PHƯƠNG PHÁP XÁC ĐỊNH PHƯƠNG TRÌNH DẠNG ẨN CHO ĐƯỜNG CONG VÀ MẶT THAM SỐ HỮU TỶ
NGUYỄN HIỀN LƯƠNG
Trang nhan đề
Mục lục
Mở đầu
Chương1: Tổng quan.
Chương2: Lý thuyết khử, syzygy và bài toán ẩn hóa.
Chương3: Các thuật toán ẩn hóa đường cong và mặt tham số hữu tỷ.
Kết luận
Phụ lục
Tài liệu tham khảo
19 trang |
Chia sẻ: maiphuongtl | Lượt xem: 2001 | Lượt tải: 1
Bạn đang xem nội dung tài liệu Luận văn Phương pháp xác định phương trình dạng ẩn cho đường cong và mặt tham số hữu tỷ, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Phl;t ll;tcA
" " " "A? ? ,./'
THU~TTOANTINHB~CANCUAD~NGTHAMSO
Chungtabierdingyoi m6id~;lllgthams6hoacuam~thuuty se t6n
t(;limOts6nguyenn ~1 saochomOtdiSmtrenm~tu'dnglingyoi n giatri
thams6.s6 n du'QcgQi1fts6tu'dnglingcuad(;lngthams6boa.Khi n = 1~ ta
noi d(;lngthams6 hoa1ftchinhqui,ngu'Qcl(;li1ftkhongchinhqui.Theo Dinh
19Bezout [14],b~ccua da thlic f b~ngs6 giaodiSmcua m~td(;lis6 f =0 .
yft hai m~tph~ng.Nhu'nggiao cua hai m~tph~ng1ftmOtdu'ongth~ng,y~y
sudvnghaidu'ongth~ngkhacnhauchungtaseHnhdu'Qcb~ccuadathlicf.
Thm}ttoanA.I. Tinhb~cin cuam~thams6huuty(1.3)[4].
Nh4p:
Xudt:
Rude1:
Rude2:
Rude3:
Rude4:
Cac dathlic a,b,c,dE k[s,t].
I Ia b~cin cuam~thams6huuty (1.3).
TImbiSudi~nin cuamOtdu'ongth~ngtoy9 ca:tm~tham
s6huuty alx+(31Y+ "YlZ+81=a2x+(32Y+"f2Z +82=o.
Cacgiatri s tu'dnglingyoi cacgiaodiSmcuadu'ongth~ng
trongRude1 yoi m~tthams6 1ftnghi~mcua k~tthuc
h(s) = Res(ala + (31b+ "flC+ 81d,a2a+ (32b+ "f2C+ 82d,t).
Neum~thams6cochliacacdiSmcosothl h(s)cocac
nghi~mngo(;lilai. DS lo(;libo chung,chungta HmbiSu
di~nin cuamOtdu'ongth~ngtoy9khacyoi du'ongth~ng
trongRude1 Ia alx +!31Y+ilZ +81= a2x+!32Y+i2Z +82
=o.
Tu'dngtvxacdinhdathlicco clings6nghi~mngo(;liai yoi
Budc5:
41
da thuc h(s)trongBudc 2 Ia fi(s)= Res(ala+,BIb+"YIC+
81d,a2a + ,B2b+ "Y2C+ 82d,i).
Xua'tl:= deg(h(s))- deg(gcd(h(s),fi(s))).
Ph1;t l1;tcB
CACTHU!TTOANCOBANvtMATR!NDATHDc
Trangph§nnaychungtoi se trinhbaytomtiltmQts6khainit?mva cac
thu~troanHnhroancd banvS matr~nda thuclam cd sd chovit?cxa~dinh
modunsyzygy[14,19].
Ma tr~nF ca'p mx l voi cac ph§n td'thuQck[xl'...,xIJ duQcgQi Ia ma
tr~nda thuc, ky hit?u FE k1nXI[Xl"",Xn].Ma tr~n F co h~ngIa T', ky hi~u
rankF = T',ne'utan t~imQtdinhthucconca'pT'khac khongva ta'tca cac dinh
thucconca'pT'+ 1 dSub~ngkhong.Ne'u rank(F) = min(m,l) tanoi F 1ah~ng
d§yduoB~ccuaF, ky hit?udeg(F),1agiatri IOnnha'tcuab~ccuacacph§ntd'
cuaF.
