THIẾT LẬP HÀM LAGRANGE - HAMILTON CHO MÔ HÌNH SÓNG BIỂN
LƯ QUANG THUẬN
Trang nhan đề
Mục lục
Danh mục
Mở đầu
Chương1: Bài toán sóng nước trọng trường.
Chương2: Lý thuyết sóng tuyến tính.
Chương3: Thiết lập hàm Lagrange - Hamilton cho bài toán sóng nước trọng trường.
Chương4: Phổ sóng và ứng dụng.
Kết luận và kiến nghị
Tài liệu tham khảo
Các phụ lục
20 trang |
Chia sẻ: maiphuongtl | Lượt xem: 2212 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Luận văn Thiết lập hàm lagrange - Hamilton cho mô hình sóng biển, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Cllil1Uf001 3
THIE T LAp.
"'
HAM LAGRANGE - HAMIL TON
"' ,
CHO BAI TOAN
SONGNudc TRONG TRUONG.
. Xiiy d.,nghamDangItrQ'ngcuasongnmyctrQngtrtrO'ng
./ Hamd(mgnangvathi nangeilasongnlfaetr9ngtrlfCrng
./ Hamnangllf(Yflgeilasongnlfaetr9ngtrlfCrng
. Xiiy d.,ngbai tminbiensongntrcYctrQngtrtrO'ngfir ham
LagrangecuaLuke
./ Thiit l(iplC;Zibai loantichamLagrangeeilaLuke
./ H? thuGgiifahamLagrangevahamHamilton
./ Caem?nhdJ
./ Dtnhhlfangehomohinhsongnlfaetr9ngtrlfCrng
36
CHUaNG3
THIET L~PLAGRANGE- HAMIL TON
CHO BAI ToAN SONGNUOC TRONG TRUONG.
Vi~cxemnangluqngnhulam9thamHamilton h~mxacdinhchuySnd9ngcuah~
duqctrinhbaykhanhi~ua cactaili~ucO'hQc[8],[9],[11],[12].V~nd\lngy tuang
naytrongvi~ckhaosatbaitoansongnuactrQngtruemgclingduqcnh~cd€n ([13],
[17],[18]).Trongchuangnay,m\lCtieuchinhlakiSmchungl~inhfrngk€t quama
trong[13]dad~tra duaid~ngnhfrngbaitoanma.Tir vi~cxaydvnghamnang
luqngtoanph~nsongnuactrQngtruemgtheohaibi€n chinht~c([5],[7]chuad~
c~p)d€n vi~ckh~ngdinh m5i tUO'llgquail gifracac phuO'llgtrinh chuySndQng
Hamiltonvai hai di~uki~nbiencuabai toanbien songnuac trQngtruemg.Vi~c
chungminhhamLagrangedoLuked~xuangb~nghi~ucuad9ngnangvath€ nang
lanetmaimatrong[13]chuatrinhbay,trongkhi doytuangnayh~unhuduqcbi€t
d€n trongcactai li~uCo'hQc.GQilanetmaivi hamLagrangedoLuked~xuang
duqcxaydvngdvatrenphuO'ngtrinhBemouillichukhongduqcxaydvngtiTth€
nangva d9ngnang.Kh~ngdinh "haiphuongtrinhchuyinG(Jngcuah? ham
Hamiltonchinhla GiJuki?nbienG(JnghQCvaG(JnghrchQccuabailoanbiensong
nuactrQngtrz((Yng"khongchichoth~ybaitoansongnuactrQngtwemgcothSxem
nhulam9th~hamHamiltonmaconduaranhfrngdinhhuanggiaiquy€tbaitoan
i119tcachd~danghO'nnhud~c~ptrongph~ncu5ichuangnay.
3.1xA Y DVNG HAM NANG LU<}NGSONGNUaC TRQNG TRUONG
Nangluqngsongla t6ngcuad9ngnangvath€ nang.D9ngnangcoduqcladosv
chuySnd9ngcuacach~tlongriengbi~trongkh~pch~tlongconth€ nangphatsinh
dotrQngtamcuach~tlongn~mcaohO'ng5cth€ nang(chQndaylamg5cth€ nang).
3.1.1D{jngniingsongntl'O'ctr!mgtrU'O'ng
GQiS ladi~ntfchhinhthangcongvaduqcki hi~ulami~nS nhuhinhve3.1.D9ng
nanglasvchuySndQngcuacach~tlongriengbi~trongmi~nS t~onen.
