Luận văn Phụ thuộc dữ liệu và việc biểu đạt các phụ thuộc dữ liệu bằng ngôn ngữ logic tân từ

Phụ thuộc dữ liệu và việc biểu đạt các phụ thuộc dữ liệu bằng ngôn ngữ logic tân từ Trang nhan đề Mục lục Lời nói đầu Chương1: Phụ thuôc hàm và sự chuẩn hóa lược đồ quan hệ. Chương2: Các phụ thuộc dữ liệu khác. Chương3: Biểu diễn logic của các phụ thuộc dữ liệu. Chương4: Tạo dựng các lớp và module chuẩn hóa lược đồ CSDL quan hệ dạng chuẩn ba. Kết luận Tài liệu tham khảo

pdf42 trang | Chia sẻ: maiphuongtl | Lượt xem: 1695 | Lượt tải: 0download
Bạn đang xem trước 20 trang tài liệu Luận văn Phụ thuộc dữ liệu và việc biểu đạt các phụ thuộc dữ liệu bằng ngôn ngữ logic tân từ, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
CHUdNG 2: cAC PHl,J THUOC DO LI~U KHAC CHUdNG 2 cAc PHIJ THUQC DU LI~U KHAc Khai ni<%mph\!thuQchamtrongtrilongh9Pt6ngquatkhongdud~vethe't caclo(;liph\!thuQct6nt(;litrongquailh<%.Trongthe'gidi th1jcconco nhi~ulo(;li ph~thuQcdu li<%unua.Trangchildngnay,chungta kh::wsatthemcac ph\! thuQcduli<%ukhac.MQtsf)trongnhungph\!thuQcnayd~nde'ncacd(;lngchu§:n caohdn,nhil ph~thuQcda tri va dinh nghIad(;lngchu§:n4, ph\!thuQcke'tva d(;lngchu§:n5. Cuf)icling,chungta xet cacph\!thuQcbaa hamva ph\!thuQc sinh. 2.1.PH{)THUQC DA TRJ (Multivalueddependency) Trong childng1,chungtada tha'yr~nggiuadfi'li<%uco mQtmf)iquailh<% vdinhauvado Ia ph\!thuQcham.Nhilngdokhongphiii la duynha't.Ch~nh(;ln, tenchakhongphiiilaxacdinhduynha'tenmQtduaconmala mQtho?cmQt sf)con.M6i quail h<%do trongcd sa dfi'li<%ugQiIa phl;!thuQcda trio Giii sachungtaco mQtlil9Cd6 quailh<%R, va x, Y la cact~pconcuaR. V6 tr1jcquail,chungtanoir~ng"X xacdinhdatriY", ho?c"comQtphl;!thuQc datricuaY vaoX", ky hi<%uIa X -7-7 Y, ne'uvdinhfi'nggia tri cuaX, t6nt(;li ffiQt~pr6ngho~cnhi6ugiatri tUdnglingtrenY makhonglien quailgi Wicac giatricuacacthuQctinhconl(;licuaR - X - Y. V~m?~hinhthuc,chungtacoth~dinhnghIa: 40 CHUdNG 2:cAc PHI)THUQCDOLI~UKHAc Dinh nghia2.1: Cho PRS =(U, D, dam)la mt)tlu'Qcd6nguyenthuy.X, Y cU. 4Mt)tph\!thut)cda tri (MVD) X -?-? Y trenPRS la mt)trangbut)csao chorangbut)cnaydlt<jCthGabdimt)tquailh~r ne"uva chine"u: Vdi 2 bt)bfftky t,u E r ne"ut[X]=u[X] thi t6nt~ibt)v E r v[XY] =t[XY] vav[X(U - Y)] =u[X(U - Y)] Mt)tMVD X -?-? Y trenPRS gQila mt)tMVD tim thu'ongne"u: . Y c X, ho~c . XuY=U Mt)tph\!thut)cda td t~mthu'ongsedungtrenmQiquailh~cuaPRS; no du<jcgQila t~mthu'ongbdi vi no khongxac dinhbfftky rangbut)cnaotren FRS. Dinhly 2.1: Cho RS =(U, D, dam,N, SC) la mt)tlu'<jcd6 quail h~.X, Y cU. Hai m~nhd6 santu'dngdu'dng: (1) SC F X -?-? Y (2) \j r: rIa quailh~cuaRS r =r(XY] * r[X(U - Y)] Tli dinhly 2.1va djnhly 1.5d chu'dng1,chungtacoke"tquasanday: Ke"tqua: X -?-? Y F X -?-? U - Y (ph~nbli) X -? Y F X -?-? Y (ph\!thut)cdatridu'Qcsuyd~nbdiph\!thut)cham). 41 CHUdNG 2:cAc PHl,JTHUQCDOLI~UKHAc Ktt qua tren cho tha"ym6i lien quail giil'aphl;!thu(k ham (FD) va phl;! thuQcda tfi (MVD). MQt h<$tien d~ cho bai tmin suy d~ntrong lOp cac phl;! thuQ"chamvaphl;!thuQcda tridu'QcBeeri,Faginva Howarddu'aranam1973. Dinhly 2.2: ChoJll Ia h<$cactiend~sail: (FDl) Lu?t phanx~: (FD2) Lu?t tangtntdng: (FD3) Lu?t biicc~u: (MVDl) Lu?t bu: (MVD2) Lu?t cQng: (MVD3) Lu?t b~cc~u: 'i/y c X, X -+Y ne"uZ c U va X -+Y thlXZ -+YZ {X -+Y, Y -+Z} ~ X -+Z X -+-+ Y ~ X -+-+ U - X - Y X -+-+ Y ~ WX -+-+VY ntuv c W {X-+-+ Y, Y -+-+Z} ~ X -+-+ Z - Y (FM1) (mvdsuyd~nbdi fd): X -+Y ~ X -+-+Y (FM2) (biicc~uh6nhQp): {X -+-+ Y, Y -+Z} ~ X -+Z - Y J/lla xacdang,d~ydiiva kh6ngthua. Cac lu~tsailco th~suyd~ndu'Qchrh<$tiend~J1i va vlJllla xacdangnen nhil'nglu~tnayclingxacdang. X -+-+Y ~ X -+-+U - Y {X-+-+ Y, X -+-+Z} ~ X -+-+ YZ {X -+-+ Y, X -+-+Z} ~ X -+-+ Y n Z (MVD1' - bu): (MVD4 -:-hQP): (MVD5 - giao): (MVD6 - tru): {X-+-+ Y, X -+-+Z} ~ X -+-+Y - Z 42 CHUaNG 2: cAc PHV THUQC DO LI~U KHAc Co thStha'yr~ngv€f phiHcuaphvthuQcda tri trongsuydi~n1adongdO'i ydiphepbu va giao(bdiV?ydongvdi h<;Jpva trli).Tli do co du'<;JcY tu'dngma tat?'Pcacfd va mvdcothSsuyd§ndu'<;JctUt?Pfd vamvddarho. Blnh ly 2.3: U 1at?PcacthuQctinhcua1u'<;Jcd6RS.Co thSphanho~chU - x thanh caet?PthuQctinhY 1,Y2,...,YksaGrho: N€fu Z c U - X thlX ~~ Z dlf<;JcthoatrenmN th€ hi~nr khi vachi khi Z 1ah<;Jpcua mQtsO'Yj (i E {I, 2, ...,k}). GQihQcact?P Y1, Y2, ...,Yknoi tren(dO'ivdi mQtt?P cacfd va mvd)1a cdsdphVthuQcdO'ivdiX, ky hi~u1aDEP(X). Bai toansuy d§n tronglOpcac rangbuQcki€u phV thuQchamva phv thuQcdatriquyv€ bai toanHmbaadongvacdsdphVthuQcrho mQtt?PthuQc tinh. Thu~ttmln2.1:TinhcdsdphVthuQc[6] Nh?p:T?p phVthuQcdatriM trent?PthuQctinhU va mQtt?PX c U Xua't:Cd sdphVthuQccuaX dO'ivdiM Phlfdngphap: ChungtakhdidguvdimQtt?Pcact?Ph<;JpS macuO'irung setrdthanhcd sdphVthuQc.Luc bandgu,S chuachimQtt?P la U - X; nghia1aS ={U- X}. ChungtaHml?p di l?p l~icacphvthuQcV ~~ W trongM va mQtt?PY trongS saGrho Y co giaovdiW nhu'ngkhanggiaovdi V rho d€fnkhi khang 43 CHUdNG 2:cAc PHl,JTHUOCDOLlI;UKHAc conthayd6inaGd6ivdiS. Sail d6thayY b~ngY n W vaY - W trongS.T~p cact~ph<jpS cu6iclingla cdsdph1;lthuQcchoX. ; Thu~ttoan n6i tren lam vi~ctrong thai gian da thuc lien bai toan suy d~n d6i vdi ph1;lthuQcham va ph1;lthuQcda tri quye"tdinh