Cho ME k1nX1n[Xl"",XIJ,khi do dinh thuc cua M 1amQtda thuc thuQc
k[Xl"",Xn]' Ta noi M khong suy bie'nne'u det(M) +=O. Ne'u det(M) Ia mQt
h~ngkhackhongthuQck tanoi M Ia ddnmodun.
Djnh nghiaB.l. Cha FE k1nXI[Xl'...,xnJ,m < l. Khi do F dll(1CgQi[a:
(1) Nghi~mnguyen((5trai (ZLP) ntu khongt6n tCfimQtn-bQ (zf,...,z~)E kn [a
nghi~mchungcilatatcdcacdinhthaccancapm cila F.
(2) Dinhthacnguyent6trai (MLP) ntu tatcdcacdinhthaccancap m cila F
nguyento'cungnhau.
(3) Thaas6nguyent6trai (FLP) ntu F =~F;,trangdo~danmodun.
Cackhaini~mnghi~mnguyent6phdi(ZRP),dinhthacnguyent6phdi(MRP)va
thaas6 nguyentlfphdi (FRP) dU:(lcdinhnghiatllangfT!.
43
Vdi n = 1,2thlMLP FLP va MRP FRP. Vdi n 2:: 3 thl MLP $. FLP
vaMRP $. FLP. Vdi n 2::1 thl MLP ~ FLPvaMRP~ FRP [18].
B.I Phantichnhantii'matr~ndathuc
~
Thu~ttminB.l. Phantichnhantii'tniichomatr~ndathuchaibie'nh~ngd~ydu
[12,16].
Nhljp: Ma tr~nFE kmXI[XpX2Jco h~ngd~ydu, m <l.
Xudt: Hai ma tr~n L E kmxm[xpx2J,R E kmXI[XpX2JsaDcho F = LR
va detL = 9 vdi 9 E k[XIJIa dungcuatidechungldnnha'tcua
BucJe1:
caedinhthucca'pm cuaF.
TIm dathuc9E k[XIJIa dungcuatidechungldnnha'tcuacac
dinhthucca'pm cuaF. Phantich9 thanhtichcuacaedathuc
ba'tkha guytrangk[XIJ.
L = 1m;R = F.
Bude2: Ne'u da:xet he'tcae thanhph~nba'tkha guy thl de'nRude 6.
NgtiQcI~i,vdi thanhph~nba'tkha guy p E k[XIJ
i =1;j =1;R =R (modp).
Rude3: Trang matr~nR,ne'ut6nt~imQthangio,vdi i <io<m, ma
ta'tca caeph~ntii'deub~ngkh6ngthl Do=diag(l,...,p,...,l)
Ia mQttidctraicuaF
L = LDo;R = D;;lR.
QuayI~iBude2 vdi thanhph~nba'tkhaguyke'tie'p.
BUdC4:
BUdC5:
44
Trangmatr~nR, tlmcQtjo d~utien,vdi j <jo < l, co it nha't
mQtph~ntakhackh6ngtrongcachangtu i de'nm
) =)0'
Trang cQt j cua matr~nR, tuhangi de'nm Hmph~ntaco
~
b~ctheox2nhonha't,gQila Rj~'D~tD1la matr~ncodu<;1ctu
1mbiingcachhoanvi haidongi va ~
- - -1
R =D1R; L =LD1;R =D1R.
Giii saCQtj cod~ng(...,ai,...,am)T.Hc$s6chud~ocuacacda
thuc ai' ..., amE k(X1)[X2]la cac da thuc bi, ..., bmE k[xd. Do
biva p nguyent6clIngnhaunentheothu~t toanchiaEuclide
tant~icacdathucg, h E k[X1]saocho
gbi=1- hp.
D~t a; =gai (modp)E k[XpX2]'Khi dotant~icacc~pdathuc
qk' ..., rkE k[X1,X2]saocho
*
ak= qkak+ rk'
vdi k = i +1,...,m va degtrk<degta; ho~c rk =O. D~t
1
1
D3= 1
-xqi+1 1
-xqm 1
RUdC6:
45
- - -1
R = D3R;L = LD3 ;R = D3R.
Khi docQtj cod(;lng(...,ai,1i+1,...,r;n)T.
R=R (modp).
Ne'ucac dathuc1i+1=...=r;n= 0 thl
i = i +1;j = j +1;
va quayl(;liRUdC3.NguQcl(;li,quayl(;liRUdC5.
