PHƯƠNG TRÌNH CÓ NHIỀU NGHIỆM
ĐẶNG VĂN QUÝ
Trang nhan đề
Lời cảm ơn
Mục lục
Phần giới thiệu
Chương 1: Trường Vector.
Chương 2: Tính chỉ số của điểm kỳ dị trong trường hợp tới hạn.
Chương 3: Phương trình với nhiều nghiệm và ứng dụng.
Kết luận
Tài liệu tham khảo
15 trang |
Chia sẻ: maiphuongtl | Lượt xem: 2095 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Luận văn Phương trình có nhiều nghiệm, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
!lwjn 1PU/n~ ~t
CHUaNG 1.
TRUONG VECTOR
I
I I. TRU(JNG VECTORTRONGKH6NG GIANHUu HAN CHIEU.
1. Ky hi~uRnla kh6nggianEuc1iden- chi€u.
ChoM c Rn .TruiJngvectortrenM la anhx~
cD: M ~ Rn bie"nm6i x E M thanhmQtvectorcDxE Rn
ChQnmQth~tQadQtrongRnthlcDc6th€ bi€u di~nduoid~ng:
(1.1) <D(x) =«DI (Xl, ...,Xn),...,<Dn(Xl, ...,Xn))
trongd6 Xl"",Xnla to~dQcuax va <Dl,..., <Dnla cachamthanh
phftncua<D.
. Truong<D lien t~lCtren M ne"ucac thanh phftn<Dl,... , <Dn
trong(1.1)la nhil'nghamlientlfctrenM.
. Nghi~mcuaphudngtrlnh<Dx=0 gQila diim kYdj cua
truongvector<D.
. Truongvector<D khongsuy bitn trenM ne"un6 kh6ngc6
di€m ky ditrongM.
. Di€m XoduQcgQila diim kYdj co l<zpcuatru'ongvector<D
ne"u <Dxo=0 vakh6ngc6di€m kydikhactrongmQtHinc~n
cuadi6mXo.
. Truong(1.1)duQcgQila {ranne"ucachamthanhphftn
- 1-
('{{(fin/IHFlZtltfJC dt
<DI,..., <Dnlien t\lckha vi . Di€m x duQcgQila dilm chinhqui
cuatruongtrdn<Dne'umatr~n <D'(x) khongsuybie'n;nguQc
lc;lix gQila dilm toihfln.
. Truongvector<Dla tuytntinhne'u <D(x) =Cx, trongd6C
la matr~nvuongcelpn.
2. Phep bie'nd~ngva tru'O'ngdOngluan.
2.1A.nhx~lien t\lc<DduQcxacdinhvai m6i x E M lelygia
tfi <D(A,X) E Rn (0 < A <1)gQi la phepbitn dflngcua
truong<Dox=<D(0, x) vao<DIX=<D(1, x).
Boi khiconn6iphepbie'nd~ngn6i <Pova<Pi.
Hai truonglien t\lCbeltky <Pova <Pid~un6i duQcbdi mQt
phepbie'nd~ng,nghlala :
(1.2) <P (A,X) =(1- A) <Pox+ A <D1x (0<A<1,XEM)
Ta gQi(1.2)la phepbie'nd~ngtuye'ntinh.
Phepbie'nd~ng<D(A,X)gQila kh6ngsuybitn ne'u<P(A,X)7=0
vai0 <A~1vax E M.
Hai truong <Dova <DiduQcgQi la d6ngluiln tren M ne'u
chungduQcn6ibdiphepbie'nd~ngkhongsuybie'n.
2.2Tieu chu~ndOngluan.
Tieu chuin 1.Cho <Po, <Pila truongvectorkhongsuy
bie'ntren M va gia sii'm6i XEM , cacvector <Poxva <Pix
khongphaidi€m theohuangd6ixung,nghlala :
(1- A) <Dox+A<Dix* 0 vaimQiAE [0,1].
- 2-
ftu4n1flantfu"c ~t
The'thl <Pova <PId6ngluau.
.Iieu chu[n 2. Cho <Po,<PIla hai tniong vector lien t1;lC
trenM. Ne'u «PoX,S0 (XE M),
trongdoS la matr~nxacdinhdu'dng,thl<Pova<Di d6ng luau
trenM.
