PHƯƠNG TRÌNH SÓNG TUYẾN TÍNH VỚI ĐIỀU KIỆN BIÊN CHỨA PHƯƠNG TRÌNH TÍCH PHÂN TUYẾN TÍNH
NGUYỄN VĂN PHONG
Trang nhan đề
Mục lục
Chương0: Phần mở đầu.
Chương1: Một số công cụ chuẩn bị.
Chương2: Sự tồn tại và duy nhất nghiệm.
Chương3: Sự ổn định của nghiệm.
Chương4: Khai triển tiệm cận nghiệm.
Chương5: Khai triển tiệm cận của nghiệm yếu theo hai tham số.
Kết luận
Tài liệu tham khảo
15 trang |
Chia sẻ: maiphuongtl | Lượt xem: 1821 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Luận văn Phương trình sóng tuyến tính với điều kiện biên chứa phương trình tích phân tuyến tính, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
13
CHu'ONG2. sTjTON Ti}I vA DUY NHAT NGHItM
Trangchuangnay,chungtoi trlnhbaydinhly t6nt<;tiva duynha'tcua
nghi<$my€u loancl;lcchobailoan:TimmQtc~pham(u(x,t),pet))thoa
Utt- Uxx +Ku +AUt=F(x,t), 0<x<1,0<t<T, (2.1)
Ux(0,t) =P(t), (2.2)
ux(1,t)=-KJu(1,t), (2.3)
u(x,O)=uo(x),Ut(x,O)=uJ(x), (2.4)
pet)=get)+hu(O,t)- £k(t- s)u(O,s)ds, (2.5)
trangd6 uo'uJ'F, g, k la cachams6chotruocthoacacdi~uki<$naod6mata
sechirasau.
ChungminhduQcdlja vao phuongphapGalerkin lien h<$voi cac danhgia
lien nghi<$m,tu d6 rutra cacdayconhQitl;ly€u v~nghi<$mtrongcackhonggian
hamthichhQpnhovaomQts6phepnhungcompact.
Truoclientathanhl~pcacgiathi€t sau
(HI) UoEH2, uJEH\
(H2) K ? 0,A ? 0, h? 0,KJ >0,
(H3)F, F; EL\QT); QT=Qx(O,T),
(H4) k E H2(0,T),
(Hs) g E H2(0,T).
14
Dfnhly 2.1.Gidsa (HI) - (Hs) dung.Khi dovelimJi T >0, t6nt(Iiduynh[{tmQt
nghi?myfu (u,P) cuahili toan(2.1)- (2.5)saDcho
UELOO(0,T;H2), utELOO(O,T;HI), utIELOO(0,T;L2),
u(O,.), u(I,.), P E wi,OO(0,T).
ChUngminh.G6m nhi~ubuck
B1ioc1.Xap xl Galerkin.
Xet mQtday{Wj}la mQtcosdde'mduQctrongH2. Ta tlmnghi~mxffpXl
cuabaitmin(2.1)- (2.5)duoid~ng
m
um(t)=I Cmj(t)Wj'
j=i
(2.6)
trongdo Cmj(t) thoamanh~phuongtrlnhvi phansau
(u~(t),Wj) +(umx(t),Wjx)+Kium(1,t)w/l) +Pm(t)w/O)
+(Kum(t)+AU~(t),Wj) =(F(t), Wj), 1~j ~m, (2.7)
Pm(t)=g(t)+hum(0,t)- 1k(t- s)Um(0, S)ds, (2.8)
m
Um(O)=UOm=IamjWj ~ Uom~nhtrongH2,
j=i (2.9)
m
u~(O)=Uim=IfJmjWj ~ UI m~nhtrongHi.
j=I
H~(2.7)- (2.9)duQcvie'tl~iduoid~ng
{
m m m
~aij(c~j(t)+AC~j(t))+~bijcmj(t)=/;(t)+~dij 1k(t-s)cm/s)ds,
Cmi(O)=ami'C~i(O)=fJmi' 1~i ~m,
(2.10)
15
trongdo
{
f'(~ =(F(t),Wi )- g(t)W,(0), Gij=(Wi' W) ), dij=Wi(O)W)(0),bH_IW ,w )+Kl w.(l)w.(l) +Ka.. +hdH'l} \ IX JX I J l} l}
(2.11)
Khi dotacob6d~sail
B6 d~2.1. Gidsit (HI)- (Hs) ill dung.V6'imQiT >0 effdink,khidoh~(2.10)-
(2.11)coduynhatmQtnghi~mtren[0,T].