37
z
Mng ccngbe~
z =1;(X,O
1
h ::;;"21J(x,t)
x
Hinh 3.1 MiJn xacajnhcho thi nangvaa(JngnangciLasongtr9ngtruong
Xet m('>th~tlongcokh6i1uqngdm chuy~nd('>ngtrongh~tn;tcOxz,t~ivi tri (x,z)
cov~nt6c6thaidi~mt 1ftv=vex,z,t).Khi do,d('>ngangcuano1ft~v2dm .
Kh6i 1uQ'ngh~tlong dm=p dxdzxacdinhtheodO'nvi di~ntichph~ngtrenOxzvft
v~nt6c v=(vx'Vz) cod('>IOnduQ'cxacdinhb6i v=~v; +v; ::;;-JU2+W2.
Tir do,d('>ngnangcuah~t
! p (U2 +w2).dx.dz=!p
[
(\1 t/J)2 + (Ot/J)2
]
dxdZ
2 2 &
(3.1)
Suyfa,d('>ngnangtrongvungdi~ntichS 1ft
ED::;;ff!p [
(\1t/J)2 + (Ot/J)2
]
dXdZ
s 2 Oz
::;;!p ff[ (\1t/J)2+ (Ot/J)2]
dXdZ
2 s oz
(3.2)
TheoPL3, chQnT ==S, bienL 1ftcacdo~nth~ngOC,CB,BA vft1do~ncongOA
fO(\1t/J)2 +(Ot/J)2) dXdZ::;; ft/J ot/J d(J"sJ~ oz L On
(3.3)
Suyra
(3.2)~ ED ::;;!p ft/Jot/Jd(J"
2 L On
1
f(
ot/J ot/J
)
-7
~ED::;;2PL t/Jax,t/Joz nd(J"
(trongdo n 1ftphilpvectO'dO'llvi ngofticuabienL)
(3.4)
38
Tinh tichphantrong(3.4)trenbienL
1. Tren do<;lnth~ngCB: vectaphapdO'llvi ngoai n=(0,-1), hanmlado
8cp=0 chonentichphanb~ngO.
8z
11. Hai do<;lnth~ngbellAB, OC: vectaphapdO'llvi ngoailfin luqt trenAB
va oc la n=(-1,0) va n=(1,0); Do giftthiStchuySnd9ngsongla tufin
hoantheokhonggianvathaigiannengiatri hamcpt<;li2 diSmtUO'llgung
tren2 c<;lnhAB vaOC lab~ngnhau,ddndSnt6ng2tichphanb~ngO.
Tren do<;lncongAO: do<;lncongAO co phuangtrinhla z =1](x,t),phap111.
vectadanvi ngoaiduQ'cxacdinhbai
~
[
81] 2
]
-Yz 81]
n= l+(ax) (- ax' 1)=N(1])
(3.4) ED =~p S(cp8cp ,cp 8CP)N(1])da2 AD ax 8z
(3.5)
M~tkhac,phuangtrinhthams6do<;lncongAO la
{
X =s v6i 0::::;s::::;L
z =1](s,t)
D~tcP=cp(s,z=1](s,t),t),1f/=If/(s,t)=cPva
G(1])If/(s,t)=
(
81f/,8CP(S,z,t)
1 I
N(1])
[
1+(81])2
]
Yz
8s 8z Z=T/(s,t) 8s
B~ngcachthams6hoatichphanduang,khido
(3.5) ED =~p flf/(S,t) (
81f/ , 8CP(S,z,t)
1 I
N(1])
[
l +(81])2
]
Yzds
2 0 8s 8z Z=T/(s,t) 8s
1 L
ED =- p SIf/(x,t)G(1])If/(x,t)dx
2 0
(3.6)
- ~ L
(
- 81f/ 81] +8CP(X,z,t)
1 J
dx
ED - 2P flf/ ax ax 8z Z=T/(x,t)0
(3.7)
39
3.1.2Thi niingsongnlfUCtr{JngtrU'ung
Trang miendi~ntich S, v~chhatduangth~ngdung,vuonggoc vai Ox va mien
di~ntich dS giai h~nbai hatduangth~ngdungnaydQrQngphuO'ngngang1adx
(phc1ng~chcheotranghinh3.1).Khi domien dS co di~ntich I]dx, dftnd€n kh6i
1uQ'ngcua no 1adm=P I]dx. Vac1uqngdQcaotn;mgtamcuadS nay(sovai g6c
th€ nang)1ah=h(x,t)=~I], 1licdoth€ nangtrendS 1admg h=~P g 1]2dx.2 2
Suyfa,th€ nangtrenmienS
L 1
Er =f- P g 1]2dx
02
(3.8)
NgoalcachchQng6cth€ nang,th€ nangcoth~duQ'cxacdinhbaidinhnghlasau
Er =P gffzdas
(3.9)
Co2cachd~xacdinhth€ nangnay
Cach1:tinhtnJcti€p tichphanhatlap
L!1)(X,t)
JIfz d(J =~l _[zdzdx
1L
=2f(1]2- d2\px
0
LI f 2 1 2=- I] dx--Ld
20 2
Cach2:dungcongthucGreen
(3.10)
ffzd(J =~ff~(Z2)d(Js 2soz
=~ff(~(Z2)-~(a) )
d(J
2s oz Ox
=!f(Z2dx+adz)(dungcongthucGreen)
2L
1rf 2
=-'jz dx
2L
(3.11)
40
(trongdoL =OCuCB u BAuAO)
Tinhtichphantrong(3.11)
i. Trendo~nth~ngth~ngOC vaduangth~ngBA: haiphuO'ngtrinhthams6
do~nth~ngOCvaBA l~nluQila
{
X =0
{
X =L
z =s,- d ~s ~0 va z =s,- d ~s ~0
Suyra fZ2dx=0
OCuBA
(3.12)
11. Trendo~nth~ngCB: phuO'llgtrinhthams6do~nth~ngAC la
{
X =s, 0~s~L
z=-d
Suyra fZ2dx=-d2L
CB
(3.13)
111.
