NHẬN DIỆN CÁ NHÂN DỰA TRÊN CHỮ VIẾT TAY TIẾNG VIỆT BẰNG PHƯƠNG PHÁP LỌC GABOR
BÙI TRỌNG HIẾU
Trang nhan đề
Lời cám ơn
Mục lục
Chương_1: Dẫn nhập.
Chương_2: Kết cấu và trích đặc trưng kết cấu.
Chương_3: Chuyển bài toán nhiều lớp về bài toán hai lớp.
Chương 4: Cài đặt và thử nghiệm.
Chương_5: Kết luận và hướng phát triển.
Tài liệu tham khảo
23 trang |
Chia sẻ: maiphuongtl | Lượt xem: 1847 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Luận văn Nhận diện cá nhân dựa trên chữ viết tay tiếng việt bằng phương pháp lọc gabor, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
Trang9
Chudng2
KE T CAU vA TRicR D~C TRUNG KE T CAU
Trichd~ctntngla mQtchilenangquailtrQngcuamQth~th6ngnh~ndC;lngnoi
chungvacuamQth~th6ngnh~ndi~ncanhandvatrenchITvie'tlaynoi rieng.
Khaini~mke'tca'udu'Qcxua'thi~n(j hffuhe'tcacIOC;lianh.ddo,nolamQtda'u
hi~uquailtrQngd~phantichcacanh.
Chu'ongnaysetrinhbaycacthai ni~mlienquailde'nke'tca'u.Cacphu'ongphap
trichcacd(ictrungkgtcduse du'Qcdu'ara clingvoi nhungdanhgia chom6i
phu'ongphap.Tuy nhien,phu'ongphapma tr~ntu'ongtranhmilc xam(Gray
LevelCo- occurrenceMatrice)vaphu'ongphapbi)irc Gaborsedu'Qctrinhbay
chitie'tvi haiphu'ongphapnay du'QcsU'dt;mgra'tthanhcongtrongcacling dl,mg
?
tu'ongtvnhu'lu~nvannay.D~cbi~tbi)irc Gaborsedu'Qclu~nvanIvachQnde
thlfchi~nvi~ctrichd~ctru'ngke'tca'ucuacacanhtaili~uvie'tlaytie'ngVi~t.
2.1Ke'tci(u(Texture) [3]
Trangnhi€u thu~tloanxU'ly anhva thi giacmaytinh,thu'ong ia thie'tcac
cu'ongdQsangcuacacvungC1,1CbQtronganhla d€u nhu'nhau.Tuynhien,cac
anhtrangthvcte'thu'ongthongth~hi~ncacvungC1,1CbQco caccu'ongdQsang
d€unhu'nhau.Vi d1,1,anhcuamQtb€ m~tlambAngg6cocacvungcocu'ongdQ
sangthongd€u. M~cduv~y,cacthayd6icaccu'ongdQsangIC;lihinhthanhcac
m~ucotinhcha'tl~pIC;livatinhcha'tnaydu'QcgQilakgtcdutr{tcgiac[3].
Hi~nnay,ke'tca'ula mQtthai ni~mthongco dinhnghiaho~cra'tkhod~dinh
nghIake'tca'u.Nhi€u taili~uv€ phantickkgtcdudu'QcbAtdffubAngcachthong
Trang10
duaramQtdinhnghlachinhxacv€ k€t cffu.Clingnhu'v~y,mQts6adli<$ucod€
c~pd€n k€t cffuthu'ongboquadinhnghlav€ k€t cffuho~cchidu'aramQtdinh
nghlathichhQpvoingfi'canhdangxet.
Tuyv~y,sauday,lu~nvanseneura mQts6dinhnghlad~ngu'oidQcco th~
thamkhao.
. Chungtaco th~xemk€t cffunhu'nhfi'ng i t~othanhmQtvungco th~thffy
duQcb~ngmiitthu'ong.CffutrUccuavungnayla nhfi'ngd~cdi~mth~hi<$n
cacmftul~pl~imacacthanht6t~othanhcacmftunaydu'Qcb6tritheomQt
quylu~tnaodo[3].
. MQtvungtrongmQtanhco mQtk€t cffuc6 dinhn€u mQtt~pcacth6ngke
Cl,lcbQho~ccactinhchfftCl,lCbQkhaccoth~nhinthffydu'Qcla c6dinh,thay
d6ich~m,ho~cg~nnhu'cochuky [3].
. MQtk€t cffuanhdu'Qcmotabdi s61u'Qng,ki~ucuacacthanht6t~onenk€t
cffuvasl1b6tricacthanht6naytheokhonggian[3].
. Khai ni<$mk€t cffuxuffthi<$nphl,lthuQcvao ba y€u t6: (i) mQtthutl1Cl,lCbQ
naodo du<Jcl~pl~itrenmQtvung IOn(so sanhtheokich thu'occua thutl1),
(ii) thut1!hinhthanhb~ngsl1b6tri khongngftunhiencuacacthanht6,va
(iii)cacthanht6la cacthl1cth~gi6ngnhautheomQtcachtho[3].
. Ke'tcffula mQtthuQctinhbi~udi~nsl1b6tri theokhonggiancuacacpixel
trongmQtvung[8].
. Ke'tcffuth~hi<$ndcactinhchfftnhu'tho,mill,vad€u [8].
. Ke'tcffula sl1l~pl~icacph~ntti'k€t cffucdbandu'<JcgQila texel(TEXture
ELement).TexelchuamQts6pixelvoimQtsl1b6tritheochuky,g~nnhu'co
chuky,ho~cngftunhien.K€t cffucuacacanhtl1nhienthu'ongla ngftunhien
trongkhik€t cuacacanhnhant~othu'ongtheomQtquicachnhfftdinhho~c
Trang11
c6chuky.K€t cc1ucoth~la tho,mill,trail,d€u, tuy€ntinh,cod~ngs6ng,co
d~ngh~tV.v...[8].
