SỰ KHÔNG TỒN TẠI LỜI GIẢI DƯƠNG CỦA MỘT SỐ BÀI TOÁN NEUMANN PHI TUYẾN TRÊN NỮA KHÔNG GIAN TRÊN
NGÔ THANH MỸ
Trang nhan đề
Lời cảm ơn
Mục lục
Chương1: Tổng quan.
Chương2: Thiết lập phương trình tích phân.
Chương3: Sự không tồn tại lời giải dương của bài toán với N=3.
Chương4: Sự không tồn tại lời giải dương với trường hợp N>3.
Kết luận
Tài liệu tham khảo
14 trang |
Chia sẻ: maiphuongtl | Lượt xem: 1839 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Luận văn Sự không tồn tại lời giải dương của một số bài toán neumann phi tuyến trong nửa không gian trên, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
s~ ~ tk- teJi&t (jidtd~ ~ m#48-'
i$'citt~~pMt~~~~~~
CHUONG 3
" ;:: ... . <)
sTj KHONG TON T~I Lal GIAI DUONG
? ... , ,
CUA BAI TOAN VOl N =3
Chungtaxetbai loan(1.1),(1.2)Cl;1thSvoi n=3nhusau:
(3.1) l::1u=O,(x,y,z)ER~={(x,y,Z)ER3,z>o},
(3.2) -uz(x,y,O)=g(x,y,u(x,y,O)), (x,y)E R2.
voi g : R2x[0,+00)-+[0,+00)thoa di~uki~n:
(G) g la ham lien tl;1C,
(G2)T6n t~ihaih~ngsa M >0, a 2::0saa cho:
g(x,y,u) 2::M ua, Vx,y E R, VU 2::O.
Cac Hnhchftt(s,),(S2)du<;jccl;1thSl~inhusau:
(S;) U E C2(R~)(1C(R~), uzEC(R~),
(8;)(i) lim sup I u(x,y,z)I =0,
R-+toox2+i+z2=R2,z>O
(ii)
. au au au
hm sup
I
x-(x,y,z) +y-(x,y,z) +z-(x,y,z) 1=O.
R-HOO x2+i+z2=R2,z>O ax 0' az
Khi dotacodinh19sau:
Dinh It 2: Ne'u[iJi gidi u ciLa hai loan (3.1), (3.2) vdi g :
R2 x [0,+00) -+[0,+00)la ham lien tl;lc thoa cac tinh chat
(s;),(8;),khido u la liJi gidiciLaphLtdngtrlnhrichphanphi
tuytnsau:
12
S 'f"~ tk t~ t~ 9idtd~ ~ ffl# u'
g>eUt~~ftMt~~~~~~"
(3.3) u(x,y,z)=~ H g(e;,77,U(e;,ry,0))de;dry,V(X,y,z)ERl.
21rR2~(X-e;)2 +(y_ry)2 +Z2
Ta cling gia sa r~nggia tri bien u(x,y,O)cua Wi giai u
cua bai loan (3.1), (3.2) thoadi~uki~n:
(S;) Tichphan H g(e;,ry,u(e;,ry,O))de;dry tan tc;ziV(x,y) E R2.
R2~(x- e;)2+(y - ry)2
Ta phat bi~uk€t quachinhtrongph~nnaynhu'Jau:
Dinh Iv 3: Gid S~(rling g thoacae gid thilt (Gj),(G2) v6'i
0<a ~2. Khi do belitoan (3.1),(3.2)khongcolCii gidi du:ang
thoa (s;),(s;),(s;).
ChungminhdinhIy 3:
B~ngphu'dngphapphanchung,giasar~ngbai loan
(3."1),(3.2)co Wi giai du'dngu=u(x,y,z)thoa(Sn,(S;),(S;).
Dung dinh 19"hQi t1,lbi ch?n, cho z ~ 0+ trongphu'dngtrlnh .
tichphan(3.3),nhoVaG(s;) , tathuduQc:
(3.4) u(x,y,O) =~ If g(e;,ry,u(e;,ry,O))de;dry, V(x,y) E R2.