Xua'tL, R.
Ne'um> l, taclingco phanrichnhantii'phaicho P, nghlala tlmduQc
hai ma tr~nL E k1nXl[Xp2]va R E k1Xl[X1'X2]saocho P =LR. Apd\lllgmatr~n
chuyS'nvi taco thS'xaydvngthu~troanphanrichnhantii'phainhusau.
Thm}ttminB.2.Phanrichnhantii'phaichomatr~ndathuchaibie'nh(;lngdfiy
duo
Nhqp:
Xudt:
RUdC1:
RUdC2:
RUdC3:
Ma tr~nP E k1nXl[Xp2]co h(;lngdfiydu, m >l.
Hai ma tr~nL E k1nXl[X1'2]'R E k1Xl[X1'X2]saocho P =LR va
detR = g voi gE k[X1]la dungcua uoc chungIOnnha'tcua
cacdinhthucca'pl cuaP.
Di;it p' = pT E k1X1n[X1'X2]'dungThu~troanB.1 tlm hai ma
tr~nL' E k1Xl[X1'X2]va R' E k1X1n[xpX2]saocho p' =L'R'.
Taco(pT)T=pIT=(L'R')ThayP =R'TLff=LR. Di;it
L =R'T;R=Lff.
Xua'tL,R.
B.2 Tim d~ngHermite
46
Cho ma tr;%nF E k1nXI[Xl'X2]'d,.lllgHermite cua F la ma tr;%nH = UF vdi
hij = 0 nSu i > j va degx2hii> degx2hij nSu i < j, trongdo U E k1nX1n[xl'X2]va
ddnmodun.Sa dl;lllgky thu;%tkha Gaussde timd~ngHermitechotru'onghQp
mQtbiSn[12],tacothu;%ttoansau.
Thu~t toan B.3. Tim d~ngHermitecho ma tr;%nda thti'chai biSn h~ngd~ydu
[12,14,19].
Nhqp: Ma tr;%nF E k1nXI[Xl'2]co h~ngd~yduo
Xudt: Ma tr;%nHermite HE k1nXI[Xl'X2]cua F.
Bu(]c1: Xem F E k1nX\Xl)[X2]'sa d\lngky thu;%tkha Gaussta timdu'Qc
matr;%nHermite II E k1nXI(Xl)[X2]cua F va matr;%n0 E k1nX1n(
Xl)[X2]saocho II = OF.
Bu(]c2: GQi hi vdi i = 1,...,m la bQichungnhonha'tcuacaem§:uthti'c
hangthti'i. D~tD =diag(~,...,h1n)'
- -
H=DH;U=DU.
Bu(]c3: Xua'tH.
B.3 Rut trichtidechungIOnnha't
A,B la haimatr;%ndathti'c ungsO'hang(cQt).A,B du'QcgQila nguyen
to'cungnhautrai (phai) nSu t6n t~ihai ma tr;%nA,B va matr;%nda thti'cddn
modunC saochoA =CA,B=CB (A=AC,B =BC).
47
Ma tr;%nda thucvuong D duQcgQila uoc chungtnii (phiii) IOnnha'tcua
A va B ne'utant~ihaimatr;%ndathuc1,13nguyento'cungnhautrai (phiii)
saocho A =DA,B=DB (A=AD,B=BD).
Thu~ttminB.4.TImuocchungphiiiIonnha'tcuahaimatr;%ndathuc[12,16].
~
Nhqp: Hai ma tr;%nda thuc A E kmXI[Xl'X2]va B E knXI[XpX2] sao cho
Xu{{t:
(AT,BT)T E k(m+n)xl[Xl,X2]la h~ngd~yduo
Ma tr;%ndathuc DE kIXI[Xl,X2]la uoc chungIon nha'tphiii cua
A vaB.
RUdC1: Dung Thu;%ttoanB.2 phantfchnhantuphiii matr;%n
[~]=[~]R.
RUdC2: Dung Thu;%ttoanB.3 tlmd~ngHermitecuamatr;%n(iF, IF)T
u[~J=[~J.
RUdC3: Dung Thu;%ttoanB.l phantichnhantu trai matr;%n
Rv=LR.
RUdc4: Xua'tD =RR.