. ChUngminh. Bo quachi s6 m, tavie'tepap Pi tu'dngling thaycho emPamPPmi
vakyhi~ul'.li
e(t)=(e](t), e2(t),...,em(t)f '
el (t) =(e{(t), ei (t), ..., e~(t)t'
ell (t) =(e{1(t), e~(t),..., e~(t)t'
(2.12)
A =(aij)'B =(bij)'D =(dij)'
Ta vie'tl'.lih~(2.10)- (2.21)du'did'.lngvecto
fA (ell(t)+Ael(t))+Be(t)=fer)+1k(t- s)De(s)ds,
1ceO)=a, el(0) =p.
(2.13)
. Chuyding A khadaova khongma'tinht6ngquattagiaSITdng A>O.Tich
phan(2.13)tathudu'Qc
e(t)=J(t)-1 e-W-r)drJ: A-IBe(T)dT
+1e-A(t-r)drIdT Ik(T-s)De(s)ds, (2.14)
vdi
](t)=a+ ~(l-e-At)p+ le-w-r)drIA-If(T)dT. (2.15)
m
Vdi m6i T> 0, ta d~tY =CO([O,T];IRm),Ilell=suple(t)II' le(t)l]=Llei(t)I. Ky
O"'t",r i=1
m
hi~uchufin cuamatr~nA =(aij) la !IAII=~~xLlaijl.
LJ_m i=1
Chuyr~ngtaconco
IAc(t)11~IIAlllc(t)II' Vc E Y, Vt E [O,T].
Bay giO,vdi m6i c =(cpc2,...,cm)E Y, tadinhnghlatmintii'H xacdinhbCJi
Hc(t) =](t) -£ e-W-r)drrA-IBc(T)dT
+£e-A(t-r)drrdT [k(T-S)A-IDc(s)ds, VtE[O,T].
Tu (2.17)tasuyradng H bi€n Y vaochinhno.
Ta sechungminhr~ng,t6nt~inEN, saocho
Hn ==H[Hn-I]:Y ~ Y, lamt)tanhx~co.
Baygio,vdimQic,dEY, vdimQit E[O,T],taco
Hc(t)-Hd(t) =£e-W-r)dr rdT[k(T-S)A-ID[c(s)-d(s)]ds
-£ e-W-r)drrA-IB[c(T)-d(T)]dT.
Ta sechungminh
IHnc(t)- Hnd(t)11~ (2~)!D;t2nIIc-dll, Vn E N,
trongdo
DT = IIA-IDllllkIILI(O,T)+IIA-IBII.
Th~tv~y,taco
IHc(t)- Hd(t)11~ £e-W-r)dr dT[lk(T- s)IIIA-IDIIIc(s)-d(s)11ds
+£e-W-r)drrIIA-IBlllc(T)-d(T)11dr.
Dodotasuytu(2.20)r~ng
IHc(t)- Hd(t)11~IIA-IDII£ e-W-r)drrdT[lk(B)ldBllc - dll
+IIA-IBII£e-w-r)rdrllc- dll
16
(2.16)
(2.17)
(2.18)
(2.19)
(2.20)
17
~~(1IA-1DllllkIILl(0,T)+IIA-IBII)t211e- dll
1
=- DTt211e- dll.2
(2.21)
V~y(2.19)dungvoi n =1.Giil sit (2.19)dungvoi n ~1.Ta c6
IHn+le(t)- Hn+ld(t)11=IH[Hne](t) - H[Hnd](t)11
~ £e-w-r)dr f: dr Ilk(r-s)IIIA-1DIIIHne(s)-Hnd(s)11 ds
+1e-Jc(t-r)drEIIA-IBIIIHne(r) - Hnd(r)11 dr
~ le-w-r)dr Edr Ilk(r-s)IIIA-IDII(2~)!D;s2nlle-dllds
+re-Jc(t-r)drf'
II
A-IB
II~Dnr2nlle-dlldr1 Jo (2n)! T
~IIA-1DII(~:)!lie- dllllkilLI(O,T)1e-W-r) dr Er2ndr
+IIA-1BII(~:)!lie- dll£e-W-r) dr rr2ndr
Dn 2n+2
< L-
II
A-1Dllllkll
t
Ile-d il
- (2n)! LI(O,TJ(2n+1)(2n+2)
Dn t2n+2
+(2;)!IIA-IBII(2n+1)(2n+2)lle-dll
= D;+I t2n+21Ie-dll.