(luuyphuO'ngcuavectO'doovi ngoaihu6TIgxu6ng)
TrenduangcongOA:phuO'llgtrinhthams6do~ncongOA la
{
x=S,O~S~L
z =ry(s,t)
L
Suyra fZ2dx=fry2ds
OA 0
(3.14)
Tir (3.12),(3.13),(3.14)thi
1L 1
(3.11)Q HzdCJ=-fry2dx--Ld2
s 20 2
K~tqua(3.15)trungv6'i(3.10)chothftyhaieachtinhtoanlachinhxac.Thaychung
vao(3.9),th~nangcuami€nS la
(3.15)
1
[
L
JET =2-pg - d2 + Jry2dX
~(-~nd'L H~nf~2dxJ
s6 h~ngd~utrongv~phaicua(3.14)bi€u thith~nangcuanu6'ctInhnenseb6qua
(3.16)
no.Nhuv~y,th~nangcuami€nS la
41
1 L
ET =- pg f172dx
2 0
(3.17)
3.1.3Ham niingIU'{1ngsongnU'uctr(JngtrU'irng
NfmgluQ'llgto~mph~nsongnuactrQngtruemgtrongmi~nS la
E =ED +ET
=~P ff[(\l </J)2+ (a</J)2] dXdZ+pg ffzda-2 s & s
Ma mi~nS co phmmgngangtinh trenmQtchu kY song,nfmgluQ'llgto~mph~nla
(3.18)
1 L 1 L
E =- pflf/(X,t)G(17)If/(X,t)dx+- gpf172(X,t)dx
2 0 2 0
(3.19)
3.2XAY D\J'NG BAI ToAN BIEN SONG NUaC TRQNG TRUONG Tit
HAM LAGRANGE CUA LUKE
3.2.1Thiit l{iphai loansongnU'uctr(JngtrU'irngtir hamLagrangecuaLuke
TrongmohinhsongnuactrQngtruemg,apsu~tt~inhftngdi~mtrongmi~nkhflOsat
thayd6itirb~m~thoangxu6nglapday.D\fatreny~ut6nay,Lukechor~ngcoth~
bi~utrungchuy~nd('>ngsongcuakh6inuacb~nghamLagrangemahamnaydugc
Kayd\fngd\fatreny~ut6apsu~thayd6itir lapdaylenb~m~t.f)~cbi~thall,ap
su~tnaydugcxacdinhtirphuangtrinhBemouilli,phuangtrinhdugcKayd\fngtir
cacphuangtrinhthuyd('>ngEulermadffdugcd~c~p6chuang1.
TirphuangtrinhBemouilli(1.6),apsu~tsongnuacdugcxacdinhb6i
p(X,z,t)=_p
{
a</J+gz+~
(
(a</J)2+(a</J)2
)}at 2 ax az
HamLagrangedoLuked~nghi
(3.20)
1]
L(x,t) = fp(x,z,t)dz
-d
'I
f {
a</J 1 a</J 2 1 a</J 2
}
L(x,t)=-p -+gz+-(-) +-(-) dz
-d at 2 ax 2 az
(3.21)
42
V6'ihamLagrangephia tren,Lukedffduaranguyenly biend6i "tEchphiinham
Lagrangetheotrentn,lcnlimngangx vatheothaigiant fam9ts6c6iljnhkhicae
bufnljJ va 1] thayilc5i".DlJa trennguyenly nay,baitmlnbiensongnu6'ctrQng
truemgcoth€ duqcxiiydlJilg.
f)~t S = f fLCx,t,ljJ,lJ)dtdx (3.22)
X I
(trongdo, S =SCljJ,lJ)),khi do(3.22)duqcvietl~inhusail
SCljJ,lJ) =- fffp
{
OljJ+gz+.!.
