Luận văn Phương trình sóng phi tuyến liên hệ với một bài toán cauchy cho phương trình vi phân thường

PHƯƠNG TRÌNH SÓNG PHI TUYẾN LIÊN HỆ VỚI MỘT BÀI TOÁN CAUCHY CHO PHƯƠNG TRÌNH VI PHÂN THƯỜNG TRẦN THỊ HUỆ CHI Trang nhan đề Lời cảm ơn Mục lục Chương0: Phần mở đầu. Chương1: Một số công cụ chuẩn bị. Chương2: Sự tồn tại và duy nhất nghiệm. Chương3: Sự ổn định của nghiệm. Chương4: Xét một trường hợp cụ thể. Kết luận Tài liệu tham khảo

pdf29 trang | Chia sẻ: maiphuongtl | Lượt xem: 1890 | Lượt tải: 0download
Bạn đang xem trước 20 trang tài liệu Luận văn Phương trình sóng phi tuyến liên hệ với một bài toán cauchy cho phương trình vi phân thường, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
Phuang trinh song phi tuye'nlien h~vai mQthili loan Cauchy cho phuang trinh vi phdn thuang trang14 Chlidng2 811t6nt~ivaduynha'tnghi~m Trangchu'dngnay,chungtoitdnhbaydinhly t5nt~ivaduynhat cuanghi«$mye'utoaDc1,1cchobai toaD:TIm mQtc~pham (u,P) thoa (2.1) (2.2) (2.3) (2.4) (2.5) Uti -Uxx +f(u,ut)=F(x,t), xeQ =(0,1),0<t<T, ux(O,t)=P(t), u(1,t)=0, u(x,O)=uo(x), ut(x,O)=u1(x), t P(t) =g(t)+H(u(O,t»- Jk(t-s)u(O,s)ds, 0 trongdo uo,ul,J,F,g,H,k la cachamchotrudcthoacacdi~uki«$nma chungtased~trasau. Chungminhdu'<jcd1,1'av o phu'dngphapGalerkin lien h«$vdi cac danh gia tieDnghi«$m,rut ra cac day con hQi t1,1ye'utrangcac khong gian hamthichh<jpnhamQts6cacphepnhungcompact.Trongphin nay, dinhly Schauderdu'<jcsa d1,1ngtrongvi«$chungminht5nt~inghi«$m xapxiGalerkin.Clingchuydingphu'dngphaptuyentlnhhoatrangcac baibaa[6,11,14]khongsad1,1ngdu'<jctronglu~nvannayvatrangcac b~bao~,4,5,7,9,1~. (AI) (A2) (A3) Trudche'tathanhl~pcacgiathie'tsau: UoE HI, u1E L2; g e H1(O,T) VT >0; keH1(O,T) VT>O vak(O)=O; H(Jc vien TrJn Thi Hu~ Chi PhllangIrinhsongphi luytnlien hf ViJi millhili loanCauchychophuangtrinhviphilnthuang trang 15 (A4) FEL2(Ox(0,T)) VT>O; (As) Hams6 HEel (R)thoaH(O)=0 vat6nt':limOth~ngs6 ho>0saoeho ~ H(1])= fH(s)ds~- ho. 0 ydimQi11E R; (F) Hams6 I: R2 ~ R thoa1(0,0)=0vacaedi€u ki~n: (FJ) I Ia dondi~ukhonggiamd6ivdibie'nthuhai,i.e., (f(u,v)-/(u,v))(v-v)~O Vu,v,vER; T6n t(;lihaih~ngs6a, ~E (0,1]va hai hams6Iien t\le BI,B2:R+~R+ saoeho: (F2) I/(u,v)-I(u,v)!~BI([ul)lv-vla Vu,v,v E R; (F3) I/(u,v)- l(u,v)1~B2(lvl)lu-uIPvu,v,vER; Khi dotacodinhIy sau DjnhIy2.1.Gillsa(AI)- (As)va (F;)- (F3)dung.Khi dov{JimJi T>0, t6ntr;limQtnghi~mye'u(u,P) cilahaitoan (2.1)- (2.5)saDcho (2.6) u E L"'(O,T;V), UtE L"'(O,T;L2), ut(O,t)E L2(0,T), (2.7) P E H1(0,T). H(}fl mla, ne'u ~=1 trong(F3)vacaehamsf;'H, B2 thoathemcae dduki~n, (A6) (F4) HE c2(R), H' (s)>- 1 VsER; B2(Iv J) E L2(Qr ) Vv E L2 (Qr), VT>O. Khi donghi~mcila hai toanfa duynha't. H(Jc vien Tr{mThi Huf Chi PhUiJng trinh song phi tuytn lien h~w1i rnQtbdi roan Cauchy cho phuiJng trinh vi phtin thuang trang16 Chti thich2.1.Ke'tquanay mf:lnhhonke'tquatrong[9].Th~tv~y, tuongungvdicungbaito0, cacgiathie'tsaudaydiidungtrong[9]khongdn thie'tsti'dl,mga day: (2.8)00, (2.9) B),B2la cachamkhonggiam. ChU'ngminh.Chungminhg6mnhi€u budc. Bu(Jc1.Xapxl Galerkin.XetmQtcosatn!cchuffnd~cbi~ttrongV. w/x) =~,Xt+A~)COS(AjX),Aj =(2j -I);, j =1,2,... duQcthanhl~ptucac hamriengcuatoantti'Laplace-82/&2 .D~t (2.10) m um(t)=L>m/t)Wj' j=1 trongdocm/t)thoamQth~phuongtrlnhphituye'nsauday (u~(t),w) +a(um(t),Wj)+Pm(t)W/O)+(f(Um(t),U~(t»,w) =(F(t),w), 1~j ~m, (2.11) (2.12) I Pm(t)=g(t)+H(um(O,t»- fk(t - s)Um(O,s)ds, 0 (2.13) ! ".