Luận văn Phương pháp xác định phương trình dạng ẩn cho đường cong và mặt tham số hữu tỷ

PHƯƠNG PHÁP XÁC ĐỊNH PHƯƠNG TRÌNH DẠNG ẨN CHO ĐƯỜNG CONG VÀ MẶT THAM SỐ HỮU TỶ NGUYỄN HIỀN LƯƠNG Trang nhan đề Mục lục Mở đầu Chương1: Tổng quan. Chương2: Lý thuyết khử, syzygy và bài toán ẩn hóa. Chương3: Các thuật toán ẩn hóa đường cong và mặt tham số hữu tỷ. Kết luận Phụ lục Tài liệu tham khảo

pdf19 trang | Chia sẻ: maiphuongtl | Lượt xem: 2001 | Lượt tải: 1download
Bạn đang xem nội dung tài liệu Luận văn Phương pháp xác định phương trình dạng ẩn cho đường cong và mặt tham số hữu tỷ, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Phl;t ll;tcA " " " "A? ? ,./' THU~TTOANTINHB~CANCUAD~NGTHAMSO Chungtabierdingyoi m6id~;lllgthams6hoacuam~thuuty se t6n t(;limOts6nguyenn ~1 saochomOtdiSmtrenm~tu'dnglingyoi n giatri thams6.s6 n du'QcgQi1fts6tu'dnglingcuad(;lngthams6boa.Khi n = 1~ ta noi d(;lngthams6 hoa1ftchinhqui,ngu'Qcl(;li1ftkhongchinhqui.Theo Dinh 19Bezout [14],b~ccua da thlic f b~ngs6 giaodiSmcua m~td(;lis6 f =0 . yft hai m~tph~ng.Nhu'nggiao cua hai m~tph~ng1ftmOtdu'ongth~ng,y~y sudvnghaidu'ongth~ngkhacnhauchungtaseHnhdu'Qcb~ccuadathlicf. Thm}ttoanA.I. Tinhb~cin cuam~thams6huuty(1.3)[4]. Nh4p: Xudt: Rude1: Rude2: Rude3: Rude4: Cac dathlic a,b,c,dE k[s,t]. I Ia b~cin cuam~thams6huuty (1.3). TImbiSudi~nin cuamOtdu'ongth~ngtoy9 ca:tm~tham s6huuty alx+(31Y+ "YlZ+81=a2x+(32Y+"f2Z +82=o. Cacgiatri s tu'dnglingyoi cacgiaodiSmcuadu'ongth~ng trongRude1 yoi m~tthams6 1ftnghi~mcua k~tthuc h(s) = Res(ala + (31b+ "flC+ 81d,a2a+ (32b+ "f2C+ 82d,t). Neum~thams6cochliacacdiSmcosothl h(s)cocac nghi~mngo(;lilai. DS lo(;libo chung,chungta HmbiSu di~nin cuamOtdu'ongth~ngtoy9khacyoi du'ongth~ng trongRude1 Ia alx +!31Y+ilZ +81= a2x+!32Y+i2Z +82 =o. Tu'dngtvxacdinhdathlicco clings6nghi~mngo(;liai yoi Budc5: 41 da thuc h(s)trongBudc 2 Ia fi(s)= Res(ala+,BIb+"YIC+ 81d,a2a + ,B2b+ "Y2C+ 82d,i). Xua'tl:= deg(h(s))- deg(gcd(h(s),fi(s))). Ph1;t l1;tcB CACTHU!TTOANCOBANvtMATR!NDATHDc Trangph§nnaychungtoi se trinhbaytomtiltmQts6khainit?mva cac thu~troanHnhroancd banvS matr~nda thuclam cd sd chovit?cxa~dinh modunsyzygy[14,19]. Ma tr~nF ca'p mx l voi cac ph§n td'thuQck[xl'...,xIJ duQcgQi Ia ma tr~nda thuc, ky hit?u FE k1nXI[Xl"",Xn].Ma tr~n F co h~ngIa T', ky hi~u rankF = T',ne'utan t~imQtdinhthucconca'pT'khac khongva ta'tca cac dinh thucconca'pT'+ 1 dSub~ngkhong.Ne'u rank(F) = min(m,l) tanoi F 1ah~ng d§yduoB~ccuaF, ky