. TrongRn,tichvahu'dngcuahaivectorx=(Xl, ...,Xn) va
y =(YI,...,Yn)xac dinhbai (x, y) =XIYl + ...+XnYn , va dQdai
haychu:1nIIxllcua x du'Qctinh la:11X II= (X12 +...+Xn 2 ) 1/2
.Ii~lLchuin3. ChoMe Rnva<Po, <Pilahai tru'ongvector
lien t1;lcxacdinhtrenM.
Ne'u II <Pox - <PIxII <II<Plx II (x EM)
thl <Pova<Plkhongsuybie'ntrenM vad6ngluau.
3.so'quayhayB~ctopocuaTru'ongvector.
3.1.so'quay.
GQi ao la biencuat~pmabi ch~n0 c Rn.Vdimoi
tru'ongvectorlien t1;lC<Pkhongsuybie'ntrenao chotu'dngling
vdi mQts6 nguyen y«P,O). Ta gQi y «P,O )la S(]'quaycua<P
trenan.
3.2Nhii'ngHnhchfftcuaso'quay.
.I.inh...cllW.Cactru'ongvectord6ngluau ao cos6quay
bangnhau.
- 3-
utjAt/iftU/nthffc d-l
Iin.b..c.h!t2.Cho0 Ia t~pIDabi ch~nva( OJ) la daycac
t~pIDaroi nhau OJ cO. Giii sii'la tru'onglien t\lc khong
00
suybi€n trenCI 0 \U OJ , CIO Ia baadongcua O.1=1
Khi do y «1>,Oj) khackhongvoi IDQts6hUllh'.lnchI s6j,
vataco
00
y«1>,0) =I y «1>,Oj)
j=l
Iinh..c.b.ill. Cho XoE 0 va x=x- Xothly«1>,0) =1
JJnh...clJiiL4.Cho0 la t~pIDabi ch~n.N€u la tru'ong
vectorkhongsuybi€n trenCIO thl y«1>,0)=0
.I.inlL.c.b!L.5.GQi 0 la t~pIDabi ch~nva la tru'ong
Vectorlient\lctrenCIO , khongsuybi€n trenao
N€u y «1>,0) *-0 thlco it nhatIDQtdi6IDky di trong0
4. Chis6cuadi~mkydicol~p.
Cho 0 c RnIa t~pIDabi ch~nva la tnl'ongvectorlien
t\lCtrenCIO , khongsuybi€n trenao .Khido,IDQidi€ID ky di
(n€u co)d€u thuQcphftntrong cuat~pO.
N€u Xola di6IDky di co l~pthls6quaycua tru'ongvector
b~ngnhau tren IDQi ID~tcftu,{ x / Ilxll=p },bankinhp du
nho.Gia tri chungnay,ky hi~uind (xo,<1»du'QcgQi la chi s(f
ciladiim kYdtXo.Khai ni~IDchi s6cuadi6IDky di tu'dngtt;1'nhu'
khaini~IDs6bQicuanghi~IDdathuctrongd'.lis6.
Ta co nhii'ngHnhchatsail :
-4-
7!uwn/IJ(};nlltac (}j'
I' .
I
I ~. Cho0 lat~pmavagiftsli' la tru'ongvector
lientlJc,khongsuybi€n trenao . N€u cohUllh£.lndi€m ky di
Xl,...,Xstrong0 thl
y «1>,0) = ind (Xl, <1»+...+ind (xs,<1»
. Chi s6cuadi€m ky di t£.liva h£.ln.
Gift sti'du'Qcxac dinh va khong suybi€n t£.limQi X E Rn
voichufinduIon.Ta senoidi€m vah£.lnla di€m ky dicol~p
cua
N€u di€m va h£.lnla di€m ky di co l~pcuathl s6 quay
cua bangnhautrenmQim~t cftu {X/ IIxll=r },ban kinh
duIon. Gia trichungnay,ky hi~uind ( 00,) va duQcgQila
chis(fcuadiim vah(ln.
1luh...cb!t2.Cho la truongvectortrenRn , co hUllh£.ln
di€m ky di Xl, ...,Xs. Khi do,taco
ind (00,) =ind (Xl, )
ll. TRU(JNGVECTORRoAN ToAN LIEN TUC .
1.Truonglient.,ctrongkhonggianYOh~nchi~u.