(0) ="Om=~amjWj ->"0 m,nh(mngH', U~(0)=Ulm=L/3mjWj ~ U) m<;lnhtrong L2. j=) H~phuongtrlnh(2.11)- (2.13)duQcvie'tIf:lidudidf:lng (2.14) c~/t)+A~Cmj(t)=~(Pm(t)w/O) +(f(um(t),u~(t»,Wj)- (F(t),Wj)} IIWjl1 (2.15) I Pm(t)=g(t)+H(um(O,t»- fk(t - s)um(O,s)ds, 0 H(Jc vien Tr&n Thi Hu~ Chi PhUl1ngtrinh song phi tuytn lien h~vai milt hili loan Cauchy cho phul1ngtrinh vi phdn thuilng trang17 (2.16) Cm/O)=amj'C~j(O)=fJmj'1::;j::; m. B6d@2.1:Nghifmcuabili loanCauchysauday { CII (t)+A 2C(t)=q(t),t>0, c(O) = a, CI (0) = fJ, (2.17) cho beJiding thuc (2.18) sin(A t) I fsin(A(t - .)]yet)=acos(A.t)+fJ + q(.)d..A 0 A Chungminh:Chungminheongthue(2.18)khongkh6khan,taboqua. Ap dl,mgb6d~2.1ehohc$(2.14)-(2.16)vdi C(t)=C~i(t),A=Aj' a=amj' fJ=fJm;' q(t)=-=4(Pm(t)w/O) +(J(Um(t),u~(t)),Wj) - (F(t),Wj))' Ihl! Ta du'<;1ehc$(2.14)-(2.16)180tu'dngdu'dngvdi hc$phu'dngtrlnh vi rich phansau sin(Aj t) I sin(A/t - .)] Cm/t)=amjCOS(Al)+fJmj +f q(.)d. Aj 0 A} =am;cos(Al) +fJm;sin(Al) . A-} -~ rsinlAj(t- .)J(p (.)w(0)+(f(um('),u~(.)),Wj)- (F(.), w;)~. IlwJ 1 Aj m} ) sin(AA=amjcos(Al +fJmj ;: } - ~ !sinlAj(t-. )J[(g(.)+ H(um(0,.))- rk(. - s)um(O,.)d. )w; (0) Ilwj II Aj + (J(um(.),u~(,)),Wj)j1. H{Jc vien Trdn Thi Hu~ Chi Phllcmgtrinhsongphi tuye'nlienhevai mQtbiii roanCauchychophllcmgtrinhvipMn thllilng trang18 =amiCOS(A/)+ /3 . sin(A/)mJ Aj - ~ !sinlAj(t- r:)j(g(r:)wj(0)-(F(r:1w})~r: IIW}II A} - ~ !sinlA}(t- r:)j(H(Um(0,r:))w)(0)+(f(um(r:1u~(r:)1Wj)~r: IIWjl1 A} +w}(oj (inlA) (t- r:)j(rk(r:- s)UJO, r:)dr:)dr:. Ilw)II A} Ta vie't l(;li (2.19)nhu'sau cm/t) =Gmj(t) (2.20) - ~ fN/t - r:)[H(um(O,r:))w/O)+(f(Um(r:),u~(r:)),Wj )~r: IIWjl1 0 W (0)t r +~ fN/t - r:)dr:fk(r:- s)um(O,s)ds, 1:s;j:S;m, IIWjl1 0 0 trongdo (2.21) sin(Al) N}(t)= , Aj Gm/t)=amjN;(t)+/3mjNj(t) 1 t +~ fN/t- r:)[(F(r:),w) - w/O)g(r:)~r:. IIWjl1 0 Khi dotacob6d€ sau. B6d@2.2.Gidsa(AI)-(As) va(F;)-(FJ) fadung.VeJiT >° elfdfnh, khidoh~(2.20)-(2.21)conghi~mCm =(Cml,cm2'."'Cmm)trenmQtkhodng [O,TJc [O,T). Chungminh.Ta boquachIsaill, h~(2.20)-(2.21)vie'tl(;lidu'oid(;lng: (2.22) c=Uc, trongdoc=(CpC2"'.'Cm) , Uc=«UC)p(UC)W.,(UC)m), H9CvienTrimTh;Huf Chi - Phuangtrinhsongphi tuyln lienh? vai miltbdi loanCauchychophuangtrinhvipMn thuilng trang19 (2.23) / (Uc)}(t)=G}(t)+SNit - r)(Vc)/r)dr,° (2.24) / (Vc)/t) =~/c(t),c'(t))+fk(t- s)/2/e(s))ds,° (2.25) G/I) =amjN;CI)+/imjN/1)+11:11'INjU- T)[(F(T),Wi)- Wj(O)gCT)¥T. /,} : R2m~ R, 12}:Rm~ R , (2.26) /,/e,d)=-=-4 [ H (fe,w/(o))w/O)+!I [ fe,w, ,fd,w, J 'Wi )] ' Ihll 1=1 \ 1=1 I=! (2.27) - W/O) m < .J;./e)- 2 Le,w,(O),l_J~m. Ihll 1=1 Vdi m6iTm>O,M>0, tad~t s= ~ECI~O,TJRm):llelll~M}, m Ilelll=Ilello + Ile'ilo' lie11o=SUp le(t)I!, le(t)l!=Lle,(OI.O~/~Tm 1=1 D€ tha'yding S la t?P can15idongva bi ch?ncua Y=CI~O,TJRm). Dungdinhly di~mba'tdQngSchaudertase chungminhrangtmintll' U: S~ Y xac dinhbdi (2.23)-(2.27) co diSmba'tdQng.Di~mba'tdQng nayla nghi~mcua(2.20). DftutientachungminhdingU bie'nt?P s vaochlnhno. il ChliY ding (Ve)}EcoQo,TmlR)vdi mQiCEC!