hit?udeg(F),1agiatri IOnnha'tcuab~ccuacacph§ntd' cuaF. Cho ME k1nX1n[Xl"",XIJ,khi do dinh thuc cua M 1amQtda thuc thuQc k[Xl"",Xn]' Ta noi M khong suy bie'nne'u det(M) +=O. Ne'u det(M) Ia mQt h~ngkhackhongthuQck tanoi M Ia ddnmodun. Djnh nghiaB.l. Cha FE k1nXI[Xl'...,xnJ,m < l. Khi do F dll(1CgQi[a: (1) Nghi~mnguyen((5trai (ZLP) ntu khongt6n tCfimQtn-bQ (zf,...,z~)E kn [a nghi~mchungcilatatcdcacdinhthaccancapm cila F. (2) Dinhthacnguyent6trai (MLP) ntu tatcdcacdinhthaccancap m cila F nguyento'cungnhau. (3) Thaas6nguyent6trai (FLP) ntu F =~F;,trangdo~danmodun. Cackhaini~mnghi~mnguyent6phdi(ZRP),dinhthacnguyent6phdi(MRP)va thaas6 nguyentlfphdi (FRP) dU:(lcdinhnghiatllangfT!. 43 Vdi n = 1,2thlMLP FLP va MRP FRP. Vdi n 2:: 3 thl MLP $. FLP vaMRP $. FLP. Vdi n 2::1 thl MLP ~ FLPvaMRP~ FRP [18]. B.I Phantichnhantii'matr~ndathuc ~ Thu~ttminB.l. Phantichnhantii'tniichomatr~ndathuchaibie'nh~ngd~ydu [12,16]. Nhljp: Ma tr~nFE kmXI[XpX2Jco h~ngd~ydu, m <l. Xudt: Hai ma tr~n L E kmxm[xpx2J,R E kmXI[XpX2JsaDcho F = LR va detL = 9 vdi 9 E k[XIJIa dungcuatidechungldnnha'tcua BucJe1: caedinhthucca'pm cuaF. TIm dathuc9E k[XIJIa dungcuatidechungldnnha'tcuacac dinhthucca'pm cuaF. Phantich9 thanhtichcuacaedathuc ba'tkha guytrangk[XIJ. L = 1m;R = F. Bude2: Ne'u da:xet he'tcae thanhph~nba'tkha guy thl de'nRude 6. NgtiQcI~i,vdi thanhph~nba'tkha guy p E k[XIJ i =1;j =1;R =R (modp). Rude3: Trang matr~nR,ne'ut6nt~imQthangio,vdi i <io<m, ma ta'tca caeph~ntii'deub~ngkh6ngthl Do=diag(l,...,p,...,l) Ia mQttidctraicuaF L = LDo;R = D;;lR. QuayI~iBude2 vdi thanhph~nba'tkhaguyke'tie'p. BUdC4: BUdC5: 44 Trangmatr~nR, tlmcQtjo d~utien,vdi j <jo < l, co it nha't mQtph~ntakhackh6ngtrongcachangtu i de'nm ) =)0' Trang cQt j cua matr~nR, tuhangi de'nm Hmph~ntaco ~ b~ctheox2nhonha't,gQila Rj~'D~tD1la matr~ncodu<;1ctu 1mbiingcachhoanvi haidongi va ~ - - -1 R =D1R; L =LD1;R =D1R. Giii saCQtj cod~ng(...,ai,...,am)T.Hc$s6chud~ocuacacda thuc ai' ..., amE k(X1)[X2]la cac da thuc bi, ..., bmE k[xd. Do biva p nguyent6clIngnhaunentheothu~t toanchiaEuclide tant~icacdathucg, h E k[X1]saocho gbi=1- hp. D~t a; =gai (modp)E k[XpX2]'Khi dotant~icacc~pdathuc qk' ..., rkE k[X1,X2]saocho * ak= qkak+ rk' vdi k = i +1,...,m va degtrk<degta; ho~c rk =O. D~t 1 1 D3= 1 -xqi+1 1 -xqm 1 RUdC6: 45 - - -1 R = D3R;L = LD3 ;R = D3R. Khi docQtj cod(;lng(...,ai,1i+1,...,r;n)T. R=R (modp). Ne'ucac dathuc1i+1=...