Luận văn Phương trình sóng tuyến tính với điều kiện biên chứa phương trình tích phân tuyến tính

PHƯƠNG TRÌNH SÓNG TUYẾN TÍNH VỚI ĐIỀU KIỆN BIÊN CHỨA PHƯƠNG TRÌNH TÍCH PHÂN TUYẾN TÍNH NGUYỄN VĂN PHONG Trang nhan đề Mục lục Chương0: Phần mở đầu. Chương1: Một số công cụ chuẩn bị. Chương2: Sự tồn tại và duy nhất nghiệm. Chương3: Sự ổn định của nghiệm. Chương4: Khai triển tiệm cận nghiệm. Chương5: Khai triển tiệm cận của nghiệm yếu theo hai tham số. Kết luận Tài liệu tham khảo

pdf15 trang | Chia sẻ: maiphuongtl | Lượt xem: 1808 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Luận văn Phương trình sóng tuyến tính với điều kiện biên chứa phương trình tích phân tuyến tính, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
13 CHu'ONG2. sTjTON Ti}I vA DUY NHAT NGHItM Trangchuangnay,chungtoi trlnhbaydinhly t6nt<;tiva duynha'tcua nghi<$my€u loancl;lcchobailoan:TimmQtc~pham(u(x,t),pet))thoa Utt- Uxx +Ku +AUt=F(x,t), 0<x<1,0<t<T, (2.1) Ux(0,t) =P(t), (2.2) ux(1,t)=-KJu(1,t), (2.3) u(x,O)=uo(x),Ut(x,O)=uJ(x), (2.4) pet)=get)+hu(O,t)- £k(t- s)u(O,s)ds, (2.5) trangd6 uo'uJ'F, g, k la cachams6chotruocthoacacdi~uki<$naod6mata sechirasau. ChungminhduQcdlja vao phuongphapGalerkin lien h<$voi cac danhgia lien nghi<$m,tu d6 rutra cacdayconhQitl;ly€u v~nghi<$mtrongcackhonggian hamthichhQpnhovaomQts6phepnhungcompact. Truoclientathanhl~pcacgiathi€t sau (HI) UoEH2, uJEH\ (H2) K ? 0,A ? 0, h? 0,KJ >0, (H3)F, F; EL\QT); QT=Qx(O,T), (H4) k E H2(0,T), (Hs) g E H2(0,T). 14 Dfnhly 2.1.Gidsa (HI) - (Hs) dung.Khi dovelimJi T >0, t6nt(Iiduynh[{tmQt nghi?myfu (u,P) cuahili toan(2.1)- (2.5)saDcho UELOO(0,T;H2), utELOO(O,T;HI), utIELOO(0,T;L2), u(O,.), u(I,.), P E wi,OO(0,T). ChUngminh.G6m nhi~ubuck B1ioc1.Xap xl Galerkin. Xet mQtday{Wj}la mQtcosdde'mduQctrongH2. Ta tlmnghi~mxffpXl cuabaitmin(2.1)- (2.5)duoid~ng m um(t)=I Cmj(t)Wj' j=i (2.6) trongdo Cmj(t) thoamanh~phuongtrlnhvi phansau (u~(t),Wj) +(umx(t),Wjx)+Kium(1,t)w/l) +Pm(t)w/O) +(Kum(t)+AU~(t),Wj) =(F(t), Wj), 1~j ~m, (2.7) Pm(t)=g(t)+hum(0,t)- 1k(t- s)Um(0, S)ds, (2.8) m Um(O)=UOm=IamjWj ~ Uom~nhtrongH2, j=i (2.9) m u~(O)=Uim=IfJmjWj ~ UI m~nhtrongHi. j=I H~(2.7)- (2.9)duQcvie'tl~iduoid~ng { m m m ~aij(c~j(t)+AC~j(t))+~bijcmj(t)=/;(t)+~dij 1k(t-s)cm/s)ds, Cmi(O)=ami'C~i(O)=fJmi' 1~i ~m, (2.10) 15 trongdo { f'(~ =(F(t),Wi )- g(t)W,(0), Gij=(Wi' W) ), dij=Wi(O)W)(0),bH_IW ,w )+Kl w.