~O,TJRm),do do tasuytu (2.23),vad£ngthuc (2.28) I (Ue)~(t)=G~(O+ fN~(t- r)(Ve)/r)dr,° HQc vien Tran Th; Hu? Chi PhU{fngtrinhsongphi tuytnlien h~va; mQthili loanCauchychophu{fngtrinhviphanthlli1ng trang20 r~ng U: Y ~ Y . Cho eES, tasur tit (2.23), (2.28)r~ng I(Ue)(t~1=fl(Ue)j(t~ j=1 =~IG)t)+fNj(t-rXve))r)drl m / m ~IIGj(t~ + JIINj(t-r~I(Ve)j(r~dr j=1 0 j=1 / m 1 1 ~ ~IG(tl +If; A-j(Ve)j(r1dr 1 / ~ IG(t~1 +~fl(veXrtdr 1/ ~IG(t~1+~jllvellodr 1 ~ IG(tl + ~Tmllvello' Tucmgtvtaco (2.29) 1 I(Ue)(t)11~ IG(t)11+~TmllVcllo . Dodo (2.30) I (Ue) (t)ll ~ IG'(t)11+TmllVello' M~tklulc,tasur tit (A3),(A4),(F2),(F3),va(2.24)r~ng !IVello = sup I(VeXt~1 O$/$Tm = sup fl(Ve)j(t~ O$/$Tmj=1 m m / ~ supIIJ;j(e,e'~+ supI ~k(t-s)f2j(e~ds O$/$Tmj=1 O$/$Tmj=10 Hl}c vien Tr&n Thi Hu~ Chi Phuang trlnh song phi tuytn lien h~vai milthili roan Cauchy cho phuang trlnh vi phan thullng trang21 m m / :s; I sup1J;)(c,c'~+ I flk(t-s)supIfz)(c~ds )=1O:>/:>T. )=1 0 09:>T. m m / :s;IN1(r.),M) + I flk(t-s~Nz(rz),M}is )=1 )=10 m m / :s;IN1 (r.),M) + INz (rzj'M)Jlk(t - s~ds )=1 )=1 0 m m / :s;IN1 (r.),M) + INz ([z),M) Jlk(s~ds )=1 )=1 0 m m :s;IN1(r.),M) + IllkIILJ(O,nNz(rz),M). )=1 j=1 Suyfa (2.31) IIVcllo::;i[NI(fIj,M)+llkIILI(o,T)Nz(/z),M)] ==P(M,T), )=1 vdi ffiQi cE S, tfong d6 (2.32) N1(fIj,M)=sup~J;/y,z)I:llyIIRm::;M,llzIIRm::;M}, (2.33) Nz{/zJ'M) =sup~/z/y)1: IlyllRm::;M}. Do do,tIT(2.29)-(2.31) tathudu'<jc 1 supIUc(t~1:s;supIG(t).+ -Tmllvcllo O:>/:>Tm O:>l:>Tm ~ 1 :s; sup IG(t). + - TmIIVcllo O:>/:>T ~ 1 :s;IIGllo'+ ~Tmllvcllo' TuO'ngtg taco sup IUc(t~1:s; jiG/jiG.+ TmIIVcllo.O:>/:>T Suyfa IIUclio +IIUCllo ::;IIGllo' +IIG'llo'+(~1 + 1)TmIIVcllo' Ht;Jcvien Trdn Thj Huf Chi Phllang trinh songphi tuye'nlien h~vai mtlthili loan Cauchy cho phuang trinh vi phdn thui1ng trang22 (2.34) IIUcll1 ::;IIGIII.+(1+~)rmP(M,T), trongd6 IIGIII. = IIGllo' + IIG'llo'=sup IG(t)11+ supIG'(t)l,. O,s/,sT Os/sT ChQnM va Tm> 0 saocho (2.35) M >211GIII.va (1+~)rmP(M,T) ::;Mh' Do d6 IIUcll,::;M voi mQi cES, nghiala, toantit'U biEn t~pS vaocrnnh n6. ii/ TiEp theota chungminh loan tit'nay Ia lien t\,1ctren S. Cho c,dES, tac6 (2.36) / (Uc)/t)-(Ud)/t)=SNit- .)[(vc)/.)-(Vd)/.)}i., 0 m I m suplJuc)At)-(Ud)j(t~ = ]Nj~-'~supLI(vc)j(.)-(Vd)j(.~d.. ~~~ 0 ~~~ Dod6 (2.37) 1 IIUc-Udllo::;-TmIIVc-Vdllo'~ Tu'dngtvtadingthudu'Qctuba'td~ngthuc (2.38) , , / (Uc)At) - (Ud)At) =fN~(t- .)[(vc)/.) - (Vd)/.)}i., 0 o~~fm ~I(uc)'j(t)- (Ud)'j~~=IIN~(t- '~o~~fmI(vc)j(')- (Vd)j('~ ::;IIIVc-vdtd.::;TmIIVc-Vdllo' ding (2.39) II(uc) - (Ud)110 ::;Tmllvc-vdllo' HQc vien Trdn Thi Hu~ Chi Phl1angtrinh songphi tuye'nlien h~VlJi m(jthili loan Cauchy cho phuang trinh vi phan thuang trang23 Baygio,tadn mQtdanhgias6h~ngliVe- Vdllo'Taco (2.40) (Vet(t)-(Vd)it)=hie(t),e'(t))-hid(t),d'(t)) , +Sk(t-s)[f2ie(s))-fzid(s))}is. 0 Tli cacgia thie't(A3),(A4),(F2),(FJ, va(2.40),tasuyfadingt6nt~imQt hftngs6 KM>0 saocho I(Ve)j(t)- (Vd)j(t~ = Ihj(e(t1e'(t))+!k(t - S)f2j(e(s))ds- hid(t 1d'(t))- !k(t - S)f2; (d(s))dsl s !flj(e(t),e'(t))-~j(e(t1d'(t)~+ l~j(e(t1d'(t))-~j(d(t),d'(t)~ +!Jk(t- s)lf2j (e(s))- f2j (d(s)~ds s Bl~e(t))le'(t)-d'(tr + B2~d'(t))le(t)-d(tt (2.41) +!Ik(t - s)lf2j (e(s)) - f2j (d(s )~ds, liVe- Vdllos KM ~Ie- dll: +lie'- d'lI: +(1 +IlkIIL'(o.rJie- diU, vdimQie,dES. V~ycacdanhgia (2.37),(2.39)va (2.41)chungtodng u: S ~ Y la lien tl,1c. iii/ Bay gio ta se chungminhfftngt~pus la mQtt~pcon compactcua Y. ChoeES, t,tlE[O,TmJ.Tli(2.23),tavie'tl~i (Ue)/!)