PHƯƠNG TRÌNH SÓNG PHI TUYẾN LIÊN HỆ VỚI MỘT BÀI TOÁN CAUCHY CHO PHƯƠNG TRÌNH VI PHÂN THƯỜNG
TRẦN THỊ HUỆ CHI
Trang nhan đề
Lời cảm ơn
Mục lục
Chương0: Phần mở đầu.
Chương1: Một số công cụ chuẩn bị.
Chương2: Sự tồn tại và duy nhất nghiệm.
Chương3: Sự ổn định của nghiệm.
Chương4: Xét một trường hợp cụ thể.
Kết luận
Tài liệu tham khảo
29 trang |
Chia sẻ: maiphuongtl | Lượt xem: 1858 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Luận văn Phương trình sóng phi tuyến liên hệ với một bài toán cauchy cho phương trình vi phân thường, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
Phuang trinh song phi tuye'nlien h~vai
mQthili loan Cauchy cho phuang trinh vi phdn thuang
trang14
Chlidng2
811t6nt~ivaduynha'tnghi~m
Trangchu'dngnay,chungtoitdnhbaydinhly t5nt~ivaduynhat
cuanghi«$mye'utoaDc1,1cchobai toaD:TIm mQtc~pham (u,P) thoa
(2.1)
(2.2)
(2.3)
(2.4)
(2.5)
Uti -Uxx +f(u,ut)=F(x,t), xeQ =(0,1),0<t<T,
ux(O,t)=P(t),
u(1,t)=0,
u(x,O)=uo(x), ut(x,O)=u1(x),
t
P(t) =g(t)+H(u(O,t»- Jk(t-s)u(O,s)ds,
0
trongdo uo,ul,J,F,g,H,k la cachamchotrudcthoacacdi~uki«$nma
chungtased~trasau.
Chungminhdu'<jcd1,1'av o phu'dngphapGalerkin lien h«$vdi cac danh
gia tieDnghi«$m,rut ra cac day con hQi t1,1ye'utrangcac khong gian
hamthichh<jpnhamQts6cacphepnhungcompact.Trongphin nay,
dinhly Schauderdu'<jcsa d1,1ngtrongvi«$chungminht5nt~inghi«$m
xapxiGalerkin.Clingchuydingphu'dngphaptuyentlnhhoatrangcac
baibaa[6,11,14]khongsad1,1ngdu'<jctronglu~nvannayvatrangcac
b~bao~,4,5,7,9,1~.
(AI)
(A2)
(A3)
Trudche'tathanhl~pcacgiathie'tsau:
UoE HI, u1E L2;
g e H1(O,T) VT >0;
keH1(O,T) VT>O vak(O)=O;
H(Jc vien TrJn Thi Hu~ Chi
PhllangIrinhsongphi luytnlien hf ViJi
millhili loanCauchychophuangtrinhviphilnthuang
trang 15
(A4) FEL2(Ox(0,T)) VT>O;
(As) Hams6 HEel (R)thoaH(O)=0 vat6nt':limOth~ngs6
ho>0saoeho
~
H(1])= fH(s)ds~- ho.
0
ydimQi11E R;
(F) Hams6 I: R2 ~ R thoa1(0,0)=0vacaedi€u ki~n:
(FJ) I Ia dondi~ukhonggiamd6ivdibie'nthuhai,i.e.,
(f(u,v)-/(u,v))(v-v)~O Vu,v,vER;
T6n t(;lihaih~ngs6a, ~E (0,1]va hai hams6Iien t\le BI,B2:R+~R+
saoeho:
(F2) I/(u,v)-I(u,v)!~BI([ul)lv-vla Vu,v,v E R;
(F3) I/(u,v)- l(u,v)1~B2(lvl)lu-uIPvu,v,vER;
Khi dotacodinhIy sau
DjnhIy2.1.Gillsa(AI)- (As)va (F;)- (F3)dung.Khi dov{JimJi T>0,
t6ntr;limQtnghi~mye'u(u,P) cilahaitoan (2.1)- (2.5)saDcho
(2.6) u E L"'(O,T;V), UtE L"'(O,T;L2), ut(O,t)E L2(0,T),
(2.7) P E H1(0,T).
H(}fl mla, ne'u ~=1 trong(F3)vacaehamsf;'H, B2 thoathemcae
dduki~n,
(A6)
(F4)
HE c2(R), H' (s)>- 1 VsER;
B2(Iv J) E L2(Qr ) Vv E L2 (Qr), VT>O.
Khi donghi~mcila hai toanfa duynha't.
H(Jc vien Tr{mThi Huf Chi
PhUiJng trinh song phi tuytn lien h~w1i
rnQtbdi roan Cauchy cho phuiJng trinh vi phtin thuang
trang16
Chti thich2.1.Ke'tquanay mf:lnhhonke'tquatrong[9].Th~tv~y,
tuongungvdicungbaito0,
cacgiathie'tsaudaydiidungtrong[9]khongdn thie'tsti'dl,mga day:
(2.8)00,
(2.9) B),B2la cachamkhonggiam.
ChU'ngminh.Chungminhg6mnhi€u budc.
Bu(Jc1.Xapxl Galerkin.XetmQtcosatn!cchuffnd~cbi~ttrongV.
w/x) =~,Xt+A~)COS(AjX),Aj =(2j -I);, j =1,2,...
duQcthanhl~ptucac hamriengcuatoantti'Laplace-82/&2 .D~t
(2.10)
m
um(t)=L>m/t)Wj'
j=1
trongdocm/t)thoamQth~phuongtrlnhphituye'nsauday
(u~(t),w) +a(um(t),Wj)+Pm(t)W/O)+(f(Um(t),U~(t»,w)
=(F(t),w), 1~j ~m,
(2.11)
(2.12)
I
Pm(t)=g(t)+H(um(O,t»- fk(t - s)Um(O,s)ds,
0
(2.13)
!
".(0) ="Om=~amjWj ->"0 m,nh(mngH',
U~(0)=Ulm=L/3mjWj ~ U) m<;lnhtrong L2.
j=)
H~phuongtrlnh(2.11)- (2.13)duQcvie'tIf:lidudidf:lng
(2.14)
c~/t)+A~Cmj(t)=~(Pm(t)w/O) +(f(um(t),u~(t»,Wj)- (F(t),Wj)}
IIWjl1
(2.15)
I
Pm(t)=g(t)+H(um(O,t»- fk(t - s)um(O,s)ds,
0
H(Jc vien Tr&n Thi Hu~ Chi
PhUl1ngtrinh song phi tuytn lien h~vai
milt hili loan Cauchy cho phul1ngtrinh vi phdn thuilng
trang17
(2.16) Cm/O)=amj'C~j(O)=fJmj'1::;j::; m.