B.4 Dc)phuct~pHnhtoaD
BQ phuct~pcuaThu;%ttoanBA phl;1thuQcvao dQphuct~pcuaThu;%t
toanB.l d RUdC1va 3 va dQphuct~pcuaThu;%ttoanB.3d RUdC2.CacThu;%t
toanB.l va B.3 d€u duQcxay d1.,1'ngd1.,1'atrencachtie'pc;%nc6 dienla phuong
phapkhii'Gauss.Banh gia dQphuct~pcua Thu;%toanB.l tuykhongdon giiin
48
nhrtngchUngtaco th€ thiy cdbanno se g6rndi)ph",ctaPd€ Hnh(7] dinhthuc
ca'pm d Budc 1 va dQphuc t""pcua cac bu'ockhii'Gausscon I""i.Nhu'v~ydQ
phuc t""pcua Thu~troanB.I cling Ia mQtham da thuc theo m,Z.DQ phuc t~p
,
cuaThu~troanB.3Ia O(mZ2d2)[20],trongdo d Ia b~ccuamatr~ndathuc.V~y
dQphuct""pcuaThu~troanBA Ia mQthamdathuc.
Phl;t ll;tc C
A "" ?
THU~T TOAN XAC DJNH JL-COSO
Trangph~nnay chungWi trlnhbay thu~ttoantim f.L-cdsd cua duongcQng
ph~ngva m~tthallis6 hull ty duqcsad1;lllgtrongThu~ttoan3.3va 3.4trong
Chuang3.
c.t Thn~ttoaDOmp,-cdsO'cuadu'ongcongthams(fhunty phdng
Cd sd de xay dl;1'ngthu~ttoanxac dinh f.L-cdsd cua duongcong thalli s6
hulltyph~ngla cacke'tquasau.
DinhIy C.t. Chop,q E Syz(a,b,c)la haidudngthdngdi d(}ngsinhdudngGong
thamsf;'(1.2)bfjc n. Gid sii deg(p)<deg(q), khi do p va q tCJothanhf.L-casO
cuadudngGong(1.2)niu vachiniu m(}trongcacddu ki~nsauthoa
(1) M(}tdudngthdngdi d(}ngL sinhdudngGongthams{f(1.2)co thi duf/cbiiu
diln boi (2.3)wii deg(~p):::;deg(L)va deg(h2q)<deg(L).
(2) M(}tdudngthdngdi d(}ngL sinhdudngGongthams{f(1.2)co thi duf/cbilu
diln boi (2.3)va haivectdLV(p) va LV(q) d(}clfjp tuyin tinhtren JR.
(3) M(}tdudngthdngdi d(}ngL sinhdudngGongthams{f(1.2)co thi duf/cbilu
diln boi (2.3)va deg(p)+deg(q)=n.
Chungminh:xem[2,tr.374].
M~nhd~C.2.
(1) ModunsyzygySyz(a,b,c) cuadudngGongthams{fhilu typhdng (1.2)duf/c
50
sinh biJi ba duilngthlingdi dQngVI=(-b,a,0), V2= (-c,0,a) va V3= (D,c,
-b).
(2) rank(vI,v2,V3)=2.
(3) rank(LV(vI)'LV(V2)'LV(vJ) =2.
Chung minh: xem[2,tr. 376- 377].
Thu~t toaDC.l. Tim p,-edsa euadttongeongthams6huuty phing [2].
Nh(jp: Cae dathlie a,b,cE k[t].
Xudt: Hai da thlie p,q E k[x,y,t] 13.p,-edsa euadttongeongthams6
huutyphing.
Rude1: Df;it
VI = (-b,a,D),V2= (-c,D,a),V3= (D,c,-b);
mI= LV(VI)' m2=LV(v2)'m3=LV(v3)'
Rude2: Df;it ni = deg(vi)'vdi i = 1,2,3.Khongma'ttinhtangquat,ta
siip xe'p1~icae Vi theothli t1!giamd~neuacae ni.
Rude3: Tim caes6 th1!eaI' a2'a3 (co it nha't2 s6 khaethong) saoeho
aImI +a2m2+ a3m3=D.
Rude 4: Ne'u al -:;r:. Dthi
V - a V +a tnl-n2v +a tnl-n3v .1 - 1 1 2 2 3 3'
~ =LV(VI);
nI =deg( VI)'
Ne'u al = D khi do a2,a3-:;r:.0 thi
V - r" V + tn2-n3V '2 - "'2 2 a3 3'
51
m2 =LV(V2);
n2 =deg(V2).
