THUẬT TOÁN TÌM KHÔNG ĐIỂM CHO TỔNG HAI TOÁN TỬ ĐƠN ĐIỆU CỰC ĐẠI
NGUYỄN THẾ UY
Trang nhan đề
Lời mở đầu
Mục lục
Chương1: Toán tử đơn điệu.
Chương2: Thuật toán tiến - lùi cải tiến.
Chương3: Thuật toán Glowinski - Le Tallec.
Tài liệu tham khảo
19 trang |
Chia sẻ: maiphuongtl | Lượt xem: 1966 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Luận văn Thuật toán tìm không điểm cho tổng hai toán tử đơn điệu cực đại, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Chu'dng3
THU~T TOAN GLOWINSKI - LE TALLEC
3.1 Gi6'ithi~uthu~HtoaD
G§n day,Glowinskiva Le T,lllec (trong[13],[14],[15]) duaramQt
thu~ttocln mdi rho bai tocln(P) , chungta g9i Ia sd d6 a.Trongd,~mg
nguyencuano,sdd6adlt9Cvie'tnhltsau:ZO=Zo(chotrong9ill)vdik >0,
Zk bie'tva vdi a E [0,1/2]quailh~giua cac zk,zk+l,zk+l-e,zk+edU9cxac
dinhbdih~phltdngtrlnhsau
k+8
Z - Z k
a~t +A (z k+8 )+B(z k )=0,
Z
k+I-8 k+8
-z
(1- 2a) ~t + A (zk+8 )+B(zk+I-8 )=0, (1)
Z
k+I k+I-8
-z
a~t + A (zk+j )+B(zk+I-8 )=O.
Ml;!cdichcuachungtaIa nghiencuusvhQitl;!va t6cdQhQitl;!cua
sdd6 a khi A va B Ia toantti'ddndi~ucvcd(;lixacdinhtren9ill.Cl;!theIa
chungtamu6nxac dinhdi~uki~ncuaA va B de daysinhra bdi sdd6
a hQitl;!Wi nghi~mcua(P).
De co d(;lngtudngtvnhucacsdd6nghiencuutrudc,d§u tienchung
taphaivie'tI(;lisdd6a dudid(;lngcuagiai thuc.Khi vie'tI(;li,chungta dU9c
ke'tqua:
Zk+I =(I+AIAtO - A jB)(1+A 2Bt(1 - A2AXI+AjAt(r - A]B)zkf
ddayA]=a~t va A2=(1-2a)~t.
Trang31
Dltoi di;tngnaychungtaco th~nh~ntha'ydug sd d6 e duQcphan
tichthanh3 bltoCti~nva h)i.d daym6ithutl!cuatmintti'A vaB coth~
thayd6idltQC.ChliY r~ngkhi Al =A2thlsdd6eduQcphantichthanhmQt
thu~ttmincuaPeaceman-RachfordvamQthu~ttoanti~n-lui.
3.2 HQi T1.,1Cua Sd D6 e
Tronglu~nvan nay,chungta giftsti'r~ngbai toan(P) luauco
nghi~m,tucla
- --
::JzE 91,a E Az, b E Bz ma a+b =0 .
D~nghienCUDslj hQitl;lcuasdd6e (l), d~t
AI=BL\tva A2=(1-2B)L\t,
bi6nd6id5ngthucd~utientrongh~(1),chungtaco
Zk+8_Zk +e~tA(zk+8)+e~tBzk =0,
chuy~nv~taduQc
zk+8(I+e~tA)=(I+e~tB)zk ,
tltdngdudng
Zk+8= (1+A I A )-1 (1 +A I B~k
= J AlA (1 - A 1B~k .
Tltdng tl!, taHnhdltQCcft zk+1-8va zk+l
Trang32
Zk+tJ =JA,A(I-AIB~k,
k+l-tJ =J (I - A B L k+tJZ A2B 2)£' (2)
Zk+1 = JAIA(I-AIB~k+l-tJ.
Tie"p thea, b~ng cach loi;ti b6 Zk+8va Zk+1-8trong h<%phu'dngtdnh (2),
chungta thudu'9Ccong thuc l~pnhu'sau.La'y zOEiRll.Cho k ~ 0 ,Zkbie"t,ta
co
Zk+l=JA,JI -AjB)JA2B(1-A2A)JA1A(1-AIB)Zk.