21rR"2~(X-e;)2+(y_ry)2
Ta d~t:u(x,y,O)==u(x,y). Khi do,tavi€t 1~i(3.4)nhu'
sail:
(3.5) u(x,y)=A[g(e;,ry,u(e;,ry))](x,y)
=~ II g(e;,ry,u(e;,ry))2 d~d1], 'v'(x,y)E R2,- 27rR2~(x - e;)2+(y -ry)
13
s~~ tk t<#tla~ d~ ~ ffl# d
1$'eUt~~ftMt~~~~~~
trongdoA la mQttoantli'tuye'ntlnhxacdinhb~ngcongthuc:
(3.6) A[v(~,17)](X,'y)=2~If v(~,:)d~d17?' V(x,y)E R2.--J...!(x -J: ) .../..(1 -77)
-
IC v \ ':> '\J
DS chungminhdinhly 3, tachicgnchungminhr~ng
phudngtrlnhtichphan(3.5)khongcoWigiaidudnglientlJc.
Trudehe'taegnmQts6ba'td~ngthuedanhgiasauday:
B6 d~4. V6'imQi(x,y)ER2taco:
(i) A[(1+~~2 +17 2 )-a ](x,y) =+00 , niu 0<a ~1,
1
(ii) Al(! +~e+~2F"](x,y) "2(a -1)( 1+~x2+~2)0-' '
niu a >1,
(iii) A[(1+~~2+172)-2](X,Y)21n(1+~x2+y2) , niu a=2.
4 ~x2+y2
niu x2+y2 2 1
Chungminhb6d~4:
(i)'0<a ~1: Su dlJngba'td~ngthuesailday
(3.7)
1 1>
~(x-~)2+(y-17)2- ~x2+y2 +V~2+172
Vx,Y,~,17E R,
va saudod6ibiC'ns6quat9adQeve,tathuduQe
14
S'f"~ t~ t~ to:i9-idid~ ~ m#<14'
~4it~ ~~t~~tUkt~~~
(3.8) A[(1+~;2 +172)-a](X,y)
2~ Sf d;d77 .
21l:R2 (1 +~;2 +772)a ( ~;2 +172+~x2 +y2 )
+oo
f rdr2 - +00 .
0 (1+r) a ( r +~x2+y2 )
(ii) 1<a <2: Tu'dngtt!nhu'(3.8),taco
(3.9)
+00 rdr
A[(1+Je+'l' )-"](x,y) " I (1+r)"(r+Jx'+y2)
+00
2 f rdr
~x2+i ( 1+r ) a ( r +~X 2 + y2 )
Tli bfftd~ngthucSail
(3.10)
r 1
r +~x2+y2 2"2'
I 2 2
\lr 2 '\jX +y ,
ta thudu'Qctli'(3.9) ding
(3.11)
+00 dr
1 f -
A [(1 +~I;' +~2)-a](x,y) "2 Jx'+i ( 1+r)"
- 2(a -1)( l'I--~X2+)/ )a-I .
(iii) a =2: Tu'dngtlfnhu'(3.8),taco vdi x2+y221
(3.12)
+00 rdr
A[(1+~1;2+rt' )-2](x,y) " I (1+r),<r+~x2+y2)
15
Sf!' ~ tiH t~ &i tJidi d~ ed4~ 48:
i$'.ut~~pMt~~~~~~
+00
r rdr> -
- t(1 +r) 2( r +~X2+y2) .
. Sadl;lngbfftd~ngthuc
(3.13)
r 1->-
(1+r)2-4r'
Vr ~1,
tasuyfa
(3.14)
1+00 dr
A [(I +~l;2+~2 )-2](x, y) ;"4 ! r( r +P +y2 )
1 +00 1 1 )drj
(-- ~ 2~ 2 2 r r + x2+y4 x +y I
=
+00
1 r
= xIn( )
4~x2+y2 r +~x2+y2
- In(l+~x2+y2 )
- 4~x2+y2
B6d~4du'ychungminh.
Baygio,dStie'pWcchungminh,tagiltsading t6nt~i
(xo,Yo)ER2saocho u(xo,Yo)>O.Do u lien tl;lc,khi d6 t6nt~i
ro>0 saocho
(3.15)
1
u(x,y)>-u(xo,Yo) ==mo,2
V(x,y)E Bro(xo,Yo)={(x,y):(x-xO)2 +(y- YO)2<ri}.