(l)w.(l) +Ka.. +hdH'l} \ IX JX I J l} l} (2.11) Khi dotacob6d~sail B6 d~2.1. Gidsit (HI)- (Hs) ill dung.V6'imQiT >0 effdink,khidoh~(2.10)- (2.11)coduynhatmQtnghi~mtren[0,T]. . ChUngminh. Bo quachi s6 m, tavie'tepap Pi tu'dngling thaycho emPamPPmi vakyhi~ul'.li e(t)=(e](t), e2(t),...,em(t)f ' el (t) =(e{(t), ei (t), ..., e~(t)t' ell (t) =(e{1(t), e~(t),..., e~(t)t' (2.12) A =(aij)'B =(bij)'D =(dij)' Ta vie'tl'.lih~(2.10)- (2.21)du'did'.lngvecto fA (ell(t)+Ael(t))+Be(t)=fer)+1k(t- s)De(s)ds, 1ceO)=a, el(0) =p. (2.13) . Chuyding A khadaova khongma'tinht6ngquattagiaSITdng A>O.Tich phan(2.13)tathudu'Qc e(t)=J(t)-1 e-W-r)drJ: A-IBe(T)dT +1e-A(t-r)drIdT Ik(T-s)De(s)ds, (2.14) vdi ](t)=a+ ~(l-e-At)p+ le-w-r)drIA-If(T)dT. (2.15) m Vdi m6i T> 0, ta d~tY =CO([O,T];IRm),Ilell=suple(t)II' le(t)l]=Llei(t)I. Ky O"'t",r i=1 m hi~uchufin cuamatr~nA =(aij) la !IAII=~~xLlaijl. LJ_m i=1 Chuyr~ngtaconco IAc(t)11~IIAlllc(t)II' Vc E Y, Vt E [O,T]. Bay giO,vdi m6i c =(cpc2,...,cm)E Y, tadinhnghlatmintii'H xacdinhbCJi Hc(t) =](t) -£ e-W-r)drrA-IBc(T)dT +£e-A(t-r)drrdT [k(T-S)A-IDc(s)ds, VtE[O,T]. Tu (2.17)tasuyradng H bi€n Y vaochinhno. Ta sechungminhr~ng,t6nt~inEN, saocho Hn ==H[Hn-I]:Y ~ Y, lamt)tanhx~co. Baygio,vdimQic,dEY, vdimQit E[O,T],taco Hc(t)-Hd(t) =£e-W-r)dr rdT[k(T-S)A-ID[c(s)-d(s)]ds -£ e-W-r)drrA-IB[c(T)-d(T)]dT. Ta sechungminh IHnc(t)- Hnd(t)11~ (2~)!D;t2nIIc-dll, Vn E N, trongdo DT = IIA-IDllllkIILI(O,T)+IIA-IBII. Th~tv~y,taco IHc(t)- Hd(t)11~ £e-W-r)dr dT[lk(T- s)IIIA-IDIIIc(s)-d(s)11ds +£e-W-r)drrIIA-IBlllc(T)-d(T)11dr. Dodotasuytu(2.20)r~ng IHc(t)- Hd(t)11~IIA-IDII£ e-W-r)drrdT[lk(B)ldBllc - dll +IIA-IBII£e-w-r)rdrllc- dll 16 (2.16) (2.17) (2.18) (2.19) (2.20) 17 ~~(1IA-1DllllkIILl(0,T)+IIA-IBII)t211e- dll 1 =- DTt211e- dll.2 (2.21) V~y(2.19)dungvoi n =1.Giil sit (2.19)dungvoi n ~1.Ta c6 IHn+le(t)- Hn+ld(t)11=IH[Hne](t) - H[Hnd](t)11 ~ £e-w-r)dr f: dr Ilk(r-s)IIIA-1DIIIHne(s)-Hnd(s)11 ds +1e-Jc(t-r)drEIIA-IBIIIHne(r) - Hnd(r)11 dr ~ le-w-r)dr Edr Ilk(r-s)IIIA-IDII(2~)!D;s2nlle-dllds +re-Jc(t-r)drf' II A-IB II~Dnr2nlle-dlldr1 Jo (2n)! T ~IIA-1DII(~:)!lie- dllllkilLI(O,T)1e-W-r) dr Er2ndr +IIA-1BII(~:)!lie- dll£e-W-r) dr rr2ndr Dn 2n+2 < L- II A-1Dllllkll t Ile-d il - (2n)! LI(O,TJ(2n+1)(2n+2) Dn t2n+2 +(2;)!IIA-IBII(2n+1)(2n+2)lle-dll = D;+I t2n+21Ie-dll. (2n +2)! (2.22) Do d6(2.19)dungvoi mQinEN. Til (2.19),tathudu<jc II Hne- Hnd ll ~~ D;T2nlie- dll~~ (.jD;T)2n lie- dll.(2n)! (2n)! (2.23) Do ~(JDTT)2n ~ 0 khi n ~ +00nen c6 no~1 sao cho 1 (JDTT )2110 <1.(2n)! (2no)! 18 V~y Brio:Y ~ Y hi anhx~co.Ta suyradingB comQtdi~mba'tdQngduynha't trong Y, nghla la h~(2.10)- (2.11)co mQtnghi~mduy nha'tum(t)tren do~n [0,T]. Bd8c2.DanhgialiennghifmI Thay(2.8)vao(2.7).Khi donhanphuongtrinhthuj cua(2.7)bdi C~j(t) va la'yt6ngtheoj, saudotichphantheobie"nthaigiantu0 de"nt, taduQc 8m(t)=8m(0)-2 £g(s)u~(O,s)ds +2£ u~(O,s)ds1k(S-T)Um(O,T)dT +2£(F(s),u~(s»)ds, (2.24) trongdo 8m(t) =llu~(t)112+llumx(t)112+Kllum(t)112 +K1u~(l,t)+hu~(O,t)+2-1£llu~(s)112ds. (2.25) sa d\lngcacghlthie"t(H4),(Hs)' la'ytichphantUngph~ntheobie"nthaigiantu 0 de"nt , taduQc 8m(t) =8m(0)+2g(0)uOm(0) -2g(t)um(0,t) +2£ g' (s)um(0,s)ds +2um(0,t)£k(t-T)Um(O,T)dT-2k(0)£u~(O,s)ds -2 £um(O,s)dslk'(s-T)um(O,T)dT +2£(F(s),u~(s»)ds. (2.26) Khi do,sad\lng(2.9),(2.25)taco Sm(0)+2Ig(O)uom(O)I~C1voimQim. (2.27) 19 sa dt,mgbfftd~ngthuc 2abO, (2.28) tathudu'<Jctu (2.26)ding Sm(t) <;;;,C1 +~g2(t)+/3u~(O,t)+~ Lli (s)12ds+/3£ u~(O,s)ds+/3u~(O,t)/3 /3 +~I £k(t-r)um(O,r)drl' +2Ik(O)1£u;(0,s)ds+~£IIF(s)II'ds +fJ rllu~(s)112ds+r[fJU;(O,S)+~Irk'(s- T)Um(O,T)dTI}s =C1 +~ [g2(t)+ Llg!(s)r ds+ L!IF(s)112ds] +2/3u~(0,t) +2(/3+Ik(O)!)£ u~(O,s)ds+/3£llu~(s)112ds +~11: k(t- T)Um(O,T)dTI' +~£dslrk'(s- T)Um(O,T)df (2.29) Chli Y ding, IIvxl12+K1v2(1)~Collvll:1,voimQi vEH1, (2.30) trongdo Co=.!.mill{I,K1}.3 M~tkhactu(2.25)vab6d~1.1,taco lum(0, 01 <;;;,Ilurn(Ollc(o) <;;;,/ilium (OIIHl <;;;,(/i / JCo ).JSrn (t) ==Co.JSm (t). (2.31) Tu(2.30)- (2.31)tacodanhgiasan 20 