B6d@2.1:Nghifmcuabili loanCauchysauday
{
CII (t)+A 2C(t)=q(t),t>0,
c(O) = a, CI (0) = fJ,
(2.17)
cho beJiding thuc
(2.18)
sin(A t)
I
fsin(A(t - .)]yet)=acos(A.t)+fJ + q(.)d..A 0 A
Chungminh:Chungminheongthue(2.18)khongkh6khan,taboqua.
Ap dl,mgb6d~2.1ehohc$(2.14)-(2.16)vdi
C(t)=C~i(t),A=Aj' a=amj' fJ=fJm;'
q(t)=-=4(Pm(t)w/O) +(J(Um(t),u~(t)),Wj) - (F(t),Wj))'
Ihl!
Ta du'<;1ehc$(2.14)-(2.16)180tu'dngdu'dngvdi hc$phu'dngtrlnh vi rich
phansau
sin(Aj t) I sin(A/t - .)]
Cm/t)=amjCOS(Al)+fJmj +f q(.)d.
Aj 0 A}
=am;cos(Al) +fJm;sin(Al)
. A-}
-~ rsinlAj(t- .)J(p (.)w(0)+(f(um('),u~(.)),Wj)- (F(.), w;)~.
IlwJ 1 Aj m}
) sin(AA=amjcos(Al +fJmj ;:
}
- ~ !sinlAj(t-. )J[(g(.)+ H(um(0,.))- rk(. - s)um(O,.)d. )w; (0)
Ilwj II Aj
+ (J(um(.),u~(,)),Wj)j1.
H{Jc vien Trdn Thi Hu~ Chi
Phllcmgtrinhsongphi tuye'nlienhevai
mQtbiii roanCauchychophllcmgtrinhvipMn thllilng
trang18
=amiCOS(A/)+ /3 . sin(A/)mJ
Aj
- ~ !sinlAj(t- r:)j(g(r:)wj(0)-(F(r:1w})~r:
IIW}II A}
- ~ !sinlA}(t- r:)j(H(Um(0,r:))w)(0)+(f(um(r:1u~(r:)1Wj)~r:
IIWjl1 A}
+w}(oj (inlA) (t- r:)j(rk(r:- s)UJO, r:)dr:)dr:.
Ilw)II A}
Ta vie't l(;li (2.19)nhu'sau
cm/t) =Gmj(t)
(2.20) - ~ fN/t - r:)[H(um(O,r:))w/O)+(f(Um(r:),u~(r:)),Wj )~r:
IIWjl1 0
W (0)t r
+~ fN/t - r:)dr:fk(r:- s)um(O,s)ds, 1:s;j:S;m,
IIWjl1 0 0
trongdo
(2.21)
sin(Al)
N}(t)= ,
Aj
Gm/t)=amjN;(t)+/3mjNj(t)
1 t
+~ fN/t- r:)[(F(r:),w) - w/O)g(r:)~r:.
IIWjl1 0
Khi dotacob6d€ sau.
B6d@2.2.Gidsa(AI)-(As) va(F;)-(FJ) fadung.VeJiT >° elfdfnh,
khidoh~(2.20)-(2.21)conghi~mCm =(Cml,cm2'."'Cmm)trenmQtkhodng
[O,TJc [O,T).
Chungminh.Ta boquachIsaill, h~(2.20)-(2.21)vie'tl(;lidu'oid(;lng:
(2.22) c=Uc,
trongdoc=(CpC2"'.'Cm) , Uc=«UC)p(UC)W.,(UC)m),
H9CvienTrimTh;Huf Chi
-
Phuangtrinhsongphi tuyln lienh? vai
miltbdi loanCauchychophuangtrinhvipMn thuilng
trang19
(2.23)
/
(Uc)}(t)=G}(t)+SNit - r)(Vc)/r)dr,°
(2.24)
/
(Vc)/t) =~/c(t),c'(t))+fk(t- s)/2/e(s))ds,°
(2.25)
G/I) =amjN;CI)+/imjN/1)+11:11'INjU- T)[(F(T),Wi)- Wj(O)gCT)¥T.
/,} : R2m~ R, 12}:Rm~ R ,
(2.26) /,/e,d)=-=-4
[
H
(fe,w/(o))w/O)+!I [
fe,w, ,fd,w,
J
'Wi
)]
'
Ihll 1=1 \ 1=1 I=!
(2.27) - W/O) m < .J;./e)- 2 Le,w,(O),l_J~m.
Ihll 1=1
Vdi m6iTm>O,M>0, tad~t
s= ~ECI~O,TJRm):llelll~M},
m
Ilelll=Ilello + Ile'ilo' lie11o=SUp le(t)I!, le(t)l!=Lle,(OI.O~/~Tm 1=1
D€ tha'yding S la t?P can15idongva bi ch?ncua Y=CI~O,TJRm).
Dungdinhly di~mba'tdQngSchaudertase chungminhrangtmintll'
U: S~ Y xac dinhbdi (2.23)-(2.27) co diSmba'tdQng.Di~mba'tdQng
nayla nghi~mcua(2.20).
DftutientachungminhdingU bie'nt?P s vaochlnhno.
il ChliY ding (Ve)}EcoQo,TmlR)vdi mQiCEC!~O,TJRm),do do tasuytu
(2.23),vad£ngthuc
(2.28)
I
(Ue)~(t)=G~(O+ fN~(t- r)(Ve)/r)dr,°
HQc vien Tran Th; Hu? Chi
PhU{fngtrinhsongphi tuytnlien h~va;
mQthili loanCauchychophu{fngtrinhviphanthlli1ng
trang20
r~ng U: Y ~ Y .
Cho eES, tasur tit (2.23), (2.28)r~ng
I(Ue)(t~1=fl(Ue)j(t~
j=1
=~IG)t)+fNj(t-rXve))r)drl
m / m
~IIGj(t~ + JIINj(t-r~I(Ve)j(r~dr
j=1 0 j=1
/ m
1
1 ~
~IG(tl +If; A-j(Ve)j(r1dr
1 /
~ IG(t~1 +~fl(veXrtdr
1/
~IG(t~1+~jllvellodr
1
~ IG(tl + ~Tmllvello'
Tucmgtvtaco
(2.29)
1
I(Ue)(t)11~ IG(t)11+~TmllVcllo .
