'tea'ub~ngmatr~ntHongtranhmITexam Giiisa{I(x,y),0:::;x :::;N-I, 0 :::;y :::;N-I }Ia rnQtanhcokichthu'ocNxN voi G milcxam. Matr~ntu'dngtranhrnucxarncokichthu'ocGxG,Pdtheovecrddoid=(dx,dy) dliQcdinhnghlanhu'sau: Trang16 Phftntli'(i,j)euamatr~nPdla s6lftnd6ngxua'thi~neuae~pcaemilexami vaj theoveetddoid. MQteachhinhthile,taco: Pd(i,j)=I {eel,S),(t,v»:I(r,s)=i,I(t,v)=j}I ddo,(r,s),(t,v)E NxN,(t,v)=(r+dx,s+dy),va 1.llaban56euamQt~phQp. Vi du:XetmQtanhcokiehthu'oe4x4coehila3milexam: l(x,y) = 1 1 0 0 1 1 0 0 0022 0022 Matr~ntu'dngtranhmilexam3x3euaanhnayvoiveetddoid =(1,0)du'Qexae dinhnhu'sau: [ 4 0 2 ] ~=2 2 0 002 SaudayIacaevi dl;lehocaeveetddoikhae. Void=(0,1),taco: 4 2 ° Pd=IO 2 0 002 VOi d =(1,1),ta co: 3 1 1 ~= 1 1 0 1 0 1 Trang17 . Matr~ntuongtranhmuexamdinhnghIanhutrenlakhongd6ixung.Nhung mQtmatr~ntuongtranhmuexamd6ixungcoth~du'<Jexaedinhtheoeong iliuesail: p=Pd +Pod. . Ma tr~ntuongtranhmuexamehobi€t caetinheha"tv€ phanb6 theokhong gianeuacaemuexamtrongmQtanhk€t ea"u.Vi d\l,n€u hffuh€t caephffnt-« khaekhongeuamatr~nt~ptrungd caeduongeheothlk€t ea"uco tinhtho theoveetodoid.Haraliektrong[3]diiduaracaed~etrltngk€t ea"udu<Jetinh titmatr~ntuongtranhmuexamnhusail: G-l G-l Nanglu<Jng:It =LL Pd2(i, j) i=Oj=O G-l G-l Entropy:12 =- LLPd(i, j )logPd(i,j) i=Oj=O G-l G-l (fJQtItdngphiin: h =II i- j JPAi,j) i=O j=O G-l G-l Pd (i,j) Imhd~u: 14 =~~l+ABS(i- j) Trang18 G-l G-l L L (i - JLx )(j- JLy )Pd(i,j) i=Oj=O Tudngquail:15 = (J"x(J"y ? d do,~xva ~yla caetrungbinh,crxvacryla caedQl~ehehuilneuaPdCx)va G~ ~1 P.(y)ttidngling.VOi:Pd(y) =LPAi, y) vapAx) =LpAx,j) i=O j=O Theo[3],phudngphaptrichcaed~etrungk€t ea'ubAngmatr~ntudngtranhmue xamd~nd€n mQts6khokhannhusau: . KhongcomQtieuehuilnnaod~ehQnveetddoid. . Khi G lOn,caematr~ntudngtranhmuexamcoldehthtioeGxG.Dov~y,vi~e tinhcaematr~nttidngtranhmuexamehocaeveetddoikhaenhaula khong khathi. . Voi mQtveetddoi d ehotrtioe,mQts6caed~etrtingdti<;1etinhtu matr~n ttidngtranhmuexam.Di€u doehotha'y,eftnphaicomQtphtidngphapehQn mQtphftncaed~etrtingnayd~motaehok€t ea'u. M~cdtiv~y,trongtrtiongh<;1pcaeanhtaili~uvi€t tarsaukhidti<;1cnhiphan,chi c6haimuexam.Vi v~y, matr~nttidngtranhmucxam,khia'y chico ldehthtioe 2x2.Do do,phtidngphaptriehd~ctrtingbAngmatr~nttidngtranhmuexam thuongdtiQcsii'dl;mgtrongcaeungdl;mgco xii'ly trenanhnhiphan.Trong[9] dilsudl;mgmatr~nttidngtranhvoinhi€u