[
COljJ)2 +COljJ)2
]}
dzdtdx
xl-d at 2 Ox OZ
~ S(~+(j~)~- ffpJ{a(~;~) +gz+~[(a(~a:~))'+(a(~;~)J'J} dzdldx
~-p f ff
{
OljJ+gz+.!. (
OljJ
)
2 +.!.
(
OljJ
)
2 +oC8ljJ)+oljJ oC8ljJ)+oljJ OC8ljJ)
}
dzdtdx
x t -d ot 2 Ox 2 oz ot Ox Ox oz oz
=S(ljJ)-pfff
{
oC8ljJ)+OljJ
(
OC8ljJ)
)
+OljJ
(
OC8ljJ)
)}
dZdxdt
x I -d ot Ox Ox oz oz
(bodi s6h~ngchua8ljJb~chai)
(3.23)
~ 8 S =-p fff{
oC8ljJ)+OljJ
(
OC8ljJ)
)
+OljJ
(
OC8ljJ)
)}
dzdtdx
x I -d ot ox Ox oz oz
M~tkhac
i. ~(:~)=:(a~))+~(~~)=:(a~))+~(~~)
ii. ~
(
oljJ8ljJ
)
=OljJ
(
OC8ljJ)
)
+8ljJ
(
O2ljJ
)
=OljJ
(
OC8ljJ)
)
+8ljJ
(
O2~
JOZoz oz oz OZ2 oz oz oz
Chonen
'1
{
0 0
(
oljJ
)
0
(
oljJ
) (
O2ljJ 02ljJ
)}8 S =-p J J f -(8ljJ) +- -8ljJ +- -8ljJ -8ljJ -+- dzdxdtt x -d ot ax ax oz oz ax2 OZ2
=-pJ Jf {
~(8ljJ)+~
(
OljJ8ljJ
)
+~
(
oljJ8ljJ
)}dZdxdt+J Jf {
P8ljJ
(
O2~+o2f
)}
dzdxdt
tx-d ot ax ax oz oz tx-d ax oz
43
'1 -> '1
{ (82rjJ 82rjJJ}=-p ffJV'Cc5rjJB) dzdxdt+ffJ pc5rjJax2+8Z2 dzdxdt
(trongd6 13=[1, 8rjJ, 8rjJ] )ax 8z
(3.24)
* Khaosatriengv6'is6hangd~utrong(3.24)
Mi~nkhaosatbaitoanbiens6ngnu6'ctrQngtruangnhuhinh3.1(Mi~nbi gi6'i
h~nb6i2bienbellOC,AB, biendayCB vabientrenIaduangcongOA)
i. BiendayCB: phapvectO'dO'llvi ngoaicuado~nCB Ia Ii =[0,0,-1]. Khi
, --> --> [ arjJ arjJ] arjJdo, B.n = 1, -, - [0, 0,-1]= --;ax az az
ii. HaibienbellOCvaAB: phapvectO'dO'llvi ngoaicuado~nOCvaAB I~n
Iuqt Ia iiI=[0,-1,0] va li2=[0,1,0]. Khi d6,gia tri lIngv6'im6ido~n
, -->-> ,--> ->;. ,arjJ, arjJ
tuO'ngung B.nl va B.n2 IanIuqtIa - ax va ax;
iii. BientrenduangcongOA: phapvectO'dO'llvi ngoaicuaduangcongOA
-->
(
a a
J
-h
[
a a
]
c6d~ngn= 1+(~)2 +(~)2 - ~,-~, 1 .Khi d6,at ax at ax
B.~=[I, ~, ~:](I+(~~)2+(~)2f'l - ~>~:'I]
Dungdinhnghlatichphanduang,(3.24)duQ'cbi~nd6iti~p
(3.24)""OS =PUo~~~d"dl+p{U,~ :~d"dl- LL o~: d"dl}
, v " v- '
(AI) (A2)
+p ffc5rjJ(81] +8rjJ81]- 8rjJ)dCTdt+fff{Pc5rjJ(82~ +82f]}dZdxdtt tren 8t ax ax 8z t x -d ax 8z
, v ' , v- ~ '
(A3) (A4)
Thea nguyen1:9bi~nd6i, c5S =0,V c5rjJ,phuO'ngtrinhchuy~ndQngtrongm6ido~n
thaigianseIa
44
1. (A 4) =0q :~+~:f=0 V(x,z)ES, dayla phuO'ngtrinhchudc;tocuabai
toclnbiensongnuactn;mgtruang.