(2n +2)!
(2.22)
Do d6(2.19)dungvoi mQinEN. Til (2.19),tathudu<jc
II
Hne- Hnd
ll ~~ D;T2nlie- dll~~ (.jD;T)2n lie- dll.(2n)! (2n)! (2.23)
Do ~(JDTT)2n ~ 0 khi n ~ +00nen c6 no~1 sao cho 1 (JDTT )2110 <1.(2n)! (2no)!
18
V~y Brio:Y ~ Y hi anhx~co.Ta suyradingB comQtdi~mba'tdQngduynha't
trong Y, nghla la h~(2.10)- (2.11)co mQtnghi~mduy nha'tum(t)tren do~n
[0,T].
Bd8c2.DanhgialiennghifmI
Thay(2.8)vao(2.7).Khi donhanphuongtrinhthuj cua(2.7)bdi C~j(t) va
la'yt6ngtheoj, saudotichphantheobie"nthaigiantu0 de"nt, taduQc
8m(t)=8m(0)-2 £g(s)u~(O,s)ds
+2£ u~(O,s)ds1k(S-T)Um(O,T)dT +2£(F(s),u~(s»)ds, (2.24)
trongdo
8m(t) =llu~(t)112+llumx(t)112+Kllum(t)112
+K1u~(l,t)+hu~(O,t)+2-1£llu~(s)112ds. (2.25)
sa d\lngcacghlthie"t(H4),(Hs)' la'ytichphantUngph~ntheobie"nthaigiantu 0
de"nt , taduQc
8m(t) =8m(0)+2g(0)uOm(0) -2g(t)um(0,t) +2£ g' (s)um(0,s)ds
+2um(0,t)£k(t-T)Um(O,T)dT-2k(0)£u~(O,s)ds
-2 £um(O,s)dslk'(s-T)um(O,T)dT
+2£(F(s),u~(s»)ds. (2.26)
Khi do,sad\lng(2.9),(2.25)taco
Sm(0)+2Ig(O)uom(O)I~C1voimQim. (2.27)
19
sa dt,mgbfftd~ngthuc
2abO, (2.28)
tathudu'<Jctu (2.26)ding
Sm(t) <;;;,C1 +~g2(t)+/3u~(O,t)+~ Lli (s)12ds+/3£ u~(O,s)ds+/3u~(O,t)/3 /3
+~I £k(t-r)um(O,r)drl' +2Ik(O)1£u;(0,s)ds+~£IIF(s)II'ds
+fJ rllu~(s)112ds+r[fJU;(O,S)+~Irk'(s- T)Um(O,T)dTI}s
=C1 +~ [g2(t)+ Llg!(s)r ds+ L!IF(s)112ds] +2/3u~(0,t)
+2(/3+Ik(O)!)£ u~(O,s)ds+/3£llu~(s)112ds
+~11: k(t- T)Um(O,T)dTI'
+~£dslrk'(s- T)Um(O,T)df (2.29)
Chli Y ding,
IIvxl12+K1v2(1)~Collvll:1,voimQi vEH1, (2.30)
trongdo Co=.!.mill{I,K1}.3
M~tkhactu(2.25)vab6d~1.1,taco
lum(0, 01 <;;;,Ilurn(Ollc(o) <;;;,/ilium (OIIHl
<;;;,(/i / JCo ).JSrn (t) ==Co.JSm (t). (2.31)
Tu(2.30)- (2.31)tacodanhgiasan
20
Sm(t)~c1+~[g2(t)+£lgl(S)12ds+£IIF(s)112ds]+2fJC~Sm(t)
+2C~(fJ+lk(O)1)£Sm(s)ds+fJC~£Sm(s)ds
1
1 1
2 1
I
s
1
2
+fJ £k(t-r)um(O,r)dr +fJ £ds lkl(s-r)um(O,r)dr . (2.32)
M~tkhac,apdl.mgbfttd£ngthilcCauchy- Schwarz,tacodanhgiachohairich
phancu6itrongv€ phaicua(2.32),nhusau
Tichphanthilnhftt:
1
I 1
2 1
fJ £k(t-r)um(O,r)dr ~ fJ £e(B)dB£u~(O,r)dr
~(C~I fJ) £e(B)dB £Sm(r)dr
~(C~I fJ)llkll~2(O,T)£Sm(r)dr. (2.33)
Tichphanthilhai:
~idsI L' k' (s - r)um(0,r)drl' ,; ~ilk'(17)1'dBi u~(0,r)dr
-2
~C;t £lkl(B)12dB£Sm(r)dr
-2 tCot
li
e
11
2 ['Sm(r)dr.
