PHƯƠNG PHÁP PHẦN TỬ HỮU HẠN CHO BÀI TOÁN ELLIPTIC PHI TUYẾN BIÊN CONG
VÕ THỊ THANH LOAN
Trang nhan đề
Lời cảm ơn
Mục lục
Phần mở đầu
Chương1: Ký hiệu và định nghĩa.
Chương2: Sự tồn tại và duy nhất lời giải.
Chương3: Xấp xỉ bằng phương pháp phần tử hữu hạn với Ω có biên đa giác .
Chương4: Xấp xỉ bài toán biên cong bởi bài toán biên đa giác.
Chương5: Áp dụng tính toán số.
Kết luận
Tài liệu tham khảo
16 trang |
Chia sẻ: maiphuongtl | Lượt xem: 1995 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Luận văn Phương pháp phần tử hữu hạn cho bài toán Elliptic phi tuyến biên cong, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
PhucJngphap phdn ta hT1uhf.:lncho bili loan elliptic phi tuyin bien cong 6
ClnJdNG2 :
s1jTONTAl vA DUY NHAT LaI GIAI
, ? '"
1. CAC GIA THIET
Voip>1d~tp'=~
p-l
CHI)<pEC([O,I]),<p(x»0, '\Ix E [0,1],
cp La d titngkhuctren[0,1].
(H2) G EV'.
(H3) H E If(IJ).
.(H4) Ml'M2 :QxIR~IR,
g :QxIR~IR
Lacac hamthoa di€u ki?n Caratheodory, nghia La:
Vz EIR,cachamMj(.,. ,z),g(.,.,z)dodu(/ctrenQ, vawJihduhet(x,y) En
cachamMj (x,y,.)vag(x,y,.) lient1:tcheoz, i=1,2.
(HS) MI, M2 dcJndi?u tang theobien tha 3, tac La:
(Mj(x,y,z)- Mj (x,y,z)Xz- z)>0 , '\Iz,Z E IR, z:;i:Z, a.e(x,y)E Q
i =12,
(H6)T6ntf.:libahlings5ducJngC1,C~,C2vahamhELP 1(0) saDcho
(i) zMj(x,y,z)~C1IzIP -C~ '\Iz E IR,
(ii)
a.e(x,Y)EQ , i=I,2;
IMi(X,y,Z~~C2(lh(x,y~+lzIP-l), '\IzEIR,
a.e(x,Y)EQ, i=I,2.
(H7) T6ntf.:lihlings5ducJngC3<%~ thoa:
Ig(x,y,z~~C3(1+lzIP-l) , '\IzEIR,
, C
{
IIVIIWI'p V
trongdo 0=sup Ilvllv 'v E ,
a.e(x,Y)EO,
v*o}.
(H8)p >2 thoa:
Phl1ctngphapphtintahauhr;mchobai toanellipticphi tuylnbiencong 7
(
2
]
P'
[
C3ColoIX' +IIGllv'+CoCIIHIIU'(fl)
J
P' 4C~IOI
(
11:1
)
p
(p-l)- C -CCP +C -CCp< /3CCoP 130 130
1
trongdolo! =roes0 =f<p(x)dx ,
0
C=sup~lvllc(n) : VEW1,P(0) , IIvllwl,P=I},
( C t8ntr;lidophepnhungW1,p(0) c~ C(o) facompact)
[; fahangst!trongdinhfyvetchl1ctng!,
C =suP
{
v
Ir : v E c1(Qt Ilvllw"(o)=+
(H9) VetimtJi a E (0, 7Tf3)cohai hangst!dl1ctnga vakasaGcho:
(i)
(ii)
ka~gacotga,.
(iii)
g(x,y,Z):?ga , tlz E[-a, a],a.e.(x,y) E.Q;
I g(x,y,Z])-g(x,y,zz)I ~ka I z] - zzl , tlz],zzE [-a, a],a.e.(x,y)E.Q.
BMtoan(0.1)-(0.3)duQcduav€ b~litoanbie'nphannhusau:
Hili toaD(f}:
TImu E VsaGcho
(2.1) (M{X, Y, :l~)+(M,( X,y,: l :)+(g(x,y, u)sin u, w) +
=(G,w)+ fHwds. VWEV.
r)
, J::. , ,,',?