=r;n= 0 thl i = i +1;j = j +1; va quayl(;liRUdC3.NguQcl(;li,quayl(;liRUdC5. Xua'tL, R. Ne'um> l, taclingco phanrichnhantii'phaicho P, nghlala tlmduQc hai ma tr~nL E k1nXl[Xp2]va R E k1Xl[X1'X2]saocho P =LR. Apd\lllgmatr~n chuyS'nvi taco thS'xaydvngthu~troanphanrichnhantii'phainhusau. Thm}ttminB.2.Phanrichnhantii'phaichomatr~ndathuchaibie'nh(;lngdfiy duo Nhqp: Xudt: RUdC1: RUdC2: RUdC3: Ma tr~nP E k1nXl[Xp2]co h(;lngdfiydu, m >l. Hai ma tr~nL E k1nXl[X1'2]'R E k1Xl[X1'X2]saocho P =LR va detR = g voi gE k[X1]la dungcua uoc chungIOnnha'tcua cacdinhthucca'pl cuaP. Di;it p' = pT E k1X1n[X1'X2]'dungThu~troanB.1 tlm hai ma tr~nL' E k1Xl[X1'X2]va R' E k1X1n[xpX2]saocho p' =L'R'. Taco(pT)T=pIT=(L'R')ThayP =R'TLff=LR. Di;it L =R'T;R=Lff. Xua'tL,R. B.2 Tim d~ngHermite 46 Cho ma tr;%nF E k1nXI[Xl'X2]'d,.lllgHermite cua F la ma tr;%nH = UF vdi hij = 0 nSu i > j va degx2hii> degx2hij nSu i < j, trongdo U E k1nX1n[xl'X2]va ddnmodun.Sa dl;lllgky thu;%tkha Gaussde timd~ngHermitechotru'onghQp mQtbiSn[12],tacothu;%ttoansau. Thu~t toan B.3. Tim d~ngHermitecho ma tr;%nda thti'chai biSn h~ngd~ydu [12,14,19]. Nhqp: Ma tr;%nF E k1nXI[Xl'2]co h~ngd~yduo Xudt: Ma tr;%nHermite HE k1nXI[Xl'X2]cua F. Bu(]c1: Xem F E k1nX\Xl)[X2]'sa d\lngky thu;%tkha Gaussta timdu'Qc matr;%nHermite II E k1nXI(Xl)[X2]cua F va matr;%n0 E k1nX1n( Xl)[X2]saocho II = OF. Bu(]c2: GQi hi vdi i = 1,...,m la bQichungnhonha'tcuacaem§:uthti'c hangthti'i. D~tD =diag(~,...,h1n)' - - H=DH;U=DU. Bu(]c3: Xua'tH. B.3 Rut trichtidechungIOnnha't A,B la haimatr;%ndathti'c ungsO'hang(cQt).A,B du'QcgQila nguyen to'cungnhautrai (phai) nSu t6n t~ihai ma tr;%nA,B va matr;%nda thti'cddn modunC saochoA =CA,B=CB (A=AC,B =BC). 47 Ma tr;%nda thucvuong D duQcgQila uoc chungtnii (phiii) IOnnha'tcua A va B ne'utant~ihaimatr;%ndathuc1,13nguyento'cungnhautrai (phiii) saocho A =DA,B=DB (A=AD,B=BD). Thu~ttminB.4.TImuocchungphiiiIonnha'tcuahaimatr;%ndathuc[12,16]. ~ Nhqp: Hai ma tr;%nda thuc A E kmXI[Xl'X2]va B E knXI[XpX2] sao cho Xu{{t: (AT,BT)T E k(m+n)xl[Xl,X2]la h~ngd~yduo Ma tr;%ndathuc DE kIXI[Xl,X2]la uoc chungIon nha'tphiii cua A vaB. RUdC1: Dung Thu;%ttoanB.2 phantfchnhantuphiii matr;%n [~]=[~]R. RUdC2: Dung Thu;%ttoanB.3 tlmd~ngHermitecuamatr;%n(iF, IF)T u[~J=[~J. RUdC3: Dung Thu;%ttoanB.l phantichnhantu trai matr;%n Rv=LR. RUdc4: Xua'tD =RR. B.4 Dc)phuct~pHnhtoaD BQ phuct~pcuaThu;%ttoanBA phl;1thuQcvao dQphuct~pcuaThu;%t toanB.l d RUdC1va 3 va dQphuct~pcuaThu;%ttoanB.3d RUdC2.CacThu;%t