Buac5: Ne'umQttrongcac Vi=0, gia SITla VI= 0, thld~tp = V2va
q = V3Ia hai da thuc t<:;lOthanhf-J,-Cdsa cua du'ongcongt~ham
s6huutyph£ng.Ngu'qcl<:;li,quayv6Buac2.
C.2 Thn~t toaDtimp,-cdsdcuam~t thamsf{hunty
Cd sa quantrQngdegiupHmf-J,-cdsacuam~tthams6hUllty la haike't
quasau.
Dinh Iy C.3.Chomiftthamsdhiiuty (1.3),khid6fuontan((;iibaphdngdi dqng
p,q,r saGcho(2.4)thoa.Banniia,mqtcasa p,q,r tflyycaamodunSyz(a,b,c,
d) Gangthoa(2.4).
Chung minh: xem[1,tr.694].
Dinh Iy C.4. Cho p,q,r fa mQtf-J,-casa caamiftthamso'hiiu ty (1.3).Khi do
p,q,r famQtcasacaamodunSyz(a,b,c,d),ngh'iafavaiba'tkyphdngdidQngP
sinhmiftthamso'co bilu ddn duy nha't
P =~p+~q+h3r
vai ~,~, h3E IR.[s,t]. Ban niia degt(~p),degt(~q),degt(h3r)<degt(P)+degt(p)
+degt(q)+degt(r)- n; degs(~p),degs(~q),degs(h3r):::; degs(P)+degs(p)+degs(
q)+degs(r)- m ntumiftfasongbtJ-c(m,n) va deg(~p),deg(~q),deg(h3r)<deg
(P) +deg(p)+deg(q)+deg(r)- n ntu miftfaphantamgidcbtJ-cn.
Chung minh: xem[1,tr. 695].
52
Do d6 de rim f-L-cosd cua mi,itthams6 huu ty (1.3)chungta chi cffnxac
dinh co sd cua m6dunSyz(a,b,c,d). Chungtabie'tding vi~cxac dinh co sd cho
mQt m6dun tl,l'do la kh6ng d~dang. Trong khi d6 ta c6 the sa d\lng ytudngcua
thu~troanBuchbergerde xay dl,l'ngt~phqp cacphffnta sinhchom6dunsy-zygy
[10]va sa d\lngke'tquacuaM~nhd€ 2.20de rimco sd chom6dunSyz(a,b,c,d).
Nhungphuongphapnay ding chuahi~uqua.
Sa d\lng cac ke'tqua nghien CUllv€ m6dunsyzygycua h~ cac phuong
trinhtuye'ntinhthuffnnha'tvoi cach~s6 la da thucnhi€u bie'ndl,l'atrenly
thuye'tcacmatr~ndathuc[18],chungtac6thexaydl,l'ngthu~troanxacdinhf-L-
co sd cho mi,itthams6huuty [12].Honnuaphuongphapnayclingc6theduqc
ap d\lngde rim f-L-cosd choduongcongthams6 huuty hi~uquahonThu~troan
D.l.
Cho matr~ndathucF = (A,...,ft)E k7nXI[Xl"",XrJKhi d6 (~,...,hl)T E kl[
Xl,...,X,JduqcgQiIa mQtsyzygycua F ne'u
I
Lhd:=o.
i=l
(D.1)
T~phqpta'tca cacsyzygycua F duqcgQila m6dunsyzygycuaF, kyhi~ula
Syz(F).T~phqpcac~,...,hsE kl[xl1'",xnJduqcgQiIa t~pcacphffntasinhcua
Syz(F) ne'u
Fhi =0 voi i =1,...,8 (D.2)
va voi mQisyzygyt E Syz(F) t6nt~iduynha'tcac da thuc fl1""fs E k[xl1""x,J
saDcho
53
t =h~+... Ishs' (D.3)
Ne'utad~th =(hi,...,fmJT,hj =(~j,...,hlj)Tvat =(~,...,tl)Tvoii =1,...,[va
j = 1,...,sthlcacbi€u thuc(C.2)va(C.3)trdthanh
hI hi )(~I ... ~s
=0
Imi ... ImLjlhn
~ ..