2. DJNH LY TON T~I VA DUY NHAT LaI GIAI
Djnhly 2.1:
GidsaM], Mz, g, G, H thoa(Hl)-(H7).Khi dobaitoan(P) co fiJi gidi . Hctnnaa,nlu
themVaGcacgiLlthilt (H8)va(H9)thlfiJigidicua (P) faduynh[{t.
Chungminh:
Phuangphapphdntahfluhr;lnchobili roanellipticphi tuytnbiencong 8
Bjnh19duQchungminhquanhi~ubudc:
Bu'oc 1..;.Xap xl Galerkin
Vi V tach duQCnen t6n t~imQt"co sd" de'mduQc {wj J.- theo nghla:J-I,2,...
. Wj E V,
. V m, {wI, ,W mJ dQcl~ptuye'ntinh,
. T~pcact6hQptuye'ntinhhii'uh~ncaeWjtrum~ttrongV .
TatlmWigiaixa'pxi dudid~ng:
(2.2)
m
Um(X'Y)= ICmjWj(X,y),
j=1
trongd6cac Cm.thoah~phuongtrlnhphi tuye'nsailJ
(2.3) (M{ x,y,0;: ), ~j)+(M2(x,y,a;; ). a;j)
+(g(x,y,um)sinum'Wj)=(G,Wj)+ fHWjds
f1
j =1,..,m.
Trudehe'tachungminhh~(2.3)c6Wigiai.
B~tVm1Akh6nggianhii'uh~nchi~usinhbdi Wj, j =1.m.
Coi Pm: Vm~ Vmxacdjnhbdi
(2.4)
(2.5)
m
Pm(Um)= Ipmj (Um)Wj ,
j=1
Pm;(Um)= (MI(X,Y,; ). ~j) +(M,(x,y,a;; ). ~j)
+(g(x,y,um)sinum'Wj)-(G,Wj)- fHWjds, j=l,..,m,
f1
m
Urn=2:Cm.Wj .
j=1 J
(2.6)
Khid6(2.3)tuongduongvdi:
Pm(Um)=O.
Tac6th€ nghi~ml~ikh6ngkh6khanr~ng:
(2.7) Pm: Vm~ Vmlientvc.
B€ apdvngb6d~Brouwer(b6d~1.3,chuang1)tachIdn chungminht6nt~iPm>0
saDcho
Phu:cmgphap ph6.nt11hau hc;mcho bili roan elliptic phi tuyin bien cong 9
(2.8) II urn Ilv =Prn => (Prn(Urn),Urn)v ~O.m m
CM '1r~nglien V rntaIffyHchvohuangsail
rn
(2.9) (Urn'Vrn)v=Icrn.drn.
m j=l J J
vdi
rn
urn=ICrn.Wj
j=l J
rn
vrn = IdrnWj'
j=l J
Chufinlien Vrnsinhbdi tichvohuangVrnduQck'1hi~u11.11v .m
Taco
(2.10)
rn
(Prn(Urn),Urn)v=IPrn. (Urn)Crn.
m j=l J J
~(M{ x,y,~). ~m)+(M,(x,y,~). ~m)
+(g(x, y,urn)sin urn' Urn)- (G, Urn)- fHurnds
f1
Tli giathie't(H6)(i),taduQc:
(Ml(x, Y. a;;; ). a;;; ) +(M,( x,y,~m). ~m)
(2.11) ~c1!IUrnll~-2C;IOI.
Tli giathie't(H7)suyfa:
(2.12) !(g(x,y,urn)sinurn,urn)!:S;C3CoIQlh'llurnllv+c3c~IIUrnll~.
sa dl).ngdinh1'1ve't(b6d€ 1.2,chuang1)tathuduQc:
(2.13) fHurnds
f]
:s; II H IILP'(f1) II You rn IIU (f])
:s; ccoIIHIIU'(fl) Ilurn !Iv .
Tli (2.10)-(2.13)vadoG E V' suyfa:
(Prn(Urn),Urn)v ~(C1 -c3C~)llurnll~ -2C;IQ!