toanB.l va B.3 d€u duQcxay d1.,1'ngd1.,1'atrencachtie'pc;%nc6 dienla phuong phapkhii'Gauss.Banh gia dQphuct~pcua Thu;%toanB.l tuykhongdon giiin 48 nhrtngchUngtaco th€ thiy cdbanno se g6rndi)ph",ctaPd€ Hnh(7] dinhthuc ca'pm d Budc 1 va dQphuc t""pcua cac bu'ockhii'Gausscon I""i.Nhu'v~ydQ phuc t""pcua Thu~troanB.I cling Ia mQtham da thuc theo m,Z.DQ phuc t~p , cuaThu~troanB.3Ia O(mZ2d2)[20],trongdo d Ia b~ccuamatr~ndathuc.V~y dQphuct""pcuaThu~troanBA Ia mQthamdathuc. Phl;t ll;tc C A "" ? THU~T TOAN XAC DJNH JL-COSO Trangph~nnay chungWi trlnhbay thu~ttoantim f.L-cdsd cua duongcQng ph~ngva m~tthallis6 hull ty duqcsad1;lllgtrongThu~ttoan3.3va 3.4trong Chuang3. c.t Thn~ttoaDOmp,-cdsO'cuadu'ongcongthams(fhunty phdng Cd sd de xay dl;1'ngthu~ttoanxac dinh f.L-cdsd cua duongcong thalli s6 hulltyph~ngla cacke'tquasau. DinhIy C.t. Chop,q E Syz(a,b,c)la haidudngthdngdi d(}ngsinhdudngGong thamsf;'(1.2)bfjc n. Gid sii deg(p)<deg(q), khi do p va q tCJothanhf.L-casO cuadudngGong(1.2)niu vachiniu m(}trongcacddu ki~nsauthoa (1) M(}tdudngthdngdi d(}ngL sinhdudngGongthams{f(1.2)co thi duf/cbiiu diln boi (2.3)wii deg(~p):::;deg(L)va deg(h2q)<deg(L). (2) M(}tdudngthdngdi d(}ngL sinhdudngGongthams{f(1.2)co thi duf/cbilu diln boi (2.3)va haivectdLV(p) va LV(q) d(}clfjp tuyin tinhtren JR. (3) M(}tdudngthdngdi d(}ngL sinhdudngGongthams{f(1.2)co thi duf/cbilu diln boi (2.3)va deg(p)+deg(q)=n. Chungminh:xem[2,tr.374]. M~nhd~C.2. (1) ModunsyzygySyz(a,b,c) cuadudngGongthams{fhilu typhdng (1.2)duf/c 50 sinh biJi ba duilngthlingdi dQngVI=(-b,a,0), V2= (-c,0,a) va V3= (D,c, -b). (2) rank(vI,v2,V3)=2. (3) rank(LV(vI)'LV(V2)'LV(vJ) =2. Chung minh: xem[2,tr. 376- 377]. Thu~t toaDC.l. Tim p,-edsa euadttongeongthams6huuty phing [2]. Nh(jp: Cae dathlie a,b,cE k[t]. Xudt: Hai da thlie p,q E k[x,y,t] 13.p,-edsa euadttongeongthams6 huutyphing. Rude1: Df;it VI = (-b,a,D),V2= (-c,D,a),V3= (D,c,-b); mI= LV(VI)' m2=LV(v2)'m3=LV(v3)' Rude2: Df;it ni = deg(vi)'vdi i = 1,2,3.Khongma'ttinhtangquat,ta siip xe'p1~icae Vi theothli t1!giamd~neuacae ni. Rude3: Tim caes6 th1!eaI' a2'a3 (co it nha't2 s6 khaethong) saoeho aImI +a2m2+ a3m3=D. Rude 4: Ne'u al -:;r:. Dthi V - a V +a tnl-n2v +a tnl-n3v .1 - 1 1 2 2 3 3' ~ =LV(VI); nI =deg( VI)' Ne'u al = D khi do a2,a3-:;r:.0 thi V - r" V + tn2-n3V '2 - "'2 2 a3 3' 51 m2 =LV(V2); n2 =deg(V2). Buac5: Ne'umQttrongcac Vi=0, gia SITla VI= 0, thld~tp = V2va q = V3Ia hai da thuc