Sm(t)~c1+~[g2(t)+£lgl(S)12ds+£IIF(s)112ds]+2fJC~Sm(t) +2C~(fJ+lk(O)1)£Sm(s)ds+fJC~£Sm(s)ds 1 1 1 2 1 I s 1 2 +fJ £k(t-r)um(O,r)dr +fJ £ds lkl(s-r)um(O,r)dr . (2.32) M~tkhac,apdl.mgbfttd£ngthilcCauchy- Schwarz,tacodanhgiachohairich phancu6itrongv€ phaicua(2.32),nhusau Tichphanthilnhftt: 1 I 1 2 1 fJ £k(t-r)um(O,r)dr ~ fJ £e(B)dB£u~(O,r)dr ~(C~I fJ) £e(B)dB £Sm(r)dr ~(C~I fJ)llkll~2(O,T)£Sm(r)dr. (2.33) Tichphanthilhai: ~idsI L' k' (s - r)um(0,r)drl' ,; ~ilk'(17)1'dBi u~(0,r)dr -2 ~C;t £lkl(B)12dB£Sm(r)dr -2 tCot li e 11 2 ['Sm(r)dr. ~ fJ [2(O,T).10 (2.34) ChQnfJ saocho 0<2fJC~~1/2. Sa dl.mgcaedanhgiatrenvatu(2.30)- (2.34), taco Sm(t)~gl(t)+M}l)£Sm(r)dr, (2.35) 21 trongdo gl(t)=2CI+; (g2(t)+Ilg/II:2(0,T)+IIFII~2(QT))' -2 - 2 - 2 2C° II 11 2 M}I) =2CofJ+4CO(fJ+lk(O)I)+-(I+T) k HI' fJ (2.36) Tu HI(O,T)4CO([O,TJ) va giathie't(Hs), tasuyradingt6nt~ih~ngsf)M?) ChIph\lthuQcvaoT saocho IgI(t)I::;;M?),a.e,tE[O,T]. (2.37) Dodo s (t) <M(2) + M(1) rs (-r)d-rm - T T Jo m ' O::;;t::;;T. (2.38) Ap d\lngb6d~Gronwall,tathuduQc Sm(t)::;;M?) exp(tM}l))::;;MT VtE[O,T]. (2.39) Bu'oc3.Dcinhgiciliennghi~mII: £)~oham(2.7)theobie'nt taduQc (u:(t), wi) +(u~x(t),Wix)+Klu~(t)w/l) +P~(t)W/O) +(Ku~(t)+AU~(t),Wi) =(F;, Wi)' 1::;;j::;;m. (2.40) Nhanphuongtrlnhthli j cua(2.40)bdi c~(t), la'yt6ngtheoj, saudotich phantheobie'nthaigiantu0 de'nt , saukhis~pxe'pl~itaco Xm(t)=Xm(O)-2 Lg/(s)u~(O,s)ds +2£[k(O)um(O,S)+rk/(S-T)Um(O,T)dT}~(O,s)ds +2£(FI (s),u~(s))ds, (2.41) 22 trongdo Xm(t) =Ilu~(t)llz+llu~xIIz +Kllu~(t)llz +K1Iu~(l,t)lz+hlu~(O,t)lz+2A£llu~(T)lrdT. (2.42) Tichphantungphantheobie'nthaigiantu 0 de'nt cua(2.41),taco Xm(t)=Xm(O)+2g1(O)Ulm(0) -2gl(t)u~(0,t)+2£glf(s)u~(O,s)ds +2[ k(O)um(0,t) + £ kl (t - s)um(0,s)ds] u~(0, t) -2k(0)uOm(0)Ulm(0)-2 £[k(O)U~(O,T)+kl(O)um(O,T) t +re(T-s)um(O,s)ds]u~(O,T)dT+2f(F1(s),u~(s))ds0 =X m(0) +2g1(0)u1m(0) -2k(0)uom(O)Ulm(0) +kl(O)u;m(0) -kl (O)u~(0,t) -2g1(t)u~(0,t) +2k(0)um(0,t)u~(0,t) +2£ gll(s)u~(0,s)ds -2k(0) £IU~(O,T)lzdT +2u~(0,t)£kl(t-s)um(O,s)ds -2 £ u~(O,T)dTrkif (T- s)um(0,s)ds+2£(FI (s),u~(s))ds. (2.43) Bautien,tasuyratU(2.9),(2.42),(H4),(Hs) r~ng IXm(0) +2g1(0)u1m(0) - 