. Cac vungc6 k€t cc1ula cac m~utnli dai theokhonggiand1,1'atrens1,1'l~pl~i
nhi€u hayit cuamQtthanhto'naod6 [8].
. K€t cc1ula mQtt~pcac tinh chc1tIan c~nCl;1CbQtheocac milc xamcuamQt
vunganh[19].
. K€t cc1u lanhii'ng lmaconngu'oicamnh~n hu'la k€t cc1u [14].
. Theotudi~nWebster:k€t cc1ula d~cdi~mcc1utruccuacacsQidu'Qcd~tl~i
vOinhau.Cc1utrucnayd~ctru'ngchomQtv~tli~u,mQtdO'itu'Qngtheocac
kichthu'oc,hlnhdang,cachbO'tri,va s1,1'candO'igiii'achungvoi nhau[20].
Ifmh2.1saudayseth~hi~nmQtsO'lo~ianhk€t cc1ukhacnhau.
ffinh2.1Caclo~ianhk€t cc1ukhacnhau.
Trang12
Xacdinhcactinhcha'tc6th€ camnh~ndu'<;jccuake'tca'utrongmQtanhIa mQt
bu'ocdffutienquailtrQngd€ di de'nmQtmohinhtoanchoke'tca'u.Cacthayd6i
cu'ongdQsangtrongmQtanh,n6ichung,Ia cacd~ctru'ngke'tca'uthichh<;jpdu'Di
illQtthayd6iv~tIy naod6theomQtb6icanhquailsat(ch~nghc;tnhu'soi,da
trenbffibi€n, ho~cg<;jnu'Dc).
Mo hinhchosv'thayd6i v~tIy nay Ia ra'tkh6. Vi v~y,ke'tea'uthu'ongdu'<;jcd~c
tru'ngbdisv'thayd6ihaichi€u cuacu'ongdQsangth€ hi~ntronganh.£>i€unay
clingchochungta tha'ydu'<;jc,khongc6mN dinhnghlake'tca'unaochungva
chinhxacdu'<;jcdi~ndc;ttbflngngontucuathigiacmaytinh.
Tuynhien,c6mQtsO'cactinhcha'trv'cgiaccuake'tca'udu'<;jcneusauday,nhin
chung,Ia dung.£>6Ia:
. Ke'tca'uIa mQttinhcha'tcuacaevung.Ke'tea'ueuamQtdi€m Ia khongxae
dinh.Vi v~y,ke'tea'uIa mQtinheha'tngil'eanhvavi~exaedinhn6phailien
quailde'ncaegiatrimuexamtrongmQtIane~nthuQekhonggiananh.
. Kichthu'oeuaHine~nnayph\!thuQera'tIOnvaoki€u euake'tea'uho~ekleh
thu'ocuacaethanhto'tc;tOnenke'tea'u.
. Ke'tca'ulienquailde'nphanb6theokhonggianeuacaemuexam.Do v~y,
cachistogramhai ehi€u ho~ecaematr~ntu'angtranhmuexamIa nhil'ng
congC\!c6th€ du'<;jcsud\!ngd€ phantichke'tea'u.
. Ke'tca'utrongmQtanhc6 th€ du'<;jcearnnh~ntheocaet1I~ho~edQphangiai
khacnhau.Vi d\!,xet mQtke'tea'udu'<;jeth€ hi~ntrongmQtbuetu'onggc;teh.
Khi dQphangiai tha'p,ke'tea'udu'<;jeearnnh~nnhu'ladu'<;jehinhthanhbdi cae
viengc;tchriengIe trentu'ong,caechi tie'tbell trongeuaviengc;tehbi ma't.
KhidQphangiaieaohall,chimQtsO'it caeviengc;tehdu'<;jenhintha'y,ke'tea'u
du'<;jcearnnh~nseth€ hi~ncaechitie'tbell trongvien gc;teh.
Trang13
. MQtvungduQccarnnh~nla c6ktt ca"ukhi s6cacd6ituQngthanht6 trong
vungIOn.Ntu chic6rnQts6it cacd6ituQngthanht6xua"thi~nthld6la rnQt
nh6rncacd6i tu'Qngchukhongphaila rnQtanhc6 ktt ca"u.N6i rnQtcach
khac,ktt ca"u duQccarnnh~nkhi cacrn~u rnangynghIariengIe khongxua"t
hi~n.
. Ktt ca"ulienquaildtnh~th6ngtmgiaccuaconnguoi.Trong[7],cacnghien
CUllv€ thigiaccuaconnguoidachungtodingvo naothigiacc6th~duQc
mohlnhnhurnQt~pcackenhdQcl~p,rn6ikenhduQcxacdinhboi rnQtffn
s6vahuangnha"tdinh.B6 clingla rnQtrongnhungly dod~sadvngbQlQc
Gaborchovi~ctrichdi,ictrungktt ca"u.
Ke'tca"uanhc6rnQts6cactinhcha"tc6th~carnnh~nduQcd6ngrnQtvaitroquail
trQngtrongroota ktt ca"u.Nhungtinhcha"tsailcuaktt ca"ud6ngrnQtvai tro
quailtrQngtrongroota ktt ca"u:d~udijn,m~tdC),tho,min,g6gh~,hili hoa,
tuye'ntiob,cohuang,tdns6,phav.v...
Trangcactinhcha"tneu0 tren,c6rnQts6tinhcha"tla khongdQcl~p.Vi dv,tinh
cha'ttffns6khongdQcl~pvai tinhcha"trn~tdQva tinhcha"thuangchiapdvng
chocaeke'tca'uc6huang.