F
... his
Ii
va
; _f;I ... ;sH~. -
tl Ihn ... hisIlls
Khi do H =(~,...,hs)E kIXS[xu...,x,JduQcgQila matr~nsinhcua Syz(F).Cau
hoi d~tra la khinaothlmatr~nH co s6cQtnhonha'tva co tant~ihaykh6ng
mQtmatr~nsinhco s6cQtnhonha'tvoi F ba'tky? Cacke'tquasause traloi
chova'nd€ nay.
Mc$nhd@C.S. Cho F =(-fib) E kmXI[Xl1'..,X,Jco h{mgfa m, wii 1> m va b E
kmxm[xu...,x,J khongsuybitn.Diit T=[- m, khidomodunSyz(F) comatrlJ.n
sinhdip [x T ntu va chi ntu tant{lim(}tmatrtJ.nMRP HE kIXr[XI,...,x,JSaDcho
FH = O.Hefnnila H chinhfa matrtJ.nsinh.
Chung minh: xem[18,tr. 80].
Voi n ::;2 talu6nHmduQcmQtmatr~nsinhco s6cQtnhonha'tchoF tuyy.
54
Mc%nhd~C.6. Cho F = (-Njj) E klnXI[Xl,X2]co hc;mgla m, velil> m va DE
klnXIn[xl'X2]khong suy bien.Dijt r =l- m, khi do tan tc;limQtma tr4nsinh H E
klXr[xl'X2]cho modun Syz(F).
Chung minh: xem[18,tr. 81].
D~t F = (a,b,c,d)E eX4[s,t],theoM~nhde C.6 m6dunSyz(F) hay Syz(a,
b,c,d) comatr~nsinhH E k4X3[S,t].TheoM~nhde2.20,suyracaccQtcuaH
t(;lOthanhmQtcdsacuam6dunSyz(a,b,c,d).V~ytacothu~toansauxacdinh
p,-cdsachom~thamsO'hiluty.
Thu~ttoaDC.2.Timp,-cdsachom~thamsO'hiluty [12].
Nh4p: Cac dathuc a,b,c,dE k[s,t].
Xw1't: Badathucp,q,r E k[x,y,z,s,t] la p,-cdsacuam~thamsO'hilu
Buelc1:
?
ty.
D~tN=(-a,-b,-c) va jj = (d).Xay dllngmatr~n
p = jj-lN =(-ajd,-bjd,-cjd) =ND-1.
BuelC2:
Trongdo N =(-a,-b,-c) va D =diag(d,d,d).
DungThu~toanB.4till u'occhungIOnnhtt C cua N va D.
Khi do t6nt(;lihaimatr~nN,jj E k[s,t] saocho
- -
N =NC;D =DC;
trongdoN va jj nguyento' cungnhauphai.D~t
-T -T T
H =(N ,D ) =(hr,~,h3);
P =hrT(x,y,z,l);q=h;(x,y,z,l);r=hJ(x,y,z,l).
55
Blide3: Xua'tp,q,r.
C.3 Dc}phuc t~p Hnh tmin
DQ phuct(;lpcuaThu~troanC.! trongtrlionghQptrungbinh la O(n2)[2].
Trangkhi do vi~cdanhgiadQphuct(;lpcuaThu~troanC.2 la khongdongian
va noph\lthuQcchinhvaodQphuct(;lpcuacacthu~troanv€ Hnhroanmatr~n
dathuctrongPh\ll\lc B. C\l the,neuboquadQphuct(;lpcuavi~cxayd1;fngcac
matr~nN va D t(;liBlide1thidQphuct(;lpcuaThu~troanC.2ph\lthuQc hinh
vaodQphuct(;lpcuaThu~troanB.4 d Blide2.V~ytaco thexemdQphuct(;lp
cuaThu~troanC.2xa'pXl dQphuct(;lpcuaThu~troanB.4va clingla mQtham
dathuc.
Phl;tll;tcD
cA C PHUONG TRINH M4.T HUU TY
TrangphgnnaychungWi lit%tke phu'dngtrinhcacm~thuuty du'Qcdung
d€ daubgiacacthu~troangnhoatrongChu'dng3.