Ta suytu (G2),(3.5),(3.15)va Hnhddndi~ucuatminta A ,
,
. rang
(3.16) u(x,y)=A[g(~,7],u(~,7]))](x,y)~A[M ua(~,7])](x,y)
16
Srf"~ t~ t~ tiJ:i~ d~ ~ m#48-'
i$'citt~ ~ pMt&Pf~~ nem~ ~ ~
=M H ua(~,ry)d~dry
2ff R2~(X - ~)2+(y - ry)2
>M(mo)a H d~dry , \;I(x,y)EOR2.
- 2ff BI!)(XO'Yo)~(x-~)2 +(y_ry)2
sa d\lngbfftd£ngthucsailday
(3 1'7\ IC _' ):,2. (y '7
,2 / ~x2 . -:-i. ~ ..2. I) -v x-,=,) T -) :::,\j x- + Y T \j <;-- + 'I
s (1+~x2 +y 2 )( 1+~~2 + 772)
s(1+~X2+y2)(1+~x5+Y5 +~(~-xO)2+(ry_YO)2) -
S (1+~x2 +y2 )(1+~x5+Y5 +ro2) ,
\;Ix,yE R, \;I(~,ry)E Bro(xo,Yo).
ta thu du<;5c
(3.18) M(mo)a H d~d77
2ff BI!)(XO'Yo)~(x-~)2+(y-77)2
M(mo)a
;;:: 2ff ffd~dry
~ 2 2 ~ 2 ., ')(1+ x +y )(1+ Xo+Yo+rO)B'1j(xO,YO)
M(mo)a---
> 2ff ff r2
- (1+~x2+y2)(1+~x5+Y5 +ro2) 0
\7
Stf"~7 ti.~t~ tG:t~ d~ c.d4ffl# 44'
g'c:Ut~~pMt~~~~9i4H~
M(mo)a 2
1fro 1= 21f X .
(1+~x~+y~+ro2) (1+~X2+y2)
Ta suytli' (3.16),(3.18)ding
(3.19) m)
u(x,y) > ~ ;: U)(x,y)1+ x2 +y2
M a 2
O' mOrO
VIm) =2(1+~x5+Y5 +rt) .
Vx,Y E R ,
Ta xetcaetrttongh<Jpkhacnhaucua a.
Tru<fngh(jp 1: 0<a ~1.
Ta thudtt<Jctli'(G2),(3.5),(3.19)va tinhddndi~ucua
loan ii'iA, r~ng
(3.20) U(x,y)=A[g(~,1],u(~,1]))](x,y)~A[M ua(~,1])](x,y)
~A[M ui (~,7])](X,y)
=M miA[(1+~~2+1]2)-a](x,y) =+00,
dob6d~4,(i). Day la di~uVO19.
Truong h(lp 2: 1<a -::2.
Ap dt,mgb6d~4, (ii), tathudtf<JCtli'(G2),(3.5),va
ttnhddndi~ucuatmintll'A , r~ng
(3.21) u(x,y)=A[g(~,1],u(~,1]))](x,y)~A[M ua(~,1])](x,y)
18
S¥ ~ t~ t~ tia tJidi d~ ~ m# 44'
g'.ut~~ft4tt~~~~~~
~ A[M uf (~,1J)](X,Y)
=M mfA[ (1+)~2 +1J2)-a ](X,y)
Mma
> I
- 2(a-1)(1+~X2+y2 )a-I
. (2 2 -'12
=m2(1+-Vx +y ) =U2(X,y),
trongdo
(3.22)
a
Mml
,
m2=2(a -1)
q2=a -1 .
Bangguyn~ptagiltsarang
(3.23) u(x,y)~uk-l(x,y)=mk-I(1+Jx2+y2 )-Qk-I, Vx,YER.
N€u aqk-I>1, khi do,sadl;lngb6d64, (ii), tathudu'Qc
tu (G2),(3.5),(3.23)ding
(3.24) u(x,y)=A[g(~,1J,u(~,1J))](x,y)~A[M ua(~,1J)](x,y)
~A[M Uk-l(~,1J)](x,y)
=Mmk-IA[(1+-!f+1J2 )-aQk-1](x,y)
> M mk-l
- 2(aqk-1-1)(1+~x2+y2 )aqk-I-I
(2 2 -qk
=mk(1+-Vx +Y ) =Uk(X'Y)'
19
s~~ tik t~ tia 9Ut d~ uU m#44-'
g'4i t~ ~ {14tt~ ~ ~ ~ 9i4# ~
trong do cacdays6 {qd,{mk}duQcxacdinhbC5icongthucqui
n~p:
(3.25) qk =aqk-I -] , k=2,3,...; ql =1,
(3.26) mk=M mk-I
2qk '
k =2,3,...