R5rang,carnnh~nktt ca"uc6 nhi€u lieu chutfnkhacnhau.B6 clingla ly do
khongc6rnQtphuongphapbi~udi~nktt ca"urnQtcachdffydu chocacdlJ-ng
khacnhaucuaktt ca"u.
Ke'tca'uduQCsadvng0 caclOpbai loannhuphanlOpcacanh,tachcacanh
thanhcaevung,xayd\ingcaccanhbachi€u titcacanhhaichi€u, va t6nghQp
ke'tca'u.
Nhu'daneu0 phffntruac,lu~nvanxerntai li~uvitt lay titngVi~tcuarnQtca
nhan hu'rnQtanhktt ca"u.Dov~y,bailoannh~ndi~ncanhand\iatrenchITvitt
laytie'ngVi~tla rnQtbailoanthuQClOpbailoanphanlOpcacktt ca"u.
Trang14
Conhi€u phuongphaptrichd~ctrungk€t ca'u.Sauday,lu~nvanse trlnhbay
tomluQccaclOpphuongphaptrichd~ctrungk€t ca'u.
2.2Cacphtidngphaptrichd~ctrlingke'tca'u
Cacphtidngphaptho'ngke: cacphuongphapnayla'ycacthongtinv€ k€t ca'u
cuaanhb~ngcactinhcha'th6ngke cvcbQcuacacmilcxamcuapixel.Hai
phuongphaptieubi€u cholOpcacphuongphapnayla:phuongphapmatr~n
tuongtranhmilcxamva phuongphap hamtV'tuongquail.Chi ti€t v€ phuong
phaphamtV'tuongquailduQctrlnhbaychiti€t trong[3].
CacphtidngphaphlnhhQc:cacphuongphapnaymatak€t ca'unhuladuQc
hlnhthanhtITcacthanhto't",-onenk€t ca'u(texels)vachungduQcb6tritheomQt
quylu~tnaodo.Hai phuongphaptieubi€u cholOpcacphuongphapnayla:
phuongphaplatdaVoronoiva phuongphapca'utruc. Chi ti€t v€ haiphuong
nayduQctrlnhbaytrong[3].
Cacphtidngphapd1}'atren mohlnh:cacphuongphapnaydV'atrenvi~cKay
dl!ngmQtmahlnhchoanh.Ma hlnhnaykhangchid€ matak€t ca'umacond€
t6nghQpno.Haiphuongphaptieubi€u cholOpcacphuongphapnayla:phuong
phapmahlnhvungng~unhienMarkovvaphuongphapmahlnhfractal.Chi ti€t
v€ haiphuongnayduQctrlnhbaytrong[3].
Cacphtidngphapxii ly tin hi~uso'(congQilit cac phtidngphapIQc):cac
phuongphapnaybi€u di~nanhtheomQtd",-ngmoisaochocactinhcha'tcuak€t
ca'utrdnend~nhlntha'ybon.Cacphuongphaptieubi€u cholOpcacphuong
phapnayla phuongphapIQctrongmi€n khanggiananh,IQctrongmi€n t~nsO'
(biend6iFourier)vad~cbi~tlaphuongphapbqlQcGabor.
Trang15
2.3Nh~nxetv~caelopphuongphaptriehd(ietrtingktt ea'u
Cacd~ctIlingk€t ciu du'cbi h~nch€ trong
cacungdl;1ngthlfct€ docacrangbuQcv~lo~ik€t ciu. Ch~ngh~nk€t ciu phai
chinhqui(phaichuacacthanht6r6 rangva phaidu'<jcb6tri theornQtquylu~t
nha'tdinh).
Ohanianva Dubes [20]dffnghienCUllhi<$uquacua cac phu'dngphaptrichd~c
tIlingk€t ciu. HnghienCUllcac d~ctru'ngk€t ciu voi tieu chi hi<$uqua la :"
Cacd~ctru'ngnaochoty 1<$chinhxaccaotrongphanlOpcacanhk€t ciu 7".
OhanianvaDubelsdffdung4 d~ctru'ngfractal,16d~ctru'ngrnatr~ntu'dngtranh
milcxarn,4 d~ctru'ngvungng~unhienMarkovd€ sosanh.K€t quasosanhcho
tha'ycacd~ctru'ngrnatr~ntu'dngtranhrnucxarnchod 1<$caonhit, ti€p d€n Ia
cacd~ctru'ngfractal.
Benqnh do,hai phu'dngphaptrichd~ctru'ngk€t ciu b~ngrnatr~ntu'dngtranh
milcxarnvab~ngb(Jirc Gaborla haiphu'dngphapn6ib~cnhit,chok€t quat6t
trongcacungdl;1ngtu'dngtlfnhu'tronglu~nvannay.Cacungdl;1ngdola:nh~n
di<$ncanhandlfatrenchl1'vi€t tayti€ng Anh [9],nh~ndi<$ncanhandlfatrenchl1'
viettayti€ng Trung [25],nh~ndi<$nca nhandlfa trenvan rna:t[23],nh~ndi<$n
ngonngl1'va kich ban dlfa tren cac anh tai li<$u[9], nh~nd~ngFont dlfa tren
phantichk€t ciu toanCl;1C[23],nh~nd~nggu'dngrn~tb~ngb(Jirc Gabor[13].
Dov~y,sauday,lu~nvanse trlnhbaychi ti€t v~haiphu'dngphaptrichd~c
tIlingketca'ub~ngrnatr~ntu'dngtranhrnucxarnvab~ngb(Jirc Gabor.
2.4Triehcaed(ietrtingke'tea'ub~ngmatr~ntHongtranhmITexam
Giiisa{I(x,y),0:::;x :::;N-I, 0 :::;y :::;N-I }Ia rnQtanhcokichthu'ocNxN voi G
milcxam.