vectddoikhacnhauvadildc;ttk€t qua khacaotrongungdl;1ngnh~ndi~neanhandlfatrentaili~uvi€t tar ti€ng Anh. Tuynhien,mQtdi~my€u d6ivoiphtidngphapmatr~nttidngtranhmuexamla chitrichcacd~ctrtingk€t ca'utheomQtdQphangiaiduynha't.Di~my€u nayco theduQCcai ti€n bAngeachsii'dl;1ngcaebi~udi€n k€t ea'udaphangiai.M~t Trang19 khac,cacnghienCUllv€ h~th6ngthigiaccuaconnguaidah6trQchocachtie'p c~ndaphangiai.CacnhanghienCUlldachungtodng,vonaothigiaccuacon nguaico th€ duQcmohinhnhumQtt~pcackenhdQcl~p.M6i kenhse duQc di€u chlnhtheomQtfinsO'(phangiai)khonggianvamQthuangriengbi~t.Theo [19],xii'l:9bandfiutrongnaonguaith1!chi~nmQtki€u phantichtfinsO'khong gianvatie'pthea,vo naothigiacsephanchia cacte'baad€ dip ungtheocac tfinsO'vacachuangkhacnhau.MQtsO'cach~th6ngtrichd~ctrlingke'tca'utheo tfinsO'khOnggianva huangda duQcduafa. :E>~cbi~tbQlQcGaborla mQt phuongphaptrichd~ctIling ke'tca'uduQcsii'dl;lngtrongcac h~th6ngnhuv~y. Trangcach~th6ngnh~ndi~nca nhant1!dQngd1!alIen sinhtrAchQcnoi chung vanh~ndi~ncanhand1!alIen chITvie'tlaynoi rieng,bQlQcGabordachoke't quara'tt6tso vai mQtsO'cacphuongphapkhac(k€ ca phuongphapmatr~n tuongtranhmucxam)[1],[13],[9],[20],[9],[14],[23],[24],[25]. Do v~y,lu~nvan se sii'dl;lngbQlQcGabord€ trichd~ctrlingke'tca'utrongcac I anhtai li~uvie'tlay tie'ngVi~t. I Sauday,bQlQcGaborseduQctrinhbaymQtcachchitie'ttus1!hinhthanh,phil tri€n,va ungdl;lngcuanotrongcacbailoanphantichke'tca'utOivi~cthie'tke' ffiQtbQlQcGaborhQp1:9chovi~cnh~ndi~ncanhant1!dQngd1!alIen chITvie't laytie'ngVi~t. 2.5Trichcacdi,ictrttngke'tdiu biingbi)IQcGabor 2.5.1Ly thuye'tGabor DennisGaborchoding1:9thuye'ttruy€n thongd1!atrenhaiphuongphaptach bi~tsanday: Phuongphapthlinha't:motatinhi~unhu'mQthamcuathaigian. Phuongphapthuhai:motatinhi~unhumQthamcuatfinsO'.PhantichFourier la ffiQtd~;lllgcuamotanay. Trang20 Ly thuy€'tGaborduaramN phuongphilpmoid€ motatinhi~utheocahaimien thaigianvatftns6. Gaborxethaiphuongphilpbi€u di~ntinhi~uneud tren.Bi€u di~ntrongmien thaigiansexacdinhbiendQcuamQtinhi~ut~im6ithaidi€m tucthai.Trong khido,bi€u di~ntrongmientftns6 sa dl:mgmQtchu6ivo h~ncaehamtuftn hoandu<;1cxacdinhb~ngtftns6,biendQva phacuachung.Hai phuongphilp bi€u di~nnayla ly tu'dng.Bdi vi bi€u di~ntrongmientftns6chor~ngmQttin I hi~utrongmienthaigianladaivoh~nkhitftns6cuamQtinhi~uhUllh~ntrong mienthaigiankhongth€ xacdinhchinhxacdu<;1c.TuonghI, mQttinhi~utuc thaitrongmienthaigian(ch~ngh~nhamxungdonvi) co mQtph6tftns6chua ta"tcacaetftns6khacnhaudu<;1cphanb6delltrongmientftns6.