-(Ue)it') =Git)-Git') (2.42) , +flNit-r)-N/t'-r)}:Ve)/r)dr 0 ,° -SNit'- r)(Ve)/r)dr. t Hl}cvienTrdnThiHu~Chi Phuangtrinhsongphi tuye'nlienh~vai m(jthili loanCauchychophuangtrinhvipMn thuang trang24 Chuydng tuba'tdiingthuc (2.43) IN/t)-N/s)l:;; It-sl "it,sE[O,TJ, tathudu'<jctIT(2.31)ding (2.44)I(Ue)(t)-(Ue)(t')ll=tl(Ue)j(t)-(Ue)i~'~ j=l =~!Gj (t)- Gj (t')+f[Nj(t - r)- Nj(t' - r)XVe)j(r)dr - jNj (t'- rXVe)j(r)dr! m m , ::;IIGj(t)-G~(t'~+I ~[Nj(t-r)-Nit'-r)XVet(r~dr j=i j=1 0 m " +I ~Nj(t'-r~I(Ve)j(r~dr j=1, I t' ::;IG~)-G(t'~1+ It-t'l fllvellodr+ ~ fllvellodr 1 ::;IG(t)- G(t'~1+ It- t'IIIVelloTm+ ;; It- t'IIiVello :;;IG(t)- G(t')I)+ (Tm+l) It- t'IIIVello :;;IG(t)-G(t')li+,8(M,T)( m+l) It-t'!. Tu'dngUf,tu(2.28),(2.31)va(2.35)taclingthudu'<jc " I (Ue)(t)-(Ue)(t')=G~(t)-Gj (t') + l[Nj'(t-r)-Nj'~'-r)JveJr)dr , , - SNj(t'-r)(Ve)j(r)dr, HQcvienTrdnThi Hu~Chi PhlNngtrinhsongphituytnlienhf va; rnQthili roan Cauchy cho phu(}ngtrinh vi philn thuang trang25 dodo (2.45)I(Uc)'(t)-(Uc)'(t't ~~IGj'(;)-Gj' (t'~ + ~ !I[Nj' (t-r)-Nj' (t'-r)Jvc)j(r~dr +~flNj' (t'- r~1(Vc)j(r~dr ~IG'(;)-G'(tt + AmTmIIVcllolt-t'l, ~!G'(t)- G'(t')ll+[J(M,T) (AmTm+1) It- t'l. Do usc S va tucaedaubgia(2.44),(2.45)tasuyradinghQcaeham us={uc,cEs},la bi ch~nva lien Wcd6ngb~cdo'ivoi chugnII-II. cua khonggianY.Ap d1,mgdinh19Arzela-Ascolivaokh6nggianY, tasuy rar~ngus la compacttrongY. Do dinh19di~mbatdQngSchauder,ta co cES saDcho c=Uc,ma di~mbatdQngnayla nghi~mcuah~(2.20). Bdd~2.2duQcchungminhhoantat.. Dungbd d~ 2.2 voi T>0, co' dinh, h~ (2.14)-(2.16)co nghi~m (Um(t),Pm(t))trenmQtkhoang [O,TmJ.Cac daubgia tieDnghi~mtrenday chopheptalayTm=T voimQim. Buae2.Caedanhgiatiennghi?m.Thay(2.15)vao(2.14),taduQc (u; (t),Wj)+a(um(t),Wj) +[g(t)+H(um(O,t))- !k(t- S)um(O,s)ds]W/O) +(f(um(t),u~(t)),Wj)=(F(t), w). Saudonhanphuongtrlnhnftybdi c~/t)valaytdngrheaj, taco H(Jc vien Tr6n Thi Huf Chi PhUdngtrinhsongphi tuytnlienh~vai mQthili loanCauchychophulJngtrinhviphewthuang trang26 (u~(t),u~(t) +a(um(t),U~(t)) +[g(t) +H(um(O,t))- fk(t - S)um(O,s)ds}~(O,t) +<J(um(t),U~(t)),U~(t» =(F(t), U~(t». Tichphantungph~nrheabie'nthaigiantu 0 de'nt,nhacacgiathie't (Az),(F;), taco (2.46) Sm(t)::; -2H(um(O,t))+2H(uom(O))+Sm(O)+ 2g(O)uoJo) t -2g(t)um(O,t) + 2 Jg'(s)uJO,s)ds 0 t t -2 J<J(um(s),O),u~(s)ds + 2J(F(s),u~(s))ds 0 0 t s + Ju~(O,s)dsJk(s - r )um(O,r)dr , 0 0 trongdo (2.47) Sm(t)=Ilu~(t)llz+llum(t)II~. Khi do,sadl;1ng(2.16),(2.47),(A4) vab6d61,taco (2.48) -2H(um(O,t))+ 2H(uom(O))+Sm(O)+ 2Ig(O)uom(O)1 1 , . . , ::;3C], VOl illQI m va t, trongdo C]la illQthAngsochiphl;1thuQcvaouo"upH,hovag. Sadl;1ngb6d6 1.1illQtl~nnuavaba'tdingthuc (2.49) 1 2ab::;-aZ+3bz,Va,bER, 3 ta thu du'<,1c (2.50) 1- 2g(t)um(O,t) + 2 fgl(S)Um (0,S)dSI H9C vien Trdn Thi Hu~ Chi Phllangtrinhsongphi tuy[nlien h~vai mrthili loanCauchychophllangtrinhviphfinthlliJng trang27 I ::;2lg(t~IUm(O,t~+ 2 flg'(s~lum(O,s~ds 0 ::;3g2(t)+ ~lum(O,tt+2[flgl(st dS)[f'Um(O,stdS) 1 I 1 I ::;3g2(t)+- SJt) +3flgl(stds+ -;;-fluJo,st ds3 0 .) 0 2 In, 1 2 1 Il f::;3g (t)+3jlg(s) ds+-Sm(t)+- Sm(s)ds. 0 3 3 0 T x d' b,:! dl< 1 1 b'" d2 h' aP bq ,. 1 1 kh. d 'a van ling 0 e . , at ang t tic ab::;-+- VOl -+-=1 I 0 P q P q tu (p;)ta suyfa dng (2.51) 1-2f(J(Um(S),O)'U~(S))dSI::; 2If(J(Um(S),O)- f(O,O)'U~(S))dSI I (l+fJ) ::;2B2(O)fSm(s)~ ds 0 (2.52) ~ Sm(s) 1 ] ::;2B2(O) y-+ 2/ ds 0 71+/3 /1-/3 =B2(OXl+/3)!SJs}ds+(I-/3)B2(O~. 1-2f(F(S)'U~(S))dSI::;2~IF(S)llllu~(s)lldS I I ::; fIIF(s)112ds + fllu~(s)112ds 0 0 I I ::; fIIF(s)112ds + fSm(s)ds. 0 0 Chli Y ding tichphansaucungtrang(2.46)vie'tl<;lisaukhi sli'd\lllg tich phan Hrc vienTrc1nThjHu~Chi Phuc/ng trinhsongphi tuytnlienhf vai milt hili toan Cauchy cho phuc/ngtrinh vi phan thuang trang28 (2.53) I .. 