Dodo
(2.30)
I (Ue) (t)ll ~ IG'(t)11+TmllVello'
M~tklulc,tasur tit (A3),(A4),(F2),(F3),va(2.24)r~ng
!IVello = sup I(VeXt~1
O$/$Tm
= sup fl(Ve)j(t~
O$/$Tmj=1
m m /
~ supIIJ;j(e,e'~+ supI ~k(t-s)f2j(e~ds
O$/$Tmj=1 O$/$Tmj=10
Hl}c vien Tr&n Thi Hu~ Chi
Phuang trlnh song phi tuytn lien h~vai
milthili roan Cauchy cho phuang trlnh vi phan thullng
trang21
m m /
:s; I sup1J;)(c,c'~+ I flk(t-s)supIfz)(c~ds
)=1O:>/:>T. )=1 0 09:>T.
m m /
:s;IN1(r.),M) + I flk(t-s~Nz(rz),M}is
)=1 )=10
m m /
:s;IN1 (r.),M) + INz (rzj'M)Jlk(t - s~ds
)=1 )=1 0
m m /
:s;IN1 (r.),M) + INz ([z),M) Jlk(s~ds
)=1 )=1 0
m m
:s;IN1(r.),M) + IllkIILJ(O,nNz(rz),M).
)=1 j=1
Suyfa
(2.31) IIVcllo::;i[NI(fIj,M)+llkIILI(o,T)Nz(/z),M)] ==P(M,T),
)=1
vdi ffiQi cE S, tfong d6
(2.32) N1(fIj,M)=sup~J;/y,z)I:llyIIRm::;M,llzIIRm::;M},
(2.33) Nz{/zJ'M) =sup~/z/y)1: IlyllRm::;M}.
Do do,tIT(2.29)-(2.31) tathudu'<jc
1
supIUc(t~1:s;supIG(t).+ -Tmllvcllo
O:>/:>Tm O:>l:>Tm ~
1
:s; sup IG(t). + - TmIIVcllo
O:>/:>T ~
1
:s;IIGllo'+ ~Tmllvcllo'
TuO'ngtg taco
sup IUc(t~1:s; jiG/jiG.+ TmIIVcllo.O:>/:>T
Suyfa
IIUclio +IIUCllo ::;IIGllo' +IIG'llo'+(~1 + 1)TmIIVcllo'
Ht;Jcvien Trdn Thj Huf Chi
Phllang trinh songphi tuye'nlien h~vai
mtlthili loan Cauchy cho phuang trinh vi phdn thui1ng
trang22
(2.34)
IIUcll1 ::;IIGIII.+(1+~)rmP(M,T),
trongd6
IIGIII. = IIGllo' + IIG'llo'=sup IG(t)11+ supIG'(t)l,.
O,s/,sT Os/sT
ChQnM va Tm> 0 saocho
(2.35)
M >211GIII.va (1+~)rmP(M,T) ::;Mh'
Do d6 IIUcll,::;M voi mQi cES, nghiala, toantit'U biEn t~pS vaocrnnh
n6.
ii/ TiEp theota chungminh loan tit'nay Ia lien t\,1ctren S. Cho c,dES,
tac6
(2.36)
/
(Uc)/t)-(Ud)/t)=SNit- .)[(vc)/.)-(Vd)/.)}i.,
0
m I m
suplJuc)At)-(Ud)j(t~ = ]Nj~-'~supLI(vc)j(.)-(Vd)j(.~d..
~~~ 0 ~~~
Dod6
(2.37)
1
IIUc-Udllo::;-TmIIVc-Vdllo'~
Tu'dngtvtadingthudu'Qctuba'td~ngthuc
(2.38)
, , /
(Uc)At) - (Ud)At) =fN~(t- .)[(vc)/.) - (Vd)/.)}i.,
0
o~~fm ~I(uc)'j(t)- (Ud)'j~~=IIN~(t- '~o~~fmI(vc)j(')- (Vd)j('~
::;IIIVc-vdtd.::;TmIIVc-Vdllo'
ding
(2.39)
II(uc) - (Ud)110 ::;Tmllvc-vdllo'
HQc vien Trdn Thi Hu~ Chi
Phl1angtrinh songphi tuye'nlien h~VlJi
m(jthili loan Cauchy cho phuang trinh vi phan thuang
trang23
Baygio,tadn mQtdanhgias6h~ngliVe- Vdllo'Taco
(2.40) (Vet(t)-(Vd)it)=hie(t),e'(t))-hid(t),d'(t))
,
+Sk(t-s)[f2ie(s))-fzid(s))}is.
0
Tli cacgia thie't(A3),(A4),(F2),(FJ, va(2.40),tasuyfadingt6nt~imQt
hftngs6 KM>0 saocho
I(Ve)j(t)- (Vd)j(t~ =
Ihj(e(t1e'(t))+!k(t - S)f2j(e(s))ds- hid(t 1d'(t))- !k(t - S)f2; (d(s))dsl
s !flj(e(t),e'(t))-~j(e(t1d'(t)~+ l~j(e(t1d'(t))-~j(d(t),d'(t)~
+!Jk(t- s)lf2j (e(s))- f2j (d(s)~ds
s Bl~e(t))le'(t)-d'(tr + B2~d'(t))le(t)-d(tt
(2.41)
+!Ik(t - s)lf2j (e(s)) - f2j (d(s )~ds,
liVe- Vdllos KM ~Ie- dll: +lie'- d'lI: +(1 +IlkIIL'(o.rJie- diU,
vdimQie,dES.
V~ycacdanhgia (2.37),(2.39)va (2.41)chungtodng u: S ~ Y la
lien tl,1c.
iii/ Bay gio ta se chungminhfftngt~pus la mQtt~pcon compactcua
Y.
ChoeES, t,tlE[O,TmJ.Tli(2.23),tavie'tl~i
(Ue)/!)-(Ue)it') =Git)-Git')
(2.42)
,
+flNit-r)-N/t'-r)}:Ve)/r)dr
0
,°
-SNit'- r)(Ve)/r)dr.
t
Hl}cvienTrdnThiHu~Chi
Phuangtrinhsongphi tuye'nlienh~vai
m(jthili loanCauchychophuangtrinhvipMn thuang
trang24
Chuydng tuba'tdiingthuc
(2.43) IN/t)-N/s)l:;; It-sl "it,sE[O,TJ,
tathudu'<jctIT(2.31)ding
(2.44)I(Ue)(t)-(Ue)(t')ll=tl(Ue)j(t)-(Ue)i~'~
j=l
=~!Gj (t)- Gj (t')+f[Nj(t - r)- Nj(t' - r)XVe)j(r)dr - jNj (t'- rXVe)j(r)dr!
m m ,
::;IIGj(t)-G~(t'~+I ~[Nj(t-r)-Nit'-r)XVet(r~dr
j=i j=1 0
m "
+I ~Nj(t'-r~I(Ve)j(r~dr
j=1,
I t'
::;IG~)-G(t'~1+ It-t'l fllvellodr+ ~ fllvellodr
1
::;IG(t)- G(t'~1+ It- t'IIIVelloTm+ ;; It- t'IIiVello
:;;IG(t)- G(t')I)+ (Tm+l) It- t'IIIVello
:;;IG(t)-G(t')li+,8(M,T)( m+l) It-t'!.