Tronglu~nvan naychungtagia sli'r~ngAla da triva B la ddntrio
Chungtavie"tcongthuctrendltdidi;lllgkhacb~ngcachdungbiend6iph\!
sau(deki~mtrat\tctie"p)
(I-vT)=;(yJ~T -IXI+~T), (3)
d dayT la toantli'ddndi0,sdd68 trd
thanh
z'.' =J", [I-,-,B]J"" ~' [aJ"A -I][I-,-,B],2
')
d
A l A,d ay a = +T.2
(4)
f)~sosanhsdd68vd~thu~toanPeaceman-Rachford,taviet thu~t
toanPeaceman-Rachford di;lngkhacla
yk+l=J1J3[2J1cA-1][I-AB]yk. (5)
VI the"d\tavao(4), chungta d~t
k=1 A2 k
V =J 1J3 [~][ a J )'IA - I ][1- AIB ]z ,j
Trang33
khi Al =Az suyra a =2,tatha'ythu~tmintrengi6ngnh11'thu~tmincua
Peaceman-Rachford.Va tad~t
l+l =J;. J! -A1B]Vk+1I ,
Zk+ld<;lt d11'<;5ctU Vk+l t11'dngtv nh11'd thu~ttoantiSn-lui.
Tac6th6la'yAl va Az E[O,CX)J,t6nt~ieE[O,+]va ~t>Oma
Al=B~t , Az=(1-2B)~t,
vdi
AlB= va
2A]+A2
~t=2A]+A2 .
Tr11'dckhiquailHimdSnSvhQit\lcuasdd6e chungtaquailtam
dSnsvhQit\lcuathu~toantie'n-luivathu~ttoanPeaceman-Rachford.
DinhIj 3.1
Giasll'z* lamQtnghi~mcuabaitoan(P)va'A>a.Ne'utoantii'B-
1 la ddndi~um~nhvdi modulo(j >a ,thlday{xk}sinhbdi thu~ttoan
tiSn-luiXk+l=J ",JI - AB]Xkthoamanba'td~ngthuc
Ilxk+l-z*llz ~llxk-z*1I2-'A(2(j-'A~IBxk-z*112-'A21Iuk-Bz*1I2,
d day
k I
(
k '\ B k k+1) A
k+1
U ="i X -I\, X -x EX.
Trang34
Ne'uA<2crthl day {Xk}bi ch~nva hQi tl;}Wi nghit%n:tZOOcua (P) .HdnmJa
B {xk}~ B ZOOva uk ~-Bzoo.
Ne'uA hayB la toantU'ddndit%um~nhvdi moduloyva 8 ,thls\ihQi
I tvitnhttla tuy€ntinhvditys6
1- 52A(20"- A)
I+A2y2
Dink If 3.2(LionsandMerrier( [21]))
Gia sU'z* la mQtnghit%mcuabaitoan(P) va vdi A >O.Day {yk}
sinhbdi
yk+l=JAB[2JAA -III-AB)yk,
ne'uchungtad~t
~k=[I+AB]yk , wk = [I-AB]yk,
~=[1 +AB]z* , w= [1 - AB]z* ,
. Vk, thlbtt ding thucsailthoaman
I
II~k+l - ~II ~Ilwk ~ wll ~II~k - ~II.
Hdn nlia,
(Byk - Bz* ,Yk ...:.z.)~ 0 khi k ~ +00.
Trang35
Gia sit B thoaman\;j{xk}c 0(8) va x ED(B) ma {B(xk)}la
dang, xk~;Z va (Bxk-Bx,xk -x)~o khi k~+<X),va x=;Z.Thl
{yk}hQitl;}duynha'tWinghi~mz* cua(P).
Bli' d€ 3.1
Gia sitT la mQttoclntit ddndi~uqtc d~idu'cjcdinhnghlatren91n
vagiasLY~lvav lahaisothtfcdu'dng.£)~tr=1+if.Thltoclnttl' J /iT- I
la lien tl;}CLipschitzvdi h~ngso L =max~,~}.Khi~ =v thl toclnttl'
2JpT- I lakh6ngdan.