£Heuki~nnay lakhongthoamanchocaetinhi~utrongthtfct€'.Vi dt;lmQtinhi~ula mN song amnh~cbaag6mmQts6n6tnh~cvoimQtftns6d~cbi~tnhu'ngchungdu<;1cth€ hi~nemtrongmQtkhoangthaigianhuuh~n. R5rang,caebi€u di~nnhuv~ykhongthichh<;1pchophantichcaetinhi~uco chieudaihuuh~ntrongmienthaigiannhuth€ hi~ntronghinh2.2. 4.5 4 f(t)- 4 3.5 3.5 3 3 2.5 2.5 2 :2 1.5 1.5 0 1 a10 20 3[] 4[] 50 a) 100 200 300 b) lfmh2.2:Vi dt;lhaitinhi~uvoicaed~cdi€m thaigian- tftns6khacnhau. i'---- Trang21 Tronga),ra rangtinhic%ula tu~nhoanva bie'nd6iFourierseduQeapd1,mgd€ chocaet~ns6euano. Trongb) PhantichFourierla khongchinhxaeVI tin hic%uth€ hic%ncaet~ns6 khacnhautrongcaekhoangthaigianng~nkhacnhau.Do v~ytinhic%unayc~n phaicomQtbi€u di~nthaigian- t~ns6d€ phantichmQtcachehinhxae. Tie'pthea,Gaborxet caedapling t~ns6 (ph6Fourier)euacaeduangeong Gaussianvoi cacchi€u rQngkhacnhau.CaeduangeongGaussiannayco cac dQlc%chehuffn(cr)tllc%nghichvoi nhauthongquacactr1,lethaigianva t~ns6 tUdnglingnhuth€ hic%ntronghlnh2.3.Theocaevi d1,lnay,Chungtad~dang nh~ntha"ygiuathaigianva t~ns6cuamQttinhic%ucomQtst,tlienhc%m~thie't. TheoGabor,docrunhla xua"tphatdi€m d€ hlnhthanh19thuye'teuaong.Gabor d3:tlmtha"ym6iquailhc%nayva hlnhthliehoanob~ngcaehc%thliequailtr<;mg dU<;1cd~nra co thli tt,trongph~nsan. . -at2 ~UJUUaD~ c ~ ~ ~- t ~ I Biga d6i Fourier I ~ /Lf - AT j a 00 't -,. i a=5 --1: 8..=0 .5 8.=0.1 ~ f a=O ~ ....f Hlnh2.3Ph6FouriereuacaeduangeongGaussianvoicaeehi€u rQngkhac Mall. Trang22 DQ l<%chchuftncua m6i du'angcongGaussiantheotrt;lCthai gian la ti 1<%nghich voi dQl<%chuftncuaph6pbi€n d6icuano theotrt;lCtgns6. Ap dt;lngnguyen19bfftdinhcuaHeisenberg,Gabordu'ara m6iquailh<%bfftdinh trongmi~nthaigianvami~ntgns6nhu'sau: f1tf1j >!2 (2.1) ? ddo: ilt lakhmingbfftdinht~imQtvi tricuatinhi<%utrongmi~nthaigian. M lakhoangbfftdinhcuatgns6tinhi<%utrongmi~ntgns6. d(2.1),Gaborchungtor~ng: 1. Khangth~xacdinhmQtcachchinhxacmQtkhoangcuatinhi<%utrongmi~n thaigianclingnhu'tgns6 trongmi~ntgns6cuatinhi<%udo. 2. Tichcuakhoangbfftdinhtrongmi~nthaigianvakhoangbfftdinhtrongmi~n tgns6phai IOnhonmQth~ngs6naodo. I NghIala n€u mQttinhi<%ud '<jcdinhnghIatrenmQtkhoangthaigiantucthai duynhfft(ilt=O)thlnosekhangdu'<jcxacdinhmQtcachdgydutrongmi~ntgn 86(M=oo).Ngu'<jcl~i,mQttinhi<%ud '<jcxacdinhmQtcachchinhxactrongmi~n