Tu'dngUf,tu(2.28),(2.31)va(2.35)taclingthudu'<jc
" I
(Ue)(t)-(Ue)(t')=G~(t)-Gj (t')
+ l[Nj'(t-r)-Nj'~'-r)JveJr)dr
, ,
- SNj(t'-r)(Ve)j(r)dr,
HQcvienTrdnThi Hu~Chi
PhlNngtrinhsongphituytnlienhf va;
rnQthili roan Cauchy cho phu(}ngtrinh vi philn thuang
trang25
dodo
(2.45)I(Uc)'(t)-(Uc)'(t't ~~IGj'(;)-Gj' (t'~
+ ~ !I[Nj' (t-r)-Nj' (t'-r)Jvc)j(r~dr
+~flNj' (t'- r~1(Vc)j(r~dr
~IG'(;)-G'(tt + AmTmIIVcllolt-t'l,
~!G'(t)- G'(t')ll+[J(M,T) (AmTm+1) It- t'l.
Do usc S va tucaedaubgia(2.44),(2.45)tasuyradinghQcaeham
us={uc,cEs},la bi ch~nva lien Wcd6ngb~cdo'ivoi chugnII-II. cua
khonggianY.Ap d1,mgdinh19Arzela-Ascolivaokh6nggianY, tasuy
rar~ngus la compacttrongY.
Do dinh19di~mbatdQngSchauder,ta co cES saDcho c=Uc,ma
di~mbatdQngnayla nghi~mcuah~(2.20).
Bdd~2.2duQcchungminhhoantat..
Dungbd d~ 2.2 voi T>0, co' dinh, h~ (2.14)-(2.16)co nghi~m
(Um(t),Pm(t))trenmQtkhoang [O,TmJ.Cac daubgia tieDnghi~mtrenday
chopheptalayTm=T voimQim.
Buae2.Caedanhgiatiennghi?m.Thay(2.15)vao(2.14),taduQc
(u; (t),Wj)+a(um(t),Wj)
+[g(t)+H(um(O,t))- !k(t- S)um(O,s)ds]W/O)
+(f(um(t),u~(t)),Wj)=(F(t), w).
Saudonhanphuongtrlnhnftybdi c~/t)valaytdngrheaj, taco
H(Jc vien Tr6n Thi Huf Chi
PhUdngtrinhsongphi tuytnlienh~vai
mQthili loanCauchychophulJngtrinhviphewthuang
trang26
(u~(t),u~(t) +a(um(t),U~(t))
+[g(t) +H(um(O,t))- fk(t - S)um(O,s)ds}~(O,t)
+<J(um(t),U~(t)),U~(t» =(F(t), U~(t».
Tichphantungph~nrheabie'nthaigiantu 0 de'nt,nhacacgiathie't
(Az),(F;),
taco
(2.46) Sm(t)::; -2H(um(O,t))+2H(uom(O))+Sm(O)+ 2g(O)uoJo)
t
-2g(t)um(O,t) + 2 Jg'(s)uJO,s)ds
0
t t
-2 J<J(um(s),O),u~(s)ds + 2J(F(s),u~(s))ds
0 0
t s
+ Ju~(O,s)dsJk(s - r )um(O,r)dr ,
0 0
trongdo
(2.47) Sm(t)=Ilu~(t)llz+llum(t)II~.
Khi do,sadl;1ng(2.16),(2.47),(A4) vab6d61,taco
(2.48) -2H(um(O,t))+ 2H(uom(O))+Sm(O)+ 2Ig(O)uom(O)1
1 , . . ,
::;3C], VOl illQI m va t,
trongdo C]la illQthAngsochiphl;1thuQcvaouo"upH,hovag.
Sadl;1ngb6d6 1.1illQtl~nnuavaba'tdingthuc
(2.49)
1
2ab::;-aZ+3bz,Va,bER,
3
ta thu du'<,1c
(2.50) 1- 2g(t)um(O,t) + 2 fgl(S)Um (0,S)dSI
H9C vien Trdn Thi Hu~ Chi
Phllangtrinhsongphi tuy[nlien h~vai
mrthili loanCauchychophllangtrinhviphfinthlliJng
trang27
I
::;2lg(t~IUm(O,t~+ 2 flg'(s~lum(O,s~ds
0
::;3g2(t)+ ~lum(O,tt+2[flgl(st dS)[f'Um(O,stdS)
1 I 1 I
::;3g2(t)+- SJt) +3flgl(stds+ -;;-fluJo,st ds3 0 .) 0
2 In,
1
2 1 Il
f::;3g (t)+3jlg(s) ds+-Sm(t)+- Sm(s)ds.
0 3 3 0
T x d' b,:! dl< 1 1 b'" d2 h' aP bq ,. 1 1 kh. d 'a van ling 0 e . , at ang t tic ab::;-+- VOl -+-=1 I 0
P q P q
tu (p;)ta suyfa dng
(2.51) 1-2f(J(Um(S),O)'U~(S))dSI::; 2If(J(Um(S),O)- f(O,O)'U~(S))dSI
I (l+fJ)
::;2B2(O)fSm(s)~ ds
0
(2.52)
~
Sm(s) 1
]
::;2B2(O) y-+ 2/ ds
0 71+/3 /1-/3
=B2(OXl+/3)!SJs}ds+(I-/3)B2(O~.
1-2f(F(S)'U~(S))dSI::;2~IF(S)llllu~(s)lldS
I I
::; fIIF(s)112ds + fllu~(s)112ds
0 0
I I
::; fIIF(s)112ds + fSm(s)ds.
0 0
Chli Y ding tichphansaucungtrang(2.46)vie'tl<;lisaukhi sli'd\lllg tich
phan
Hrc vienTrc1nThjHu~Chi
Phuc/ng trinhsongphi tuytnlienhf vai
milt hili toan Cauchy cho phuc/ngtrinh vi phan thuang
trang28
(2.53)
I ..