2k(0)uom(O)Ulm(0)+kl (O)u;m(0)1 ~Cz+llu~(O)llz, (2.44) trongdo Cz chIphl;lthuQcV~lOUo'Upg, k, K, Kp h. Mi;Ukhactu(2.7)taco 23 "u~(O)IIZ-(uomxx,u~(O»)+(Kuom+AU1m'U~(0»)=(F(O),u~(O»). Dodo Ilu~(O)" ~ Iluomxxll+ Klluom 11+A11Ulm11+ IIF(O)/I. (2.45) Ta suyratIT(2.9)va(2.45)r~ng IIU~(O)II~ C3, (2.46) trongdo C3lah~ngs6chIphl;lthuQcvaouo'Ul'F, K, A. TIT (2.42),vab6d€ 1.1taco IIU~(t)IICO(Q)~J2llu~(t)tl ~CoJXm(I). (2.47) TIT(2.42),(2.44)va(2.46),tathuduQc X m(I) ~Cz +C; +Ikl(0)1u~(0,I) +21gl(I)u~(0,1)1+2Ik(0)um(0,I)u~(0,1)1 +2£lgll(S)U~(O,s)lds+2Ik(0)1Llu~(O,T)lzdT +2Iu~(0,t)1£lkl(I-S)Um(O,s)lds +2£IU~(O,T)ldTrlkll(T-S)Um(O,s)lds +2£I(F1(s),u~(s»)lds. (2.48) Sando,sadl;lngbfitd~ngthlic(2.31),(2.39),(2.47),tathuduQctIT(2.48),r~ng Xm(t) ~Cz +C; +Ikl(0)1C~MT +21gl(1)1CoJXm (I) +2Ik(0)IC~~MT.~Xm(l)+2CoLlgll(S)IJxm(s)ds +2Ik(0)lc~£Xm(T)dT+2C~~MT£lkl(B)ldB.JXm(T) 24 +2C~~MT tie(B)1 dB.!) Xm (-r)dT + £IIF(T)112dT+ ! Xm(T)dT. (2.49) Ta sad\lngbfttd~ngthuc(2.28)vdi (3=1/4,tu(2.49)taco Xm(t)~C2+ci +Ikl(0)1C~MT+4(lg!(t)1Cor +(1/4)Xm(t) +4e(0)C~MT+(1/4)Xm(t)+4C~£Ig!!(s)12ds +£ Xm(s)ds +2Ik(0)1C~£ Xm(T)dT+4C~MT(£Ik! (B)ldBr +(1/4)Xm(t) +C~MTt(!le(B)ldBr +£Xm(T)dT +£IIF(T)112dT+ £Xm(T)dT 3 -2 I I -4 ~4Xm(t) +C2+ci +COMTk/(O) +4CoMTe(0) +4C~ Il g// 1/22 +4C~MT "kll~I(OT) +C~MTT llk// 1121 +IIFII~2 (Q )L (O,T) , L (O,T) T +4C~Ig/ (tJr +(3+24C~/k(OJ/J[ Xm(rJdr. (2.50) Chli Y dingH1(0,T)4 CO ([O,T]),tu(2.50)vacacghlthi€t (H3)-(Hs), tasuyra dng Xm(t)~M?)+Mf4)£Xm(T)dT, VtE[O,T], (2.51) -2 trongdo Mf4)=12+8Co Ik(o)1 va M?) la h~ngs6chiph\lthuQcvaoT, k, g va F. Sad\lngb6d6Gronwall,tu(2.51)taco Xm(t)~Mf3)exp(tMf4))~M;,Vt E [O,T]. (2.52) 25 M~itkhac,tasuyratu(2.8),(2.25)va(2.39),r~ng IlprnIIWl,OO(o,T)~M?), 'v'te[O,T]. (2.53) Blioc 4: Quagiai ht;m Tu (2.25),(2.39),(2.42)va (2.53),tasuyra r~ngt6nt~imQtdayconcuaday {(urn,Prn)}v~nkyhi~ula {(urn,Prn)}'saocho Urn~U trongLoo(O,T;HI)ye'u*, (2.54) U~~ ul trong Loo(0,T; HI) ye'u*, (2.55) U: ~dl trongLoo(0,T;L2)ye'u*, (2.56) Urn(0,t)~ u(O,t)trongWI,oo(O,T)ye'u*, (2.57) Urn(1,t)~ u(1,t) trongwl,oo(0,T) ye'u* , (2.58) Prn(t)~ pet) trongWl,oo(0,T) ye'u*. (2.59) Do