Matr~ntu'dngtranhrnucxarncokichthu'ocGxG,Pdtheovecrddoid=(dx,dy)
dliQcdinhnghlanhu'sau:
Trang16
Phftntli'(i,j)euamatr~nPdla s6lftnd6ngxua'thi~neuae~pcaemilexami vaj
theoveetddoid.
MQteachhinhthile,taco:
Pd(i,j)=I {eel,S),(t,v»:I(r,s)=i,I(t,v)=j}I
ddo,(r,s),(t,v)E NxN,(t,v)=(r+dx,s+dy),va 1.llaban56euamQt~phQp.
Vi du:XetmQtanhcokiehthu'oe4x4coehila3milexam:
l(x,y) =
1 1 0 0
1 1 0 0
0022
0022
Matr~ntu'dngtranhmilexam3x3euaanhnayvoiveetddoid =(1,0)du'Qexae
dinhnhu'sau:
[
4 0 2
]
~=2 2 0
002
SaudayIacaevi dl;lehocaeveetddoikhae.
Void=(0,1),taco:
4 2 °
Pd=IO 2 0
002
VOi d =(1,1),ta co:
3 1 1
~= 1 1 0
1 0 1
Trang17
. Matr~ntuongtranhmuexamdinhnghIanhutrenlakhongd6ixung.Nhung
mQtmatr~ntuongtranhmuexamd6ixungcoth~du'<Jexaedinhtheoeong
iliuesail:
p=Pd +Pod.
. Ma tr~ntuongtranhmuexamehobi€t caetinheha"tv€ phanb6 theokhong
gianeuacaemuexamtrongmQtanhk€t ea"u.Vi d\l,n€u hffuh€t caephffnt-«
khaekhongeuamatr~nt~ptrungd caeduongeheothlk€t ea"uco tinhtho
theoveetodoid.Haraliektrong[3]diiduaracaed~etrltngk€t ea"udu<Jetinh
titmatr~ntuongtranhmuexamnhusail:
G-l G-l
Nanglu<Jng:It =LL Pd2(i, j)
i=Oj=O
G-l G-l
Entropy:12 =- LLPd(i, j )logPd(i,j)
i=Oj=O
G-l G-l
(fJQtItdngphiin: h =II i- j JPAi,j)
i=O j=O
G-l G-l Pd (i,j)
Imhd~u: 14 =~~l+ABS(i- j)
Trang18
G-l G-l
L L (i - JLx )(j- JLy )Pd(i,j)
i=Oj=O
Tudngquail:15 =
(J"x(J"y
?
d do,~xva ~yla caetrungbinh,crxvacryla caedQl~ehehuilneuaPdCx)va
G~ ~1
P.(y)ttidngling.VOi:Pd(y) =LPAi, y) vapAx) =LpAx,j)
i=O j=O
Theo[3],phudngphaptrichcaed~etrungk€t ea'ubAngmatr~ntudngtranhmue
xamd~nd€n mQts6khokhannhusau:
. KhongcomQtieuehuilnnaod~ehQnveetddoid.
. Khi G lOn,caematr~ntudngtranhmuexamcoldehthtioeGxG.Dov~y,vi~e
tinhcaematr~nttidngtranhmuexamehocaeveetddoikhaenhaula khong
khathi.
. Voi mQtveetddoi d ehotrtioe,mQts6caed~etrtingdti<;1etinhtu matr~n
ttidngtranhmuexam.Di€u doehotha'y,eftnphaicomQtphtidngphapehQn
mQtphftncaed~etrtingnayd~motaehok€t ea'u.
M~cdtiv~y,trongtrtiongh<;1pcaeanhtaili~uvi€t tarsaukhidti<;1cnhiphan,chi
c6haimuexam.Vi v~y, matr~nttidngtranhmucxam,khia'y chico ldehthtioe
2x2.Do do,phtidngphaptriehd~ctrtingbAngmatr~nttidngtranhmuexam
thuongdtiQcsii'dl;mgtrongcaeungdl;mgco xii'ly trenanhnhiphan.Trong[9]
dilsudl;mgmatr~nttidngtranhvoinhi€u vectddoikhacnhauvadildc;ttk€t qua
khacaotrongungdl;1ngnh~ndi~neanhandlfatrentaili~uvi€t tar ti€ng Anh.
Tuynhien,mQtdi~my€u d6ivoiphtidngphapmatr~nttidngtranhmuexamla
chitrichcacd~ctrtingk€t ca'utheomQtdQphangiaiduynha't.Di~my€u nayco
theduQCcai ti€n bAngeachsii'dl;1ngcaebi~udi€n k€t ea'udaphangiai.M~t
Trang19
khac,cacnghienCUllv€ h~th6ngthigiaccuaconnguaidah6trQchocachtie'p
c~ndaphangiai.CacnhanghienCUlldachungtodng,vonaothigiaccuacon
nguaico th€ duQcmohinhnhumQtt~pcackenhdQcl~p.M6i kenhse duQc
di€u chlnhtheomQtfinsO'(phangiai)khonggianvamQthuangriengbi~t.Theo
[19],xii'l:9bandfiutrongnaonguaith1!chi~nmQtki€u phantichtfinsO'khong
gianvatie'pthea,vo naothigiacsephanchia cacte'baad€ dip ungtheocac
tfinsO'vacachuangkhacnhau.MQtsO'cach~th6ngtrichd~ctrlingke'tca'utheo
tfinsO'khOnggianva huangda duQcduafa. :E>~cbi~tbQlQcGaborla mQt
phuongphaptrichd~ctIling ke'tca'uduQcsii'dl;lngtrongcac h~th6ngnhuv~y.