(2.14) m ( h ~
)-\C3CoIQI p'+IIGllv' +ccoIIHIIU'(fl) IUrnliv
Phu(Jng phapphdntahr1uh{lnchobili toanellipticphi tuye'nbiencong 10
=(CI -C3C~Xllumll~-~IIIUmllv -YI)'
trongd6~I>0, YI >0 dU<;1cxacdinhbdi
- (C3CoIQIX,+IIGllv'+CCoIIHllu'(r~J~I- IC - C CP)'\: I 3 0
- 2C~IQII
YI- I(CI-C3C~)'
(2.15)
Chuydingsadt:mgba'td~ngthucHoldertac6:
(2.16)
~lllUmllv~~(ellUmlivJ'+;.(~1r,
trongd6 E>0 dU<;1CchQnsao rho
(2.17)
EP 1
P 2 8=(~thay
Khid6tli(2.14),(2.16),(2.17)suyra:
(Pm(UmhUm)v:<:(C1-C3qhIIUmll~ -~
(
~
J
P'-YI
)m \2 p' P
= ~(C1-C3C:{IIUmll~-(p-le:J -zr}
(2.18)
ChI1Y r~ngffiQichu§:ntrenVm d€u tu'ongduong,dod6t6nt~ihai h~ngs6duongClmva
C2msao rho:
(2.19)
Clm II vllvm ~II v !Iv ~C2m II v IIVm Vv EVm.
~
0 ? ~ 1 ,.ChQnPm > thoaPm=-P VOl
Clm
(2.20)
p{ (p-lr:l r +2y,r
Khi d6ne'uII Um Ilv =Pmthltli (2.18)-(2.20)tasuyram
(Pm(Um),Um)v~O.m
V~y(2.8)thoa,dod6apdvngb6d€ Brouwersuyfa (2.6)c6Wigi,HUrnthoa
PhucmgphapphJ.ntithiluht;mchobili toanellipticphi tuye'nbiencong 11
(2.21) II urn II v ~Prn'm
Buck2: Danhgiatiennghi~m
TuPrn(urn)=0,voitinhloantu'ongtl!d~nd€n (2.18),tasuyfa:
(2.22)
Dodo
(2.23)
,[IIUmll~-(p -le:1 r- 2YI) ~o.
IIUmllv~p=((p -Ie:! r+2y!r
Tugiathi€t (H6)(ii)va(2.23)suyfa:
(2.24) Ml
(
X'Y' a;
J ' ~c2 lllhIIL'(n)+ ~Ip-I ) .LP (0) LP(0)
Do (2.23)va (2.24) ta du'<;5c
(2.25) IIMl
(
X' y, Gum
JII
, ~c ,ax LP(0)
C 1ahangs6dQcl~pvoi m.
TuongtvvOiM2 taclingco:
M 2
(
X,y, Gurn
)11
. ~c .ax LP(0)
Danhgiatu'ongtv,tugiathi€t (H7)va(2.23)tasuyra
(2.26)
(2.27) Ilg(X,y, urn)sin urnIILP'(O)~C ,
C 1ahangs6dQcl~pvoi m.
ChliyrangphepnhlingV c-+LP (0) 1acompact,khi do tu (2.23),(2.25),(2.26)suyra
t6nt<;liffiQtdaycancua {urn}v~nky hi~u1a{urn}saocho
(2.28) Urn ) u trongW1,p(0) yu,
(2.29) Urn ) u trong U (0) ffi<;lnh,
(2.30) Urn ) u a.e (x,y) E 0,
(2.31) MI(x,y,8un/Ox) ) Xl
tron U' (0) eu tfiKH'T\JN!!IENI
g y, THtT\!!EN-'----'-'--
, ('1"".....1'1
Phuangphapph6.ntah11uhr;lnchobili toanellipticphi tuyenbiencong 12
(2.32) M2(x,y,0un/8y) ~ X2 tfong L p'(D) y€u.
M~tkhactITgii thi€t (H4)suyfa:
(2.33) g(X,y,um)sin Um g(X,y,u)sinu a.e(x,y) E D.
Apdl,mgb6de1.4,chu'dng1vdi
N=2, q=p', Q=D,
Gm=g(x,y,um)sinUm va G =g(x,y,u)sinu,
tIT(2.27)va (2.33)suyfa
(2.34) g(X,y,um)sin Um ~ g(X,y,U)sinU tfong L p'(D) y€u .