du<jctrong thai gian da iliac. Dinh nghia2.2: MQtlu<jcd6 quailh~d d<;lngchu~nthutu'(4NF) ne"um6iph1;lthuQcdatri x ~~ Y trongM+(M la t~pcacph1;lthuQchamvaph1;lthuQcdatri),trongd6 Y khongphftila t~pconcuaX, vaXY khongchuata'tcacacthuQctinhcua hi<jcd6,thlX la sieukh6acualu<jcd6quailh~. Ta nh~nxet la ne"uR c6 d<;lng4NF thl n6phaic6 d<;lngBCNF, nghlala, 4NF la di~uki~nm<;lnhhdnBCNF. Th~tv~y,gia sa r~ngR khongc6 d<;lng BCNF bdi VI c6 mQtph1;lthuQchamX ~ A, trongd6 X khongphai la sieu kh6a,vaA khongthuQcX. Ne"uXA =R thlch~cch~nX phaichuamQtkh6a. Do v~yXA khongth~chuamQithuQctlnhcuaR. Theo tiend~X ~ A suyra x ~~ A. Vi XA "*R va A khongthuQcX, X ~~ A la mQtvi ph<;lm4NF. M1;lcdichcuad<;lngchu~nb6nla tachnh6cacquailh~nh~mbie"ncacph1;l thuQcda tri tpanhnhungph1;lthuQcda tri t~mthuangtrongquailh~mdi d~ khongc~nki~mITanua. Vi d~2.1:Xet lu<jcd6quailh~NHANVIEN(TNV, TDA, TPT), vdi TNV latennhanvien,TDA latendvan,TPT la tenph1;lta. M ={TNV~~ TDA} 44 CHUdNG 2: cAc PHV THUQC DO LI~U KHAc .,a)NHANVIEN: b)NHANVIEN_DUAN NHANVIEN_PHUT A Hinh2.1 Quanh~NHANVIEN d hinh 2.1(a)thl khongd 4NF VI trongcac phlf thuQcdatrikhongt~mthu'ongTNV ~~ TDA vaTNV ~~ TPT, TNV khong lasieukhoacuaNHANVIEN. Cac phlfthuQcda trikhongt~mthu'onglaml~p l~icacgia tri dlf thuatrongcac bQ.Tuy nhien,1u'<Jcd6 NHANVIEN thl d BCNFbdiVIkhongcophlfthuQchamco trongNHANVIEN. Ta phan ra NHANVIEN thanh NHANVIEN _DUAN Va NHANVIEN_PHUTA (hinh2.1(b)).Cil haidSud 4NF, bdi VI TNV ~~ TDA laMVD dm thlfongtrongNHANVIEN_DUAN va TNV ~~ TPT Ia MVD t~mthu'ongtrongNHANVIEN_PHUT A. 45. TNV TDA TPT An X Thinh An Y Vu9ng An X Vu9ng An Y Thinh TNV TDA An X An Y TNV TPT An Thinh An Vu9ng CHUdNG 2: cAc PHl,J THUOC DO Llt;U KHAc B~ lam r6 y nghlac~nphltigill quailh~d 4NF, chungta xemhinh2.2 sau: '(a)NHANVIEN (b)NHANVIEN_DU AN NHANVIEN_PHUT A Hinh2.2 Co 16 b'QtrongNHANVIEN d hinh 2.2(a).N6u chungta phanra NHANVIENthanhNHANVIEN_DUAN vaNHANVIEN_PHUTA, nhlt(]hinh 2.2(b),chungtachic~nnitca la 11bQtrongcahaiquailh~,va cacbQnayd~u nhohdncacbQtrongNHANVIEN. Hdn filla,di thu'ongkhi C?Pnh?tclingse 46 TNV TDA TPT An X Thinh An Y VuQng An X VuQng An Y Thinh Blnh W Doan Blnh X Doan Blnh Y D0 lll Blnh Z Doan Blnh W Thinh Blnh X Thinh Blnh Y Thinh Blnh Z Thinh Blnh W Ktt Blnh X Ktt Blnh Y Ktt Blnh Z Ktt TNV TDA An X An Y Blnh W Blnh X Blnh Y Blnh Z TNV TPT An Thinh An VuQng Blnh Doan Blnh Thinh Blnh Ktt CHUdNG 2: cAC PHl) THUQC DO LI~U KHAC du<;Jctnlnhkhoi.Vi dl,l,n€u Binh b~tdftulamvi<$cd mQtd1!ankhac,chungta phiii them3 bQtrongNHANVIEN - m6i phl,lta mQtbQ.Ne"uchungtaqUell themba'tky mQttrongnhungbQnay,quailh<$trdnenkhongnha'tqUail.Tuy nhien,chi cftnmQtbQduynha'themVaGquailh<$4NF NHANVIEN_DUAN. Va'nd~tu'dngtVxiiy fa d6ivdi cacdi thu'ongkhi xoava sttane"umQtquailh<$. khongd 4NF. Vi dlf2.2: R =(ABCDE) M ={A --+BC, C --+--+DE} Khong d d:;mgchu~n4 VI C --+--+DE la phl,lthuQcda tri khong tftm thuong. Ne"uphan ra lu<;Jcde)trenthanhhai lu'<;Jcde): thIlu'<jcde)trend dC;lngchu~n4. Ba'tky khi naGchungtaphanfa mQtlu'<jcde)quailh<$R thanhRl =(X u Y) vaR2=(R - Y) d1!atrenmQtMVD X --+--+Y trongR, phepphanraco thuQctinhn6ikhongma't.Nhu'v~ydi~uki<$ncftnva du chophepphanra mQt lu<;Jcde)thanhhai'lu'Qcde)la co thuQctinhn6ikhongma'tLJ1 '. ThuQctlnh LJl': Lu'<;Jcde)quailh<$Rl va R2hinhthanhtUs1!phanra n6ikhongma'tcuaR ne"uva chi n€u Rl n R2 --+--+(R1-R2)(ho~cdo s1!d6ixung,n€u va chi ne"u(R1n R2) --+--+(R2- R1)). 47 CHUaNG 2: cAc PHVTHUQCDOLI~UKHAc E)i~unaytu'dngtVthuQctinhLJ1, ngo~itrti'LJ1' g6mcacacFD vaMVD. Chungtaco th~phattri~nthu~tloan 1.9d chtfdng1 thanhthu~tloan2.2,tC;lo mQtphandi n6i khongmfftthanhlu<;1cd6 quanh~d 4NF. Thu~tloan nay khongc~nthi6tsinhramQtphanfil baaloancacph\!thuQcham. Thu~ttoaD2.2:Phanran6ikhongmffthanhquanh~4NF[2] E)~tD :={R}; While co mQtlu<;1cd6quanh~Q trongD khongd 4NF thl Begin ChnmQt1tf<;1cd6quanh~Q trongD chtfad4NF; TIm mQtMVD khongt~mthtfongX ~~ Y trongQ vi phC;lm4NF; Thay the'Q trongD b~nghai1u<;1cd6(Q - Y) va (X u Y) End; MQtva'nd~phuctC;lPhdn1aco th~comQts6ph\!thUQCda trichungtahy v9ngse dungkhi chi6umQtquailh~h<;1pyr cuaR trenmQtt~pconX c R, nhu'ngkhonghy vngr~ngnhungph\!thuQcnaydungtrongchinhr. MQtph\! thuQcnhuthe'gi1anhung(embedded)trongR. Do do, chungta phailUll y khithuth~pta'tca cacrangbuQcdu<;1cxem1adungtrongnhungquailh~r cua R,khongdu<;1cbi) quacacph\!thuQcda tri nhung.Tuy nhiencacph\!thuQc hamnhungkhongbaagioxayfa;chungtad~dangchungminhdtf<;1cr~ngn6u Y --7Z dungtrongquailh~r cuaR dtf<;1cchie'ulen X thl Y ~ Z clingdung trongr. 