tgns6(M=O)nophaicochi~udaivah~n(ilt=oo).Gifi'ahaithaiqtcnay,mQtin hi<%ula bfftdinhvoi mQtmucdQnaodo theoca haimi~nthoigianva tgns6. Nhu'ngtichcuahaikhoangbfftdinhnayt6ithi~uphaib~ngY2. Gaborchira dingco t6nt~imQtd~ngtinhi<%uco th~bi€n d6i (2.1)trdthanh d!ngthuc(nghIala iltilf=Y2). Tinhi<%unayla s1;1'di~uch€ tichcuamQtdaDdQngdi~uboatheomQtgns6bfft IcyvoimQtKungco d~ngla mQthamxac sufft. Hamnay(saunaydu'<jcgQilahamGabor)du'<jcxacdinhnhu'sau: Trang23 g(t)=e-a2(t-tO)2.(cos[2Il f(t - to)+fjJ]+isin[2Il f(t - to)+fjJ]) (2.2) ? ado: . ala hflngs6Gaussiand~di€u che"caehamdaDd(>ngdi€u hoa.a ti l~nghich vdichi€u r(>ngcuahamGaussian. . toxacdinhHimcuahamGaussian. . f la tgns6cuadaDd(>ngdi€u hoa. . ngdi€u hoa (co lien h~vdi tamcuahamdi€u che" Gaussian). Hinh2.4th~hi~nm6ilienh~v€ thaigianvatgns6cuahamGabor. g(t) t 6.t G(fj f M Hinh2.4BaplingKungtrongmienthaigian(phachan)vadaplingtgns6cuano trongmientgns6. Trang24 Khi phantkh Fourier,G(f) du'<jckhaitri€n thanhmQtchu6iFouriervaget)chinh lacach~s6trongkhaitri€n FouriercuaG(f). V€ nguyent~c,cacs6h~s6nayla voh~n.VI v~yd€ tinhdaplingt~ns6titdap lingxungtaphaidungmQthamcii'as5d€ c~tC1;ltdaplingxungtlicbodicacdap lingxag6ckhichungtronenkhanhosovdi cacdaplingg~ng6c.Ngu'aitacon gQiphantkh Fouriercii'as5(haybi€n d5iFourierthaigianngiin)trongtru'ang h<jphamcii'as5la hamGaussianla phepbi€n d5iGaborvanhu'v~ychi€u rQng cuahamGaussianchinhla chi€urQngcuacii'as5. Vdi sl!th€ hi~nnhu'tren,chothffyhamGaborcoth€ C1;lCbQhoamQtcacht6iu'u (dotkh .MM dungb~ngY2)mQtinhi~utheocahaimi€n thaigianvat~ns6. Tuynhienvi~cC1;lCbQhoanaykhongphaila tuy9maphaimantheonguyen19 bfftdinh.Tlic la tkh ~tMphailuonluonb~ngmQth~ngs6(¥2).Theo[7],khidff chQndu'<jcdQrQngcii'as5trongmi€n thaigian,hamGaborsechodQphangiai t~ns6t6tnhfftnhu'th€ hi~ntronghinh2.5. ...~ ::;Q tn ~ ((CtI E-t ----...- ~ T (ThiYi gian) Hinh2.5C1;lCbQhoamQtinhi~utrongcahaimi€n thaigianvat~ns6. Trang25 2.5.2Thie'tke'b()IQcGabord~trichcacd~ctrtingke'tca'u Trongtruangh<Jptinhi<$ula anh,mienthaigiannhudffnoi0 trensedu<JcgQila mienkhonggian(spatialdomain)vamient~ns6noi0 trensedu<JcgQila mien khonggiant~ns6(spatialfrequencydomain). Trongmienkhonggian,mQtanhdu<JcxemnhumQtt~ph<Jpcacpixel.Trong mienkhonggiant~ns6,mQtanh du<JcxemnhumQtt6ngvo hC;lncachamtu~n hoan.Daugman[6],trongcacth1lcnghi<$mlien quande"ncacdii'ki<$nsinhly hQC va tam ly hQccua