Ne'uT-1 la toclnttl'ddndi~um~nhvdi modulo1 > 0, va ~l<V<21
thl JUT - I laLipschitzvdih~ngsoL =if.
Chttngminh
Gia slYZl'Z2E91nvaxet
Zi=~JpT- Ik choi=l,2.
Do
Zi+Zi - J Z. cho i=1,2,- - pT I
r
chungtaca
~[z, J ;z}T(; ;z,) , i =1,2.
BdiT laadnai~u,chungtaca
Trang36
1(
~+z\ ~+Z2 ~+Z\ ~+Z2
)
0 8- z -Z - + - > ( )] 2 , - ,
~ y y y y
tu'dngdu'dngvdi
(y - 1~Iz\ - z2112-IIZ\ - Z2112+ (y - 2)(z\ - Z2'z\ - Z2)~0.
Ne'u y~2 (nghiala ~~v), dungb~td~ngthucCauchy-Schwarz,tasoy
ra
(y-Qlz] _Zzll2-II~ -z2112+(y-2~lz\-z21111;\+~211~O,
nghiala
l(y- 1~Iz\ - z211-11~- Z:IIHlz]- z211+II~- Z:IIJ2 0.
Do bi€u thlicthli hai la khongam,soyra bi€u thucthunh~tclingkhong
amva VIv~y
II~- Z:II~(y- 1)Ilz] - z211=~Ilz \ - z211'-
Ne'u y < 2 nghiala ~ <v thlb~ngcachdungb~td~ngthucCauchy-
Schwarzl§nnii'achungtaco
(y-l~lz\ -z2112-II~ -~112+(2-y)lIz\ -z2111111~\-Z-2II~O,
nghiala
l(Y-l~lz]-z211-11~- IIHlzl -z211-11~- IIJ~O.
VI v~ychungtaco
Trang37
IIZ:- Z211~Ill} - z211 '
nghlala ljJT - I la lien t\lcLipschitzvdi moduloL =max~,~}.
Baygio gia sl( T-1 la toantli'ddndi~um 0va
I-l<v<21.Thlb3'tdgngthuc(8)coth~thayb~ng
~>((y-l)(z}-zJ-(~ -~}(z}-Z2)-(~ -~))~
~.,2>II(y-IXzl-Z2)-(~ -Z2r,
tu'dngdu'dngvdi
(y-Qlz} -Z2[[2-II~ -~~r +(y-2+ ~1(Y-l)Xz}-Z2'~ -~)
~~(y-lrllzl -z2112+;II~-~~r.
Tli ~l<V <21, chungtaco
r-2~;(r-l»O.
Dungb3'tdgngtucCauchy-Schwarzchungtathudl«;1Ck€t qua
(y-l)llz] -z2112-II~ -~112+(y-2+ 2~1(y-l)~lzl-z21111~-z211
~;(y-lrllz1 -Z2[[2+;II~-~112,
vaVIv~y,
(y-l~lzl -z2112-II~ -~112+(Y-2+~1(y_1)XZJ-Z2'~ -~)~O.
V~ychungminhhoanthanhvdib3'tdgngthuc
Trang38
II~- ~IIs (y- qlZI - Z211.
D~co du'Qck6tquahQit\lcuachungta,c~nchuysail
bk =BZk , (9)
(10)
(11)
(12)
(13)
b* =Bz* ,
- k k
vk=z -zlb
v=zk-Albk ,
k+l J )..2 r J It-v =).. 2B~ La )..2A - JY k .
K6t quahQit\l d~utienc~nquailHimla tru'ongh<;1pAl ?A2.NghIalae E
[1/3,1/2].
DinhIf 3.3
Giasaz* la mQtnghi~mcuabaitoc1n(P). Giasar~ngB-1 la ddn
di~um~nhvdicr > 0 va 0<A2::;;Al <2a .Thlday{zk}sinhrabdisd
d6e (4)chota
Ilzk+l-z*II~llzk -z*II,Vk.
Hdnll11'aday {zk}hQit\lWi nghi~mcua(P).