48 CHUdNG 2: cAc PHl,JTHUOCDOLI~UKHAc Vi d~2.3:Oia sit trongchu'dngtrinhhQcco nhungmanphaihQctru'oc truockhi hQcmQtmannaodo. OQie la tenmanhQc,S la tensinhvien,P la ten~onhQcphaihQctruoctruockhihQce, vaY la nammaS hQcP. Ph\! thuQchamho~cph\!thuQcdatrikhongt~mthu'ongduynhfftla SP ~ Y. v~y chungtacoth~phandi eSpy thanheps vaSpy, cacIu'Qcd6nayhi€n nhien laa4NF. Ph\!thuQcdatri e ~~ S khongdung.eh~nh~nco th~cocacbQsail trongquailh~r cuaeSpy r (C KTLT s P NMTH Y) 1998Hai KTLT nhungkhongtim thffybQ Tam CSLT 1999 KTLT Hai CSLT 1999 Co th~Hai dahQcxongmaneSLT VI do la manh9ctru'ochoman KTLT, nhu'ngkhongphaivaonam1999. Tuy nhien,nSuchungtachie'umQtquailh~hQpl~cuar cuaeSpy tren esp,e ~~ S vatheoquiuiebu,e ~~ P clingdung.E>i~unaynoileuding IDQtsinhvien'khidangky hQcmQtmanhQc(KTLT) du'Qcyellc~uph,HIffy xongcacmonphaihQctntoc(NMTH va CSLT) cuamanhQcdovaomQtthai gian ao,do.VI the',C ~~ SvaC~~ P lanhungph\!thuQcdatrinhungcua esp.Ke'tquala,CSPthvcsvkhonga4NF,vanophaidu'Qcphanrathanhes vaCP. 49 CHUdNG 2: cAe PHV THUOC DO LI~U KHAe Ne'unhus1,1't6nt(;licuamQtph\!thuQcda tri trongmQtlu<;1cd6 quailh~ tu'dngling voi kha nangtach- ke'tn6ikhongma'tthongtin lu<;1cd6 naythanh haifuanhph~n,thlmQtdiu hoi t1!nhiennaysinhla: co th~bi~udi~nmQtlo(;li rangbuQcnaGbdi di~uki~ntach- ke'tn6i khongma'tthongtin cua nhi~u thanhph~n.R6 ranglo(;lirangbuQcdonh~nph\!thuQcdatIi nhula mQttru'ong h<;Jprieng. 2.2.PH{) THUOC KET (Join Dependencies) Djnh nghla2.3: ChoFRS =(U, D, dam)la mQtlu<;1cd6nguyenthuy Cho Xl, X2, ...,Xk C U voi U\=l Xi =U. MQtph\!thuQcke'ttrenFRS ky hi~uIa Xl *... * Xk la mQtrangbuQCsaG choffiQtquailh~r trenFRS thoarangbuQcnayne'uva chine'u r =r[Xd * ... * r[Xk] H~qua:ChoFRS=(U, D, dam)la ffiQtlu<;1cd6nguyenthuy . Ne'uX, Y c U, thl(X ~~ Y Q XY * X(U - Y)) . Ne'uX, Y c U voiXl U X2 =U thl Xl * X2Q Xl (I.X2 ~~ Xl QXI (lX2~~X2 Djnh nghla 2.4: [5] MQtph\!thuQcke't*[RI, R2,...,Rp] trenR Ia t~mthuongne'uno du<;1cthoa vdiffiQiquail h~feR). 50 CHUdNG 2: cAc PHl,J THUOC DO LI~U KHAc Dinh nghia2.5: MQt luQcet6quailh~d d9-ngchuffnthlinam(SNF) hayd9-ngchuffnchie'u ke't(PJNF) ling yoi t~pSC cacph\!thuQcham,ph\!thuQcetatri, ya ph\!thuQc ke'tn6uyoi mQiph\!thuQcke'tkh6ngtffmthuongJD(R1,R2,...,Rn)trongSC+, m6iRi la mQtsieukhoacuaR. Vi dl;t2.4: X6t luQcet6quail h~CUNGCAP(TNCC, TPCC, TDA), yoi TNCC la tennhaclingca"p,TPCC la tenphffnclingca"p,TDA la tendlj an. CUNGCAP(TNCC An An Binh Thinh Vuong TPCC A B A B C TDA) X Y Y Z X ------------------------------------------------------------ Binh An A A X Y (a)Quanh~CUNGCAP kh6ngcoph\!thuQcetatri liend 4NF. Tuynhien,no sekh6ngd SNF ne'ucoJD(Rl,R2,R3). R2 R3 I TNCC I TDA I I TPCC An X A R1 I TNee I TPce TDA An A X (b)Phanraquailh~CUNGCAP yoi ph\!thuQcktt thanhbaquailh~SNF. Hlnh2.3 51 An B An Y B Y Binh A Binh Y A Y Thinh B Thinh Z B Z Vuong e Vuong X C X CHUdNG 2:cAc PHl,JTHUQCDOLI~UKHAc Xet quail h~CUNGCAP ahlnh2.3(a)(chIxetnhungbQa trendu'ang g<;lchkhongli~nnet).Trongtru'angh<;1pnaymQtbQth€ hi~nmQtnhacungca'p clingca'pmQtphgnriengWimQtdvanriengbi~t,nhu'v~ykhongcocacph\! thuQcda tri tgmthu'ang.Quanh~CUNGCAP daa4NF vasekhongbi phan fa.Chuy Ianhungquailh~chuaph\!thuQcdatrikhongtgmthu'angcokhuynh huangtrathanh"ta'tcakhoa"cacquailh~;conghIala,khoacuachungla ta't canhfi'ngthuQctinhcuachungvaiMall. GiGgiasll'rangbuQcsaildayluauluaudung:ba'tky khi naGme>tnha clingca'psclingca'pphgnp,vamQtdv anj sll'd\!ngphgnp, va nhaclingca'ps clingca'pit nha'tmQtphgnchodv anj, thl nhaclingca'ps clingsedangcling ca'pphgnp chodv anj. RangbuQcnayco th~du'<;1cphatbi€u l<;litrongnhung cachkhac va xac dinhmQtph\!thuQck€t JD(Rl,R2,R3) giuaba phepchi6u Rl(TNCC, TPCC), R2(TNCC, TDA), va R3(TPCC, TDA) cua quail h~ CUNGCAP. N6u rangbuQcnay dung,nhungbe>adlfai du'angg<;lchkhong li~n netahlnh 2.3(a)ph<lit6n t<;litrongba'tky th~hi~nh<;1pphapcua quail h~ CUNGCAP va cling chuanhungbQatrendu'angg<;lchkhongli~nnet.ffinh 2.3(b)th~hi~nquailh~CUNGCAP vai ph\!thuQck€t du'<;1cphanra thanhba quailh~Rl, R7, vaR3 mam6ichungd~ua 5NF. 52 CHUdNG 2: cAc PHl,JTHUQCDOLI~UKHAc Chungtaeoth€ tomt~teaebuGeehugnhoanhusail: Table voi nhungnh6ml~p ---------------- Loq.i nh6mI~p Dq.ngchuan1 ---------------- Loq.iphl,!thu9C tUngphan Dq.ngchuan2 ---------------- Loq.iphl,!thu9c baGcau Dq.ngchuan3 ---------------- Dq.ngchuanBC ---------------- Loq.inhung phI,!thu9Cdatrj Dq.ngchuan4 ---------------- Dq.ngchuan5 Tomt~teaebuGetrongehugnboa. 53 CHUdNG 2: cAc PHl,JTHUQCDOLlt;UKHAc Co th~coi mvdIa mQttru'ongh<jpmdrQngcuafd va la mQttntongh<jp d~cbi~tcuajd. Tuy nhienchungtav~nchuatlmthffymQth~tieDd~xacdang d~yducholOpjd nhttd6ivoilopmvdvard.TuynhienmQthu~ttoaDquySt I dinhcho bai toaDsuydi~ntronglOprangbuQcg6mcaefd vajd, g9i la san l du6i(chase)du<jcduara bdi Maier, Mendelzonvi Sagiv Dam19.75.Thu~t. tmlnlien quaildSnmQts6khaini~msailday: Dinhnghia2.6:ChoR ={Rl,R2,...,Rp}la t~pcaclu<jcd6quailh~,voi R =RIR2...Rp. SC Ia mQtt~pcacrangbuQctrenlu<jcd6quailh~R. . Anh x~chiSukSt(project-Joinmappings)dinhnghiatrenlu<jcd6R, ky hi~umR,la illQthamtrennhungquailh~trenR saocho: mR(r)=1tRl(r)* 1tR2(r)*...*1tRp(r) Quanh~feR)la mQtdi~mc6dinhcuaanhx~mRnSumR(r)=r.T~p. tfftcacacdi~mc6dinhcuamRdu<jcky hi~ula FIX(R). SATR(SC)la t~pcuatfftca cacquailh~r trenR thGatfftcacacrang. buQctrenSC. SC F sc,nSuSATR(SC)c SATR(sc). Ta quailtamdSnP Ia t~pnhungquailh~r trenR saochomR(r)=r,hIcla pc FIX(R). NSu P =SAT(SC), di~uki~nkhongmfftthongtin chocd sd du , li~utrenlu<jcd6cdsdduli~uR coth~phatbi~unhusau: SAT(SC) c FIX(R) ho~c SC F *[R] 54 CHUdNG 2: CAC PHl,J THUQC DO LlE;UKHAC Blnh nghia 2.7:ChoR ={A!,A2,...,Am}Hit~pcacthuQctinh.T~pV, la hQicuahai t~pkhonggiaonhauVdva Vn,ma . Vd ={al, a2, ..., am}la t~pcac bie'ndu<jcphanbi~t(distinguished variables) . Vn={hi,b2,...