ChoE la khonggianBanachthlfc.T~pM c E va
:M ~ E la loantit
Toan tti'gQi la hi chtJnn€u t6n t£.liA > 0 saGcho 11(x)11< A
voi mQiX E M.
N€u loan tti'lien tl:lcthl tagQila tnt(Jnglien tf:lc.
- 5-
flutfn 1JiM~lltq,c J,t
Truonglien Wc du<jcgQila khongsuybie'ntrenM n6u
x -:f.0 voix EM; du<jcgQila khongsuybie'ndJu n6ucos6
a> 0 saGcho II xII >a voimQix E M
2. Toan tii hoan toaDlien tl.1C.
Cho E1,E2 la cackh6nggianBanachthlfc,gQiA la loan
ttrtil El vaGE2(khiEl =E2 =E, tanoiA taed()ngtrongE); Ky
hi~uqj)(A)la mi€n xacdinhcuaA va[!R(A)la anhcuaA.
A du<jcgQila loantucompactrent~pM c Qj)(A)n6uanh
m6it~pconbich~ncuaM lacompactu'ongd6i.
MQtloantu du<jcgQila hoantoclnlien t~{en€u no vila
compacvila lien tl.;lc.
3. Nhii'ngHnhcha'tph6 cua toaDtii tuye'nHnhboan
toaDlien tl.1c.
56 thlfCAodu<jcgQila trj riengcualoan tti'tuy6ntinhB :
E ~ E (E lakhonggianBanach),n€u phuongtrlnh( B - AoI)x=0
coitnhfitmQtnghi~mkhackhongXoE E. M6i nghi~mnaygQila
vector iengcuaB lingvoi tririengAo.
T~ph<jpcacvectorrieng(k6 ca vector0) ling voi AogQi
la khonggianriengTI(Ao;B).Cho Ao* 0la mQttririengcualoan
ttrtuy6ntinh hoanroanlien tl.;lCB. Voi m6i n = 1, 2,...,ta xet
phuongtrlnh
(1.3) (B - AoI/ x =0
-6-
utfn1ftrPntltqc~t
Theoly thuy€tcuaRiesz- 5chauderc6 s6 nosaochovoi
n<nocacnghi~mcua (B - AoI)nx =0 la t~pconriengcuat~p
hc;1pcacnghi~mcua(B - AoI)n+lx =0, trongkhi voi n ~not~p
cacnghi~mcua (B - AoI/ x =0 bAng t~pcac nghi~mcua
(B - AoI)ox =o.Honnlia,cacnghi~mcuamoiphuongtrlnhd(;lng
(1.3)la khonggianvectorhUllh(;lnchi€u.
Voi n=nokhonggianE(Ao;B) cacnghi~mcua (1.3)duQc
gQila khonggiannghi~mcuaB lingvoi tri riengAo. 56 chi€u
S(Ao)cuakhonggiannghi~mE(Ao;B)duQcgQila s6'b()icuatri
riengAo, va reAD) =ngQilahc;mgcuaAo
Khonggiannghi~mE(Ao;B) la khonggianconbatbi€n
voiB; ngoairaBE (Ao;B)=E (Ao;B)
Tli ly thuye'tcuaRiesz_5chauder,tac6 t6ngtn!ctie'p
E =E(Ao ;B) EBN (Ao;B) cua khong gian nghi~mE(Ao;B)va
khonggiancon bli vo h(;lnchi€u N(Ao;B); khong gian con bli
N(Ao;B) clingbatbie'nvoi B. H(;lnch€ BocuaB trenN(Ao;B) la
roantti'hoanroanlienWe;s6Aokhongla tri riengcuaBo.Moi
ph~ntti'x E E c6bi€u di~nduynhatduoid(;lng
x=u +v , trongd6 u E E (Ao; B) vav E N(Ao;B)
Congthlicnayxacdinhhaiphepchi€u tuy€ntinhP(Ao)
vaQ(Ao)tuonglingtenE(Ao;B),N(Ao;B)c6tinhchat
P(Ao)X=u ; Q(Ao)x=v (x EE)
va P(Ao)+Q(Ao)=I ; P(Ao)Q(Ao) =Q(Ao)P(Ao)=0
- 7-
I(l{upt/lJitn tlzqc dt
Ne'us6'A* 0khongphaila tri riengeualoantti'tuye'ntinh
hoanroanlien t\IeB thl :
R ('A;B)=(B - "Jr1 la roantti'lient\IexaedinhlIenkhong
gianE, va dtfQegQila gidi thac(Resolvent)euaB.