~ fJ [2(O,T).10
(2.34)
ChQnfJ saocho 0<2fJC~~1/2. Sa dl.mgcaedanhgiatrenvatu(2.30)- (2.34),
taco
Sm(t)~gl(t)+M}l)£Sm(r)dr, (2.35)
21
trongdo
gl(t)=2CI+; (g2(t)+Ilg/II:2(0,T)+IIFII~2(QT))'
-2
- 2 - 2 2C°
II 11
2
M}I) =2CofJ+4CO(fJ+lk(O)I)+-(I+T) k HI'
fJ
(2.36)
Tu HI(O,T)4CO([O,TJ) va giathie't(Hs), tasuyradingt6nt~ih~ngsf)M?)
ChIph\lthuQcvaoT saocho
IgI(t)I::;;M?),a.e,tE[O,T]. (2.37)
Dodo
s (t) <M(2) + M(1) rs (-r)d-rm - T T Jo m ' O::;;t::;;T. (2.38)
Ap d\lngb6d~Gronwall,tathuduQc
Sm(t)::;;M?) exp(tM}l))::;;MT VtE[O,T]. (2.39)
Bu'oc3.Dcinhgiciliennghi~mII: £)~oham(2.7)theobie'nt taduQc
(u:(t), wi) +(u~x(t),Wix)+Klu~(t)w/l) +P~(t)W/O)
+(Ku~(t)+AU~(t),Wi) =(F;, Wi)' 1::;;j::;;m. (2.40)
Nhanphuongtrlnhthli j cua(2.40)bdi c~(t), la'yt6ngtheoj, saudotich
phantheobie'nthaigiantu0 de'nt , saukhis~pxe'pl~itaco
Xm(t)=Xm(O)-2 Lg/(s)u~(O,s)ds
+2£[k(O)um(O,S)+rk/(S-T)Um(O,T)dT}~(O,s)ds
+2£(FI (s),u~(s))ds, (2.41)
22
trongdo
Xm(t) =Ilu~(t)llz+llu~xIIz +Kllu~(t)llz
+K1Iu~(l,t)lz+hlu~(O,t)lz+2A£llu~(T)lrdT. (2.42)
Tichphantungphantheobie'nthaigiantu 0 de'nt cua(2.41),taco
Xm(t)=Xm(O)+2g1(O)Ulm(0) -2gl(t)u~(0,t)+2£glf(s)u~(O,s)ds
+2[ k(O)um(0,t) + £ kl (t - s)um(0,s)ds] u~(0, t)
-2k(0)uOm(0)Ulm(0)-2 £[k(O)U~(O,T)+kl(O)um(O,T)
t
+re(T-s)um(O,s)ds]u~(O,T)dT+2f(F1(s),u~(s))ds0
=X m(0) +2g1(0)u1m(0) -2k(0)uom(O)Ulm(0) +kl(O)u;m(0) -kl (O)u~(0,t)
-2g1(t)u~(0,t) +2k(0)um(0,t)u~(0,t) +2£ gll(s)u~(0,s)ds
-2k(0) £IU~(O,T)lzdT +2u~(0,t)£kl(t-s)um(O,s)ds
-2 £ u~(O,T)dTrkif (T- s)um(0,s)ds+2£(FI (s),u~(s))ds. (2.43)
Bautien,tasuyratU(2.9),(2.42),(H4),(Hs) r~ng
IXm(0) +2g1(0)u1m(0) - 2k(0)uom(O)Ulm(0)+kl (O)u;m(0)1
~Cz+llu~(O)llz, (2.44)
trongdo Cz chIphl;lthuQcV~lOUo'Upg, k, K, Kp h.