Tli (3.25),(3.26)ta thu du'<;ic
(3.27) qk=I-(2-a)ak-1a-I'
a
Mmk-I
,
mk= 2qk
Vk =2,3,....
Do 1<a <2, tacoth€ chQnduQcs6tlj nhien ko,phV
thuQcvao a, saocho:
(328) -In(2 - a) .
In(2- a). ~ko<1-Ina Ina .
Vdi s6tlfnhien koduQcchQn,taco
(3.29) O<aqko~1.
Sa dvngb6d€ 4, (i), tathuduQctu (G2),(3.5),(3.24),
(3.29), r~ng
(3.30) u(x,y)=A[g(;,7],u(;,7]))](x,y)~A[M ua(;,7])](x,y)
~A[Mu~ (~,1J)](x,y)
=M 111roA[ (1+~C;2+7]2faqko ](x,y) =+00.
Dinh ly 3duQcchung'minhchotruonghQp2.
20
S'f"~ tk- t'!i &i 9idi d~ cda.ffl# M.'
Z$'eitto<i#~ p4tt~ Wu«J~ ~ 9ia4 tUH,
Truong hc;ip3: a =2.
Voi a =2,apdvngb6d~4,(iii),tathuduQctu (G2)'
(3.5),vatinhdondi~ucuatoanta A , r~ng
(3.31) u(x,y)=A[g(~,17,1l(~,1]»](x,y)~A[M u2(~,1])](x,y)
~A[M uf (~,'7)](x,y)
=MmfA[(1+~~2+'72)-2](x,y)
~M mt lne1+~x2+y2 )
4 ~H2. 2 ..\, -r-y
Ta suyratu (3.31)r~ng
(3.32) ( »
V2(X'Y) 2
J
"2 2 1
U x,y -
(
1+~X2 +y) , X2 +y ~ ,
C2 In( 2
Jx'+y' x'+y',;;J.0,
=
trongd6
(3.33) P2=1, C
' 1M. 22 =- ml
4
Giasar~ng:
(3.34) U(X,y)~vk-I(x,y)
(
~
J
"k_'
C 1+ X2+y2
k-I In( ), X2+/ ~1,
~X2+y2 2
0 , X2+y2 S 1.
=
21
s¥~ t~ t~ t~ ~ d~ c:-d4m# d
g>.utMH~p4tt~~~~~~
trongdo Pk-I,Ck-1ladieh~ngs6duong.
Sad\,mgiathie't(G2)va (3.5),(3.34),taco:
(3.35) u(x,y)=A[g(~,17,u(~,17»](X,Y);:::A[M u2(~,77)](x,y)
;:::A[MvLI(~,17)](x,y)
2 .
=M H vk-I(~,17)d~d17
2" R2~(x- ~)2+(y -17)2
;:::M If
2" .;2+r/2~1
vi-I (~,17)d~d17
~(x - ~)2+(y - 77)2
[
~ 2 2
J
2Pk_l
In(l+ ~2+17) d~d17
(~2+172)~(x-~)2+(y-17)2
>Mcf-I Sf
- 2" .;2+1J2 1
McLI If> 2 2- " .;2+1/~I
(
~ 2 2
J
2Pk_1
In(l+ ~2+17) d~d17
(~2+772)(~~2+772+~x2+y2 )
.
+<X.J
(
In(1+r
)
2Pk-1
;:::MC2 f
2) dr
k-I
I r(r +~x2+y2)
Ta xettruonghQpx2+y2;:::1,taco
(3.36) (
1+r
)
2f1k-1
(
1+r
)
2f1k-1
+CI)In( --2- ) dr +0.0 In(2-- ) dr
f > f
1 r(r+~x2+y2) - ~x2+/ r(r+~x2+y2)
22
S 'f' ~ t~ t~ &t ~ dU?1~ ~ ffl# #'
. goat~ ~ ftM t~ WuuJI1da~ ~ tUn
J
2Pk-1 +00 dr
1+~x2 +y2 . 2 2
;'[lll( 2 ) N~y"(r+P +y )
J
2Pk-1
~ 2 2 11+ x +y -
=(In( 2 ). ,J;2+ y'
+00
J (!- 1
~x2+i r r +~x2+y2 )dr
1+00
J
2Pk_1 r
1+~x2+y2 1 xin . 2 2
=(In( 2 ) ~X2 +y2 r+p +y I)x'+/
( }
2Pk-l
1+ ~ x 2 + y 2
)
In2
= I~ .