11.(A1)=0q ~~=0 V(x,z)thuQcbienduai,dayla di~uki~nkhongco
chuy~ndQngsongbiendaytrongbaitoansongnuactrQngtruang.
iii. (A2)=Of f orjJarjJdCJdt= f f orjJarjJdCJdt V(x,z) n~m6 bien 1 va 2
b"' l ax b"' 2 axt Ion t len
tuO'ng(rngtrencungvi tri z , dayladi~uki~ntufmhoancuahamthSrjJ.
iv. (A3)=0q a7] + arjJ a7] =afjJ V(x,z)n~mtrenbienz =7](x,t),dayladi~uat axax az
ki~ndQnghQctrongbaitoansongnuactrQngtruang.
v. Di~uki~ndQnghJchQccuabaitoansongnuactrQngtruanglaphuO'ngtrinh
Bernouillinhungdi~uki~nnaydffduqcdungchovi~cxacl~phamLagrange
bandfmmaLliked~xufLt.
3.2.2H~thircgiil'ahamLagrangevahamHamilton
TJ
f{
arjJ 1 2 1 arjJ 2}(3.21)L= -p-+pgz--p(VrjJ) --pC-) dz-d at 2 2 az
=Y:- p arjJ
J dZ+ fpgzdz_!p TJr((\7rjJ)2+(arjJ)2)dZ-~l at -d 2 -~l az
1 1 'IarjJ 1
K
ad.
)=-pgd2 __pg7]2 - P f-dz--p (\7rjJ)2+(-'[:~ydz2 2 -d at 2 -d OZ
1
d2 'IfarjJ {
I 2 P I 2 orjJ 2] }=- pg - p - dz - - pg 7] +- (\7rjJ) +(- ) dz2 -dat 2 2 -d OZ
A 1
d2 'IfarjJ 1 2 P R
2 orjJ 2
]
Vc;tyL =-pg - p -dz--pg7] -- (\7rjJ)+(-) dz
2 -dat 2 2 -d OZ
'-v--' ~ ' y I , ,
A B V T
, v '
C
(3.25)
* Nhanxet
45
+s6h?ngA trong(3.25)1ah~ngs6vakh6ngph\!thu9cvaocacbi€nd9ngh,rc
hQcliencoth~b6quas6h?ngnay.
+ s6 h?ngC trong(3.25)1at6ngcuath€ nang(kihi~u1aV) vad9ngnang(ki
hi~u1aT) trenm9tdanvi di~ntichtinhtheophuangngangx.Nhuv~ys6h?ng
C 1anang1uQ'ngtoanph~nH tinhtrenm9tdanvi di~ntichtheophuangngang.
+s6h?ngB trong(3.25):
d
(
1J(X,t)
J
1J(x,t)
Do - fq/(x,z,t)dz = fq/t(x,z,t)dz+q/(X,17(x,t),t)17t(x,t)
dt -d -d
1J(x,t) d
(
1J(X,t)
J
=> fq/t(x,z,t)dz=- fq/(x,z,t)dz -q/(X,17(X,t),t).17t(X,t)
-d dt -d
(3.26)
s6 h?ngd~utrong(3.26)coth~b6quavi no1atichphantrenbientheothaigian
vakh6ngcoph\!thu9Cbi€n d9ngh,rchQc.
Tirdo,(3.25)~ L =P q/(x,z=17(X,t),t)17t- H
~ L =P If/ 17t- H (3.27)
trongdo, 171abi€n chinht~cthunh~t,If/ 1abi€n chinht~cthu haiva (3.27)1ah~
thuclienh~gifrahamHamiltonvahamLagrange.
3.2.3Cacm~nhilJ
* Khainiemhebaotofm"M(jth?alf(YcgQila baataimniu ttitcacacIl,fclaca(jng
tenmQiphdnfirtrangh?aJu congu6ng6cfirhamthi". V6'isongnu6'cthih,rctac
d9ng1atrQngh,rclienh~1abaotoan.
Khi do,hamHamiltonva hamLagrangeseduQ'cxay dl,l'ngdl,l'atrend9ngnangva
th€ nangcuah~.
H=E=Ef)+ET (3.28)
(3.29)L =ED- ET
Mfnh ilJ 3.1:hamLagrangetheaLukela hi?uciLaar)ngnangva thi nangtrenm(jt
aO'nvi di?nItchtinhtheaphlfO'ngngangx.