Bu'oc3: QuagieJihr;ln
QuagiOih?ntrongphu'dngtrlnh(2.3),sadt;mg(2.31),(2.32)va (2.34)tasuyfa u thoa
phudngtrlnh:
(2.35) \Xl ,0;:)+(X, , :)+(g(x.y.u)sinu. w)
=(G,w)+ IHwds
r1
, \jw E V.
Nhuv~yd~chungminhulaWigiii baitmln(P)tachidn chUngminh
Xl =Ml( X,Y,:J va X, ~M,(X,y,: J.
. TIT(2.3)ta co
/Ml
(
X' Y, Gum
J
, Gum
)
+/M2
(
X' y, Gum
)
, Gum
)(2.36) \ Ox Ox \ Oy Oy
=-(g(X,y,um)sinum,Um)+(G,Um)+fHumds
r.
sadl;lng(2.28),(2.29),(2.34),(2.35)vaquagidih?ntrong(2.36)taco
(2.37) g~[(M{x,y,0;; ). 0;; )+(M,( x,y,~). ~m)]
=(XI':)+(X2':).
TIT(2.28),(2.31)-(2.33)va(2.37)suyfa
Phuangphapphdntithiluh(;mchobili toanellipticphi tuyfnbiencong 13
(2.38)
~l1![(M{ x,Y,a;: )-MJx,y,$I)' a;; -$1)
+(M,( x,y,a;; J - M,(x, y,~,), a;; -~,) ]
= (Xl- MJx,y,$lh: -$1)+( X, - M,(x,y,$,), :-$,),
V~i'~2ELP(0) .
Do giathie't(H5) tasoyfa:
(2.39) (Xl -MI(X,y,$J,: -$I)+(X2 -M2(X,y,$2)': -$2 )?O
V~i'~2E LP(0).
Trang (2.39)chQn
au
~I=--AWI ,
Ox
au
~2=-'
ay
Taco
(2.40)
WI ELP(O), A>O,
(Xl - M{X,y,: -AWl),w} 0
ChoA ---+ 0+, sad1;lngiathie't(H6)(ii) va dodinh1yhQit1;lbi ch~nLebesguetasoyra
(2.41)
Dodo
(2.42)
(Xl -MI(X'Y' :}WI)~O ,
Vw I E LP(0) .
Xl =M{X,Y.:}
Ly 1u~nWong W', tu (2.39) ta cling co
X, =M,(X,y,:).
(2.43)
V~y s1;1'tant<;tiWi giai u cua bai roan (P) du'Qcchung minh.
PhucJngphapphtintahi1uh{lnchobili roanellipticphi tuyenbiencong 14
Blioc 4 : ST;tduy nhdtlili gild
Trudehe'tachll '1dingWigiiHcuabai toan(P) t6nt~ivabi ch~ntrongV
(2.44)
II u II v ::;P,
trongdopduqcxacdinhtit(2.23).Tli giathie't(H8)va(2.15)taco:
(2.45)
II u Ilc(n)~CCoP~1t.3
GQiUl. Uz Iahainghic$mcua(P)thoa
(2.46)
II Uj IIc(n)::;CCoP::;; ,
i =1,2.
KhidoUj - Uzthoa
(2.47)
(M.( x,y,~)-M.(x,y,~), a;)
+(M 2(X, y, ~) - M 2 (X, y, ~J :)
+(g(x,y,Uj)sinUj - g(x,y,Uz)sinUz, w) =0 ,Vw EV.
ChQnW=Uj- Uztrong(2.46)taco
(M{ x,y,~)-M{x,y,a;:), ~(Ul - U,))
+(M2(x,y,a;; ) - M2( x,y,a;: ).~(Uj - uJ)
+(g(x, y, Uj )(sinUj - sin uJ, Uj - U2)
+((g(x,y,Uj)-g(x,y,uJ)sinU2' Uj -U2) =0
(2.48)
Chu'1dingtlicacgiathie't(H9)vatli (2.46)taco
(g(x, y, Uj )(sinUj - sinU2),Uj - U2)
+((g(x,y, Uj) - g(x,y, U2))sin uz, Uj - Uz)
~(ga casa - ka sina ~Iuj - Uzl12~0 ,
(2.49)
trongdoa =cCop.