2 ~x2+y2
Voi x2+y2 ~1,ta suy tli (3.35), (3.36) ding
(3.37)
(
1 1+r
)
2Pk-l
u(x,y) ~MC2 +J
oo n(2) dr
k-(
. 1 r(r +~X2+y2)
2
(
~2 2
J
2Pk-1
>MCk-I In2 1 1+ x +y
-~2 2 n( 2 ).'x +y
Tli (3.35),(3.37), tathudu'Qc
(3.38) u(x,y) ~Vk(x,y)
[
~
J
Pk
C 1+ x2 + 2
k In( y), X2+y2~1,
~X2 +y2 2
0, x2+/s1.
=
trongd6 Pk,Cklacachhngsf)du'dngxacdinhbdicaccong
thlicquin~p.
23
s«"~ tk t4i tlTt..,...:<..dUXdLL ~ I1e8t4-6.'. '.' ~ -_-or, .
g'eUt~~put~~m:a~~~
(3.39) - . 2Pk - 2Pk-b Ck =MCk-lln2, k =3,4,....
Tli (3.33),(3.39)taco
(3.40) Pk =2k-2 , C' - 1 M
2k-l-l
(
1 ~l 2)
2k-1
k - - -m\-v1l1L.ln2 2
Nhd vao(3.40)tavi~tl~i(3.38)vdi x2+y2~1nhu'sau
. (3.41) u(x,y) ~Vk(x,y)
- 1
[
1 2 2 2'-2
M~x2+y21n2 4M m;ln21n(I+~X +y' J2 ) .
1 1+Jx2 +y2
ChQnx,y saocho 4.M2mfln21n( 2 ) >1 hay
(3.42) I 2 2 4vx +y >-1 +2exp( 2 2 ) ==Po.
M m(ln2
Khi dotaco
(3.43) u(x,y)~ Jim vk(x,y)=+co,
k -HOO
/ 2 2
'\j x +y >Po.
Di~unayvo 1;'.Dinh1;'3 du'Qchungminhchotru'dng
hQp3.
T6 hQpcactru'dnghQp1-3chungtathftyr~ngdinh1;'3
du'Qchungminh.
Chu thich 1.
Ke'tquacuadjnh1;'3m~nh onke'tquatrongl8]Ruy,
Long,Blnh.Th~tv~y,tuonglingvoiclingphuongtrlnh(3.1),
24
s~ ~ t~ t¥ tfa9idtd~ ~ m?t~'
~citto<iH-~;It4t t~ WuetJ~ ~ ~ ~.
(3.2), cacgia thitt saildayda:dungtrong [8]khongdin thitt
d day
. (°3) g(x,y,u)khonggidmd61Wli bientJutba,tttcla,
(g(x,y,u)-g(x,y,v))(u-v)~O, \/x,YER, \/u,v~o.
(04) Tichphan ff g(x,y,O)dxdy
R2 1+~x2+y2
tbntgivadU(Jng.
Chti thich 2.
Chu yrhng voi 0<a::;2, ham g(x,y,u)=.uakhong giJi
quyttduQctrongl8]VIkhongthoagiathitt (°4),trongkhid6
chungWiaa:giaiduQcvi d\lnaytranglu~nvan.
Chti thich3.
Truong hQp a =2, caclac gia Bunkin,Galaktionov,
Kirichenko, Kurdyumov,Samarsky[1] c6 cho mQtdanhgia
tuongtlf nhu (3.38)nhungphlict~pbon,mad d6VkduQccho
dlfoid~ngcuamQtchu6iham.
Chti thich4.
Ke"tquacuadinhly 3 khongcondungvoi a >2. Ta xet
phanvi d\l sail day vdi a =3 va g(x,y,u)=u3.Ta c6 g thoa
cacgiathitt (°1),(°2). Khi d6hamsf)
1
u(x,y,z)=
~x2+y2+(z+1)2
la WigiJi dl((1ngcuabailoan(3.1),(3.2)vathoa(sn,(s;),(s;).
25
Các file đính kèm theo tài liệu này:
- 5.pdf