Trangcach~th6ngnh~ndi~nca nhant1!dQngd1!alIen sinhtrAchQcnoi chung
vanh~ndi~ncanhand1!alIen chITvie'tlaynoi rieng,bQlQcGabordachoke't
quara'tt6tso vai mQtsO'cacphuongphapkhac(k€ ca phuongphapmatr~n
tuongtranhmucxam)[1],[13],[9],[20],[9],[14],[23],[24],[25].
Do v~y,lu~nvan se sii'dl;lngbQlQcGabord€ trichd~ctrlingke'tca'utrongcac
I anhtai li~uvie'tlay tie'ngVi~t.
I
Sauday,bQlQcGaborseduQctrinhbaymQtcachchitie'ttus1!hinhthanh,phil
tri€n,va ungdl;lngcuanotrongcacbailoanphantichke'tca'utOivi~cthie'tke'
ffiQtbQlQcGaborhQp1:9chovi~cnh~ndi~ncanhant1!dQngd1!alIen chITvie't
laytie'ngVi~t.
2.5Trichcacdi,ictrttngke'tdiu biingbi)IQcGabor
2.5.1Ly thuye'tGabor
DennisGaborchoding1:9thuye'ttruy€n thongd1!atrenhaiphuongphaptach
bi~tsanday:
Phuongphapthlinha't:motatinhi~unhu'mQthamcuathaigian.
Phuongphapthuhai:motatinhi~unhumQthamcuatfinsO'.PhantichFourier
la ffiQtd~;lllgcuamotanay.
Trang20
Ly thuy€'tGaborduaramN phuongphilpmoid€ motatinhi~utheocahaimien
thaigianvatftns6.
Gaborxethaiphuongphilpbi€u di~ntinhi~uneud tren.Bi€u di~ntrongmien
thaigiansexacdinhbiendQcuamQtinhi~ut~im6ithaidi€m tucthai.Trong
khido,bi€u di~ntrongmientftns6 sa dl:mgmQtchu6ivo h~ncaehamtuftn
hoandu<;1cxacdinhb~ngtftns6,biendQva phacuachung.Hai phuongphilp
bi€u di~nnayla ly tu'dng.Bdi vi bi€u di~ntrongmientftns6chor~ngmQttin
I hi~utrongmienthaigianladaivoh~nkhitftns6cuamQtinhi~uhUllh~ntrong
mienthaigiankhongth€ xacdinhchinhxacdu<;1c.TuonghI, mQttinhi~utuc
thaitrongmienthaigian(ch~ngh~nhamxungdonvi) co mQtph6tftns6chua
ta"tcacaetftns6khacnhaudu<;1cphanb6delltrongmientftns6.£Heuki~nnay
lakhongthoamanchocaetinhi~utrongthtfct€'.Vi dt;lmQtinhi~ula mN song
amnh~cbaag6mmQts6n6tnh~cvoimQtftns6d~cbi~tnhu'ngchungdu<;1cth€
hi~nemtrongmQtkhoangthaigianhuuh~n.
R5rang,caebi€u di~nnhuv~ykhongthichh<;1pchophantichcaetinhi~uco
chieudaihuuh~ntrongmienthaigiannhuth€ hi~ntronghinh2.2.
4.5 4
f(t)-
4 3.5
3.5 3
3 2.5
2.5 2
:2 1.5
1.5
0
1
a10 20 3[] 4[] 50
a)
100 200 300
b)
lfmh2.2:Vi dt;lhaitinhi~uvoicaed~cdi€m thaigian- tftns6khacnhau.
i'----
Trang21
Tronga),ra rangtinhic%ula tu~nhoanva bie'nd6iFourierseduQeapd1,mgd€
chocaet~ns6euano.
Trongb) PhantichFourierla khongchinhxaeVI tin hic%uth€ hic%ncaet~ns6
khacnhautrongcaekhoangthaigianng~nkhacnhau.Do v~ytinhic%unayc~n
phaicomQtbi€u di~nthaigian- t~ns6d€ phantichmQtcachehinhxae.
Tie'pthea,Gaborxet caedapling t~ns6 (ph6Fourier)euacaeduangeong
Gaussianvoi cacchi€u rQngkhacnhau.CaeduangeongGaussiannayco cac
dQlc%chehuffn(cr)tllc%nghichvoi nhauthongquacactr1,lethaigianva t~ns6
tUdnglingnhuth€ hic%ntronghlnh2.3.Theocaevi d1,lnay,Chungtad~dang
nh~ntha"ygiuathaigianva t~ns6cuamQttinhic%ucomQtst,tlienhc%m~thie't.
TheoGabor,docrunhla xua"tphatdi€m d€ hlnhthanh19thuye'teuaong.Gabor
d3:tlmtha"ym6iquailhc%nayva hlnhthliehoanob~ngcaehc%thliequailtr<;mg
dU<;1cd~nra co thli tt,trongph~nsan.
. -at2
~UJUUaD~ c
~
~
~- t
~
I
Biga d6i Fourier
I
~
/Lf -
AT
j
a 00
't -,. i
a=5
--1:
8..=0 .5
8.=0.1
~
f
a=O
~ ....f
Hlnh2.3Ph6FouriereuacaeduangeongGaussianvoicaeehi€u rQngkhac
Mall.
Trang22
DQ l<%chchuftncua m6i du'angcongGaussiantheotrt;lCthai gian la ti 1<%nghich
voi dQl<%chuftncuaph6pbi€n d6icuano theotrt;lCtgns6.
Ap dt;lngnguyen19bfftdinhcuaHeisenberg,Gabordu'ara m6iquailh<%bfftdinh
trongmi~nthaigianvami~ntgns6nhu'sau:
f1tf1j >!2 (2.1)
?
ddo:
ilt lakhmingbfftdinht~imQtvi tricuatinhi<%utrongmi~nthaigian.