1=2fu~(O,s)dsfk(s - r)um(O,r)dr
0 0
I
= 2um(O,t)fk(t - r)um(O,r)dr
0
I ..
- 2fum(O,s)dsfk'(s- r)um(O,r)dr.
0 0
Do d6
(2.54) III ~ 2IUm(O,t~l!k(t-r)UJo,r)irl
+ 2!(lum(O,s~rlkl(s-r~luJo,r~dr)ds
t
~2 ~Sm(t)~k(t- r)I~Sm(r)dr
0
I ..
+2NSm(s)dsflk'(s- r)I~Sm(r)dr
0 0
==I] + 12,
Sf)h~ngthunh:1tI, trongvfi phai cua(2.54)du<;1cdanhgia nhusailnho
vaob:1td~ngthuc(2.49).Ta c6
(2.55)
I
I, =2~Sm(t)flk(t-r)I~Sm(r)dr
0
s ~Sm(t}+{Fk~-<J,jSJf}l<)'
[
11 1,
]
2
1 I /2 I 12
~ :3Sm(t)+3 (flk(t- rf dr) (fsJr)ir)
1 I t
=- Sm(t)+3 fk2(s)dsfSm(r)dr.
3 0 0
H(}cvien TrIm Thj Hur Chi
Phwng trinhsongphi tuytnlienh~viii
m(jthili loanCauchychophlldngtrinhviphanthlllJng
trang29
TudngW's6h~ngthuhai 12trongv€ phai cua(2.54)duQcdanhgia nhu
saunhov~lOba'tdiingthucCauchy-Schwartz.Ta co
(2.56) 12
I s
=2 NSm(s)dsflk'(s- T)I~Sm(T)dT
0 0
[(
I
)
~
(
l s
)
2
)
~
1
::;2 fSm{s)ds llflk'{S-T~~T ds
( )
2
1 lis
::;- fSm(s)ds+ 3Ids flk'{s- T~~T3 0 0 0
::; ! fSm(S)ds+ 3fdS(flk'{S-T~~T)
2
3 0 0 0
1 I 1 I
::; - fSm(s)ds+3t flk'(sfds fSm(T)dr.
3 0 0 0
Tit (2.44)-(2.56)tathuduQc
1
(
1 1 I
)
1
(2.57) III::; -Sm(t) + -+3fe(s)ds+3tflk'(s)12ds fSm(T)dT.
3 3 0 0 0
Ta suytit(2.46),(2.48),(2.50)- (2.53)va(2.57)ding
1 I 1 1 I
Sm(t)::;-C1 +3g2{t)+3flg'{sfds+- Sm(t)+ - fSm(s)ds3 0 3 30
1 I
+ (I+p)B2(O)fSm(s)ds+{I- p)B2(O)t+ fIIF{s~12ds
0 0
1 1
(
1 I 1
)
I
+ fSm(s)ds+- Sm(t)+ -+3 fe(s)ds+3t]k'(sfds fSm(T)dT
0 3 3 0 0 0
1 I 2 I
::; -C1 +3g2{t)+3flg'{sfds +-Sm(t) + fIIF{s~12ds
3 0 3 0
(
5 1 1
)
I
+ -+3fk2(s)ds+3t]k'(s)12ds fSm(T)dT
3 0 0 0
H9CvienTrJn Thj Hu~Chi
PhUdngtrinhsongphi tuytnlien hf vai
mQthili roanCauchychophudngtrinhviphiinthuang
trang30
hay
(2.58)
tfongdo
(2.59)
(2.60)
I
+ (1+p)B2(O)fSm(s)ds+(I-p)B2(O)t,
0
I
Sm(t)::;;D1(t)+ D2(t)fSm(T)dT,°
I I
D)(t)=C1 +3(l-p)B2(O)t+9g2(t)+9 flg'(s)12ds+3fIIF(sfds,° °
I I
D2(t) =5 + 3(1+p)B2(O)+ 9 fk2(s)ds+9tflk'(sf ds.° °
Vi H1(O,T)<-+Co([O,T]),tucacgiathiet(AJ, (AJ taguyfading
(2.61) ID/t)I::;;c7),a.e., 'v'tE[O,T],(;=1,2),
tfongdo c7) la ffiQth~ngs6chiph\!thuQcvao T. Do b6d~Gronwall,
tathudtt<;1ctu (2.58)-(2.61)ding
(2.62) Sm(t)::;;Cj.l)exp(tCj.2»)::;;Cn 'v'tE [O,T], 'v'T>O.
I
Baygio,tadn danhgiatichphan~u~(O,sfds.°
f)~t
(2.63)
(2.64)
Km(t)=:tsin(Al)
)=1 X 'J
rm(t) = ~w/o{a., costAi) + Pm)SiO~~i)]
J,. m '
fsin[A/t- .)]
(
I Wi
)--.;2I . !(Um(.),Um(.))-F(')'- 11 .. 11
d..
J=1 o AJ WJ
Khi do tu (2.13),(2.20),(2.21),taviet l<;tium(O,t)nhttsau
H(Jc vienTrdnThi Huf Chi
Phuangtrinhsongphi tuyln lienh? va;
m(jthili loanCauchychophuangtrinhviphanthlli1ng
trang31
(2.65)
I
um(O,t)=Ym(t)- 2 fKm(t-T)Pm(T)dL
0
Ta dn b6d€ sauday.
B6 d~2.3.Tant{lim(Jthlingso'C2>0 vam(Jthamdu(Jnglient~cD(t)
d(Jc19pvdi m saDcho
(2.66)
I I
]Y~(T)12dT ~ C2+ D(t) ]IJ(Um(T),U~(T))- F(T)112dT,
0 0
V'tE [O,T], V'T>O.
Chungminhb6d€ 2.3cothStlmtha'ytrong[2].
B6 d~2.4.Tant{lihaihlingsO'du(JngC?)va C}4)chiph~thu(JcvaoT
saDcho
(2.67) Ids
I
JK~(S - T)Pm(T)dT
I
2 ~ C}3)+ C}4)Ids ]u~(O,T)12dT ,
0 0 0 0
V'tE [O,T], V'T>O.
Chungminh.Tichphantungph~n,taco
(2.68)
s s
fK~(s - T)Pm(T)dT=Km(s)Pm(O)+ fKm(s- T)P~(T)dL
0 0
Khido
If K~{s- T)PJT)dTI~ IKm{s)pJo~+ flKm{s- T~lp~{T~dT
~ IKJs)Pm{O~+(flKm{s- Tt dT)Yz( fIP~{TtdT)Yz
~ IKm{s)Pm{O~+(fIKm{rtdr)Yz(fIP~{TtdT)Yz.