46
Chungminh
- Truaeh~t,n~uxettrenmQtdonvi di~ntiehtheophuongngang,vaih~baD
tofm,hamHamiltonvahamLagrangeIAnlugtduQ'exaedinhb6'i
H*=T+V (3.30)
(3.31)L*=T-V
(dAu* dungd~phanbi~tvai hamLagrangeeuaLuke)
- K~ti~p,trongeachI~pbaitoans6ngnuaetirnguyenIy bi~nd6ieuaLuke
trongph~ntruae,thi
orp
l
- orp
l
01]
- orp- orp01] trenz =7](x,t)~ 1]/=OZz='I Oxz='IOx1],- oz Oxox
(3.32)
- Thay(3.31),(3.30)va(3.32)vaotrong(3.27),thi
1
(
orp
l
01] orp
l J
dpem~T=-PIf/ -- -+-
2 OxZ=17Ox ozZ=17
(3.33)
Do T ladQngnangtrenmQtdonvi di~ntiehlAytheophuongngangx, lAy
tiehphan(3.33)theotrenmQtdonvi ehi~udais6ng,v~traieua(3.33)sela
nangluQ'llgdQngnangtrenmi~ndi~ntiehS ;Khi d6
1 L
(
orp
l
01] +orp
l J
dx
(3.33)~ ED ="2 P JIf/ - OxZ=17Ox ozZ=17
1 L
~ ED =- P flf/ G(1])If/dx
2 0
R5rang(3.34)luandungvi n61a(3.6)nhutrongph~ntren(dpem).
(3.34)
Mfnh ilJ 3.2
HamLagrangeL =L(1],1]pt)cocacphuongtrinhLagrangexudtphattunguyenIf;
lac GrlngClfCtiJu la
1 8L
If// =--
(A) i P 81]1 8L
If/=--
P 81]/
HamHamiltonH =H(1],If/,t)cocacphuangtrinhHamiltonla
(3.35)
(3.36)
47
18H
1]1=--
(B) i P 81f/18H
If/ = ---
. 1 P 81]
Niu hamHamilton va hamLagrange thoa (3.27)thi (A) (B)
(3.37)
(3.38)
Chungminh
(~) ChocacphuangtrinhLagrangenhutrongh~(A)
Do (3.36)(If/= 2- 8L ) nen 1]1ph\!thuQcvao If/
P 81]1
(3.27)H(1],If/,t) = PIf/1]1 -L(1],1]l't)
L~yd~oham(3.39)Iftnluqttheohaibi~nIf/va 1]
(3.39)
8H 8
81f/=81f/(PIf/ 1]1-L(1],1]I't))
81]t 8L 81]1
= P 1]1+P If/ 81f/ - 81]1 81f/
= P 1]1(do3.36)
~ 1] =2-8H1 -
P 81f/
8H 8
81] = 81](PIf/1]t -L(1],1]l't))
8L
81]
= -P If/I (do 3.35)
18H
(d
' ~
h
"'
)~ If/I =--- leup at11m
P 81]
(~) ChocacphuangtrinhHamiltonhutrongh~(B)
Do 3.37(1]1=! ~H), If/ ph\!thuQcvaobi~n1]1;1]ph\!thuQcvao t.
P ulf/
(3.27)L =PIf/1]t -H(1],If/,t) (3.40)
48
L~yd~oham(3.40)l~nlugttheohaibi~n1]va 1]/
5L 5
51]=51./P If/1]/- H(1],If/,t»)
5H
51]
=-Plf/I (do3.38)
1 5L
~ If/I =- P 51]
5L 5
51]/=51]/(PIf/1]/-H(1],If/,t»)
51f/ 5H 51f/
=PIf/ +P 1]151]/- 51f/ 51]/
=PIf/ (do3.37)
1 5L
(d
' ;. h"' )~ If/ =-- leup attIm
P 51]1
Y nghlacuam~nhd~3.2laphuangtrinhchuySndOngtheoLagrangecothSduqc
xacdinhphuangtrinhchuySndOngill hamHamilton.Nhuv~y,v6'ihamHamilton
H =H (If/,17), h~phuongtrinhchuySndOngdola
10H
17 =--
1 P Olf/
10H
If/ =---
1 P 017
Chungtasechirar~ng:"TantqihamHamilton,haiphuongtrinhchuydnt/(jngxac
t/inhtith?Hamiltonlahaiphuongtrinhmotachuydnt/(jngsongtrenbJ mijt".
DtJatheohamth~v~nt6cvaphuangtrinhdichchuySnb~m~trongbaitoanbien
songnu6'ctn;mgtruang,haibi~nchinht~cd~nghi
(3.41)
1]=1](x,t)
If/=If/(x,t)=rjJ(x,z=1](x,t),t)
(3.42)
(3.43)
V6'ih~hamHamiltonla H =H(1],If/),b~ngcachchQnngo~cPoissonthichhqp,hai
phuangtrinhchuySndOngHamiltonduqcxacdinhdu6'id~ng
49
{'7t~['7,H]Ij/t - [Ij/,H]
(3.44)
(3.45)
V6i [,] 1ango~cPoisson.