M lakhoangbfftdinhcuatgns6tinhi<%utrongmi~ntgns6.
d(2.1),Gaborchungtor~ng:
1. Khangth~xacdinhmQtcachchinhxacmQtkhoangcuatinhi<%utrongmi~n
thaigianclingnhu'tgns6 trongmi~ntgns6cuatinhi<%udo.
2. Tichcuakhoangbfftdinhtrongmi~nthaigianvakhoangbfftdinhtrongmi~n
tgns6phai IOnhonmQth~ngs6naodo.
I NghIala n€u mQttinhi<%ud '<jcdinhnghIatrenmQtkhoangthaigiantucthai
duynhfft(ilt=O)thlnosekhangdu'<jcxacdinhmQtcachdgydutrongmi~ntgn
86(M=oo).Ngu'<jcl~i,mQttinhi<%ud '<jcxacdinhmQtcachchinhxactrongmi~n
tgns6(M=O)nophaicochi~udaivah~n(ilt=oo).Gifi'ahaithaiqtcnay,mQtin
hi<%ula bfftdinhvoi mQtmucdQnaodo theoca haimi~nthoigianva tgns6.
Nhu'ngtichcuahaikhoangbfftdinhnayt6ithi~uphaib~ngY2.
Gaborchira dingco t6nt~imQtd~ngtinhi<%uco th~bi€n d6i (2.1)trdthanh
d!ngthuc(nghIala iltilf=Y2).
Tinhi<%unayla s1;1'di~uch€ tichcuamQtdaDdQngdi~uboatheomQtgns6bfft
IcyvoimQtKungco d~ngla mQthamxac sufft.
Hamnay(saunaydu'<jcgQilahamGabor)du'<jcxacdinhnhu'sau:
Trang23
g(t)=e-a2(t-tO)2.(cos[2Il f(t - to)+fjJ]+isin[2Il f(t - to)+fjJ]) (2.2)
?
ado:
. ala hflngs6Gaussiand~di€u che"caehamdaDd(>ngdi€u hoa.a ti l~nghich
vdichi€u r(>ngcuahamGaussian.
. toxacdinhHimcuahamGaussian.
. f la tgns6cuadaDd(>ngdi€u hoa.
. ngdi€u hoa (co lien h~vdi tamcuahamdi€u che"
Gaussian).
Hinh2.4th~hi~nm6ilienh~v€ thaigianvatgns6cuahamGabor.
g(t)
t
6.t
G(fj
f
M
Hinh2.4BaplingKungtrongmienthaigian(phachan)vadaplingtgns6cuano
trongmientgns6.
Trang24
Khi phantkh Fourier,G(f) du'<jckhaitri€n thanhmQtchu6iFouriervaget)chinh
lacach~s6trongkhaitri€n FouriercuaG(f).
V€ nguyent~c,cacs6h~s6nayla voh~n.VI v~yd€ tinhdaplingt~ns6titdap
lingxungtaphaidungmQthamcii'as5d€ c~tC1;ltdaplingxungtlicbodicacdap
lingxag6ckhichungtronenkhanhosovdi cacdaplingg~ng6c.Ngu'aitacon
gQiphantkh Fouriercii'as5(haybi€n d5iFourierthaigianngiin)trongtru'ang
h<jphamcii'as5la hamGaussianla phepbi€n d5iGaborvanhu'v~ychi€u rQng
cuahamGaussianchinhla chi€urQngcuacii'as5.
Vdi sl!th€ hi~nnhu'tren,chothffyhamGaborcoth€ C1;lCbQhoamQtcacht6iu'u
(dotkh .MM dungb~ngY2)mQtinhi~utheocahaimi€n thaigianvat~ns6.
Tuynhienvi~cC1;lCbQhoanaykhongphaila tuy9maphaimantheonguyen19
bfftdinh.Tlic la tkh ~tMphailuonluonb~ngmQth~ngs6(¥2).Theo[7],khidff
chQndu'<jcdQrQngcii'as5trongmi€n thaigian,hamGaborsechodQphangiai
t~ns6t6tnhfftnhu'th€ hi~ntronghinh2.5.
...~
::;Q
tn
~
((CtI
E-t
----...-
~
T (ThiYi gian)
Hinh2.5C1;lCbQhoamQtinhi~utrongcahaimi€n thaigianvat~ns6.
Trang25
2.5.2Thie'tke'b()IQcGabord~trichcacd~ctrtingke'tca'u
Trongtruangh<Jptinhi<$ula anh,mienthaigiannhudffnoi0 trensedu<JcgQila
mienkhonggian(spatialdomain)vamient~ns6noi0 trensedu<JcgQila mien
khonggiant~ns6(spatialfrequencydomain).
Trongmienkhonggian,mQtanhdu<JcxemnhumQtt~ph<Jpcacpixel.Trong
mienkhonggiant~ns6,mQtanh du<JcxemnhumQtt6ngvo hC;lncachamtu~n
hoan.Daugman[6],trongcacth1lcnghi<$mlien quande"ncacdii'ki<$nsinhly hQC
va tam ly hQccua h<$th6ngthi giac con nguaiva dffchungto ding co mQts1l
lienh<$m~tthie"tgiii'adaplingt~ns6cuachungva daplinghuangcuachung.
OngdffchQnramQthamcokhanangdi€u chinht~ns6vahuangmQtcachdQc
l~p.HamongchQnchinhla hamGaborhaichi€u du<Jcxacdinhb~ngcacpha
chanva Ie cuano. Hlnh2.6th€ hi<$nla mQtphachancuab(J lQcGaborhai
chi€u.Trong[6],b~ngmohlnhcaccoche"thigiaccffpthffp,cachamnaydu<Jc
nhanxo~nvaianhnh~pvavi the",cachamnaycondu<JcgQila b(JlQcGabor.