4.D~ohamFrechet.
ChoA la roantii'tuE1vaoE2,xaedinhtrongmQtHine~neua
di~mXOEE1.Gia sii'
A(xo +h) - Axo=Bh +ro(Xo,h) ,
trongdoB la roantti'tuye'ntinh(tu E1vao E2 ) va
w(xo,h) =0 (IIhll ), nghia lit J~ ill (~;II h) = 0
Khi do A gQi la khd vi Frechet t~iXo; loan tti'B du<;1egQi la d(lo
hamFrecheteuaA t~iXo, kyhi~ubdi A'(xo).
DjnhIy 1.1 ChoA la loantii'hoanloanlien t\Ie,khavi
Freehett~iXo.The'thld~ohamA'(xo)la roantti'tuye'ntinhhoan
roanlien We.
£hllng"minh. Gia sti'khAngdinhlIen kh6ngdung.V~y
kh6ngcot~peompaehuagiatrieuaA'(XO)lIenm~te~udonvi
{ x : IIxll =1}.
Khido,codaycaevectorddnviemvas6 8>0saocho
II A'(XO) (ei - ej)II>30 (i,j =1,2,...; i*j)
Giasii' llro(xo,h) II ~ 0 II h II khi II h II ~ p (p >0)
B~t Xm =Xo+pem(m=1,2,...).Taco
AXi- Axj =pA'(xo)(ei- e) +ro(xo,pej)- ro(xo,pej)
suyra
-8-
--j,{pn'Iftan thqcJe
1/Axj - Axj 1/>P IIA'(xo)(ei - ej)1I- llro(xo,pei)11 - Ilro(xo,pej )11.
VI the-
IIAxj - Axj II>po> 0 ( i, j = 1,2, ...;i :;tj )
Nhungdi€u nay co nghIaday Axmkh6ngco day con hQi t\1.
Mau thuftnvoi tinhhoanloanlien t\1ccuaA . 0
5.Dfing luaucuatrtiongvectorhoantoaDlien tl.lc.
5.1.Cacdinhnghia.
Truongvector<Ptrenkh6nggianBanachE (duQc
xacdinhtrenroanbQE ho~ctrent~pconM c E) gQila hoan
roanlien t\1C,ne-u
(1.4) <Px =x - Ax , trongd6A la roantli'hoanroanlien
t\1CtrenE.
Truong vectorhoan roan lien t\1C(1.4) gQi la hUll h~n
chi€u, ne-uroantli'A hUllh~nchi€u.
ChoM la t~pconbich~ncuaE. Taxetham
(1.5) <p ( A,X) =x - A (A,X )
duQcgiasli'lien t\1Ctren[0,1]x M.
Ntu A(O,x)=AoxvaA(l,x) =Alx thl (1.5)du'QcgQila phep
bitn d~ngcua tru'ong<Pox=x - Aox ( X E M) vao truong
<PIX=X - Alx (x E M).
Phepbitn d~ng(1.5)duQcgQi la Compacntu loan tli'A(A ,,)
hoanloan lien t\1Cvoi m6i A , vahonnuat~p
,oil(A) ={A(A, x): 0::;A<1 , x EM }
-9-
!fuq,n 1ftaniltffC {}1
la Compactu'dngd6i . Phep bien d~ngCompac(1.5) gQi l?t
compaclienthongcactru'ongvectorhoanroanlien t1.JCI - Aova
I - Al trenM.
Ta thu'ong~pphepbiend~ng(1.5)du'did~ng
<D (A,X)=x - AAIx - (I-A)Aox , (0 :::;;A :::;; 1, x E M) n6i cac
tru'onglienWcI - AovaI - Al ,vagQila phepbiend~ngtuyen
tinh.
Phepbiend~ng(1.5)du'QcgQila kh6ngsaybienlieUham
<D(A,X):;t: O.
Hai tru'onghoan roan lien t1.JC0=I - Ao va 1=I - Al
du'QcgQila dangluautrenM lieUchungdu'Qcn6i bdi phepbien
d~ngkh6ngsaybien.