t<:;lOthanhf-J,-Cdsa cua du'ongcongt~ham s6huutyph£ng.Ngu'qcl<:;li,quayv6Buac2. C.2 Thn~t toaDtimp,-cdsdcuam~t thamsf{hunty Cd sa quantrQngdegiupHmf-J,-cdsacuam~tthams6hUllty la haike't quasau. Dinh Iy C.3.Chomiftthamsdhiiuty (1.3),khid6fuontan((;iibaphdngdi dqng p,q,r saGcho(2.4)thoa.Banniia,mqtcasa p,q,r tflyycaamodunSyz(a,b,c, d) Gangthoa(2.4). Chung minh: xem[1,tr.694]. Dinh Iy C.4. Cho p,q,r fa mQtf-J,-casa caamiftthamso'hiiu ty (1.3).Khi do p,q,r famQtcasacaamodunSyz(a,b,c,d),ngh'iafavaiba'tkyphdngdidQngP sinhmiftthamso'co bilu ddn duy nha't P =~p+~q+h3r vai ~,~, h3E IR.[s,t]. Ban niia degt(~p),degt(~q),degt(h3r)<degt(P)+degt(p) +degt(q)+degt(r)- n; degs(~p),degs(~q),degs(h3r):::; degs(P)+degs(p)+degs( q)+degs(r)- m ntumiftfasongbtJ-c(m,n) va deg(~p),deg(~q),deg(h3r)<deg (P) +deg(p)+deg(q)+deg(r)- n ntu miftfaphantamgidcbtJ-cn. Chung minh: xem[1,tr. 695]. 52 Do d6 de rim f-L-cosd cua mi,itthams6 huu ty (1.3)chungta chi cffnxac dinh co sd cua m6dunSyz(a,b,c,d). Chungtabie'tding vi~cxac dinh co sd cho mQt m6dun tl,l'do la kh6ng d~dang. Trong khi d6 ta c6 the sa d\lng ytudngcua thu~troanBuchbergerde xay dl,l'ngt~phqp cacphffnta sinhchom6dunsy-zygy [10]va sa d\lngke'tquacuaM~nhd€ 2.20de rimco sd chom6dunSyz(a,b,c,d). Nhungphuongphapnay ding chuahi~uqua. Sa d\lng cac ke'tqua nghien CUllv€ m6dunsyzygycua h~ cac phuong trinhtuye'ntinhthuffnnha'tvoi cach~s6 la da thucnhi€u bie'ndl,l'atrenly thuye'tcacmatr~ndathuc[18],chungtac6thexaydl,l'ngthu~troanxacdinhf-L- co sd cho mi,itthams6huuty [12].Honnuaphuongphapnayclingc6theduqc ap d\lngde rim f-L-cosd choduongcongthams6 huuty hi~uquahonThu~troan D.l. Cho matr~ndathucF = (A,...,ft)E k7nXI[Xl"",XrJKhi d6 (~,...,hl)T E kl[ Xl,...,X,JduqcgQiIa mQtsyzygycua F ne'u I Lhd:=o. i=l (D.1) T~phqpta'tca cacsyzygycua F duqcgQila m6dunsyzygycuaF, kyhi~ula Syz(F).T~phqpcac~,...,hsE kl[xl1'",xnJduqcgQiIa t~pcacphffntasinhcua Syz(F) ne'u Fhi =0 voi i =1,...,8 (D.2) va voi mQisyzygyt E Syz(F) t6nt~iduynha'tcac da thuc fl1""fs E k[xl1""x,J saDcho 53 t =h~+... Ishs' (D.3) Ne'utad~th =(hi,...,fmJT,hj =(~j,...,hlj)Tvat =(~,...,tl)Tvoii =1,...,[va j = 1,...,sthlcacbi€u thuc(C.2)va(C.3)trdthanh hI hi )(~I ... ~s =0 Imi ... ImLjlhn ~ .. F ... his Ii va ; _f;I ... ;sH~. - tl Ihn ... hisIlls Khi do H =(~,...,hs)E kIXS[xu...,x,JduQcgQila matr~nsinhcua Syz(F).Cau hoi d~tra la khinaothlmatr~nH co s6cQtnhonha'tva co tant~ihaykh6ng mQtmatr~nsinhco s6cQtnhonha'tvoi F