Hlnh2.6MQtlQcGaborhaichi€u (phachan).
Trang[25],mQtb(JlQcGaborhaichi€u du<JchoboimQtc~pheva hocacpha
chanvaIe tuonglingnhusau:
Trang26
x2+i1 --
he(x,y;f,O)= 2 e 20-2 .cos[2I1f(xcosO+ysinO)]
2I1D"
x2+i
ho(X,y;j, (})= 2~0"2 e- 2'" .sin[2I1/(xcoS{} +ysin(})](2.3)
110,hela caedaplingxungtrongmi~nkhonggian.Caedaplingtffns6eua110,he
trongmi~nkhonggiantffns61a:
He(u,V)= [HI (u,v)+H2(u,V)]2
HJu,v) =[HI(u,v)-H2(u,v)]
2} (2.4)
?
ado:
j =H va
I H2(u, v)= e-2IT20-2[(U+fCOSBf+(v+fSinBf]
HI (u, v) = e-2IT20-2[(u-fcosB)2+(v-fsinBY]
f latffns6trongmi~nkhonggiantffns6.
elahu'angeuadaodQngdi~uboa.
(j laehi~urQngeuadu'ongeongGaussian.
Voi f=-JU2+v2va B=arctg(;). I1mh2.71affiQtdaplingxungeuaphaehan
trangmi~nkhonggianvadap lingtffns6tu'dnglingeuanotrongmi~nkhong
giantffns6.
Trang27
In'
u
1",
OJ'J
-=
'ca
I;n
'0. .
~
OJ'J
-=
~ .~
()
:00
.fI
\1\
Hang
CQt
a) b)
I1mh2.7 a)Bapungt~ns6cuaphachantrongmi€n khonggiant~ns6.
b)Bapungxungcuaphachantrongmi€n khonggian.
Tit (2.3)va (2.4),tanh~ntha'yb(JlQcGaborhaichi€u th1!chi~nvi~cC1;lCbQh6a
anhtheocahaimi€n khonggianvami€n khonggiant~ns6.Trongmi€n khong
gian,mQtdapungxungcuab(JlQcGaborla mQthamdi€u boadu'QcC1;lCbQb~ng
mQtcii'as6Gaussian.Trongmi€n khonggiant~ns6,chungtac6th€ xemb(JlQc
Gaborla mQthamGaussiandu'Qcdi€u che'bdimQthamdi€u boac6mQt~ns6
nha'tdinh.VI bie'nd6iFouriercuamQthamGaussianla Gaussianenbi€u di~n
hamGabortrongmi€n khonggiant~ns6 chi la hai hamGaussiandu'Qcdich
chuy€nvaikhoangdichchuy€ndu'Qcxacdinhbdit~ns6cuahamdi€u boa.V€
m~tloanhQC,ra rangb(JlQcGaborthoamannguyenly ba'tdinhkhike'thQpca
haimi€n khonggianva khonggiant~ns6.Daugman[3],dacmracacquailh~
ba'tdinhnayla ~~u ~n/4va~y~v~n/4vai~, ~yla cacdQrQngtheocactr1;lc
x,ytrongmi€n khonggianva ~u,~v la cacbangthongtheocactr1;lcu, v trong
mi€n khonggiant~ns6.
Nhu'v~y, khi ap d1;lngbQlQcGabord€ trichcacd(ictntngkgtcdun6ichungva
ke'tca'ucuacactai li~uvie'tlaytie'ngVi~tn6irieng,chungtac~nphaixacdinh
haithams6quailtrQngd6la t~ns6f vahu'ang8.Tuynhien,dayla mQtva'nd€
Trang28
md.VI hic%nnay,chuaco mQtbaacao nfwchothffyvai m6iungdt;mgC\lthe,
trongdo,co sii'd\lngbqlQcGabordetrichcacd~ctru'ngke'tcffunhunenchQnf
vaenhuthe'nao7(baonhieutffns6f 7 baanhieuhuange 7,dingnhucacgia
hi nayIabaanhieu7).VI v~y,lu~nvannaychiapd\lngnhungthams6f vae
duQcchQnbdimQts6tacgiadi tru'aclamvai tie'ngAnhva tie'ngTrungvatrai
quacacthii'nghic%mC\lthekhith\fchic%nnh~ndic%ncanhant\fdQngd\fatrenchii'
vie'tartie'ngVic%tdechQnracacthams6f vaechobQlQcGabor.
M6i mQtc~p(phachanvaphaIe)cuabQlQcGaborduQcdi€u chinhtheotffns6
vamQthuangc6djnh.Do v~y,cffnphaico cacxemxetquantrQngtrongvic%c
chQntffns6vahuangdexacdjnhcackenhchobQlQcGabor.Vic%ctrichcacd(ic
tntngktt cifulien quande'nca haitinhchfftcuake'tcffutrongcacanhtai lic%u
vi€t tartie'ngVic%tIahuangvatffns6.
Sauday,chungtasephantichmQts6vffnd€ lienquande'nvic%cchQntffns6va
huangchobQlQcGabor.
ChQnt§n sf)
Vic%cchQntffns6chobQlQcGaborph\lthuQcvaokichthuaccuaanhnh~pva
djnhly Iffymftutrongxii'ly tinhic%us6.Gia sii'anhnh~pco kichthuacNxN,d
day,N thuongco gia trj la lily thuacua2 (doco th\fchic%nbie'nd6i Fourier
nhanh)khi do,tffns6f phaithoaman:f::;;N/2.Tuynhien,quath\fcnghic%mvai
N=256,nhuv~ymi€n giatrjcuaf la: 2,4,8, 16,32,64,128thlf=128la khong
d~tduQcke'tquat6ttrongtrichcacd(ictntngktt cifu[6].Do v~y,f chicongiai
h~ntrongkhoang:2,4,8, 16,32,64.