5.2 Tieu chu~nd6ngluan.
JiSn chuftn1. ChoM c E la t~pbi ch~nva I - Ao,
I - Al lanhii'ngtru'ongvectorhoanroanlientl;1Ckh6ngsaybien,
anht~im6ix khongphaidi€m rheahu'dngd6ixung:
1/x - AoxwI(x- Aox)=1= - 1/ x - Alx wI(x- AIx)
Khido,cactru'ongI - AovaI - Al dangluautrenM.
I. " h ~ 2leu C nan . ChoM c E la t~pbi ch~nvaI - Ao,
I - Al la cac tru'ongvectorhoanroanlien t1.JC,kh6ngsay bien
trenM.
Neu 1/Aox - Alx 1/:::;; 1/ x - Aoxl/ (x E M) thl tru'ongI - Ao
vaI - Al dangluautrenM.
6.86quaycuatruongvectorhoantoaDlien t1}.c.
- 10-
(P,(q;n"~an tltf!C (j,i'
6.1 86 quaycuatrtiongvO'itoaDtit hUll h~nchi~u.
Trongphftnnay,taxettn1ongvectorhoanroanlien tl.Jc.
(1.6) x=x-Ax
trenbiena0 cuat~pmabich~n0 c E.
GiasttA la tmlntii'hUllh£.lnchi€u.Ky hi~uEola kh6nggian
canhUllh£.lnchi€u chuaA(a 0 ) va it nhatmQtdi€m trongcua
o.
D~t00=0 (1 Eovaa 00la biencua00 . Ky hi~uAola
h£.lnche'cuaA trena00.
s6quay1«1>,0)cuatru'ongkh6ngsuybie'n(1.6)voiroan
ttthUllh£.lnchi€u A du'Qcxac dinhtu s6 quay1 «1>0,00)cua
tru'dngvectorlien t\lCox=x - Aox ( X E a00) xemnhu'tntdng
vectortrenkh6nggianconhii'llh£.lnchi€u Eo.s6 quay1«1>,0)
kh6ngph\lthuQcvaocachchQnkh6nggiancanEo.
6.2Binh nghIatrongtrtionghqpt6ngquat.
Gia sii'tru'ongvectorhoanroanlien t\lC(1.6)kh6ngsuy
bie'ntrenbiena0 cuat~pmabi ch~n0 c E. Tronglopd6ng
luancuatru'ongvectorlien tl.JC,kh6ngsuybie'ntrena 0 chua
(1.7) IX=X - A1x (x E a0 )
,... ,
~)H.K~I.TlJNHIEN
TUUVIEN
f ~ -. .
00356
tru'ong(1.6), t6n t£.litru'onghii'llh£.lnchi€u
s6 quay1 «1>1,Q) cua (1.7)dfi du'Qcxac dinh trongphftn
tru'oc.s6 quay1 «1>,0) cua (1.6) trena 0 bay gio du'Qcxac
dinhbaid~ngthuc1«1>,0)=1«1>I,Q).
- 11-
(Pawn/IHln iliac ('yt. .
£>6nha'nm~nhdangxettn.tongvectortrongkh6nggianE,
tavie'ty «1>1,0;E) thayVIy «D,O).
Ne'uloantii'beanloanlien tlJCA du'c;lcxacdinhtrongC10
va kh6ngco di6mbfftdQngtren 8 0, thl s6 quayy ( I-A, 0)
trlingvoib~cLeray- SchaudercuaI - A trong0 d6ivoidi6m
g6c.
s6 quaycuatntongvectorhoanlOanlien tl.;lcla mQt
s6nguyen.
6.3 CaeHoheha'teuas6quay.
Iinb...c.hill.Nhungtru'ongvectorbeanloanlientlJc
trenbienao cuat~pmabi ch~n0 c E mad6ngluanthlco
clings6quay.
Tlnhcha't2.Cho0 c E la t~pmabi ch~nvaOJ la
cact~pmaroinhauOJcO.
Ne'u <D=I - A la tru'ongvectorbeanloanlienWc,
khongsuybie'n~renCIO \ UOj thls6quayy«1>,Qj)khackh6ng
voimQts6hUllh~nchi s6j, va
y «1>,0)=y «D,01)+...+y «D,On)+...
.Iin.h...c.haL.. Cho0 la t~pmabi ch~nva XoE Q.