h<$th6ngthi giac con nguaiva dffchungto ding co mQts1l lienh<$m~tthie"tgiii'adaplingt~ns6cuachungva daplinghuangcuachung. OngdffchQnramQthamcokhanangdi€u chinht~ns6vahuangmQtcachdQc l~p.HamongchQnchinhla hamGaborhaichi€u du<Jcxacdinhb~ngcacpha chanva Ie cuano. Hlnh2.6th€ hi<$nla mQtphachancuab(J lQcGaborhai chi€u.Trong[6],b~ngmohlnhcaccoche"thigiaccffpthffp,cachamnaydu<Jc nhanxo~nvaianhnh~pvavi the",cachamnaycondu<JcgQila b(JlQcGabor. Hlnh2.6MQtlQcGaborhaichi€u (phachan). Trang[25],mQtb(JlQcGaborhaichi€u du<JchoboimQtc~pheva hocacpha chanvaIe tuonglingnhusau: Trang26 x2+i1 -- he(x,y;f,O)= 2 e 20-2 .cos[2I1f(xcosO+ysinO)] 2I1D" x2+i ho(X,y;j, (})= 2~0"2 e- 2'" .sin[2I1/(xcoS{} +ysin(})](2.3) 110,hela caedaplingxungtrongmi~nkhonggian.Caedaplingtffns6eua110,he trongmi~nkhonggiantffns61a: He(u,V)= [HI (u,v)+H2(u,V)]2 HJu,v) =[HI(u,v)-H2(u,v)] 2} (2.4) ? ado: j =H va I H2(u, v)= e-2IT20-2[(U+fCOSBf+(v+fSinBf] HI (u, v) = e-2IT20-2[(u-fcosB)2+(v-fsinBY] f latffns6trongmi~nkhonggiantffns6. elahu'angeuadaodQngdi~uboa. (j laehi~urQngeuadu'ongeongGaussian. Voi f=-JU2+v2va B=arctg(;). I1mh2.71affiQtdaplingxungeuaphaehan trangmi~nkhonggianvadap lingtffns6tu'dnglingeuanotrongmi~nkhong giantffns6. Trang27 In' u 1", OJ'J -= 'ca I;n '0. . ~ OJ'J -= ~ .~ () :00 .fI \1\ Hang CQt a) b) I1mh2.7 a)Bapungt~ns6cuaphachantrongmi€n khonggiant~ns6. b)Bapungxungcuaphachantrongmi€n khonggian. Tit (2.3)va (2.4),tanh~ntha'yb(JlQcGaborhaichi€u th1!chi~nvi~cC1;lCbQh6a anhtheocahaimi€n khonggianvami€n khonggiant~ns6.Trongmi€n khong gian,mQtdapungxungcuab(JlQcGaborla mQthamdi€u boadu'QcC1;lCbQb~ng mQtcii'as6Gaussian.Trongmi€n khonggiant~ns6,chungtac6th€ xemb(JlQc Gaborla mQthamGaussiandu'Qcdi€u che'bdimQthamdi€u boac6mQt~ns6 nha'tdinh.VI bie'nd6iFouriercuamQthamGaussianla Gaussianenbi€u di~n hamGabortrongmi€n khonggiant~ns6 chi la hai hamGaussiandu'Qcdich chuy€nvaikhoangdichchuy€ndu'Qcxacdinhbdit~ns6cuahamdi€u boa.V€ m~tloanhQC,ra rangb(JlQcGaborthoamannguyenly ba'tdinhkhike'thQpca haimi€n khonggianva khonggiant~ns6.Daugman[3],dacmracacquailh~ ba'tdinhnayla ~~u ~n/4va~y~v~n/4vai~, ~yla cacdQrQngtheocactr1;lc x,ytrongmi€n khonggianva ~u,~v la cacbangthongtheocactr1;lcu, v trong mi€n khonggiant~ns6. Nhu'v~y, khi ap d1;lngbQlQcGabord€ trichcacd(ictntngkgtcdun6ichungva ke'tca'ucuacactai li~uvie'tlaytie'ngVi~tn6irieng,chungtac~nphaixacdinh