}la ~pcacbie'nkhongdu<jcphanbi~t(undistinguished variables). MQttableauT(R) la mQtquailh~trenR, trongdo m6i thuQctinhAi E R, dom(Ai)={ailU Vn . Tableaula mQtbangco mcQttu'dnglingvdim thuQctinhcuaR, va n dongtu'dnglingvdinquanh~concuaphanraD cuaR. M6i 0 cuadongi vaCQtj cuatabbleauchliamQttronghaigiatrisail: . ajne'uRi cochliathuQctinhtu'dnglingtrongcQtj. . bkne'ukhong,chis6k b~td~ub~ng1vatangd~nm6ikhic~ndung de'ngia trib. Vi df:l2.5:Cho R = {AlA2,A2A3,A3~}. TableauTR du<jcthShi~nnhu 55 sail: TR ( AI Az A3 A4 ) al az bl b2 b3 az a3 b4 bs b6 a3 a4 CHUdNG 2: cAc PHV THUQC DO LI~UKHAc Dinh nghia2.8:Cho P la m9tt~pcacquailh~trenhf<;1cd6R. Ne'uT1va I TzlahaitableauxtrenR, thiTl chuaTztrenP, vie'thi Tl ~pTz,ne'uTl (r)~ Tz(i) d6i vdi mQiquailh~r trongP. Tl vaTzla tu'dngdudngtrenP, vie'tla Tl =pTz, ne"uTl ~pTz va Tz ~pTl . Chung taquail tamde'nP =SA T(SC) va vie'ttAt==SAT(SC)la ==sc . B6 d~2.1:ChoTl vaTzIanhungtableautrenlu<;1cd6R vachoP la m9t t~pcacquailh~trenR.ChoT'l vaT'zlanhungtableausaccho 1. T 1==pT' 1va T2=pT' zva 2. T'l vaT'2coinhuIa nhungquailh~d trongP Thi Tl CpT2ne'uvachine'uT'l C T' z Bflng b6 d6 2.1, chungta co thS kiSm tra Tl CSCT2 ne'uchungta co nhunglu~tdStUm9ttableaumyyT, Omm9ttableauT' sac cho T ==SCT'. Nhunglu~tbie'nd6ichonhungtableauIabflngcachapd1Jngcacfd vajd co ffi~trongSC thongquacaclu~tF va] saudaychode'nkhi khongcothem ffi9ttr~ngthainaonuachobang. Lu~tF: X ~ Y la fd thuQcSC.Ne'uuvav IahaibQtrongT sacchou[X]=v[X] thid6ngnha:t1J(A)va v(A) chom6ithuQctinhA thuQCY bflngcachd~tl~iten ffi9tronghaibie'ndonhu'sau: Gia siru(A)=d1va v(A) =d2.Ne'ud1ho~cd2la bie'ndu<;1cphanbi~t, ch~ngh~nd1la bie'ndu'<;1cphanbi~tthimQixua:thi~ncuad2du<;1cthaythe'bdi d1. 56 CHUdNG 2: cAcPHl) THUQC oQ LI~UKHAc Ntu ca dl lfind2d~ula bitn khangdu'<jcphanbi~tthl mQixua"thi~ncua bitn kernchI s61Onhdndlt<jCthaythe'bdibie'nkia (bie'nco chI s6nhohdn). DinhIy 2.4:ChoT' laktt quacuaapd\mglu~tF d6ivdiphl,lthuQcham X ~ A tditableauT. T vaT' thltu'dngdu'dngtrenSAT(X ~ A). L u~HJ: Cho S ={SI,S2,...,Sp}Ia mQtt~pcaclu'<jcd6quailh~va cho*[5] Ia mQt jd trenU. Cho T la rnQttableauva cho WI,W2,...,Wpla cachangcuaT rnaco th~ktt n6i tren5 vdi ktt quaw. A.pdl,lnglu~tJ cho *[5] Wi T chochungta hlnhthanhtableauT =T u {w}. Dinh Iy 2.5: Cho 5 ={51,52,...,5p}.Cho T' la ktt qua cua ap dl,mglu~tJ d6ivdi *[5] tditableauT. T vaT' thltu'dngdu'dngtren5AT(*[5]). Thu~tloanchase,la di tImmQttabkauT* tUmQttableauT vamQt~p phl,lthuQc5Cchotru'dc,saGchoT =scT* vaT* IarnQtquailh~trong5AT(C). Thu~tloanchasethldu<jcmatelddngian.ChoT va5C, apd\mglu~tF va lu~t J ke'th<jpvdi cacFDs va JDs trong5C, chodtn khi naGchungconthayd6i. B~ngdinhI)"2.1va 2.2,ntu sl,f tinhloanktt thuc,no luan luand~tdlt<jCmQt tableauT* =scT. T* du<jcgQila mQtsandu6icuaT bdi 5C. Chasesc(T)Ia thS hi~nta'tcanhlingsandu6inhuv~y.Do do,T* E chasesc(T). Vi d~2.6:Cho tableauT =TRvdi R ={AB,BD, ACD}la tableaud hinh du'diayvacho5C={*[ABC,BCD], B ~ C, AD ~ C}. 57 CHUdNG 2: cAc PHl,J THUQC DO LlJ;U KHAc 58 T(A B C D) 81 8z b1 bz b3 8z b4 84 81 bs 83 84 A.p dl;lng lut F d6i ydi B C du'Qctableau T 1 T1(A B C D) 81 8Z b1 bz b3 8z b1 84 81 bs 83 84 A.pdl;lnglut J d6i ydi *[ABC,BCD] du'QctableauT2 Tz(A B C D) 81 8z bl bz b3 8Z b1 84 al bs a3 a4 al az b1 84 b3 8z b1 bz A.p dl,mglut F d6i ydi AD C du'Qctableau T3 T3(A B C D) 81 8z 83 bz b3 8z a3 84 81 bs 83 84 81 8z 83 84 CHUdNG 2: cAc PHl,J THUQC DO LI~U KHAc Ap dl;mglu~tJ mQtl~nnuad6ivoi [ABC,BCD] du'QctableauT* Khongconlu~tbie'nd6inaotu'dnglingvoicacphlJ thuQctrongSC co th~ apdl;mgdti thayd6iT*. Ngoaifa, T*, nhu'mQtquailh~,thia SAT(SC). Dinh If 2.6:ChoTl vaT:zIa nhungtableau,va choSC la mQtt~pcac rangbuQc.Tl CscT:zne'uvachine'uchasescCTl)C chasescCT2). Chungtamongmu6nmQtphu'dngti~nd~ki~mtrakhi naot~tca Mung quailh~trongSAT(SC) co th~th~hi~nmQtcachtrungthlfcbai nhungphep chie'ucuachungtrennhunghtQcd6quailh~trongIu'Qcd6cd saduli~uR nao do.Di~uki~nnay,du'Qcphatbi~utu'dngdu'dngnhu'la SC F *[R] ho~cfiR, la d~ctinh nh~nd~nganhx~tren SAT(SC). Trong y nghla slf tu'dngdu'dng tableau,TR=scTr maT1la tableauchichliaWd,dongcuat~tcanhungbie'n phanbi~t.Trlad~ctinhnh~nd:~lllganhx~trent~tcacacquanh~. Y d6 cua thu~toanChasela bie'nd6ibangkhai t(;lOcuaphlJ thuQck~t n5ij U la jd c~ndu'Qcquye'tdinhtrongbai toansuydi€n bai mQtt~pSC) b~ng eachapdlJngcacfd vajd com~trongSC thongquacaclu~tF vaJ chode'n khikhongcothemmQtr~ngthainaonuachobang. Vi df!,2.7:Ap dlJngsandu6i 59 T*(A B C D) at a2 a3 b2 b3 a2 a3 a4 at bs a3 a4 at a2 a3 a4 b3 a2 a3 b2 CHUdNG 2: CAC PHV THUQC DO LI~U KHAC Cho RS =(U, D, dam,M, SC) la mQtlucjcd5quailh~ . U ={A,B, C, D} . SC ={A~ D, *[AB, BCD]} J la phl;!thuQcke'tn6i *[AB, BC, AD]. Dungthu~ttoansandu6id~chiraSC F J. Bangkhdit(;locuaJ Ia r(J): Ap dl;!nglu~tF d6ivdiA ~ D ducjctableauTl 60 T(A B C D) al a2 bi b2 b3 a2 a3 b4 al bs b6 a4 TI(A B C D) al a2 bi a4 b3 a2 a3 b4 al bs b6 a4 Ap dl;!nglut J d6i vdi *[AB, BCD] ducjctableauT2 T2(A B C D) al a2 bi a4 b3 a2 a3 b4 al bs b6 a4 al a2 a3 b4 b3 a2 bl a4 Ap dl;!nglut F mQtl§n nii'ad6ivdiA D ducjctableauT* CHUdNG 2: cAe PHl,J THUGC DO Llt;U KHAe T* co mQthangchIg6mcacbie'ndu'<jcphanbi~tlienk6tlu~nSC F J. BlOb If 2.7: Bai