1=2fu~(O,s)dsfk(s - r)um(O,r)dr 0 0 I = 2um(O,t)fk(t - r)um(O,r)dr 0 I .. - 2fum(O,s)dsfk'(s- r)um(O,r)dr. 0 0 Do d6 (2.54) III ~ 2IUm(O,t~l!k(t-r)UJo,r)irl + 2!(lum(O,s~rlkl(s-r~luJo,r~dr)ds t ~2 ~Sm(t)~k(t- r)I~Sm(r)dr 0 I .. +2NSm(s)dsflk'(s- r)I~Sm(r)dr 0 0 ==I] + 12, Sf)h~ngthunh:1tI, trongvfi phai cua(2.54)du<;1cdanhgia nhusailnho vaob:1td~ngthuc(2.49).Ta c6 (2.55) I I, =2~Sm(t)flk(t-r)I~Sm(r)dr 0 s ~Sm(t}+{Fk~-<J,jSJf}l<)' [ 11 1, ] 2 1 I /2 I 12 ~ :3Sm(t)+3 (flk(t- rf dr) (fsJr)ir) 1 I t =- Sm(t)+3 fk2(s)dsfSm(r)dr. 3 0 0 H(}cvien TrIm Thj Hur Chi Phwng trinhsongphi tuytnlienh~viii m(jthili loanCauchychophlldngtrinhviphanthlllJng trang29 TudngW's6h~ngthuhai 12trongv€ phai cua(2.54)duQcdanhgia nhu saunhov~lOba'tdiingthucCauchy-Schwartz.Ta co (2.56) 12 I s =2 NSm(s)dsflk'(s- T)I~Sm(T)dT 0 0 [( I ) ~ ( l s ) 2 ) ~ 1 ::;2 fSm{s)ds llflk'{S-T~~T ds ( ) 2 1 lis ::;- fSm(s)ds+ 3Ids flk'{s- T~~T3 0 0 0 ::; ! fSm(S)ds+ 3fdS(flk'{S-T~~T) 2 3 0 0 0 1 I 1 I ::; - fSm(s)ds+3t flk'(sfds fSm(T)dr. 3 0 0 0 Tit (2.44)-(2.56)tathuduQc 1 ( 1 1 I ) 1 (2.57) III::; -Sm(t) + -+3fe(s)ds+3tflk'(s)12ds fSm(T)dT. 3 3 0 0 0 Ta suytit(2.46),(2.48),(2.50)- (2.53)va(2.57)ding 1 I 1 1 I Sm(t)::;-C1 +3g2{t)+3flg'{sfds+- Sm(t)+ - fSm(s)ds3 0 3 30 1 I + (I+p)B2(O)fSm(s)ds+{I- p)B2(O)t+ fIIF{s~12ds 0 0 1 1 ( 1 I 1 ) I + fSm(s)ds+- Sm(t)+ -+3 fe(s)ds+3t]k'(sfds fSm(T)dT 0 3 3 0 0 0 1 I 2 I ::; -C1 +3g2{t)+3flg'{sfds +-Sm(t) + fIIF{s~12ds 3 0 3 0 ( 5 1 1 ) I + -+3fk2(s)ds+3t]k'(s)12ds fSm(T)dT 3 0 0 0 H9CvienTrJn Thj Hu~Chi PhUdngtrinhsongphi tuytnlien hf vai mQthili roanCauchychophudngtrinhviphiinthuang trang30 hay (2.58) tfongdo (2.59) (2.60) I + (1+p)B2(O)fSm(s)ds+(I-p)B2(O)t, 0 I Sm(t)::;;D1(t)+ D2(t)fSm(T)dT,° I I D)(t)=C1 +3(l-p)B2(O)t+9g2(t)+9 flg'(s)12ds+3fIIF(sfds,° ° I I D2(t) =5 + 3(1+p)B2(O)+ 9 fk2(s)ds+9tflk'(sf ds.° ° Vi H1(O,T)<-+Co([O,T]),tucacgiathiet(AJ, (AJ taguyfading (2.61) ID/t)I::;;c7),a.e., 'v'tE[O,T],(;=1,2), tfongdo c7) la ffiQth~ngs6chiph\!thuQcvao T. Do b6d~Gronwall, tathudtt<;1ctu (2.58)-(2.61)ding (2.62) Sm(t)::;;Cj.l)exp(tCj.2»)::;;Cn 'v'tE [O,T], 'v'T>O. I Baygio,tadn danhgiatichphan~u~(O,sfds.° f)~t (2.63) (2.64) Km(t)=:tsin(Al) )=1 X 'J rm(t) = ~w/o{a., costAi) + Pm)SiO~~i)] J,. m ' fsin[A/t- .)] ( I Wi )--.;2I . !(Um(.),Um(.))-F(')'- 11 .. 11 d.. J=1 o AJ WJ Khi do tu (2.13),(2.20),(2.21),taviet l<;tium(O,t)nhttsau H(Jc vienTrdnThi Huf Chi Phuangtrinhsongphi tuyln lienh? va; m(jthili loanCauchychophuangtrinhviphanthlli1ng trang31 (2.65) I um(O,t)=Ym(t)- 2 fKm(t-T)Pm(T)dL 0 Ta dn b6d€ sauday. B6 d~2.3.Tant{lim(Jthlingso'C2>0 vam(Jthamdu(Jnglient~cD(t) d(Jc19pvdi m saDcho (2.66) I I ]Y~(T)12dT ~ C2+ D(t) ]IJ(Um(T),U~(T))- F(T)112dT, 0 0 V'tE [O,T], V'T>O. Chungminhb6d€ 2.3cothStlmtha'ytrong[2]. B6 d~2.4.Tant{lihaihlingsO'du(JngC?)va C}4)chiph~thu(JcvaoT saDcho (2.67) Ids I JK~(S - T)Pm(T)dT I 2 ~ C}3)+ C}4)Ids ]u~(O,T)12dT , 0 0 0 0 V'tE [O,T], V'T>O. Chungminh.Tichphantungph~n,taco (2.68) s s fK~(s - T)Pm(T)dT=Km(s)Pm(O)+ fKm(s- T)P~(T)dL 0 0 Khido If K~{s- T)PJT)dTI~ IKm{s)pJo~+ flKm{s- T~lp~{T~dT ~ IKJs)Pm{O~+(flKm{s- Tt dT)Yz( fIP~{TtdT)Yz ~ IKm{s)Pm{O~+(fIKm{rtdr)Yz(fIP~{TtdT)Yz. Blnhphu'dnghaiv€ saudonchphantheostathudu'<jc (2.69) Ids IlK:(s- r)P.