haithams6quailtrQngd6la t~ns6f vahu'ang8.Tuynhien,dayla mQtva'nd€ Trang28 md.VI hic%nnay,chuaco mQtbaacao nfwchothffyvai m6iungdt;mgC\lthe, trongdo,co sii'd\lngbqlQcGabordetrichcacd~ctru'ngke'tcffunhunenchQnf vaenhuthe'nao7(baonhieutffns6f 7 baanhieuhuange 7,dingnhucacgia hi nayIabaanhieu7).VI v~y,lu~nvannaychiapd\lngnhungthams6f vae duQcchQnbdimQts6tacgiadi tru'aclamvai tie'ngAnhva tie'ngTrungvatrai quacacthii'nghic%mC\lthekhith\fchic%nnh~ndic%ncanhant\fdQngd\fatrenchii' vie'tartie'ngVic%tdechQnracacthams6f vaechobQlQcGabor. M6i mQtc~p(phachanvaphaIe)cuabQlQcGaborduQcdi€u chinhtheotffns6 vamQthuangc6djnh.Do v~y,cffnphaico cacxemxetquantrQngtrongvic%c chQntffns6vahuangdexacdjnhcackenhchobQlQcGabor.Vic%ctrichcacd(ic tntngktt cifulien quande'nca haitinhchfftcuake'tcffutrongcacanhtai lic%u vi€t tartie'ngVic%tIahuangvatffns6. Sauday,chungtasephantichmQts6vffnd€ lienquande'nvic%cchQntffns6va huangchobQlQcGabor. ChQnt§n sf) Vic%cchQntffns6chobQlQcGaborph\lthuQcvaokichthuaccuaanhnh~pva djnhly Iffymftutrongxii'ly tinhic%us6.Gia sii'anhnh~pco kichthuacNxN,d day,N thuongco gia trj la lily thuacua2 (doco th\fchic%nbie'nd6i Fourier nhanh)khi do,tffns6f phaithoaman:f::;;N/2.Tuynhien,quath\fcnghic%mvai N=256,nhuv~ymi€n giatrjcuaf la: 2,4,8, 16,32,64,128thlf=128la khong d~tduQcke'tquat6ttrongtrichcacd(ictntngktt cifu[6].Do v~y,f chicongiai h~ntrongkhoang:2,4,8, 16,32,64. Khith\fchic%ncaid~tcholu~nvannay,vaif=2vaf=64,chothffyke'tquakhong tat.Nencu6icunglu~nvanchQncacgiatrichof la:4,8,16,32. Trang29 Ch(;mhu'ong Clingtrong[14],[25],cacvungtie'pnh~ntrenvonaophantichanhnh~ptheo8 huangla 0°,45°,90°, 135°, 180°,225°,270°,315°.Tuynhiencachuangnay coSl,l'd6ixungtungc~p(theokhoangcachla 180O)nhuth€ hil$ntronghlnh2.8. Dov~y,chungtachQncacthams6cho8la:0°,45°,90°,135°. 45" 18(1'0'" 223" 90" 270" 135" 31~ Hlnh2.8Cachuanglad6ixungvainhautungc~p. Nhuv~y,vaim6i(t,8),chungtaxacdinhdu<;1cmQtkenhcuabQlQcGabornhu tronghlnh2.9(cota"tca 16kenhtheo4t~ns6va4huang). Kenh 1: f=4,8=0°, Kenh 11: f=16,8=90°, Kenh 2: f=4,8=45°, Kenh 12: f=16,8=135°, Kenh 3: f=4,8=90°, Kenh 13: f=32,8=0°, Kenh 4: f=4,8=135°, Kenh 14: f=32,8=45°, Kenh 5: f=8,8=0°, Kenh 15: f=32,8=90°, Kenh 6: f=8,8=45°, Kenh 16: f=32,8=135°. Kenh 7: f=8,8=90°, Kenh 8: f=8,8=135°, Kenh 9: f=16,8=0°, Kenh 10: f=16,8=45°, Trang30 (b) (c) Hinh2.9 (a)BQlQcGabor16kenh. (b)LQcvdi t~ns6caotrongmi~nkhonggian. (c)LQcvdit~ns6ilia'p trongmi~nkhonggian. Tht;ichi~nIQcGabortrenmQtanhnh~plex,y) Voim6ikenhcuabQlQc(ungvdim6ic~p(f,e» 1. TinhHe(u,v)vaHo(u,v)(b~ngphepbitn d6iFouriernhanh) 2. Tinh cacanhdu'<JclQccualex,y) theoHeva Ho(b~ngphepbitn Fourier nhanhngu'<Jc),chungtadu'<Jchaianhqe(x,y)vaqo(X,y). 