ba'tky? Cacke'tquasause traloi chova'nd€ nay. Mc$nhd@C.S. Cho F =(-fib) E kmXI[Xl1'..,X,Jco h{mgfa m, wii 1> m va b E kmxm[xu...,x,J khongsuybitn.Diit T=[- m, khidomodunSyz(F) comatrlJ.n sinhdip [x T ntu va chi ntu tant{lim(}tmatrtJ.nMRP HE kIXr[XI,...,x,JSaDcho FH = O.Hefnnila H chinhfa matrtJ.nsinh. Chung minh: xem[18,tr. 80]. Voi n ::;2 talu6nHmduQcmQtmatr~nsinhco s6cQtnhonha'tchoF tuyy. 54 Mc%nhd~C.6. Cho F = (-Njj) E klnXI[Xl,X2]co hc;mgla m, velil> m va DE klnXIn[xl'X2]khong suy bien.Dijt r =l- m, khi do tan tc;limQtma tr4nsinh H E klXr[xl'X2]cho modun Syz(F). Chung minh: xem[18,tr. 81]. D~t F = (a,b,c,d)E eX4[s,t],theoM~nhde C.6 m6dunSyz(F) hay Syz(a, b,c,d) comatr~nsinhH E k4X3[S,t].TheoM~nhde2.20,suyracaccQtcuaH t(;lOthanhmQtcdsacuam6dunSyz(a,b,c,d).V~ytacothu~toansauxacdinh p,-cdsachom~thamsO'hiluty. Thu~ttoaDC.2.Timp,-cdsachom~thamsO'hiluty [12]. Nh4p: Cac dathuc a,b,c,dE k[s,t]. Xw1't: Badathucp,q,r E k[x,y,z,s,t] la p,-cdsacuam~thamsO'hilu Buelc1: ? ty. D~tN=(-a,-b,-c) va jj = (d).Xay dllngmatr~n p = jj-lN =(-ajd,-bjd,-cjd) =ND-1. BuelC2: Trongdo N =(-a,-b,-c) va D =diag(d,d,d). DungThu~toanB.4till u'occhungIOnnhtt C cua N va D. Khi do t6nt(;lihaimatr~nN,jj E k[s,t] saocho - - N =NC;D =DC; trongdoN va jj nguyento' cungnhauphai.D~t -T -T T H =(N ,D ) =(hr,~,h3); P =hrT(x,y,z,l);q=h;(x,y,z,l);r=hJ(x,y,z,l). 55 Blide3: Xua'tp,q,r. C.3 Dc}phuc t~p Hnh tmin DQ phuct(;lpcuaThu~troanC.! trongtrlionghQptrungbinh la O(n2)[2]. Trangkhi do vi~cdanhgiadQphuct(;lpcuaThu~troanC.2 la khongdongian va noph\lthuQcchinhvaodQphuct(;lpcuacacthu~troanv€ Hnhroanmatr~n dathuctrongPh\ll\lc B. C\l the,neuboquadQphuct(;lpcuavi~cxayd1;fngcac matr~nN va D t(;liBlide1thidQphuct(;lpcuaThu~troanC.2ph\lthuQc hinh vaodQphuct(;lpcuaThu~troanB.4 d Blide2.V~ytaco thexemdQphuct(;lp cuaThu~troanC.2xa'pXl dQphuct(;lpcuaThu~troanB.4va clingla mQtham dathuc. Phl;tll;tcD cA C PHUONG TRINH M4.T HUU TY TrangphgnnaychungWi lit%tke phu'dngtrinhcacm~thuuty du'Qcdung d€ daubgiacacthu~troangnhoatrongChu'dng3. Sl = -3s3t- 3,-4i +6st,9s- 6,t; s = it +2st5- st s3e- s2t3- 2it2 +S2- st - 2s s - t - 2 s2t- se - 2st,2' ", S3 = S2 +t, s2t+st4+st2- 3s+t5- 3t3, st+e- 3, s2t+2se- 3s+t3- 3t; S4 = -18s4t+27s3t2- s2t3- 8st4+ 2t5, 4s3t3+6s3t2+2s3t- 2s2t4- 3it3 - s2t2, -3s3t2- 3s3t- 8it3 - 8s2t2- 6s2t- 6i + 3st4+ 3st3+ 2st2+ 2st, 6s3t2+6s3t- 5s2t3- 5it2 +st4+st3; S5=S3 +5st2+2st+t3- 1,2S2+3st+2t3- 2,5s3+2it +3se+5st+5t2- 5, S4 + t4- 