b6d6compactcuaLions( xemb6d6 1.8), tasuyratu(2.54),(2.54),(2.57) va(2.58)r~ng,t6nt~imQtdayconv~nkyhi~ula {urn}'saocho Urn~ U m~nhtrong L2(Qr ), (2.60) U~~ ul m~nhtrong L2(Qr ), (2.61) Urn(0,t)~ u(O,t) m~nhtrongCO([0,TD, (2.62) Urn(1,t) ~ u(1,t) m~nhtrongCO([0,TD. (2.63) Tu (2.8),(2.62),taco Prn(t)~ g(t)+hu(O,t)- 1k(t- s)u(O,s)ds==pet) m~nhtrongCO([0,TD . (2.64) Tu (2.59)va(2.64)tathuduQc 26 P(t)=P(t). (2.65) QuagiOih~ntrong(2.7),(2.9),tac6u thoamanphuongtrlnh (u//,v)+(ux,vx)+Klu(l)v(l) +P(t)v(O)+(Ku +Au/,v) =(F, v), '\IvEHI, U(O)=uo' d (0)=UI' (2.66) M~tkhac,tac6tu (H3)va(2.66)ding Uxx=ul/+Ku+Ad -FELOO(0,T;L2(o.)). Dod6 U E Loo(0, T; H2). Slf t6nt~inghi~mduQcchungminhho~mt§t. Btioc 5.Sl!duynhdtnghi~m Giii sa (up~),(U2'~)1ahainghi~my€u cuabaitoan(2.1)- (2.5)saocho Ui ELOO(0,T;H2), u; ELOO(O,T;HI), u;/ELOO(0,T;L2), Ui(0,.), Ui(1,.), 1>;E Wl,oo(0,T), i =1,2. (2.67) Khi d6 U =UI - U2' P =~- ~thoamanbaitoanbi€n phansau (UI/,v) +(ux,vx)+KIU(l)v(I)+P(t)v(O)+(Ku+Ad,v)=0, '\IvEH\ (2.68) U(O)=ul (0) =0, pet)=hu(O,t)- £k(t- s)u(O,s)ds. Ta l§y v=u/ trong(2.68),saud6tichphantheot , tac6 8(t)=21d(0,r)drIk(r-s)u(O,s)ds, (2.69) trongd6 27 5(t)=IIU'(t)II2 +Ilux(t)II2+hu2(0,t) +KIU2(I,t) +Kllu(t)112+2.-t£llu'(s)W ds. (2.70) Tichphantungphgntheot (jv~phaicua(2.69)ta du'<;Jc 5(t) =2u(0,t) £ k(t - s)u(O,s)ds -2k(0)£U2 (0,r)dr -2 £u(O,r)drrk'(r-s)u(O,s)ds. (2.71) M~tkhactu(2.30),(2.70)vab6d~1.1,tathudu'<;Jc lum(0,t)1~Ilum(t)llqo)~hilUm (t)IIHI~(h / .JCo)~5(t) ==Co~5(t). (2.72) Tu (2.71),(2.72)va(2.28)tasuyrading 15(t)1~2C~~5(t)£lk(t-s)I~5(s)ds+2Ik(0)IC~£5(r)dr +2C~£~5(r)drrlkl(r-s)I~5(s)ds. ~(1/2)5(t) +2C~£k2(B)dB£5(s)ds+2Ik(0)IC~£ 5(s)ds 2 ( r 2 ) 1/2 r +2CoJi 11kl(B)IdB 15(s)ds I I £~-5(t) +-mT 5(s)ds,2 2 (2.73) trongdo mT=4Ik(0)IC~+4C~Ilkll~2(OT ) +4c~JT lleI1 2 ., L (O,T) (2.74) Do do,tu(2.73),tasuyrading 5(t)~mT£5(s)ds VtE[O,T]. (2.75) Theob6d~Gronwalltaco 5 ==0 vadinhIf 2.1du'<;JcchUngminhhoantfft .

Các file đính kèm theo tài liệu này:

  • pdf4.pdf
  • pdf0.pdf
  • pdf1.pdf
  • pdf2_2.pdf
  • pdf3.pdf
  • pdf5.pdf
  • pdf6.pdf
  • pdf7.pdf
  • pdf8.pdf
  • pdf9.pdf
Tài liệu liên quan