3. Anh cualex,y) trongmi~nkhonggianla: qij(x,y)=~q;(x,y)+q~(x,y) 4. Trich2d~ctru'ngtuqij(x,y) la trungblnh(Meanij)vadQl<%chuffn(Stdij). Nhu'v~yvdi 16kenh,chungtasehlnhthanhdu'<JcmQtvectdd~ctru'ngcuaanh I nh~plex,y) vdi 32thanhph~n.Vdim6ikenh,theot~ns6,chochungtadu'<JcffiQt d~ctru'ngcuaanhtai li<%uvitt tar nh~pla dQphangiai cuaktt ca'uchii'vitt tar Trang31 (ffi~tdQphanb6cuacackyhI)vatheohu'ong,chochungtadu'QcffiQtd~ctru'ng v€ hu'ongcuaketcffuchitvietlay(phanb6v€ hu'ongcuanetvietlay). Trongchu'dngnay,lu~nvandfftrinhbayffiQts6khaini~ffilienquaildenketcffu vatrichd~ctru'ngke'tca'ucuacacanhn6ichungvacacanhtiii li~uvie'ttarn6i rieng.Ben c(;lnhdo, lu~nvanclingdfftrlnhbayffiQtcachchi tiel haiphu'dng phaptrichd~ctru'ngketcffuIa phu'dngphapffiatr~ntu'dngtranhffilicXaffiva phu'dngphaplcvOibQlQcGabor.Tuy nhien,theocacling d\lngdffneutren,bQ lQcGabor la phu'dngphap!richd~ctrUngket cffucho ket qua t6tnhfft.Vi v~y, lu~nvandffsad\lngbQlQcGaborde trichd~ctru'ngketcffutrongcacanhtai li~uvietlaytiengVi~t. Nhu'v~y,saukhisad\lngbQlQcGaborvoi 16kenh,chungtadff!richdu'Qcd~c tru'ngcuaanhtai li~uviet lay tiengVi~tcuaffiQtca nhanla ffiQtvectd d~c tru'ngg6ffi32thanhphftn. Phftntiep theocuaquytrlnhnh~ndi~nca nhandl1atrenchitviet lay tiengVi~t la phanlop (canhan)chovectdd~ctru'ngnay.V€ nguyentiic,bfftIcyffiQtbQ phanlopnaoclingcotheapd\lngdu'QCvoivectdd~ctru'ngnay.Tuynhien,bai tminphanlOpcacchitvietlaynoichungva chitvietlay tiengVi~tnoiriengla bailoanphannhi€u lOp(corfftnhi€u canhan).S61u'Qngcaclopnhu'v~yla vo h(;ln enchungtakhongthenaoquailsathetdu'QCvi nhu'dffnoi (jphftndftus6 Iu'QngcaclOpgftnb~ngdaTIs6cuaffiQtkhuvl1c,ffiQtqu6cgia,vv...Dov~y,lu~n vansechuyenbai loanphannhi€u lOpthanhbai loanphanhailop (Cungho~c Khac).Chu'dngtieptheocualu~nvansetrlnhbayro v€ bai loanphanhailOp nay(Dichotomizer)clingvoi nhitngdanhgiav€ no sovoi bai loanphannhi€u lop(Polychotomizer).

Các file đính kèm theo tài liệu này:

  • pdf4.pdf
  • pdf0.pdf
  • pdf1.pdf
  • pdf2.pdf
  • pdf3.pdf
  • pdf5.pdf
  • pdf6.pdf
  • pdf7.pdf
  • pdf8.pdf
Tài liệu liên quan