Blnhphu'dnghaiv€ saudonchphantheostathudu'<jc
(2.69)
Ids IlK:(s- r)P.(rJd{
H(}cvien TrJn Thi Hu? Chi
Phu(/fIgtrinhsongphi tuytnlienhevai
mQthili roanCauchychophu(/fIgtrinhviphanthuang
trang32
t I ,\' S
~ 2 P,;(o)fK;(s)ds + Ids fK;(r)dr fIP;(r)12dr
0 0 0 0
~ 2 fK;(s)ds
[
p,;(O)+Ids]p;(r)ldr
]
.
0 0 0
Chuydingtu(2.15)taco
(2.70) Pm(O)=g(O) + H(uom(O»,
(2.71)
r
P;(r) =g'(r) + H'(um(O,r»u~(O,r)- fk'(r-s)um(O,s)ds.
0
Dung ba'td~ngthuc (a+b+cy ~3(a2+b2+C2~\ia,b,cE R, ta suy tu (2.62),
(2.70),(2.71) vaA4 rang
(2.72) IP;(rt ~3Ig'(rt+3IH'(um(O,r)tlu~(O,rt
+3[flk'(r-s~luJo,s)dslr
~ 3Ig'(rt+3maxIH'(stlu~(O,rtISI$JCr
+3(flk'(r-st ds)(flum(O,stds).
Suy fa
,\ S ,\
(2.73) ]P;(r)12dr ~ 3 flg'(r)12dr+ 3 maxIH'(sf flu~(O,r)12dr
0 0 Isl$JCr 0
r r
+3 rdr flk'(r)12dr fu;(O,r)dr
0 0
S ,\
~ 3flg'(r)12dr +3 maxIH'(s)12flu~(o,rf dr
0 ISI$JCr 0
+3 rdr Ilk'(rf dr Iu;'(O,r)dr
0 0
,\ S
~ 3 flg'(r)12dr+ 3 max IH'(s)12flu~(O,r)12dr
0 Isl$JCr 0 '
H{Jc vien Tr&n Thi Hue Chi
PhlJang trinhsongphi tuytnlienh~vai
mQthili loan Cauchy cho phlJang trinh vi phan th11i1ng
trang33
s s
+3s flk'(r)12dr fu;'(O,r)dr.
0 0
Do do,tasuytu(2.71)- (2.73)ding
Ids IIK~('- fJP.(f)d{
(2.74)
::; 2 fK;'(S)ds
[
p,;(O)+ Ids]p~(r)ldr
]0 0 0
::; 2 IK;'(S)dS[{g(O)+H(Uom(O))Y+![3 [Ig'(rt dr
+3maxIH'(st [ Iu~(o,rt dr +3s[Ik'(rt dr[u;,(O,r)dr]dsIsl,;;.JCr
::; 2 IK;'(S)dS [{g(O)+H(uom(O))Y+!dS[3!Ig'(rt dr
+3maxIH'(st[Iu~(o,rt dr +3s'Ik'(rt dr' u;,(o,r)dr]Isl,;;.JCr -'>-'>
I I
::;2 fK;,(s)ds [(g(O)+H(uom(O))Y+3t]g'(r)12dr
0 0
I s
+3maxIH'(s)12Ids flu~(0,r)12dr
Isl';;.JCr 0 0
3 I I
+-t2 flk'(rt dr fu;,(0,r)dr ].2 0 0
Chuyding vdi m6i T >0,Km~ K m<:lnhtrong L2(0,T) khi m~ +00va
dungcaegiathie't(AI)- (A4)vacaeke'tqua(2.16),(2.62)va (2.74)ta
thudu'<;Jc(2.67).B6 d~2.4du'<;Jcchungminhhoanta't..
B6 d~2.5.TImt{Iihaihdngso'dLtangcis)va c?) chiph1;lthuQcVaG
TsaDcho
(2.75)
I
~u~(O,r)12dr::; cis), '\it E [O,T], '\iT> O.
0
H{Jc vien Tr&n Thi Hu~ Chi
PhUC1ngtrinh song phi tuytn Win h~vui
mQthili loan Cauchy cho phUC1ngtrinh vi phan thuang
trang34
(2.76)
I
~P~(rfdr~C?), \tte[O,T],\tT>O.
0
Chungminh.VI (2.76)Ia hc$quacua(2.62)va (2.75),tachidn chung
minhding(2.75).
I
u~(O,t)=r~(t)- 2 JK~(t- r)Pm(r)dr,
0
lu~(O,tt~ 2Ir~~t+8[!IK~(t-r~IPm(r~drJ.
Tu (2.67),sudt,}ngb5 d€ 2.3va 2.4,tathudu'<;lc
Ilu~(0,s)12ds ~2 ]r~(s)12ds +8 Ids
I
}K~(S- r)Pm(r)dr
I
2
0 0 0 0
(2.77)
I
~2C2+2 D(t) ]lj(um(r),u~(r»-F(r)112dr
0
I s
+8C~3)+ 8 C~4)Jds ]u~(0,r)12dr.
0 0
M~tkhactu(2.62)vacaeghithie't(r;), (f;) tathudu'<;lc
Ilj(um(t),u~(t))- F(t)112~21lj(um(t1u~(t)f +211F(t~12
~4 max BI2(s~Iu~(t)II~~"+4B; (0~IumII~P+21IF(t)112Isl~v'C,-
~4 max BI2(s~lu~(t~12a+4B;(0)lumll~P+21IF(t)112,I* v'C,-
VI 0<a ~1ta co 11-IIL2"~II-II.
V~y
(2.78)Ilj(um(t),u~(t))-F(t)II2~ 1Ij(um(t),u~(t))112+2 IF(t)II2
~
4 maxBI2(S)IIu~(tta+4B;(0) Ilum(t)II~P+211F(tt.
j..!sv'C,-
Dodo,sudt,}ng(2.47),(2.62)va(2.78)taco
H(Jc vienTrdnThi Huf Chi
Phllangtrinhsongphi tuye'nlienh~va;
miltbiJi roanCauchychophllangtrinhviphanthttiJng
trang35
(2.79) Ilf(x,t,um(t),u~(t))- F(x,t)11~ C?).
Cu6icling,tu(2.77)va(2.79)tathuduQCbatd~ngthuc
(2.80)
I I s
flu~(o,s)12ds~C}8)+8 C}4)Ids ~u~(o,1ldT,° 0 0
madi€u naydin de'n(2.75),dob6d€ Gronwall.