toansuydi~ntronglOpcacrangbuQcg6mfd vajd quy€t dinhdu'<jc trongthaigianNP - hard. GiGchungtaco mQtphl,lthuQchamkhongt~mthu'angX ~ A, vamu6n ki~rntracoSC F X ~ A khong.ChungtaKaydlfngmQttableauTx nhu'san: Tx cohaihang,Wdva WK.HangWdthlcotoannhungky hi~uphanbi~t;hang wxthlco nhungbie'nphanbi~td nhungcQtX va nhungbi6nkhongphanbi~t aCQtkhac. Blob If 2.8: SC F X ~ A n6uvachIn6uchasescCTx)cochIcacbi6nphanbi~ttren cQtA. Vi dl:l2.8:Cho U = {A,B, C, D},SC ={A~ D} 61 T*(A B C D) a[ a2 bi a4 b3 a2 a3 a4 a[ bs b6 a4 a[ a2 a3 a4 b3 a2 b[ a4 Ta kim tra xern co SC F BC D khong? TBc(A B C D) a[ a2 a3 a4 b[ a2 a3 b2 CHUdNG 2: cAc PHl,J THUQC DO Llt;U KHAc Chung ta thffychasesc(TBc)=TBc. C6 mQtb2trongcQtD, do d6 khongc6 SC F BC --+D. Ne'u SC' = {A --+ D, *[ABC, CD]}, thi chasesC'(TBc)la tableauT* sau: Chung ta da dinh nghlaX+nhu la baa d6ngcua mQtt~pthuQctinh X ling yoi t~pcac phl,lthuQcham F. Chung ta co th~md fQngdinh nghla d~baa ham nhungJD vaFD. Dinh nghTa2.9:ChoSC la mQtt~pcuacacFD va JD va choX la mQtt~p cuacacthuQctinh.Bao d6ngcuaX ling voi SC, ky hi~uX+,la t~pIOnnhfft cuanhungthuQctinh Y saocho SC F X --+Y. Chuy la ne'uSC chila cacFD, dinhnghlamoi se thu l';lithanhdinh nghlacu. H " ?t; qua: . D6i voi mQtSC chotruoc,X+la t~pcuatfftca cac thuQctinhA sao cho nhungcQtA cua chasesc(Tx) c6 chI nhungbie'nphan bi~t. . Ne'uJ la mQtt~pcac JD, thi J F X --+Y suyraX ::>Y. D6 la,mQtt?P , cac JD suyra chI cacFD t~mthuong. Dinh ly 2.9:Cho SC la mQtt~pcaerangbuQc,va cho Y la mQtt~pcac thuQctinhkhong thuQcX+bdi SC. SC F X --+--+Y n€u va chI ne'uchasesc(Tx) chuamQtdong Uyvoi nhungbie'nphanbi~tdungtrongtfftca nhungcQtYX+. 62 T*(A B C D) al az a3 a4 bl az a3 a4 T* chI c6 a4d cQtD, nhu vy SC' F BC --+D. CHUdNG 2: cAe PHV THUQC DO LI~U KHAc Vi<$cxet tinhdungcuam<$nhd~SC 1= scvdi sc la mQtph\!thuQcham, khai ni<$mchuy~ndich luQcd6 quan h<$da thamgia hifu hi~u VaGbi~u di~n baadongcuat~pthuQctinhvathu~tloantlmbaadong. DinhIf 2.10:[1] ChoU t~pcacthuQctinh,F t~pcacphvthuQcham,datrivaktt n6t vei hait~pthuQctinhkhonggiaonhaumyyx, y c U chungtaco: (XY)+ F =X(Y)+ F\X Dinh If 2.11: Cho t~pSC cacrangbuQcbaag6mphVthuQcham,da tri va ktt n6i.Cho ffiQtphvthuQchamf: X ~ Y. Khido: SC 1= X ~ Y khivachikhiY c (X)\c Vi dl:l2.9: Cho luQcd6RS vdiU =ABCDEG SC={AC ~ B, B ~ ACD, ABC ~ D, ADE ~ BCG, CG ~ AE, BD ~ ACD, [ABCDE, CDG], [ABDE, CDG, AC], [ABCDE, EG]} X=AC Tinh (X)+sc? Giiii: UI =U \ X =BDEG SCI =SC \ X ={4>~ B, B ~ D, DE ~ BG, G ~ E, BD ~ D (1o~ti), [BDE, DG], [BDE, DG, 4>](1o~i),[BDE, EG]} 63 CHUdNG 2: cAc PHl,J THUc)C DO LlI;U KHAc ={cp ~ B, B ~ D, DE ~ BG, G ~ E, [BDE,DG], [BDE, EG]} VI cp ~ B lien B E X\Cl SC2=SC1\B ={cp~ D, DE ~ G, G ~ E, [DE,DG], [DE, EG]} Co D E X+SC2 SC3 =SC2\ D ={E~ G, G ~ E, [E, G]} cp+SC3=EG X+SC =ABCDEG Dli saothlbai tminsuyd~nd6ivoi lopjd trongt6ngquatv~nkhongdu'<;5c giiHquye'thi~uquanhu'd6ivoi lOpmvd.Ne'uh~nche'l~i,chi xet cacjd co ffiQts6 c6 dinh(t6ida)cacthanhph~nke'tn6i, thu~toansandu6ilam vi~c voithaigiandathuctrencaclOpjd nhu'v~y.[7] 2.3.PHT) THUQC BAO HAM (InclusionDependency) Ph1;IthuQcbaahamdu'<;5cdinhnghladSchu§:nhoanhungrangbuQcquail h~tu'dngtacoVi d1;I,rangbuQckhoango~i(ho~ctoanVynthamchie'u)khong th~du'<;5cchi ra nhu'mQtFD hayMVD bai VIno lienke'tnhungthuQctinhgiua nhungquailh~;nhu'ngnoco thSdu'<;5cchira nhu'mQtph1;IthuQcbaaham.MQt eachhinhthuc,mQtph1;IthuQcbaahamR.X c S.Y giuahai t~pthuQctinh- X cualu'<;5cd6 quail h~R, va Y cualu'<;5cd6 quail h~S - chirarangbuQcla,ab~t kythaidiSmnaokhir lamQthShi~ncuaR vaslamQthShi~ncuaS,chung taphaico: 1tx(r)c 1ty(s) 64 CHUdNG 2: cAc PHU THUQC DO LI~U KHAc MQtcachhi~nnhien,t~pcacthuQctinhtrennoph1;lthuQcbaahamdu<;1c chira - X cuaR vaY cuaS - phaico s6gi6ngnhaucacthuQctinh.ThemVaG do,mi~ntricuanhungthuQctinhtudnglingphaitudngthich. Vi dl;l2.10 Cho mQtIU<;1cd6 quailh~ CONG_TY =(U, D, dam,M, SC) vdi . U ={MSNV, TenNV, MSLB, TenLB, CV, LUONG} . D vadamco th~dU<;1cxacdinhtheomQtcachnaGdo,nhungd dayco giathuy€t dom(MSNV)=dom(MSLB) vadom(TenNV)=dom(TenLB) Giathi€tnaycohamylamQtm?tHinhd~onaGdoclingla mQtnhanvien cuacongty vam?tkhacm6inhanviend~ucokhanangtrdthanhlanhd~o. Ngu nghIacuaIU<;1cd6 quailh~nayla m6ibQse biSudi~nthongtin v6 ffiQtnhanviencuacongty b~ngcachduara mas6, tencongvi~c,ludngcua d6iW<;1ngayvacamas61~ntencuanguoilanhd~otn;fctie'panhta. . SC g6mcacph1;lthuQcham: MSNV ~ TenNV MSLB ~ TenLB {MSNV,CV} ~ LUONG va cadi6uki~nla m6ilanhd~ola mQtnhanvienco congvi~c"lanh d "I ~o. 65 CHUdNG 2: cAc PHI) THUOC DO LlE;UKHAc RangbuQccu6itrangSC co thSdu'cjchlnhthuchoanhu'sail:ne"ur la mQt quailh~cualu'cjcd6CONG-TY thl: r[MSLB] c r[MSNV] MQt rangbuQcnhu'v~yducjcgQila mQtph\!thuQcbaaham.Ph\! thuQc baahamco thSbaag6mhdnmQtthuQctinh,ch~nhi;ln: r[MSLB, TenLB] c r[MSNV, TenNV] Vi dl!-2.11:Trangvi d\!1.7,chungtacococacid: THUCHIEN_DA.MSNV c NHANVIEN .MSNV THUCHIEN_DA.MSDA c DUAN.MSDA Chungtaclingco thSsa d\!ngnhungph\!thuQcbaahamdS thShi~n nhii'ngquailh~class/subclass. Vi dl!