. Tli (2.48)va (2.49),do tfnhdondic$utangng~tcuaMj vaMz ta Suyfa Uj - Uz =O.V~y
Uj=Uz.
Dinh1'1duqcchungminh..
Phucmgphapphcintahiluht;mchobai loanellipticphi tuylnbienGong 15
3. TRUONGH(1PRIENG
Trangtru'ongh<;1priengvai
(2.50) M1(x,y,z)=M2 (x,y,z)=Z ,
bairoan(0.1)-(0.3)ITathanh
~:.5!) - AU+g(x,y,u)sinu=G (x,y) E Q,
(2.52) U
I
=0
fo '
au, =H.
avlf(
mliroanbie'nphantu'dnglingvai(2.50)-(2.51)la:
Baitoan(P'):
l1muEo/?={ VEH1(Q): vir. =O}saoChO
(2.53) a(u,w)+(g(x,y,u)sinu,w)=(G,w)+ fHwds , \lWE o//".
f]
trongdoa ( . , .) Ladt;mgsongtuytntinhxacdinhbiJi
(2.54)
(
auaw auaw
J
a(uw)=If --+-- dxdy., n OxOx 0y0y
Taclingchuydingo//"lakhonggianHilbertd5ivaitichvohu'anga( . , . ) vachua':nsinh
baiUchvohu'angla
(2.55)
I vii =~a(v,V).
M~tkhac,trongWhai chua':n1.11va11.IIHI(n)Iatu'dngtu'dngdod6
(2.56):I Co>0
I V 11 ~ II V IIHl(n)~Co! V II ' V V E W
Tathanhl~pcaegiiithie'tsan:
(HI') 0 , \Ix E [0,1],
cpC2titngkhuctren[0,1].
(H2') G Eo//"'(W' Laddingducuaq/:;'
(H3') H E L2(1] ).
(H4') g :nxIR~IR
Lahamthoadiiu ki?n Caratheodory.
PhucJngphapphdn ta hl1uhr;mcho blli roan elliptic phi tuytn bien cong 16
(H5') T6nt{lihlings{fducJngC 3 <Yc ~ thoa:
Ig(x,y,z~~C3(1+lzl), 'v'zEIR , a.e (X,Y)EO,
,
{
II V IIHI
trongdo Co =supI V II ' V E W, V *0 }
(H6') VaimlJi a E (0, ffl3)cohaihlings{fducJnggavakasaGcho:
(iv)
(v)
kaS"gacotga,
(vi)
g(x,y,z)zga , \iz E [-a, a], a.e.(x,y)ED,
I g(X,y,Zl)-g(X,y,Z2)I s"ka I Zl- Z2 I , \ill, Z2E [-a, a], a.e.(x,y)ED.
DinhIf 2.2:
Cidsa cacgidthitt (Hl')-(H5') Ladung.Khi doblli roan(P') coLCtigidi. HcJnnl1a,ntu
thaythigidthief(H2')biJigidthiit
(H2")G EL2(D)
thi bai roan(P') co lCtigidi u E H2(D) n P/.
HcJnnr1a,niub5sungthemgidthief(H6')vll thaygidthitt(H2')biJigidthief(H2") saG
cho
(
I
J
~
(H7') !q>(x)dx +IIGII+IIHIIL2(f\)dTlnho
thiblliroan(r) coduynhdtmQtlCtigidi trongH2(D)n W.
Chungminh:
Tu'dngtvdinh192.1,dinh192.2duQchUngminhquanhit~ubuoe.
Buoc 11Xapxl GaLerkin
Giasa{wj }.- "cdsa"de'mduQCcuaq~Tatlmloigiaixa'pXl duoid~ng:J-l,2,...
(2.57)
m
um(x,y)= ?:CmjWj(X,y),J=1
trongd6cac cm.thoahc$phuongtrlnhphi tuye'nsauJ
Phl1cJngphdpphdn ta hT1uht;mcho bili roan elliptic phi tuytn bien cong 17
a(um' W j )+ (g(x, y, Urn)sin urn' Wj ) = (G, Wj ) + fH W j ds
(2.58) fl
j =1,..,m.