Sl = -3s3t- 3,-4i +6st,9s- 6,t;
s = it +2st5- st s3e- s2t3- 2it2 +S2- st - 2s s - t - 2 s2t- se - 2st,2' ",
S3 = S2 +t, s2t+st4+st2- 3s+t5- 3t3, st+e- 3, s2t+2se- 3s+t3- 3t;
S4 = -18s4t+27s3t2- s2t3- 8st4+ 2t5,
4s3t3+6s3t2+2s3t- 2s2t4- 3it3 - s2t2,
-3s3t2- 3s3t- 8it3 - 8s2t2- 6s2t- 6i + 3st4+ 3st3+ 2st2+ 2st,
6s3t2+6s3t- 5s2t3- 5it2 +st4+st3;
S5=S3 +5st2+2st+t3- 1,2S2+3st+2t3- 2,5s3+2it +3se+5st+5t2- 5,
S4 + t4- 1;
S6 = 16s3+32it -120i - 56st+128s+24t- 24,
48it +8i +16se- 456st+384s+16e-16t2+392t- 392,
16s3+32it +192i +48se-1328st+1040s+64e- 48e+1232t-1248,
16s3- 240st+224s+16e+224t- 240;
S7 = 16s3+32it -120i - 56st+128s+24t- 24,
48s2t+8i +16se- 456st+384s+16t3-16e +392t- 392,
16s3+32it +192i +48st2-1328st+1040s+64t3- 48e+1232t-1248,
- 2i +8s- 6;
S8 = 684288s3-1419264it- 608256i+684288st2+1495296st- 836352s-
684288t2- 76032t+760320,983808s2t+1043712i- 8711424st+
57
7803648s+684288t3+1119744t2+7043328t- 8847360,4790016s3-
6983424s2t-1126656s2 -15667200st + 17556480s+ 1430784t2+
20597760t- 21219840,6158592s3-19660032s2t-12780288i+
74437632st- 62152704s- 4790016e- 13996800e- 44987584t+
68774400;
S9 = -84ie +7716st-14004s- 7632t+14004,- 84se+1056st-1692s-
972t+ 1692,- 252s2t- 84st2+ 3360st- 4284s- 3024t+4284,6i -
57s+ 6t+ 51;
SlO= - 2209it3+ 7359ie - 4800it - 350i +2225st3- 7425se+ 4800st+
400s,- 2209it3- 732s2t2+3291s2t+2225st3+750se- 3375st,
168ie-168it - i -168se+168st+7,
24it2- 24it - 24st2+24st+1;
S11= -2209it3- 732ie+ 3291s2t+2225st3+750se- 3375st,
2209s2t3- 7359ie+4800it+350s2- 2225st3+7425se- 4800st- 400s,
168ie -168it +S2-168se +168st+7,
24s2e- 24s2t- 24st2+ 24st+ 1;
S12= 2209it3- 7359it2+4800it+350i - 2225st3+7425st2- 4800st- 400s,
2209ie+732ie- 3291s2t- 2225st3- 750se+3375st,
168ie -168it - S2-168se +168st+ 7,
24it2 - 24s2t- 24st2+24st+1;
S13=2209s2t3+732ie- 3291it - 2225se- 750st2+3375st,
- 2209s2t3+7359ie- 4800s2t- 350s2+2225st3- 7425st2+4800st+400s,
-2209it3 +7359s2e- 4800it- 350i +2225st3- 7425se+4800st+400s,
24s2t2- 24it - 24st2+24st+1;
58
814 = 73682e-11182t2- 600it - 25i - 7448t3+1448e+6008t+32t3-132e +
100,- 2072it3+171982e+378it +20648t3-17288t2- 3368t+32t3+
36t2-168t,54ie - 3682t2-1882t+ i - 548e+368t2+188t- 68+6,
18it3-12ie - 682t-188e +128e+68t+1;
815 = - 207282t3+ 171982t2+ 37882t+ 20648t3- 17288e- 3368t+ 32t3+
36t2-168t, -100 - 32e +25i - 73682t3- 6008t+ 132e-1448t2+
7448t3+ 60082t+11182t2,5482t3- 1882t- 3682t2+ i - 548t3+368e +
188t- 68+6,1882t3-1282t2- 6s2t-188e +128e+68t+1;
816 = - 736it3 + 111it2+ 60082t+ 25i + 7448e-1448e - 6008t- 32t3+
132t2-100, 207282t3-171982t2- 37882t- 20648t3+17288t2+ 3368t- 32t3-
36t2+ 168t,54ie - 36it2 -18it + i - 548t3+ 368t2+ 168t- 68+ 6,
18it3 -1282t2- 682t-188e +128t2+ 68t+ 1;