Mfnh dJ 3.3:haiaiJu ki?nbientrencuabailoansongmractr9ngtruongtuong
auongvaihaiphuongtrinhchuyinat5ngHamilton,tucla
(3.44)q 0'7+VcpV'7 = ocpvaot oz
ocp 1 2 1(Ocp)
2
(3.45)q-+-(Vcp) +- - +g'7=Oot 2 2 oz
Chung minh
Bu6c 1chQnngo~cPoisson
Ngo~cPoisson d8nghi
[F,G]=~(6F 6G - 6G 6F Jp 6'7 61j/ 6'7 61j/
trongdo F =F('7,Ij/),G =G('7,Ij/),v6i : lad;;tohamFrechetsuyrQng;
(3.46)
Suyra
['7,H]=~
(
6'76H - 6H 6'7
J
=~6H
p 6'761j/ 6'761j/ P 61j/
[1j/,H]=~
(
61j/6H - 6H 6Ij/
J
=_! 6H
p 6'761j/ 6'761j/ P 6'7
R5rang1a(3.47)va(3.48)trimgv6i(3.37)va(3.38).
(3.47)
(3.48)
Bu6c2xacdinhhamHamilton
Vi baitoansongnu6ctrQngtruemgla mQth~baotoan,hamHamiltonduQ'c
chQnse1ahamnangluQ'ngsongnu6ctrQngtruang.
Dvatheo(3.19),hamHamiltond~nghi
1 L 1 L
H(Ij/,'7)=- p flj/(x,t) G('7)Ij/(x,t)dx+- gp f'72(x,t)dx2 0 2 0
(3.49)
50
Bu6c 3 chungminh (3.44) 817+V f/JV 17=8f/J
8t 8z
1 L
.:. Tir ET ="2gp f172dx,cho thdy ET khongph\!thuQcIf/0
=>8ET =0
81f/
(3.50)
1 L
.:. ED(If/)=-P flf/(X,t)G(17)If/(X,t)dx
. 2 0
1 L
ED(1f/ +81f/) =- P f(1f/+81f/)G(17)(If/+8'1')dx
2 0
lL lL lL
=-P flf/Glf/dx+-p f8If/Glf/dx+-p fIf/G8If/dx+9(81f/2)
20 20 20
L
~ ED (If/) +p f81f/(GIff)dx
0
L
=>8ED= f81f/(p G Iff)dx
0
'"
8ED=PGIf/-
81f/
(3.51)
... 8H 8E 8E (3.50). - =---12.+ I... -
81f/ 81f/ 81f/ (351)P G(17)If/
(3.52)
.:. G(17)1f/=
(8f/J(~z't)1
' 8f/J(X,z,t)
1 I
N(17)
[
I+(817)2
]
li
Z='1(x,t)8z Z='1(X,t) ax
=
(
8f/J(X,z,t)
1
' 8f/J(X,z,t)
1 J(
- 817, 1
)ax z='1 8z z='1 ax
=
(
_8f/J(X,z,t)
1
817 +8f/J(X,z,t)
1 Jax z='1ax 8z z='1
(3.53)
51
1 5H 8rjJ817 8rjJ
.:. Tir (3.52)va (3.53)suyratrenz=17(X,t):p51f/=- axax+8z
15H
Han mla 171= [17,H]=p 51f/
Suy ra 171=- 8rjJ817+8rjJ (di~uphai chungminh)axax 8z
Bu6c4chungminh(3.45)~ 8rjJ+~(vrjJ?+l (
8rjJ
)
2 +g17=0
8t 2 2 8z
, 1 L 5E 8
(
1 2
).:. Tu Er =- gpf172dx,suyra L =- - gP17 =g P 172 0 517 817 2
5Er
=>-=g P17
517
(3.54)
1 L
.:. ED(17)=-P flf/(X,t) G(17)If/(x,t)dx
2 0
1 L
ED (17 + 517) =- P fIf/ * G( 17+ 517)1f/* dx
2 0 /
[
2
( J
2
1 I]
L 1 8rjJ 1 8rjJ 8rjJ 8178rjJ dx
~ ED(ry)+lOry p 2(aJ.J - 2 azl,~, + az ,., ax ax ,~,
L
[( IJ
2
( IJ
2
1 I]
=>5E - f517P ~8rjJ - ~8rjJ +8rjJ 8178rjJ dx
D - 0 2 axZ=1] 2 8zZ=1] 8zZ=1] axaxZ=1]
[ [ J
2
( J
2
]
5ED 1 8rjJ 1 8rjJ 8rjJ 8178rjJ