Trudehe"ttachungminhhc$(2.58)coWigiiiibich~n.
D~tWmla khonggianhOOh(}.nehi€u sinhbdi Wj,j =Lm.
Coi
(2.59)
Pm :Wm~Wm
m
Pm(Um)= Ipm. (Um)Wj. )
J=I
Pmj(um)=a(um,wJ+(g(x,y,um)sinum, Wj)-(G,Wj)- fHWjdS
~~ ~
j =1,..,m,
m
Um(X,y)=LCm.Wj(X,y).
j=1 )
(2.61)
Khido(2.58)tuangduangvdi:
Pm(Um)=O.
(2.62)
Ta coth€ nghic$ml(}.ikhongkhokhanding:
Pm : Wm~ Wmlien t1,le.
D€ apdl,mgb6d€ Brouwer(b6d€ 1.3,chuang1)tachidn chungminht6nt~iPm>0
saoeho
(2.63)
II Urn Ilv =Pmm (Pm(Um),Um)vm :2:0,=>
trongdoll.llvmlaehu§:nsinhbdinehvohuangsau:
(2.64)
vdi
Taco
(2.65)
m
(Um,Vm)v =LCm.dm.,m . 1
) )
J=
m
Um=LCm.Wj'
j=1 )
m
vm=Ldm.Wj'
j=1 )
m
(pm(um),Urn)v =L Pm. (Um)cm.
m j=1 ) )
=a(Um,Um)+(g(X,y,um)sinum' Um)-(G,Um)- fHumds .
f(
Tugiathie"t(H5')suyra:
Phuongphapph6ntahiluhr;mchobai roanellipticphi tuytnbiencong 18
(2.66) I(g(x,y, urn)sin urn'Urn)1::;c3coiOIliI urn 11 +C3C~I Urn I~
sad\mgdinhly ve't(b6d~1.2,chudng1)tathuduQc:
(2.67) fHurnds
fl
::; II H IIL2(f)1YoUrnIIL2(f1)
::; IIHIIL2(f)IYoUrn IIL2(f)
::; ell H IIL2(f)1Urn IIHI(Q)
::; ecoIIHIIL2(fl)I Urn 11
Tli (2.66)-(2.67)vadoG E q:/'suyfa:
(Prn(Urn),Urn)Vrn ;:::(1-C3C~) urn I~
(2.68) (~~
)-\C3CoIOI2+IIGt +ccoIIHIIL2(fl) I urn11
=[(l-c,c;)1Urn I]
- (C,CoIOIy, +11G t +CCollH!!L'(r,))]IUrn 11.
Do ffiQichu:lntrenq:/rnd~utudngdudng,suyracohaih~ngs6dudngClmvaCZmsao
cho:
(2.69) Clmll V IIWm~ I V 11~ Czmll V IIWm, V V E q:~.
~
0 ? ~ 1ChQnPm> thoaPm=- P vdi
Clrn
(2.70)
~ ~ IC3CoiOI2+IIGllv'+CCoIIHIL2(fl)
P= (1-C3C~)
Khidone'uII Urn Ilvrn=Pmthltli (2.68)tasuyra
(Prn(Urn),Urn) Wrn~O.
V~y(2.63)thoa,dod6apd1.).ngb6d~Brouwersuyra (2.58)c61Oigiai Urnthoa
(2.71) II urn II ::; Pm .Vrn
Buck2: Danhgialiennghi?mvaquagiaih(;m
Phl1CJngphap phdn ta hr1uhf,'mcho bili roan elliptic phi tuyin bien cong 19
Tli (2,61)va (2.6'6)ta s,\l'j1:a'.
(2.72)
I urn 11 S;P ,
vdiP >0 chobCii(2.70).
Tli (2.72)va giathi~t(BS') ta guyra
(2.73) Ilg(x, y, Urn)sinurnII s;c ,
C1fth~ngs6dQcl?pValm..