1; S6 = 16s3+32it -120i - 56st+128s+24t- 24, 48it +8i +16se- 456st+384s+16e-16t2+392t- 392, 16s3+32it +192i +48se-1328st+1040s+64e- 48e+1232t-1248, 16s3- 240st+224s+16e+224t- 240; S7 = 16s3+32it -120i - 56st+128s+24t- 24, 48s2t+8i +16se- 456st+384s+16t3-16e +392t- 392, 16s3+32it +192i +48st2-1328st+1040s+64t3- 48e+1232t-1248, - 2i +8s- 6; S8 = 684288s3-1419264it- 608256i+684288st2+1495296st- 836352s- 684288t2- 76032t+760320,983808s2t+1043712i- 8711424st+ 57 7803648s+684288t3+1119744t2+7043328t- 8847360,4790016s3- 6983424s2t-1126656s2 -15667200st + 17556480s+ 1430784t2+ 20597760t- 21219840,6158592s3-19660032s2t-12780288i+ 74437632st- 62152704s- 4790016e- 13996800e- 44987584t+ 68774400; S9 = -84ie +7716st-14004s- 7632t+14004,- 84se+1056st-1692s- 972t+ 1692,- 252s2t- 84st2+ 3360st- 4284s- 3024t+4284,6i - 57s+ 6t+ 51; SlO= - 2209it3+ 7359ie - 4800it - 350i +2225st3- 7425se+ 4800st+ 400s,- 2209it3- 732s2t2+3291s2t+2225st3+750se- 3375st, 168ie-168it - i -168se+168st+7, 24it2- 24it - 24st2+24st+1; S11= -2209it3- 732ie+ 3291s2t+2225st3+750se- 3375st, 2209s2t3- 7359ie+4800it+350s2- 2225st3+7425se- 4800st- 400s, 168ie -168it +S2-168se +168st+7, 24s2e- 24s2t- 24st2+ 24st+ 1; S12= 2209it3- 7359it2+4800it+350i - 2225st3+7425st2- 4800st- 400s, 2209ie+732ie- 3291s2t- 2225st3- 750se+3375st, 168ie -168it - S2-168se +168st+ 7, 24it2 - 24s2t- 24st2+24st+1; S13=2209s2t3+732ie- 3291it - 2225se- 750st2+3375st, - 2209s2t3+7359ie- 4800s2t- 350s2+2225st3- 7425st2+4800st+400s, -2209it3 +7359s2e- 4800it- 350i +2225st3- 7425se+4800st+400s, 24s2t2- 24it - 24st2+24st+1; 58 814 = 73682e-11182t2- 600it - 25i - 7448t3+1448e+6008t+32t3-132e + 100,- 2072it3+171982e+378it +20648t3-17288t2- 3368t+32t3+ 36t2-168t,54ie - 3682t2-1882t+ i - 548e+368t2+188t- 68+6, 18it3-12ie - 682t-188e +128e+68t+1; 815 = - 207282t3+ 171982t2+ 37882t+ 20648t3- 17288e- 3368t+ 32t3+ 36t2-168t, -100 - 32e +25i - 73682t3- 6008t+ 132e-1448t2+ 7448t3+ 60082t+11182t2,5482t3- 1882t- 3682t2+ i - 548t3+368e + 188t- 68+6,1882t3-1282t2- 6s2t-188e +128e+68t+1; 816 = - 736it3 + 111it2+ 60082t+ 25i + 7448e-1448e - 6008t- 32t3+ 132t2-100, 207282t3-171982t2- 37882t- 20648t3+17288t2+ 3368t- 32t3- 36t2+ 168t,54ie - 36it2 -18it + i - 548t3+ 368t2+ 168t- 68+ 6, 18it3 -1282t2- 682t-188e +128t2+ 68t+ 1;

Các file đính kèm theo tài liệu này:

  • pdf7.pdf
  • pdf0.pdf
  • pdf1.pdf
  • pdf2.pdf
  • pdf3.pdf
  • pdf4.pdf
  • pdf5.pdf
  • pdf6.pdf
  • pdf8.pdf