"" Jry ~ p 2: ",1, - 2: &J" +az I,~Ox Ox I",
~ ~p[[:IJ' +[:IJ']- ~~IJ- ::1,.,+:IJ (3.55)
. 5H 5ED 5Er... -=-+-
617 617 517
52
(3~4)~P
[(
01
1 J
2 +
(
01
1 J
2
]
- 01
1 (
- 01]01
1
+01
1 ]
+gp1] (3.56)
(3.55) 2 oXZ=T/ OZZ=T/ OZZ=T/ axaxZ=T/ OZZ=T/
.:. Tir (3.56) sur ra tren Z =1](x,t)
~5H=~
[(
01
)
2 +
(
01
)
2
]
- 01
(
- 01]01+01
)
+g1]
P 51] 2 ox oz oz oxax oz
1 5H
Han mla 1jI/= [1jI,H] =- P 51]
Sur ra 1jI/=-~
[(
01
)
2 +
(
01
)
2
]
+01
(
- 01]01+01
)
- g1]
2 ox OZ oz axox oz
(3.57)
01 01]+01
.:. M~tkhac,do 1]/=- axax oz
Tir ljI(x,t)=1(x,z=1](x,t),t)
oljl 01 0101]~-=-+--
ot ot OZot
Q oljl =01 +01
(
- 0101]+01
)ot ot oz axax oz
(3.58)
.:. Tir (3.57)va(3.58)
Surra 01+~(Y'1)2+~
(
01
)
2+g1]=O(di€uphaichungminh)
ot 2 2 OZ
3.2.4lJjnh !urungchomohinhsongnlructrfJngtrtdlng
Thayki hi~uhamHamiltonbing hamnangluQ'ng
1 5E
1]=--
(3.41) Q ~ / P 51j11 5E
1jI/=---
P 51]
(3.59)
Baitoanhamth~:xacdinhhamth~v~nt6cljJth6a
53
J2rjJ
/).rjJ+- =0
JZ2
<jJ(x,z,t)=Ij/(X,t)
a<jJ=0
aZ
tren z =1](X,t)
tren z =-cl
Khi d6,n~ugiaiduQ'cbaitminhamth~thi d1;lngphuO'ngtrinhbem~tduQ'Cxacdinh
dlJatheohaicachsau
Cach1Tir d1;lnghamth~<jJ,giairaduQ'chamn[mgluQ'ngE, k~thQ'pv6'i(3.59),
d1;lngcuahaiham1]va If seduQ'cxacdinh.
Cach2
Xet trenbienz =1](x,t)
.
!
a<jJ
VIj/ =V<jJ+-V1]az
Ij/(x,t) =<jJ(x,z=1](x,t),t) ~ alj/ = a<jJ+a<jJa1]
at at azat
!
a<jJ
V<jJ=VIf/--V1]az
~" a<jJ= alj/ - a<jJa1]
at at az at
{
V<jJ=VIj/-(V1]
~ a<jJ= alj/ - a1] (v6'i t; = ~<jJ(x,z ol- )
at at t; at z-r/(x,t)
. a1] a<jJ a1]-+ V<jJv1] =- ~ - = -V<jJV1] +t;
at az at
~ a1]=-(VIj/ -t; v 1])V1]+t;
at
~1]t =-VIj/V1]+t;V1]V1]+t;
~1]t =-VIj/V1]+t;(1+V1]V1])
a<jJ 1 2 1(a<jJ)
2
-+-(v <jJ)+- - +g1]=0at 2 2 az
.
54
(
8'1f 81]
)
1
( )2 1 2Q --t;- +- VljJ +-t; +g1]=O8t 8t 2 2
8'If 1( )212 81]Q-=-g1]-- V'If-t;V1] --t; +t;-8t 2 2 8t
1 1 1
Q'lft =-g1]__(V'If)2+t;'11]'1If__t;2(V1])2__t;2 -t; V'IfV1]+t;t;+t;2(V1])22 2 2
1 2 1 2 2 1 2
Q'If/ =-g1]-2('1 'If) +2t; ('11])+2"t;
Q'If/ =-g1] -lev 'If)2+It;2(1+(V1])2)2 2
t
1]/ =-V 'IfV 1]+t;(1+'11]'11])
Suyra 1 1 trenz =1](x,t)
'Ift = - g 1]- - V 'IfV 'If +- t;2(1+V 1]'11])2 2
(3.60)
Nhu v~y,n~uxacdinhduQ'cv~nt6ctheochi~uz, t; =~ljJ(X,z,t)
1
' r6i thay
8z Z=1J(x,t)
vao(3.60),giaih~(3.60)thixacdinhduQ'c1]vaIf/.