-2.12:Tfftca nhungthl/cthSngu'oithShi~ntrangcd sddu li~ucua ffiQtru'ongdi;lihQcnhu'nhanvien,nguyensinhvien,sinhvien... la thanhvien cuakiSu thl/cthSngu'oi,chungda du'cjchuyenbi~thoathanhcac subclass. Chungta co cac ph\!thuQcbaahamgiua sO'chungminhnhanclancua lop ngu'oiva sO'chungminhnhanclancuacacsubclasscuano. Dinh ngh'ia2.10: Cha PRS,=(U,D,dam)lamQtlucjcd6nguyenthuy. AI, ...,AkvaBI, ...,BklahaidaycacthuQctinhphanbi~tcuat~pU voi clingdQdai.MQtph\!thuQcbaaham[AI, ...,Ak ] C [BI, ...,Bk] trenPRS la ffiQtrangbuQcsaacharangbuQcnaydu'cjcthoabdi mQtquailh~r ne"uva chi n€u 66 CHUdNG 2:cAc PHl,JTHUQCDOLlI;UKHAc Vt E r:3t' E r Vi =1,...,k : t(AD=t'(Bi) C6 th~tha'yding ki~mITas1/t6n t~icua cac phl;lthuQcki~u fd, mvd hay jd chungta kh6ngbaa giOso sanhnhunggia tri tu'dngling vdi nhungthuQc tinhkhacnhau,trongkhi (j ki~uid (phl;lthuQcbaaham)thll~i khac.Do v~y matinhquye"tdinhdu'<;$cclingnhu'dQphlic t~pcuabai loan suyd~ncualOp cacid ra'tphl;lthuQcvao bimcha'tcua nhungmiSngia tri tu'dngling vdi cac thuQctinh.Chung ta sa dl;lnggia thuye"tr~ngcling mQtmiSngia tri vo h~n c1u'<;$cgallchom6ithuQctinh. Dinh ly 2.12: Cho() lah~cacliendSsail: . (idl) id dm thu'ong: CPF [AI, ...,Ak] C [AI, ...,Ak] . (id2)Chie'u/ hoanvi: [AI, ...,Ak] C [BI, ...,Bk] F [Ail. ..., Aie] C [Bil, ...,Bie] d6ivdim6iday{iI,...,ie}cacs6nguyenphanbi~tla'ytU t~p{l, ...,k} . (id3)B~cc~u{[AI, ...,Ak] C [BI, ...,Bk], [BI, ...,Bk] C [CI, ...,Ck]} F [AI, ..., Ad C [CI, ...,Ck ] () la mQth~cacliendSxacdangvad~ydud6ivdibailoansuyd~ncho phl;lthuQcbaa ham. Dinh ly 2.13: Bai loansuyd~nchoph\!thuQcbaahamIa quye"tdinhdu'<;$c. C6 th~tha'yr5 rangngunghlat1fnhiencuaca hai lo~irangbuQc:phl;l thUQchamvaphl;lthuQCbaaham.Tuy nhienkhi xemxetbai loansuyd~ncho 67 CHUdNG 2: cAC PHI) THUOC DO LI~U KHAC caph\!thuQchamvabaahamke'tqual(;likhacdi, di€u naydii duQcchi ra bdi ChandraA.K., M.Y. Vardi (SIAM Journalof computing14:3,pp. 671- 677, August1985). Blnh 1:5'2.14: Bai roansuyd§:nchoph\!thuQchamva ph\!thuQcbaahamla khong quye'tdinhduQc. Trong truonghQpd~cbi~tchungtaco ke'tquasau:bai roansuyd§:ncho ph\!thuQchamva ph\!thuQcbaahammQtngoi (unaryid) v§:nla quye'tdinh duQc.Tuy nhienkhi xuffthi~nid hai ngoi (binaryid) l~ptilc tinhquye'tdinh duQcbi mfftdi. 2.4.CAC PHl) THUQC SINH (GeneratingDependencies) Nhi€u lac gia dii tlmcachxacdinhcac lOpph\!thuQcrQngIOnhdnbaa g5mcacph\!thuQck€ trennhunhungtru'onghQpd~cbi~t.D(;lngcacph\!thuQc t6ngquatsaudayduQcgQila ph\!thuQcsinh.[6] Blnh nghia2.11:Ph\!thuQcsinhtrenmQtluQcd6 quailh~Al...Anla mQt bi€u thuccod(;lng (tl,..,.,t0/ t trongdotj la cacn-bQky hi~u,t la mQtn-bQkhac(khidochungtaco mQt ph\!thuQcsinhbQ)ho~cla mQtbieuthucx =y,trongdoxvaylacackyhi~u xuffthi~ntrongcactj (khidochungtaco mQtph\!thuQcsinhd~ngthuc).chung tagQicac tj la gia thuye't(hypotheses)va t la ke'tlu~n(conclution).V€ tntc 68 CHUdNG 2: cAc PHV THUOC DO LlE;UKHAc quail, ynghla cua phl;l thuQcla, d6i vdi m6i quail h~trongd6Omthiycacgia thie't,ke'tlu~nse dung.8<iph.ithi~ndu'Qccac bQgia thie't,chung tac6 th<id~t l(;litencho mQtsO'ho~ctit ca cac ky hi~udu'Qcdungtrongnhunggia thie't, lamchochungkhdpvdi nhungky hi~udu'Qcdungtrongquailh~nay.f)~tl(;li tenchocacky hi~udu'Qcapdl;lngchoke'tlu~nclingnhu'cacgiathie't,va dI nhienn6phaidu'Qcapdl;lngchotit camQixuit hi~ncuaIDQtkyhi~u.Chung tasedu'ara IDQtdinhnghlahinh thuchdnsailkhi da:thaolu~nva phantich IDQtsO'vi dl;l. Ta xemphl;lthuQchamva phl;lthuQcdatri nhu'IDQtkhlmgdinhv~nhung quailh~,d6 la "ne'ubie'tdu'QcmQtki<ium~unaod6 thl chungtasebie'tduQc di~unay".Trongtru'onghQpphl;lthuQcham,"di~unay" lien h~de'nd~ngthuc cuamQtsO'ky hi~u,con d6i vdi nhungphl;lthuQcda tr!, "di~unay" chinhIa IDQtbQkhacva clingphaithuQcquailh~. Binh ly 2.15: . Phl;lthuQchamla mQttru'onghQpriengcua phl;lthuQcsinhd~ngthuc. . Phl;l thuQcda tri, ke'tn6i va baa ham la nhung tru'onghQprieng cua phl;l thuQc sinh bQ. 69 CHUdNG 2: cAc PHl,J THUQC DO LlE;UKHAc Binh nghTa2.12: MQtph\!thuQcsinh(bQhayd~ngthlic)du<;jcgQila dinhki~une'ukh6ng coky hi~unaGdu<;jcg~nvdihdnmQtthuQctinh. Truongh<;jpngu<;jcl,;lichungtacoph\!thuQckh6ngdinhki~u. Trongph\!thuQcsinhbQco th~xua'thi~nlu<;jngtU3 chocacky hi~unaG do,clingcoth~kh6ng,tu'dnglingvdinh~nxetnayla khaini~md~yduvaph\! thuQcnhung. Binh nghTa2.13: MQt ky hi~utrongke'tlu~nkh6ngxua'thi~nd mQtndi khacdu<;jcgQila dQcnha't(unique). MQt ph\!thuQcsinhdu<;jcgQila nhung(embedded)ne'uno co mQtho~c nhi~uky hi~udQcnha'tvadu<;jcgQila d~ydu(full)ne'unokh6ngcoky hi~u dQcnha't.MQtph\!thuQcdatridu<;jcnhungVaGtrongmQt~pcacthuQctinhS thinophaico nhungky hi~udQcnha'trongta'tcacacthanhph~nkh6ngthuQc s. Vi dl:t2.13: . Ph\! thuQcham la ph\!thuQcdinh ki~uva ph\!thuQcda tri la ph\!thuQc dinhki~uvad~yduo . Ph\!thuQcke'tn6iQd)la dinhki~u . Ph\!thuQcbaaham(id)vilalakh6ngdinhki~uvilalanhung. Vidl:t2.14: 70 CHUdNG 2: cAC PHl,J THUQC DO LI~U KHAC Ph\!thue>chamA ~ B kh~ngdinhr~ngn€u chungtatha"ytrongquailh~r n~odocohaibe>ab1cld1vaab2c2d2thlb1=b2trongnhungbe>nay. Ph\!thue>cda tfi A ~~ B kh~ngdinhr~ngn€u co hai be>trenthlphaico be>ab1c2d2trong quail h~ r, la me>tkh~ngdinh y€u hdn kh~ngdinh b1=b2. Bi€u di~ndclo<;linayduQctrInhbaynhuhInh2.4. 