(rJd{ H(}cvien TrJn Thi Hu? Chi Phu(/fIgtrinhsongphi tuytnlienhevai mQthili roanCauchychophu(/fIgtrinhviphanthuang trang32 t I ,\' S ~ 2 P,;(o)fK;(s)ds + Ids fK;(r)dr fIP;(r)12dr 0 0 0 0 ~ 2 fK;(s)ds [ p,;(O)+Ids]p;(r)ldr ] . 0 0 0 Chuydingtu(2.15)taco (2.70) Pm(O)=g(O) + H(uom(O», (2.71) r P;(r) =g'(r) + H'(um(O,r»u~(O,r)- fk'(r-s)um(O,s)ds. 0 Dung ba'td~ngthuc (a+b+cy ~3(a2+b2+C2~\ia,b,cE R, ta suy tu (2.62), (2.70),(2.71) vaA4 rang (2.72) IP;(rt ~3Ig'(rt+3IH'(um(O,r)tlu~(O,rt +3[flk'(r-s~luJo,s)dslr ~ 3Ig'(rt+3maxIH'(stlu~(O,rtISI$JCr +3(flk'(r-st ds)(flum(O,stds). Suy fa ,\ S ,\ (2.73) ]P;(r)12dr ~ 3 flg'(r)12dr+ 3 maxIH'(sf flu~(O,r)12dr 0 0 Isl$JCr 0 r r +3 rdr flk'(r)12dr fu;(O,r)dr 0 0 S ,\ ~ 3flg'(r)12dr +3 maxIH'(s)12flu~(o,rf dr 0 ISI$JCr 0 +3 rdr Ilk'(rf dr Iu;'(O,r)dr 0 0 ,\ S ~ 3 flg'(r)12dr+ 3 max IH'(s)12flu~(O,r)12dr 0 Isl$JCr 0 ' H{Jc vien Tr&n Thi Hue Chi PhlJang trinhsongphi tuytnlienh~vai mQthili loan Cauchy cho phlJang trinh vi phan th11i1ng trang33 s s +3s flk'(r)12dr fu;'(O,r)dr. 0 0 Do do,tasuytu(2.71)- (2.73)ding Ids IIK~('- fJP.(f)d{ (2.74) ::; 2 fK;'(S)ds [ p,;(O)+ Ids]p~(r)ldr ]0 0 0 ::; 2 IK;'(S)dS[{g(O)+H(Uom(O))Y+![3 [Ig'(rt dr +3maxIH'(st [ Iu~(o,rt dr +3s[Ik'(rt dr[u;,(O,r)dr]dsIsl,;;.JCr ::; 2 IK;'(S)dS [{g(O)+H(uom(O))Y+!dS[3!Ig'(rt dr +3maxIH'(st[Iu~(o,rt dr +3s'Ik'(rt dr' u;,(o,r)dr]Isl,;;.JCr -'>-'> I I ::;2 fK;,(s)ds [(g(O)+H(uom(O))Y+3t]g'(r)12dr 0 0 I s +3maxIH'(s)12Ids flu~(0,r)12dr Isl';;.JCr 0 0 3 I I +-t2 flk'(rt dr fu;,(0,r)dr ].2 0 0 Chuyding vdi m6i T >0,Km~ K m<:lnhtrong L2(0,T) khi m~ +00va dungcaegiathie't(AI)- (A4)vacaeke'tqua(2.16),(2.62)va (2.74)ta thudu'<;Jc(2.67).B6 d~2.4du'<;Jcchungminhhoanta't.. B6 d~2.5.TImt{Iihaihdngso'dLtangcis)va c?) chiph1;lthuQcVaG TsaDcho (2.75) I ~u~(O,r)12dr::; cis), '\it E [O,T], '\iT> O. 0 H{Jc vien Tr&n Thi Hu~ Chi PhUC1ngtrinh song phi tuytn Win h~vui mQthili loan Cauchy cho phUC1ngtrinh vi phan thuang trang34 (2.76) I ~P~(rfdr~C?), \tte[O,T],\tT>O. 0 Chungminh.VI (2.76)Ia hc$quacua(2.62)va (2.75),tachidn chung minhding(2.75). I u~(O,t)=r~(t)- 2 JK~(t- r)Pm(r)dr, 0 lu~(O,tt~ 2Ir~~t+8[!IK~(t-r~IPm(r~drJ. Tu (2.67),sudt,}ngb5 d€ 2.3va 2.4,tathudu'<;lc Ilu~(0,s)12ds ~2 ]r~(s)12ds +8 Ids I }K~(S- r)Pm(r)dr I 2 0 0 0 0 (2.77) I ~2C2+2 D(t) ]lj(um(r),u~(r»-F(r)112dr 0 I s +8C~3)+ 8 C~4)Jds ]u~(0,r)12dr. 0 0 M~tkhactu(2.62)vacaeghithie't(r;), (f;) tathudu'<;lc Ilj(um(t),u~(t))- F(t)112~21lj(um(t1u~(t)f +211F(t~12 ~4 max BI2(s~Iu~(t)II~~"+4B; (0~IumII~P+21IF(t)112Isl~v'C,- ~4 max BI2(s~lu~(t~12a+4B;(0)lumll~P+21IF(t)112,I* v'C,- VI 0<a ~1ta co 11-IIL2"~II-II. V~y (2.78)Ilj(um(t),u~(t))-F(t)II2~ 1Ij(um(t),u~(t))112+2 IF(t)II2 ~ 4 maxBI2(S)IIu~(tta+4B;(0) Ilum(t)II~P+211F(tt. j..!sv'C,- Dodo,sudt,}ng(2.47),(2.62)va(2.78)taco H(Jc vienTrdnThi Huf Chi Phllangtrinhsongphi tuye'nlienh~va; miltbiJi roanCauchychophllangtrinhviphanthttiJng trang35 (2.79) Ilf(x,t,um(t),u~(t))- F(x,t)11~ C?). Cu6icling,tu(2.77)va(2.79)tathuduQCbatd~ngthuc (2.80) I I s flu~(o,s)12ds~C}8)+8 C}4)Ids ~u~(o,1ldT,° 0 0 madi€u naydin de'n(2.75),dob6d€ Gronwall. B6 d€ 2.5duQcchungminhhoantat.. Bl1fJc3. Qua gifJi hc;ln. Tu (2.15),(2.47),(2.62),(2.75),(2.76)va (2.79),tasuyrading,t6nt<;li mQtdayconcuaday{(um,Pm)},vin kyhi~ula {(um,Pm)},saocho (2.81) (2.82) (2.83) (2.84) (2.85) (2.86) Um~ U trong L"'(O,T;V) ye'u *, U~~ u' trongL"'(O,T;L2)ye'u*, Um(O,t)~ u(O,t)trong L"'(O,T)ye'u *, u~(O,t)~ u'(O,t)trongL2(O,T)ye'u, f(um'u~)~ X trong L"'(O,T;L2)ye'u *, Pm~ P trongH1(O,T)ye'u. Do b6 d€ compactcuaLions (xem[8]),ta suyra tu (2.62),(2.75), (2.81)va (2.82)ding,t6nt<;limQtdayconvin kyhi~ula {uJ saocho (2.87) (2.88) um(O,t)~ u(O,t) m<;lnhtrong coao,TD, um~u m<;lnhtrongL2(Qr)va a.e. (x,t)trongQr' VI H lient\Ic,tasuyratu(2.15),(2.87)ding (2.89) I Pm(t) ~ get)+H(u(O,t» - fk(t- s)u(O,s)ds=pet) 0 m<;lnhtrongcoao,TD. Tu (2.86)va(2.89)tathuduQc H9c vienTrdnThi Huf Chi Phuongtrinhsongphi tuytnlienh~vui m(jthili loanCauchychophuongtrinhviphanthudng trang36 (2.90) p ==P a.e. trong QT' QuagiOih~ntrong(2.14)nhC1v~lO(2.81),(2.82),(2.85),(2.89)va (2.90) tathudu'Qc d -(u'~1v) + a(u(t1v)+ P(t)v(O)+ (x(t),v)=(F(t),v),'v'VEV.dt Ta coth€ chungminhIDeomQtcachtu'dngu,tnhu'trong[10]ding (2.91) (2.92) u(O)=Uo' u'(O) =u1. Khi do,d€ chungminhs1,1't6nt~icuanghi~mbai loan(2.1)- (2.5),ta chidn chungminhdingX=j(u,u').BaygiC1chungtasedn b6d~sau day. B6d~2.6.Gillsa u Langhi~mcuabai (Dansau (2.93) (2.94) Uti - Uxx +X=F, x E n =(0,1),0<t <T, uAO,t)=P(t), u(1,t)=0, (2.95) (2.96) u(x,O)=uo(x), u,(x,O)=u)(x), U E L"'(O,T;V), u/ E L"'(0,T;L2), u,(O,t) E L2(0,T). Khidotaco (2.97) / / !11u'~)12 + !llu(t)I~+ Jp(s)u'(O,s)ds+ J(X(s)- F(s1u'(s))ds2 2 0 0 ~~llu)112+~lluoll~a.e.t E [O,T]. Hdn mla, ne'uUo=u1 =0 thi (2.97)xdyradl1ngthuc. Chungminhb6d~2.6coth€ tlmthffytrong[2]. BaygiC1,tu(2.14)- (2.16)taco (2.98) f(J(um(s1u~(s))-F(s1u~(s))ds= !IIUlm112+!lluomll~ 0 2 2 H(Jc vien Tr&n Th; Huf Chi PhUdng trinh song phi tuye'nlien h~vOi milt hili toan Cauchy cho phudng trinh vi phan thudng trang3? - !llu~(t~12- !llu)t~l~- fp)s)u~(O,s}ds.2 2 0 Do b6 d€ 2.6,ta suytu (2.16),(2.81),(2.82),(2.84),(2.89)va (2.98) r~ng I (2.99) limsupf(J(u)s),u~(s»-F(s1u~(s»)ds m--H'" 0 ~ !llull12+ !lluoll~- !llu'(t)122 2 2 I - !llu(t)I~-fp(s)u'(O,s}ds2 0 I ~ f(X(s)-F(s),u'(s»)ds,a.e.tE[O,T]. 0 B~ngeachdungl~plu~ngi5ngnhutrang[10]tachungminhduQcr~ng X=f(u,u') a.e.trangQT'S\!'t6ntf;linghi~mduQcchungminh. ElidC4. Sf!duynhatnghi~m. Bay giOtagia sli'r~ngfJ =1trong(f;) va H thoa (.4,). Gia sli' (up~),(u2,~)la hainghi~mcuabai tmin(2.1)- (2.5).Khi d6 u=U1-u2, P =~-~ thoabaitminsauday Ull - u""+X =0, 0<x <1,0<t <T, ux(O,t)=pet), u(1,t)=0, u(x,O) = Ul (x,O) = 0, x=f(upU~)- f(u2,u;), (2.100) I P(t) =P. (t)- P2(t)=H(u1(O,t))- H(u2(O,t))- fk(t - s)u(O,s)ds, 0 u; E L"'(O,T;V), u: E L"'(0,T;L2), u: (O,t)E L2(0,T), P'EH1(0,T), i=I,2. H9C vien Tr&n Thi Huf Chi PhUdngtrinhsongphi tuytnlienhevbi m(jthili loanCauchychophudngtrinhviphanthullng trang38 Sad\mgb6d€ 2.6voi Uo=Ul=0, F= 0, tathuduQc (2.101) I ~"u'(t~12+ ~"u(t~l~+ fp(s)u'(O,s~s2 2 0 I + f(i(s1u'(s))ds=0 a.e. t E [O,T]. 0 E>~t (2.102) o-~)=Ilu'~~12+Ilu(t~I~,HJ(t) =H(uJ(O,t)) - H(U2(O,t)). Thay P (t), i vao(2.101)taco ~llu'(t~12+ ~"u(t~l~2 2 +I(H(u((O,s))-H(U2(O,S))-rk(s-r)u(O,r~r)u'(O,s~s + I(J(UI'U;)- f(U2,U;),U'(s))ds =0, vachuyr~nghamf la khonggiamd6ivoibienthuhai,taco (2.103) I o-(t) +2 fH((s)u'(o,s~s 0 I ~ 2 ]If(u((s1u;(s))- f(U2(S),U;(s)~lllu'(s~lds 0 I s +2 fu'(O,s~sfk(s-r)u(O,r~r. 0 0 Dunggiathiet(F;)taguyrar~ng (2.104) Ilf(UI (s1U;(s)) - f(U2 (s1U;(s)~I ~ IIB2 ~u; (s ~~lllu(s ~Iv . Dungnchphantungphftntrongnchphancu6icungtrang(2.103),ta duQc (2.105) I s J =2 fu'(O,s~sfk(s-r)u(O,r~r 0 0 H(Jc vienTrtinThi Hue Chi PhUlJng trinh song phi tuytn lien hf vcR mQthili loan Cauchy cho phulJng trinh vi phtin thuang trang39 1 I s =2u(0,t)fk(t-r)u(O,r)dr- 2 fu(O,s)dsfk'(s-r)u(O,r)dr. 0 0 0 Ta Suyfa tu(2.102)va(2105)ding (2.106) ( I ) ~ ( I ) ~ IJI :s;2 ~ fe(r)dr fu(r)dr ( I ) ~I +2Ji }k'(rtdr fu(r)dr 1 1 1 :s;13,u(t)+ - fe{r)dr fu{r)dr 1310 0 ( I ) ~1 +2Ji }k'(rtdr fu(r)dr, V13,>0. f)~t (2.107) M = max IluiIIL~ ( r.v)' ml =mill H'(s), m2=maxIH"(s~.1=',2 0, . !slsM IslsM Tu giathie'tA6taco ml>-1. M~tkhae,donehphantungphffnva (2.107),tasuyfading 1 1 [ I d ] 2 fH,(s)u'(O,s)ds=2 f f-H(uJO,s)+Ou(o,s))deu'(O,s)ds 0 0 ode I =U2(0,t)fH'(U2(0,S)+0u(0,s))de 0 (2.108) 1 I f u2(0,s)dsfH"(U2(0,S)+Ou(O,s)Xu;(O,s)+Ou'(o,s))de 0 0 1 ~ mJ U2(0,t)- m2 f u2(0,s)~u;(0,s)+lu;(0,s~}is 0 1 ~ m) U2(0,t) - m2 f u(s) ~u;(o,s)+lu;(O,s)}is. 0 Tu(2.103)- (2.105)va (2.108),tathudu'<Je H(Jc vien Tr&n Thi Huf Chi Phlldngtrinhsongphi tuytnlienh~vdi mi;thili loanCauchychophlldngtrinhviphiinthllilng trang40 o-(t)+2!Ht (s)u'(O,s)ds ~2LIIB2~u;(s~)lllu(s)Ivllu'(s)Ids+ IJI. Ma m)u2 (O,t)- m2 !o-(s~u; (O,s~ + lu; (O,s~}is+ o-(t) ~ o-(t)+2!Ht(s)u'(O,s)ds ~ 2 ! IIB2~u; (s~)llIu(s)Iv Ilu'(s )Ids + IJI ~2!IIB2~u;(s))p-(s)ds+ IJI, (2.109) I o-(t)+ mtU2(0,t)~ m2J o-(s)~u;(O,s~+lu;(O,s)l}is 0 I +]IB2~u;(s))10-(s)ds+IJI ==17(t). 0 ChuY tit(2.107),taco (2.110) (1+mt)u2(0,t)~o-(t)+ mtu2(0,t)~ 17(t). Ta suytit(2.106),(2.109)va(2.110)ding (2.111) o-(t)+ [ml + P2(1 + mJ] U2(0,t) ~ (1 + P2)17(t) I ~(1 + P2) ~m2~u;(0,s~+lu~(0,s))+IIB2~u;(s))Ip.(s)ds 0 +(1 + P2)PIo-(t) ( 1 I ( I ) Yz J I +(1+ P2) - Jk2(r)dr+2~ JIk'(rtdr Jo-(s)ds, PIO 0 0 VPt >0,VP2 >0. ChQn PI>0, P2>0saDcho ml+ P2(1 + m)) :2:~,(1 + P2)PI~ ~va d~t H9CvienTrim ThiHu~Chi Phwng trinhsongphi tuytnlienh~VIii mIlthili loanCauchychophudngtrinhviphdnthui'lng trang41 (2.112) R](t) =2(1 + fJ2)[m2~u;(0,s~+lu;(0,s~)+IIB2~u;(s~~1 + ~IIlkll~2(O.T)+2#WIIL2(O'T)]' Khi d6tu(2.111)va (2.112)tac6 (2.113) I IT(t) + U2(0,t) ::; fR1(sXlT(S)+U2(0,S))1s. 0 i.e. IT(t)+ U2(0,t)==0 nhob6 d~Gronwall. Dinh ly 2.1du'Qchungminhhoanta-t.. Chuthich2.2.Di~ukic$nk(O)=0chilakYthu~t,tac6th6boqua. Trongtru'onghQpriengcuaH vdi H(s)=hs,h>0,dinhly saudayla hc$ quacuadinhly 2.1. Dinh If 2.2.Gill sa (AI) - (AJ va (FI) - (F3)dung.Khi do VlJimJi T>0,hai loan (2.1)- (2.5)coit nhdtmQtnghi?mye'u(u,P)thoa(2.6), (2.7). Hdn mla, ne'u ~=1 trong(p;)vahamB2thoa (F4),khi do nghi?m nayladuynhdt. Dinhly 2.2chocungke'tquatrong[10]nhu'nggiathie't:"BJ kh6ng giam"dildungtrong[10]thlkh6ngdn thie'td day. Trongtru'onghQpriengvdi k(t)==0,ke'tquasaudayla hc$quacua dinhly 2.1. DinhIf 2.3.Gill sa (AJ, (Az),(A4)va (f;) - (p;)dung.Khi do,WlimJi T >0, hai loan (2.1)-(2.4) tlJdngungwYiP =g co it nhdtmQtnghi?m ye'uuthoa(1.4). H(Jc vienTrdnTh;Huf Chi Phuangtrinhsongph; tuytnlien heva; miltbili loanCauchychophuangtrinhviphiinthul1ng trang42 HCInmla nlu ~=1 trang(F;)vahamH vaB2 zJn iuf/tthoacaegid thilt (FJ va (A6).khidonghi~mnayia duynhai Chti thich2.3.Giangnhttchuthfch2.2,dinh192.3clingchocungket quanhtttrang[7]nhttnggiatiller"B( kh6nggiam"dii dungtrong[7] thikh6ngdn thiet(jday.

Các file đính kèm theo tài liệu này:

  • pdf4.pdf
  • pdf0.pdf
  • pdf1.pdf
  • pdf2.pdf
  • pdf3_2.pdf
  • pdf5.pdf
  • pdf6_3.pdf
  • pdf7.pdf
  • pdf8.pdf
  • pdf9.pdf
Tài liệu liên quan