B6 d€ 2.5duQcchungminhhoantat..
Bl1fJc3. Qua gifJi hc;ln.
Tu (2.15),(2.47),(2.62),(2.75),(2.76)va (2.79),tasuyrading,t6nt<;li
mQtdayconcuaday{(um,Pm)},vin kyhi~ula {(um,Pm)},saocho
(2.81)
(2.82)
(2.83)
(2.84)
(2.85)
(2.86)
Um~ U trong L"'(O,T;V) ye'u *,
U~~ u' trongL"'(O,T;L2)ye'u*,
Um(O,t)~ u(O,t)trong L"'(O,T)ye'u *,
u~(O,t)~ u'(O,t)trongL2(O,T)ye'u,
f(um'u~)~ X trong L"'(O,T;L2)ye'u *,
Pm~ P trongH1(O,T)ye'u.
Do b6 d€ compactcuaLions (xem[8]),ta suyra tu (2.62),(2.75),
(2.81)va (2.82)ding,t6nt<;limQtdayconvin kyhi~ula {uJ saocho
(2.87)
(2.88)
um(O,t)~ u(O,t) m<;lnhtrong coao,TD,
um~u m<;lnhtrongL2(Qr)va a.e. (x,t)trongQr'
VI H lient\Ic,tasuyratu(2.15),(2.87)ding
(2.89)
I
Pm(t) ~ get)+H(u(O,t» - fk(t- s)u(O,s)ds=pet)
0
m<;lnhtrongcoao,TD.
Tu (2.86)va(2.89)tathuduQc
H9c vienTrdnThi Huf Chi
Phuongtrinhsongphi tuytnlienh~vui
m(jthili loanCauchychophuongtrinhviphanthudng
trang36
(2.90) p ==P a.e. trong QT'
QuagiOih~ntrong(2.14)nhC1v~lO(2.81),(2.82),(2.85),(2.89)va (2.90)
tathudu'Qc
d
-(u'~1v) + a(u(t1v)+ P(t)v(O)+ (x(t),v)=(F(t),v),'v'VEV.dt
Ta coth€ chungminhIDeomQtcachtu'dngu,tnhu'trong[10]ding
(2.91)
(2.92) u(O)=Uo' u'(O) =u1.
Khi do,d€ chungminhs1,1't6nt~icuanghi~mbai loan(2.1)- (2.5),ta
chidn chungminhdingX=j(u,u').BaygiC1chungtasedn b6d~sau
day.
B6d~2.6.Gillsa u Langhi~mcuabai (Dansau
(2.93)
(2.94)
Uti - Uxx +X=F, x E n =(0,1),0<t <T,
uAO,t)=P(t), u(1,t)=0,
(2.95)
(2.96)
u(x,O)=uo(x), u,(x,O)=u)(x),
U E L"'(O,T;V), u/ E L"'(0,T;L2), u,(O,t) E L2(0,T).
Khidotaco
(2.97)
/ /
!11u'~)12 + !llu(t)I~+ Jp(s)u'(O,s)ds+ J(X(s)- F(s1u'(s))ds2 2 0 0
~~llu)112+~lluoll~a.e.t E [O,T].
Hdn mla, ne'uUo=u1 =0 thi (2.97)xdyradl1ngthuc.
Chungminhb6d~2.6coth€ tlmthffytrong[2].
BaygiC1,tu(2.14)- (2.16)taco
(2.98) f(J(um(s1u~(s))-F(s1u~(s))ds= !IIUlm112+!lluomll~
0 2 2
H(Jc vien Tr&n Th; Huf Chi
PhUdng trinh song phi tuye'nlien h~vOi
milt hili toan Cauchy cho phudng trinh vi phan thudng
trang3?
- !llu~(t~12- !llu)t~l~- fp)s)u~(O,s}ds.2 2 0
Do b6 d€ 2.6,ta suytu (2.16),(2.81),(2.82),(2.84),(2.89)va (2.98)
r~ng
I
(2.99) limsupf(J(u)s),u~(s»-F(s1u~(s»)ds
m--H'" 0
~ !llull12+ !lluoll~- !llu'(t)122 2 2
I
- !llu(t)I~-fp(s)u'(O,s}ds2 0
I
~ f(X(s)-F(s),u'(s»)ds,a.e.tE[O,T].
0
B~ngeachdungl~plu~ngi5ngnhutrang[10]tachungminhduQcr~ng
X=f(u,u') a.e.trangQT'S\!'t6ntf;linghi~mduQcchungminh.
ElidC4. Sf!duynhatnghi~m.
Bay giOtagia sli'r~ngfJ =1trong(f;) va H thoa (.4,).
Gia sli' (up~),(u2,~)la hainghi~mcuabai tmin(2.1)- (2.5).Khi d6
u=U1-u2, P =~-~ thoabaitminsauday
Ull - u""+X =0, 0<x <1,0<t <T,
ux(O,t)=pet), u(1,t)=0,
u(x,O) = Ul (x,O) = 0,
x=f(upU~)- f(u2,u;),
(2.100)
I
P(t) =P. (t)- P2(t)=H(u1(O,t))- H(u2(O,t))- fk(t - s)u(O,s)ds,
0
u; E L"'(O,T;V), u: E L"'(0,T;L2), u: (O,t)E L2(0,T),
P'EH1(0,T), i=I,2.
H9C vien Tr&n Thi Huf Chi
PhUdngtrinhsongphi tuytnlienhevbi
m(jthili loanCauchychophudngtrinhviphanthullng
trang38
Sad\mgb6d€ 2.6voi Uo=Ul=0, F= 0, tathuduQc
(2.101)
I
~"u'(t~12+ ~"u(t~l~+ fp(s)u'(O,s~s2 2 0
I
+ f(i(s1u'(s))ds=0 a.e. t E [O,T].
0
E>~t
(2.102) o-~)=Ilu'~~12+Ilu(t~I~,HJ(t) =H(uJ(O,t)) - H(U2(O,t)).
Thay P (t), i vao(2.101)taco
~llu'(t~12+ ~"u(t~l~2 2
+I(H(u((O,s))-H(U2(O,S))-rk(s-r)u(O,r~r)u'(O,s~s
+ I(J(UI'U;)- f(U2,U;),U'(s))ds =0,
vachuyr~nghamf la khonggiamd6ivoibienthuhai,taco
(2.103)
I
o-(t) +2 fH((s)u'(o,s~s
0
I
~ 2 ]If(u((s1u;(s))- f(U2(S),U;(s)~lllu'(s~lds
0
I s
+2 fu'(O,s~sfk(s-r)u(O,r~r.