71 R (A B C D) Gia thie't a bl CI dl a bz Cz dz Ke'tlu?n bl =bz (a) Ph\! thue>chamA B R (A B C D ) Gia thie't a bl CI dl a bz Cz dz Ke'tlu?n a bl Cz dz (b) Ph\! thue>cda tri A B R (A B C D E ) a d a b " Giathie't b e C d e a e Ke'tlu?n a b C d e (c) Ph\! thue>ckt AD*AB*BE*CDE*AE CHUdNG 2: cAc PHLJ THUOC DO LI~U KHAc R (A B c D) Giathie't Ke'tlu?n (d) Phl,lthuQcda tri nhungA --+--+B I C. d31aky hic$udQcnh~t. s (E F G) CI dl g (e)Phl,lthuQcbaahamhamR.X c S.Y. Vdi X =CD,Y =EF Hinh 2.4 Cac phl,lthuQcdli<;5ctrInhbay dlidi dl;lngbang. MQt 1ydo d6 dlia ra ky hic$uphl,lthuQcsinh1ano d~nde"nmQtphlidng phapddngiancho vic$csuyd~ncacphl,lthuQc.Phepki6m tra nayd~uthich h9Pchocacph\!thuQcd~ydli thuQct~tcacaclo~i,m~cdunocochiphithai gianlahamIJ?u,VIV?ykhongdli<;1clia chuQngbfingthU?tloantinhbaadong d~suyd~ncacphl,lthuQchamtUnhungphl,lthuQchamkhac,ho~cbfingthu?t loantinhcdsaphl,lthuQCkhi chIxetph\!thuQchamvaph\!thuQcdatrioKhi co caephl,lthuQcnhung,phlidngphapnayco th6suyd~nthanhcong,nhlingke"t quakhongxac dinhdli<;1c.Th?t fa, hic$nnaychliaco thU?tloannaoki6m tra 72 a bl CI dl a b2 C2 d2 a bl C2 d3 R (A B C D) Gia thie't al bl CI dl - Ke'tlu?n CHUdNG 2: cAc PHl,JTHUQCDOLI~UKHAc du'cjcmQtphl,lthuQcnhungco thSsuydiSnlogictUnhungphl,lthuQckhachay khong,ngaycakhi nhungphl,lthuQcnaydu'cjcgioih~ntrongmQtlop ddngian nhu'cacphl,lthuQcdatrinhung. Dinh nghia2.14:Anh x~ky hi~u(thesimplemapping)la mQthamh tU mQtt~pcacky hi~uS de'nmQtt~pky hi~uT; nghlala voi m6iky hi~ua thuQc S,h(a) la mQtky hi~uthuQcT. Chungtav~nchopheph(a)va h(b)clingbiSu thimQtph~ntU'cuaT, ngaycane'ua* b. Ne'uJ.l=aIa2...anlamQtbQco cac ky hi~uthuQcS, chungta co thSap dl,lnganhx~ky hit%uh choJ.ldS thudu'cjcbQh(J.l)=h(al)h(a2)...h(an).Ne'u {J.lI, ...,~lm}la t~pcacbQcocacky hit%uthuQcS, va {VI,...,vd la t~pcacbQco cac kyhit%uthuQcT, chungtanoico mQtanhx~ky hit%utUt~pcacbQthilnha'tdtn t~pthilhaintucomQthamh saochovoimQi =I, 2, ...,k, h(J.li)la Vjvoi mQt giatfi j naodo. V~nco thShaiho~cnhi~uJ.lidu'cjcanhx~thanhclingmQtVj, vamQtVjv~nco thSkhongla anhcuaba'tky bQJ.linao. Vi df:l2.15:Cho A ={abc,ade,fbe}vaB ={xyz,wyz}.Co nhi~uanhx~ kyhit%utli'A vaoB. Ch~ngh~n,h(a)=h(t)=x, h(b)=bed)=y,vah(c)=bee) =z. VI v~y,h anhx~ta'tcababQtrongA thanhxyz.MQt anhx~ky hit%unua cog(a)=x, g(b) =g(d) =y, g(c)=gee)=z, vag(t)=w. Anh x~ky hit%ug bie'n abcvaadethanhxyz,nhu'ngl~ibie'nfbethanhwyz. Ta dii dinhnghlaanhx~ky hit%uIa nhunghamtheoky hit%u,va khi du'cjc apdl,lngvao cac t~pcuacachang,chungta dii du'athemyeti c~uIa anhx~ dli<Jcapdl,lngchom6ihangcuat~pthilnha'thanhmQthangcuat~pthilhai. 73 CHUdNG 2: cAc PHl,J THUOC DO Llt;U KHAc Songsongd6,chungtadadinhnghTanhunganhXi;!tUhangde'nhang,va du'a themyell c~ula khongc6 ky hi~unaodu'<;canhXi;!bai hai hangkhacnhau thanhnhungky hi~ukhacnhau.VI v~y,trongVI d\!tren,chungtakhongthS anhXi;!abcthilnhxyz vaadethanhwyzdu'<;cbaiVI a sedu'<;canhXi;!thanhca xvaw. Vdi khai ni~ffiv~anhXi;!ky hi~u,chungtac6thSdinhnghTay nghTacua caeph\!thuQcsinh.Chungta n6i ffiQtquailh~r thoamQtph\!thuQcsinhbQ (tl,...,tk)/ t ne'uvdih la mQtanhXi;!ky hi~utli'tit cacacgia thie't{tl,...,tdvaor, chungta c6 thS ma rQngh cho nhungky hi~udQcnhit trongt saocho bet) thUQcr. Chungtaclingn6idng r thoaphl.,lthuQcsinhd~ngthlic(tl,...,t0/ a=b ne'uvdih la ffiQtanhXi;!ky hi~utUcacgiathie'tvaor, chungtaphaic6h(a)= h(b). Vi dl.;l2.16:Cho sc13phl.,lthuQcsinhahlnh2.5(a)varIa quailh~ahlnh 2.5(b). (a) Ph\!thuQcsc Hlnh2.5MQtphl.,lthuQcsinhva ffiQtquailh~thoaphl.,lthuQcnay. 74 ar br Cr ar bz Cz az br Cz r (A B C) 0 1 2 0 3 4 0 3 2 5 1 4 (b) Quan h r CHUdNG 2:cAc PHl,JTHUQCDOLI~UKHAc Chu yr~nga2la ky hi~udQcnhgt.Hinh2.5(a)la mQtvi d\!v~ph\!thuQc sinhbQhaigia thie't,kh6ngphaila ph\!thuQcdatrinhung,clingkh6ngphaila ph\!thuQcda tri dffyau; nhungph\!thuQcnhu'the'gQila ph\!thuQct~pcon (subsetdependency).[8] B~thgyr thoasc,chungtaxetanhX?kyhi~uh vacacbQcuar mam6i giathie'tcuasccoth~du'<jcanhX?de'n.BaiVIhaigiathuye'tgi6ngnhaua CQt A, va heal)chI nh~ndu'<jcmQtgia tri, chungtathgyr~ngho~cca haigia thie't dttQcanhX? thanhbQcu6iclingcuar (ne'uheal)=5),ho~ccahaidu'<jcanhX? thanhbabQdffutien(ne'uheal)=0). Trongtru'ongh<jpdffu,h anhX?bl va b2 thanh1,CI va C2thanh4. Do do chungtaco th~ma rQngh choky hi~udQc nha'ta2b~ngdinhnghlah(a2)=5.Trongtru'ongh<jpdo,h(a2b1c2)=514lamQt phffntUcuar, vi the'kh6ngcovi ph?mnaocuascvdianhX?coheal)=5. Tru'ongh<jpheal)=0,khidocacanhX?coth~duynhgtsebie'nhaigia thie'tthanhbabQdffutiencuar.MQtanhX?nhu'the'coh(bl)b~ngvdi1ho~c 3,vah(C2)b~ngvdi2 ho~c4.Trongm6it6h<jpcuab6nt6h<jpnayd~uco mQt bQthuQcr chua t6 h<jpcacgia tri do trongcac thanhphffnB va C. Vi the' chungtaco th~marQngh choky hi~udQcnhgta2b~ngcachd~th(a2)=5 ne'u h(bl)=1vah\C2)=4, va ngu'<jcl?i d~th(a2)=O. Be'nday,chungtadilxettgtcacacanhX?ky hi~uchom6igiathie'tcua scthanhmQtbQcuar, va dil thgyr~ngtrongm6i tru'ongh<jp,chungtaco th~ marQnganhX? naychoky hi~udQcnhgta2saocho ke'tlu~ncuasc co m~t trongr. Do dor thoasc. 