Khith\fchic%ncaid~tcholu~nvannay,vaif=2vaf=64,chothffyke'tquakhong
tat.Nencu6icunglu~nvanchQncacgiatrichof la:4,8,16,32.
Trang29
Ch(;mhu'ong
Clingtrong[14],[25],cacvungtie'pnh~ntrenvonaophantichanhnh~ptheo8
huangla 0°,45°,90°, 135°, 180°,225°,270°,315°.Tuynhiencachuangnay
coSl,l'd6ixungtungc~p(theokhoangcachla 180O)nhuth€ hil$ntronghlnh2.8.
Dov~y,chungtachQncacthams6cho8la:0°,45°,90°,135°.
45"
18(1'0'"
223"
90" 270"
135" 31~
Hlnh2.8Cachuanglad6ixungvainhautungc~p.
Nhuv~y,vaim6i(t,8),chungtaxacdinhdu<;1cmQtkenhcuabQlQcGabornhu
tronghlnh2.9(cota"tca 16kenhtheo4t~ns6va4huang).
Kenh 1: f=4,8=0°, Kenh 11: f=16,8=90°,
Kenh 2: f=4,8=45°, Kenh 12: f=16,8=135°,
Kenh 3: f=4,8=90°, Kenh 13: f=32,8=0°,
Kenh 4: f=4,8=135°, Kenh 14: f=32,8=45°,
Kenh 5: f=8,8=0°, Kenh 15: f=32,8=90°,
Kenh 6: f=8,8=45°, Kenh 16: f=32,8=135°.
Kenh 7: f=8,8=90°,
Kenh 8: f=8,8=135°,
Kenh 9: f=16,8=0°,
Kenh 10: f=16,8=45°,
Trang30
(b) (c)
Hinh2.9 (a)BQlQcGabor16kenh.
(b)LQcvdi t~ns6caotrongmi~nkhonggian.
(c)LQcvdit~ns6ilia'p trongmi~nkhonggian.
Tht;ichi~nIQcGabortrenmQtanhnh~plex,y)
Voim6ikenhcuabQlQc(ungvdim6ic~p(f,e»
1. TinhHe(u,v)vaHo(u,v)(b~ngphepbitn d6iFouriernhanh)
2. Tinh cacanhdu'<JclQccualex,y) theoHeva Ho(b~ngphepbitn Fourier
nhanhngu'<Jc),chungtadu'<Jchaianhqe(x,y)vaqo(X,y).
3. Anh cualex,y) trongmi~nkhonggianla: qij(x,y)=~q;(x,y)+q~(x,y)
4. Trich2d~ctru'ngtuqij(x,y) la trungblnh(Meanij)vadQl<%chuffn(Stdij).
Nhu'v~yvdi 16kenh,chungtasehlnhthanhdu'<JcmQtvectdd~ctru'ngcuaanh
I
nh~plex,y) vdi 32thanhph~n.Vdim6ikenh,theot~ns6,chochungtadu'<JcffiQt
d~ctru'ngcuaanhtai li<%uvitt tar nh~pla dQphangiai cuaktt ca'uchii'vitt tar
Trang31
(ffi~tdQphanb6cuacackyhI)vatheohu'ong,chochungtadu'QcffiQtd~ctru'ng
v€ hu'ongcuaketcffuchitvietlay(phanb6v€ hu'ongcuanetvietlay).
Trongchu'dngnay,lu~nvandfftrinhbayffiQts6khaini~ffilienquaildenketcffu
vatrichd~ctru'ngke'tca'ucuacacanhn6ichungvacacanhtiii li~uvie'ttarn6i
rieng.Ben c(;lnhdo, lu~nvanclingdfftrlnhbayffiQtcachchi tiel haiphu'dng
phaptrichd~ctru'ngketcffuIa phu'dngphapffiatr~ntu'dngtranhffilicXaffiva
phu'dngphaplcvOibQlQcGabor.Tuy nhien,theocacling d\lngdffneutren,bQ
lQcGabor la phu'dngphap!richd~ctrUngket cffucho ket qua t6tnhfft.Vi v~y,
lu~nvandffsad\lngbQlQcGaborde trichd~ctru'ngketcffutrongcacanhtai
li~uvietlaytiengVi~t.
Nhu'v~y,saukhisad\lngbQlQcGaborvoi 16kenh,chungtadff!richdu'Qcd~c
tru'ngcuaanhtai li~uviet lay tiengVi~tcuaffiQtca nhanla ffiQtvectd d~c
tru'ngg6ffi32thanhphftn.
Phftntiep theocuaquytrlnhnh~ndi~nca nhandl1atrenchitviet lay tiengVi~t
la phanlop (canhan)chovectdd~ctru'ngnay.V€ nguyentiic,bfftIcyffiQtbQ
phanlopnaoclingcotheapd\lngdu'QCvoivectdd~ctru'ngnay.Tuynhien,bai
tminphanlOpcacchitvietlaynoichungva chitvietlay tiengVi~tnoiriengla
bailoanphannhi€u lOp(corfftnhi€u canhan).S61u'Qngcaclopnhu'v~yla vo
h(;ln enchungtakhongthenaoquailsathetdu'QCvi nhu'dffnoi (jphftndftus6
Iu'QngcaclOpgftnb~ngdaTIs6cuaffiQtkhuvl1c,ffiQtqu6cgia,vv...Dov~y,lu~n
vansechuyenbai loanphannhi€u lOpthanhbai loanphanhailop (Cungho~c
Khac).Chu'dngtieptheocualu~nvansetrlnhbayro v€ bai loanphanhailOp
nay(Dichotomizer)clingvoi nhitngdanhgiav€ no sovoi bai loanphannhi€u
lop(Polychotomizer).