ChIiyriingphepnhIing~/ c~ L2 (D) 1acompact,khi d6 tii (2.72)va (2,73)suyra t6nt?i
m9tdaycancila{um} yinkf hj~uIii {um}saDcho:
Tli giathie't(H4')suyfa:
(2.77) g(x,y,Urn)sinUrn ~ g(x,y,U) sin U a.e (x,y) E Q ,
Ap dt,mgb6d~1.4,chuang1Val
N=2, q=2, Q=Q,
Grn=g(x,y,urn)sinUrn va G =g(x,y,u)sinu,
tli(2.73)va(2.77)suyfa
(2.78) g(x,y,urn)sinUrn > g(x,y,u)sinu tfongL 2(Q)ye'u.
Do(2.74)va(2.78),quagidih~ntrong(2.58)tasuyfadingulaWigiaicuabairoan(P').
S1,1't6nt~iWigiaiducJchungminh.
Bay giGtathaygia thie't(H2') bCiigiathie't(H2'').
Chuydng Wi giai u E q/"'cua(P') thoamanphuongtrlnhsailday:
(2.79) ~U =g(x,y,u)sinu - G trong D'(n).
Tli cacgiathie't(H2") ,(H5')va(2.79)tasuyfa
(2.80) ~uE L2(Q).
Dodo
(2.81) U E H2(Q)nw'
. Giasli'(H2") thoadungthaycho(H2')vathemvaGcaegiathi~t(H6')va(HT). Khi do,
clingtli (H2") (H5')va(2.79)tasuyfa
(2.74) Urn > U trongHI (Q) ye'u,
(2.75) Urn > U tfongL2(Q) mnh,
(2.76) Urn > u a.e(x,y)E Q.
PhucJng phap phtln t11hr1uh{Jncho bai loan elliptic phi tuye'nbien cong 20
(2.82) II~ull~C3~01~+lIull)+IIGII
TaeMyr~ng:
(2.83)TrongH2(Q)haichufinII V IIH2(n)va ~I v I~+II ~v112latu'ongdu'ong.
(2.84)PhepnhungH2(Q)c-) C(O) lientt;lC(n=2).
Dod6tu(2.83)va(2.84)tasuyfa:
(2.85) 3Co >0 : Ilvllc(n)~Co~v 11+11~vll), \tv E H2(0).
M~tkhac,vdigiathie't(H2") thayrho(H2')tac6thedanhgiaWigi,Hu trongo//"tu'ong
t1!nhu'trong(2.72)nhu'sau:
(2.86)
vdi
(2.87)
IUrn 11 ~p,
p= Co 2(C3IOI~+IIGII+CIIHIIL2(fIJ.
1- C3Co
TIT(2.82),(2.85)-(2.87)tasuyra
(2.88)
(2.89)
II u Ilc(n)~a
a = 1-~oC' ((I+Co)(C3101y, +II G 11)+CoC(1+C3Co~1HIIL'lr)3 0
1
Chuyr~ngvdigiilthie't(HT) tac61°1=f<p(x)dx, II G II ' II H IIL2(f)dunhosaorho
0 I
(2.90) a ~rc/3.
Tasechungminhr~ngbairoan(P')c6Wigiaiduynha'trongH\Q)no/~
TMt v~y,giilsa u,v E H2(Q)no//"lahaiWigiaicua(P') thoa
(2.91)
II u Ilc(n)~a ~; ,
"v Ilc(n)~a~; .
Khid6u- v thoa
(2.92)a(u- v,u - v)+(g(x,y,u)sinu - g(x,y,v)sinv ,u- v)=0
hay
PhU(Jflgphap ph8.ntzlhilu hg.ncho bili roan elliptic phi tuytn bien cong 21
(2.93)
I u-v I~+((g(x,y,u)-g(x,y,v))sinu,u-v)
+(g(x,y,vXsinu-sinv),u-v) =0
Sad\lnggiathi€t (H6')tadanhgiahais6h~ngthlihaivathlibacuav€ trai(2.93)nhtt
sail:
(2.94) ((g(x,y,u)- g(x,y,v))sinu,u- v)+(g(x,y,vXsinu - sinv),u - v)
~(gacosa- kasina~lu- vl12~0
T6 h<;:fp(2.93)va (2.94)tathud11<;:fcI u- v I~ ~0 hayu=v.
E>inh11'd11<;:fCchungminh..