75 CHUdNG 2:cAc PHl) THUQCDOLI~UKHAc Ap d(lngph(l thllQCchocaeqllanhi: Gia sli'chungtaco pht;1thu9csinhd~ngthlic sc=(SI,...,Sk)/ a=b va quanh~r = {JlI, ...,Jlm}.chung taco th~ap dt;1ngsc cho r ne"utlm duQc ffi9tanhx~ky hi~uh tU {sl,...,sdVaG{JlI, ...,Jlm}.Tac dt;1ngcuaapdt;1ngsc chor b~ngcachdungky hi~uanhx~h la lamchoh(a)b~ngh(b)khi chung xua'thi~ntrongcacJli , chungtaco th~dungm9ttronghaiky hi~ud~thaythe" kyhi~ukia. Ne'uchungtaco m9tpht;1thu9Csinhb9Ia e =(sl,...,s0/ s, chung tadungh d~apdt;1ngecho r b~ngcachn6ib9 h(s)VaGr. Tuy nhien,ne'ue Ia m9tpht;1 thu9cnhungthi e seco m9tho?cnhi€u ky hi~ud9Cnha't,vi the'h sekhong duQcdinhnghlachota'tcacacky hi~ucuas.TrongtrUonghQpdo,ne'uc la ffi9tky hi~ud9Cnha'trongs,chungtaset~oram9tky hi~umoi,Iaky hi~u khongxua'thi~na ba'tky ch6naGkhactrongr, vamar9ngh b~ngcachdinh nghlah(c)lakyhi~udo.DI nhien,chungtaset~oranhungky hi~uriengbi~t chom6ikyhi~ud9Cnha'tcuas. Tuynhien,chungtav~ncoth~thaythe"ta'tcacacky hi~ud9Cnha'tb~ng nhungkyhi~~hi~ncocuar d~h(s)trathanhm9tphffntli'cuar. Trongtruong h<;ipdo,yell cffuh(s)phaithu9Cr dfiduQcthoa,va chungtaduQcquy€n khong thayd6ir. 76 CHUdNG 2:cAc PHl,JTHUOCDOLlt;UKHAc ThllQtloanchasedi SllYdi~nphl!-thllQC: Bay giGchungtaxemm9tquatrinhgiupchungtagiai quye'tCallh6i SC F scdunghaysai,trongdoSC Iam9tt~pcacph\!thu9csinh,scIa m9tph\! thu9Csinhkhac.Thu t\lcnayIa m9tthu~toankhi SC chi co nhungph\!thu9c dgyduoTuynhien,ne'uSC com9ts6ph\!thu9cnhung,nosechobie't"chan If' nSunotraWidu'9C,nhu'ngnocoth~ch<;lymaikh6ngngung. Y tu'dngcuaquatrinhchaseIa chungtakhdidguvdi nhunggia thie'tcua I ph1,lthu9csccgnki~mITa,va xU'lychunggi6ngnhu'chungdat<;lOfa mQtquail h~.R6i apd\!ngnhungph\!thu9cSC choquailhe:;nay.Ne'uchungtathudu'9C mQtb9 Ia ke'tIu~ncua sc thl chungtadachungminhf~ngsc suyfa du'9CtU sr. E)ffutiengia sU'f~ngscla m9tph\!thu9Csinhb9 (tl,...,t0/ t.Chungtab~t d~uvdi quail he:;f = {tl,...,td,saildoapd\!ngta"tcacacph\!thuQctrongSC theom9tthut1!naGdoval~pl<;lichodSnkhi (1) Kh6ngconcachapd\!ngcacph\!thuQcnaGco th~lamthayd6idu'9C f, ho~c (2) Ta phat hi~nfa f~ngtrongf co mQtb9 gi6ng vdi t d ta"tca cac thanh phffn,ngo<;litrunhungvi tricuat coky hie:;ud9Cnha"t. Tuy nhien,khi apd\!ngph\!thuQcsinhd~ngthuc,ne'uIDQttronghai ky hi~udangdu'9Cgall b~ngnhauxua"thie:;ntrongt thl hay d6i ky hie:;uIda cho gio'ngky hie:;utfongt. 77 CHUaNG2:cAc PHl,JTHUOCDOLI~UKHAc Trong tru'ongh9P (2) d tren,chungtake"tlu~nr~ngSC F sc dung.Ne"u (1)dungnhu'ng(2)khongdungthlchungtake"tlu~nr~ngSC F scsai.Tht;fcte", quailh~r thudu'9Csela mQtphanvi dl;!. Dinh Iy 2.16:Qua trlnhchasedu'9Capdl;!ngcho t~pcacphl;!thuQcsinh d~ydli va mQtphl;!thuQcsinh(coth€ nhung)scxacdinhchinhxacSC F scla dunghaysai. Vid{l2.17:Chungminhr~ngtrent~pcacthuQctinhABCD {A ~~ B I C, B ~ D} F A ~~ C ID Chungtaco th€ vie"tbaphl;!thuQcnaytheoky hi~ubangnhu'tronghinh Hinh 2.6 Cac phl;!thuQctrongvi dl;!dangxet. 78 2.6 al bi CI dl al b2 C2 d2 al bi C2 d3 (a) A B I C a2 b3 C3 d4 a3 b3 C4 ds d4=ds (b) B D a4 b4 Cs d6 a4 bs C6 d7 a4 b6 Cs d7 (c)A C ID CHUdNG 2: cAc PHV THUOC DO LI~U KHAc Hinh 2.7Chu6icacquailh~du<;5cxtiyd1!ngtUphepsandu6i. Ta b~td~uvdi cac gia thie'tcua hinh2.6(c),dU<;5ctrinhbay tronghinh 2.7(a).Co thSapdvngphvthuQccuahinh2.6(a)b~ngcachsudvnganhX£;lky hi~uh(bl)=bs,h(Cl)=C6,h(dl)=d7,h(b2)=b4,h(C2)=cs,vah(d2)=d6.Anh x~naychuyS,nhaihanggia thiStcuahinh2.6(a)thanhhaihangcuahinh 2.7(a)daoch6chonhau.NSuchungtamdrQngh dSanhX£;ld3thanhmQtky hi~umoidsthico thSsuyra r~ngbQa4bscsdsthuQcr nhudu<;5ctrinhbaytrong hlnh2.7(b).ThS thi chungtaco thSapdvngphVthuQccuahinh2.6(b),b~ng eachsudvngffiQtanhX£;lky hi~udS anhX£;lhai gia thie'tcuahinh2.6(b)dSn 79 a4 b4 Cs d6 a4 bs C6 d7 (a)Quanh khdidu. a4 b4 cs d6 a4 bs C6 d7 a4 bs Cs dg (b)Saukhi apdl;mghinh2.6(a). a4 b4 Cs d6 a4 bs C6 d7 a4 bs Cs d7 (c)Saukhiapdvnghinh2.6(b). CHUaNG 2: cAc PHl,JTHUOC DO LI~U KHAc hangthuhai vathubacuahinh2.7(b)vachungminhdingd7=d8.PhepthSd7 vaod8du<;1cphananhtronghinh2.7(c).BQthuba trongbing2.7(c)gi6ngvdi kStlu?ncuahinh2.6(c),ngo(;litrucQtB, d dophffnkStlu?nco ky hi~udQc nhitlab6.chungtakStlu?nr~ngsuydi€n naycogiatrio £)~kSt thucchudngnayxin lieUra nhlingkSt qua chinhySuda co khi xemxettinhquyStdinhdu<;1ccuabai loansuyd§:nva kStquacuavi~clien d~ hoamQtcachxacdangvadffydutrongldpcacphvthuQct6ngquathdn. Dinh ly 2.17: Bai roansuyd§:nla quyStdinhdu<;1cd6ivdi cacphvthuQcsinhbQdffydu vacacphvthuQcsinhd~ngthuc. Trong cac ldp phv thuQcsinhbQnhungbai roansuy d§:nkhongquySt dinhdu<;1cm?cdli ldpconcuanoIa ldpcacid l(;lila quyStdinhdu<;1c.MQt ldp cankhacnlia,ldpphVthuQcdatrinhung(phVthuQcjd nhungchi cohai thanh phffnkStn6i) v§:nchuaco diu traWi chobai roansuyd§:n,dayconla vin d~ IDa. MQtxuhudngrit tV'nhien- xacdinhldprQngldncacphvthuQct6ngquat -nhi~ulacgi~kl1acdaco mQtsO'kStqua,xindu<;1cd§:nra sailday: . PhVthuQcd(;lisO'(AlgebraicDependency)clingvdi h~liend~cuano dlf<;1cYanakakisvaPapadimitriouphathi~nnam1980.[9] . Phv thuQct6ngquatb~ccffu (GeneralizedTransitiveDependency clingh~liend~cuaParkervaParsaye- Ghomi.[10] 80 CHUdNG 2:cAc PHI)THUOCDOLlI;UKHAc . Ph\! thuQckhuonmftu(TemplateDependency)voi hc$tien d€ cua SardivaUllman.[11] . Ph\!thuQckeo theo(ImplicationalDependency)doFaginduara nam 1982.[12] Cac lop ph\!thuQct6ngquatd€u cftnduQcth~hic$nb~ngmQtngonngii'co khanangdi~nd~tduQcbancha'ttoanh9Cchungcua ta'tca nhungki~uph\! thuQcda tlmtha'y.Logic la mQtngonngii'Gaplingt6tyell cftua'y. 81

Các file đính kèm theo tài liệu này:

  • pdf4_2.pdf
  • pdf0.pdf
  • pdf1.pdf
  • pdf2_2.pdf
  • pdf3.pdf
  • pdf5.pdf
  • pdf6.pdf
  • pdf7.pdf
  • pdf8.pdf
Tài liệu liên quan