Mi;Ukhactu(2.7)taco
23
"u~(O)IIZ-(uomxx,u~(O»)+(Kuom+AU1m'U~(0»)=(F(O),u~(O»).
Dodo
Ilu~(O)" ~ Iluomxxll+ Klluom 11+A11Ulm11+ IIF(O)/I. (2.45)
Ta suyratIT(2.9)va(2.45)r~ng
IIU~(O)II~ C3, (2.46)
trongdo C3lah~ngs6chIphl;lthuQcvaouo'Ul'F, K, A.
TIT (2.42),vab6d€ 1.1taco
IIU~(t)IICO(Q)~J2llu~(t)tl ~CoJXm(I). (2.47)
TIT(2.42),(2.44)va(2.46),tathuduQc
X m(I) ~Cz +C; +Ikl(0)1u~(0,I) +21gl(I)u~(0,1)1+2Ik(0)um(0,I)u~(0,1)1
+2£lgll(S)U~(O,s)lds+2Ik(0)1Llu~(O,T)lzdT
+2Iu~(0,t)1£lkl(I-S)Um(O,s)lds
+2£IU~(O,T)ldTrlkll(T-S)Um(O,s)lds
+2£I(F1(s),u~(s»)lds. (2.48)
Sando,sadl;lngbfitd~ngthlic(2.31),(2.39),(2.47),tathuduQctIT(2.48),r~ng
Xm(t) ~Cz +C; +Ikl(0)1C~MT +21gl(1)1CoJXm (I)
+2Ik(0)IC~~MT.~Xm(l)+2CoLlgll(S)IJxm(s)ds
+2Ik(0)lc~£Xm(T)dT+2C~~MT£lkl(B)ldB.JXm(T)
24
+2C~~MT tie(B)1 dB.!) Xm (-r)dT
+ £IIF(T)112dT+ ! Xm(T)dT. (2.49)
Ta sad\lngbfttd~ngthuc(2.28)vdi (3=1/4,tu(2.49)taco
Xm(t)~C2+ci +Ikl(0)1C~MT+4(lg!(t)1Cor +(1/4)Xm(t)
+4e(0)C~MT+(1/4)Xm(t)+4C~£Ig!!(s)12ds +£ Xm(s)ds
+2Ik(0)1C~£ Xm(T)dT+4C~MT(£Ik! (B)ldBr +(1/4)Xm(t)
+C~MTt(!le(B)ldBr +£Xm(T)dT
+£IIF(T)112dT+ £Xm(T)dT
3 -2
I I
-4
~4Xm(t) +C2+ci +COMTk/(O) +4CoMTe(0)
+4C~
Il
g//
1/22 +4C~MT "kll~I(OT) +C~MTT llk// 1121 +IIFII~2 (Q )L (O,T) , L (O,T) T
+4C~Ig/ (tJr +(3+24C~/k(OJ/J[ Xm(rJdr. (2.50)
Chli Y dingH1(0,T)4 CO ([O,T]),tu(2.50)vacacghlthi€t (H3)-(Hs), tasuyra
dng
Xm(t)~M?)+Mf4)£Xm(T)dT, VtE[O,T], (2.51)
-2
trongdo Mf4)=12+8Co Ik(o)1 va M?) la h~ngs6chiph\lthuQcvaoT, k, g va
F. Sad\lngb6d6Gronwall,tu(2.51)taco
Xm(t)~Mf3)exp(tMf4))~M;,Vt E [O,T]. (2.52)
25
M~itkhac,tasuyratu(2.8),(2.25)va(2.39),r~ng
IlprnIIWl,OO(o,T)~M?), 'v'te[O,T]. (2.53)
Blioc 4: Quagiai ht;m
Tu (2.25),(2.39),(2.42)va (2.53),tasuyra r~ngt6nt~imQtdayconcuaday
{(urn,Prn)}v~nkyhi~ula {(urn,Prn)}'saocho
Urn~U trongLoo(O,T;HI)ye'u*, (2.54)
U~~ ul trong Loo(0,T; HI) ye'u*, (2.55)
U: ~dl trongLoo(0,T;L2)ye'u*, (2.56)
Urn(0,t)~ u(O,t)trongWI,oo(O,T)ye'u*, (2.57)
Urn(1,t)~ u(1,t) trongwl,oo(0,T) ye'u* , (2.58)