The'thls6quaycuatru'ongvectorx=x- Xotren80 b~ng1.
~. Cho 0 c E la t~pma bi ch~n.Ne'u
tru'ongvectorbean loan lien tlJC =I - A xacdinhtrongCIO
vakh6ngsuybie'ntren80.N€u y «D,O)7=0 thlco it nhfftmQt
di6m ky di cua
- 12-
aq;n //)an ihfIC {jet
.TinlLchiL5.Cho0 c E la t~pmabi ch~nvagii sli'
trl1ongvector hoan roan lien t\IC=I - A xacdinhva khong
suybie'ntrongCIO thly «1>,0)=0.
N€u y«1>,0)*- 0thlcoitnhfftmQtdi€m kydicuatrongO.
Binhnghladi€m ky di co l~pXocuatniongva chIso
ind(xo,<1»khong thayd6i khi chuy€n tu trliong trongkhong
gianhUllh~nchi€u sangtrlionghoanroanlien t\lCtrongkhong
gianBanach.
IinlLcll!L6... Cho0 c E Ia t~pmabich~nva
cD=I - A la trliongvectorhoanroanlien t\ICduQcxac dinh
trongCIOvakhongsuybie'ntrenaO. Ne'ucohUllh~ndi€m
ky diXl, ...,Xk trong0 thl
y«1>,0)=ind (Xl, ) +... + ind (Xk , <1»
Th.h..cllill. Gii sli' trliong vector hoan toaD
lien wc =I - A xacdinhtrenE chIco hUllh~n(ji€m ky di
Xl,...,Xk.
The'thl
ind (00,) =ind (Xl, ) + ...+ind (Xb <1»
7.T6ngquathoadfnhIy Hopf.
TrongkhonggianhUllh~nchi€u, mi€n bi ch~n0 c E
dliQcgQila mienJordan,ne'ut~pE\ CIO lienthong.Chftngh~n,
hinhc~ula mi€n Jordan.
- 13-
mJn 1fl();nt~ (U
Dinhly 1.2 ChoQ c E Ia mi€n Jordanva <D=I - A,
\\f=I - B Iahaitru'ongvectorhoanloanlienWc,khongsuybie'n
trenaO.
Ne'uy (O,<D);j:.y (\V,O) thl <Dva \Vd6ngluan trenaQ.
Dang rninh: D~ddngianta chi xettru'onghejptrongd6
anlam~tcftu.Khongmattinhtangquat, gia sti'0 la hlnh
cftu{x/llxll <I} dod6aOIa m~tcftu{x: Ilxll=I}.
Ta c6 th~gia sti' va \11la cac tru'onghuuh~n
chi€u.GQiEoIa khonggianconhuuh~nchi€u chaaA(oO)va
B(an).Ky hi~uAovaBoIa h~nche'cuaA vaB trena 00 ,
trongd6 00 =Q n Eo. Tli dinhnghlav€ sf)quayva gia thie't
cuadinhly, tac6:
y (I -Ao, 00 ; Eo) =y (I - Bo, , 00 ; Eo ).
Chonentheodinhly Hopf,suyra cactru'ongox= -Aox va
\\fox=x- Box,khixettrongEo,thld6ngluantrena00nghlala
t6nt~iloantti'lien tvcCo(A,x), 0 ~A ~1, X E 8 00 voi gia tri
trongEo saochoCo(O,x)=Aox, CoO,x)=Boxvax ;j:.CoCA, x)
voi0~A<1va x E a00.
GQiPola phepchie'utrenkhonggianconEo,du'ejcxacdinhtren
E.SadvngCoCA,x)vaPo,taxacdinhphepbie'nd~ngcompac
x - "Poxll Co (A, IIPoxW1Pox)
XCA-,x) = ne'u0 ~A < 1,x E8 00, Pox;j:.0
x ne'uPox=0
- 14-
'wJn1JanfY~ fPt
Phepbiend~ngnaykh6ngsuybien,n6i caetru'ong
x (O,x)=x - IIPox IIA( IIPoxwI Pox)
va
x (l,x) =x - IIPox IIB( IIPoxwI Pox)
maVIv~ydangluau.N6i eachkhac,suyra tru'ongX(O,x)dang
luautrenan voi,vaX(1,x)dangluauvoi \V.
- 15-