0 0
Dunggiathiet(F;)taguyrar~ng
(2.104) Ilf(UI (s1U;(s)) - f(U2 (s1U;(s)~I ~ IIB2 ~u; (s ~~lllu(s ~Iv .
Dungnchphantungphftntrongnchphancu6icungtrang(2.103),ta
duQc
(2.105)
I s
J =2 fu'(O,s~sfk(s-r)u(O,r~r
0 0
H(Jc vienTrtinThi Hue Chi
PhUlJng trinh song phi tuytn lien hf vcR
mQthili loan Cauchy cho phulJng trinh vi phtin thuang
trang39
1 I s
=2u(0,t)fk(t-r)u(O,r)dr- 2 fu(O,s)dsfk'(s-r)u(O,r)dr.
0 0 0
Ta Suyfa tu(2.102)va(2105)ding
(2.106)
(
I
)
~
(
I
)
~
IJI :s;2 ~ fe(r)dr fu(r)dr
(
I
)
~I
+2Ji }k'(rtdr fu(r)dr
1 1 1
:s;13,u(t)+ - fe{r)dr fu{r)dr
1310 0
(
I
)
~1
+2Ji }k'(rtdr fu(r)dr, V13,>0.
f)~t
(2.107) M = max IluiIIL~ ( r.v)' ml =mill H'(s), m2=maxIH"(s~.1=',2 0, . !slsM IslsM
Tu giathie'tA6taco ml>-1.
M~tkhae,donehphantungphffnva (2.107),tasuyfading
1 1
[
I d
]
2 fH,(s)u'(O,s)ds=2 f f-H(uJO,s)+Ou(o,s))deu'(O,s)ds
0 0 ode
I
=U2(0,t)fH'(U2(0,S)+0u(0,s))de
0
(2.108)
1 I
f u2(0,s)dsfH"(U2(0,S)+Ou(O,s)Xu;(O,s)+Ou'(o,s))de
0 0
1
~ mJ U2(0,t)- m2 f u2(0,s)~u;(0,s)+lu;(0,s~}is
0
1
~ m) U2(0,t) - m2 f u(s) ~u;(o,s)+lu;(O,s)}is.
0
Tu(2.103)- (2.105)va (2.108),tathudu'<Je
H(Jc vien Tr&n Thi Huf Chi
Phlldngtrinhsongphi tuytnlienh~vdi
mi;thili loanCauchychophlldngtrinhviphiinthllilng
trang40
o-(t)+2!Ht (s)u'(O,s)ds ~2LIIB2~u;(s~)lllu(s)Ivllu'(s)Ids+ IJI.
Ma
m)u2 (O,t)- m2 !o-(s~u; (O,s~ + lu; (O,s~}is+ o-(t)
~ o-(t)+2!Ht(s)u'(O,s)ds
~ 2 ! IIB2~u; (s~)llIu(s)Iv Ilu'(s )Ids + IJI
~2!IIB2~u;(s))p-(s)ds+ IJI,
(2.109)
I
o-(t)+ mtU2(0,t)~ m2J o-(s)~u;(O,s~+lu;(O,s)l}is
0
I
+]IB2~u;(s))10-(s)ds+IJI ==17(t).
0
ChuY tit(2.107),taco
(2.110) (1+mt)u2(0,t)~o-(t)+ mtu2(0,t)~ 17(t).
Ta suytit(2.106),(2.109)va(2.110)ding
(2.111) o-(t)+ [ml + P2(1 + mJ] U2(0,t)
~ (1 + P2)17(t)
I
~(1 + P2) ~m2~u;(0,s~+lu~(0,s))+IIB2~u;(s))Ip.(s)ds
0
+(1 + P2)PIo-(t)
(
1 I
(
I
)
Yz
J
I
+(1+ P2) - Jk2(r)dr+2~ JIk'(rtdr Jo-(s)ds,
PIO 0 0
VPt >0,VP2 >0.
ChQn PI>0, P2>0saDcho ml+ P2(1 + m)) :2:~,(1 + P2)PI~ ~va
d~t
H9CvienTrim ThiHu~Chi
Phwng trinhsongphi tuytnlienh~VIii
mIlthili loanCauchychophudngtrinhviphdnthui'lng
trang41
(2.112) R](t) =2(1 + fJ2)[m2~u;(0,s~+lu;(0,s~)+IIB2~u;(s~~1
+ ~IIlkll~2(O.T)+2#WIIL2(O'T)]'
Khi d6tu(2.111)va (2.112)tac6
(2.113)
I
IT(t) + U2(0,t) ::; fR1(sXlT(S)+U2(0,S))1s.
0
i.e. IT(t)+ U2(0,t)==0 nhob6 d~Gronwall.
Dinh ly 2.1du'Qchungminhhoanta-t..
Chuthich2.2.Di~ukic$nk(O)=0chilakYthu~t,tac6th6boqua.
Trongtru'onghQpriengcuaH vdi H(s)=hs,h>0,dinhly saudayla hc$
quacuadinhly 2.1.
Dinh If 2.2.Gill sa (AI) - (AJ va (FI) - (F3)dung.Khi do VlJimJi
T>0,hai loan (2.1)- (2.5)coit nhdtmQtnghi?mye'u(u,P)thoa(2.6),
(2.7).
Hdn mla, ne'u ~=1 trong(p;)vahamB2thoa (F4),khi do nghi?m
nayladuynhdt.
Dinhly 2.2chocungke'tquatrong[10]nhu'nggiathie't:"BJ kh6ng
giam"dildungtrong[10]thlkh6ngdn thie'td day.
Trongtru'onghQpriengvdi k(t)==0,ke'tquasaudayla hc$quacua
dinhly 2.1.
DinhIf 2.3.Gill sa (AJ, (Az),(A4)va (f;) - (p;)dung.Khi do,WlimJi
T >0, hai loan (2.1)-(2.4) tlJdngungwYiP =g co it nhdtmQtnghi?m
ye'uuthoa(1.4).
H(Jc vienTrdnTh;Huf Chi
Phuangtrinhsongph; tuytnlien heva;
miltbili loanCauchychophuangtrinhviphiinthul1ng
trang42
HCInmla nlu ~=1 trang(F;)vahamH vaB2 zJn iuf/tthoacaegid
thilt (FJ va (A6).khidonghi~mnayia duynhai
Chti thich2.3.Giangnhttchuthfch2.2,dinh192.3clingchocungket
quanhtttrang[7]nhttnggiatiller"B( kh6nggiam"dii dungtrong[7]
thikh6ngdn thiet(jday.