Prn(t)~ pet) trongWl,oo(0,T) ye'u*. (2.59)
Do b6d6compactcuaLions( xemb6d6 1.8), tasuyratu(2.54),(2.54),(2.57)
va(2.58)r~ng,t6nt~imQtdayconv~nkyhi~ula {urn}'saocho
Urn~ U m~nhtrong L2(Qr ), (2.60)
U~~ ul m~nhtrong L2(Qr ), (2.61)
Urn(0,t)~ u(O,t) m~nhtrongCO([0,TD, (2.62)
Urn(1,t) ~ u(1,t) m~nhtrongCO([0,TD. (2.63)
Tu (2.8),(2.62),taco
Prn(t)~ g(t)+hu(O,t)- 1k(t- s)u(O,s)ds==pet)
m~nhtrongCO([0,TD . (2.64)
Tu (2.59)va(2.64)tathuduQc
26
P(t)=P(t). (2.65)
QuagiOih~ntrong(2.7),(2.9),tac6u thoamanphuongtrlnh
(u//,v)+(ux,vx)+Klu(l)v(l) +P(t)v(O)+(Ku +Au/,v) =(F, v), '\IvEHI,
U(O)=uo' d (0)=UI' (2.66)
M~tkhac,tac6tu (H3)va(2.66)ding
Uxx=ul/+Ku+Ad -FELOO(0,T;L2(o.)).
Dod6
U E Loo(0, T; H2).
Slf t6nt~inghi~mduQcchungminhho~mt§t.
Btioc 5.Sl!duynhdtnghi~m
Giii sa (up~),(U2'~)1ahainghi~my€u cuabaitoan(2.1)- (2.5)saocho
Ui ELOO(0,T;H2), u; ELOO(O,T;HI), u;/ELOO(0,T;L2),
Ui(0,.), Ui(1,.), 1>;E Wl,oo(0,T), i =1,2. (2.67)
Khi d6 U =UI - U2' P =~- ~thoamanbaitoanbi€n phansau
(UI/,v) +(ux,vx)+KIU(l)v(I)+P(t)v(O)+(Ku+Ad,v)=0, '\IvEH\ (2.68)
U(O)=ul (0) =0,
pet)=hu(O,t)- £k(t- s)u(O,s)ds.
Ta l§y v=u/ trong(2.68),saud6tichphantheot , tac6
8(t)=21d(0,r)drIk(r-s)u(O,s)ds, (2.69)
trongd6
27
5(t)=IIU'(t)II2 +Ilux(t)II2+hu2(0,t) +KIU2(I,t)
+Kllu(t)112+2.-t£llu'(s)W ds. (2.70)
Tichphantungphgntheot (jv~phaicua(2.69)ta du'<;Jc
5(t) =2u(0,t) £ k(t - s)u(O,s)ds -2k(0)£U2 (0,r)dr
-2 £u(O,r)drrk'(r-s)u(O,s)ds. (2.71)
M~tkhactu(2.30),(2.70)vab6d~1.1,tathudu'<;Jc
lum(0,t)1~Ilum(t)llqo)~hilUm (t)IIHI~(h / .JCo)~5(t) ==Co~5(t). (2.72)
Tu (2.71),(2.72)va(2.28)tasuyrading
15(t)1~2C~~5(t)£lk(t-s)I~5(s)ds+2Ik(0)IC~£5(r)dr
+2C~£~5(r)drrlkl(r-s)I~5(s)ds.
~(1/2)5(t) +2C~£k2(B)dB£5(s)ds+2Ik(0)IC~£ 5(s)ds
2
(
r 2
)
1/2 r
+2CoJi 11kl(B)IdB 15(s)ds
I I
£~-5(t) +-mT 5(s)ds,2 2
(2.73)
trongdo
mT=4Ik(0)IC~+4C~Ilkll~2(OT ) +4c~JT lleI1 2 ., L (O,T) (2.74)
Do do,tu(2.73),tasuyrading
5(t)~mT£5(s)ds VtE[O,T]. (2.75)
Theob6d~Gronwalltaco 5 ==0 vadinhIf 2.1du'<;JcchUngminhhoantfft .