Chlingminh
B~ngcachlamgi6ngnhu'd tren,chungtachiasdd6e thanh2 thu~t
toan: thu~toantien- llii va thu~toanPeaceman- Rachford.Chungta
quailtamWihai toanti't
J AIJI - AlB] va J A2B~:laJ AlA- I J .
Trang39
B~ngeachchia,chungtaco
Zk+l=JAlAli -AIBJvk+l.
Ap d\lllg dinh ly 3.1,cho taba'td~ngthucsail
IIZk+l_Z*112~llvk+l_Z*112-Al(2cr-Al~IBvk+l_b*112 -A~lluk-b*112,
ddayuk E Az k+l.DoA1 <2cr,ba't'd~ngthti'ctrd thanh
Ilzk+l_Z*112~[[Vk+l-z*r -A~[luk-b*112. (14)
Va
* AI'
]Z =J. B [-][ aJ A A-I V.
AZI A 212
Th~tv~y,tuz* lamQtnghi~mcua(P),chungtaco
- b* E Az * va v=z* - A lb' E (I+AlA~:
VI v~y
*
J v =z ,AlA
Va
A2 I L [ * * L *
JA2B~laJA1A -Ijv=JA2bLz-A2b JY=z.
HdnnuaA vaB la tmlntli'ddndi~uqic d~i,giaithti'cJ A2E la kh6ngclan
nentheob6d~3.1thItmlntli'~:lJAlA- Ij lalient\lcLipschitzvdih~ngs6
L =max{f;,l}.Dung(13),chotabatd~ngthuc
Trang40
\Iv k+\ - Z* II ~Lllv~ - vii (15)
baiainhnghIacuavkvav(nhln(11)va(12»vagiasa r~ngB-1la
adnai~um(;lnhvoimodulo0",taco
Ilv~-v112= Ilzk-z* -AI(bk -b*f
II
k *
11
2 2
11(
k * ~
1
2
(
k * k *
)= z -z +A'I b -b~ -2AIZ -z,b-b
~ Ilzk-z*112-AI(20"-A\~lbk -b*112. (16)
KthQp (14)va (16) chungtasuyra
II
k+1 *
11
2 2
11
k *
11
2 2 ( ~
I
k *
11
2 2
11
k *
11
2
z - z ~L z - z - L A\ 20" - A\ ~b - b - A \ U - b .(17)
Do A2~AI<20", chungtacoL=I va (17)choba'td~ngthlic sau:
Ilzk+1 - Z*r ~IIz k - Z* II
II
k *
11
2 I ~
I
k *
11
2
II
k+\ .*
11
2
]b - b ~A ,(2-oA1) ~z - z - z - Z
Iluk+b*112~A\~~lzk-z*112-llzk+\-z*112].
Tli ba'ta~ngthuc
Ill+1- z*112~Ill- z*11'
chungtathudl(Qck€t qua {zk}ladongva day ~IZk - z*ll} lahQi~.Hai
ba'td~ngthucsaucohamy la bk~ b* va uk~ -b* .
Baygiochungtaxet ZOOla mQtgioih(;lncuaday{zk}.Tli A vaB
ladongvatlibk=Bzkvauk-lEAzkchungtacob*=Bzoova-bEAzk .Co
nghIalaZOOlamQtnghi~mcua(P).
Trang41
CuO'icungb~ngcachdungchungminhtrong(Ref [24]trang885)
chungtathuduQcke'tquala day {zk}hQitl;!Wizoo,
D€ tlmto'cdQhQitl;!cuacuasdd6e , chungtac~ncob6d6 sail
EIJ d~3.2.
Gia SltT la loan tU'ddn di~uqtc d~im~nhxac dinh tren iRnvdi
modulo~>O.ChoA >0 , thlgiaithucJ AT la lienh,lcLipschitzvdih~ng
sO' 1
1+ T T
Chungminh
Gia Slt A>O) X,YEiRn lac{)dinhva- -
XEJ;'TX va YEJ;'TY'
Do dinhnghlacuagiai th((cloantU',chungtaco
x - X E T~va Y - Y ETy.
A A
tuday,giaSltT la loantltddndi~uvdimodulocJ,chungtaco
(x ~~- y ~y. ~- y)~ ~II~- yll' .
nghlala
(x- y,x - y) ~ (1 + A 1~lx- yl12.
Dungba'td~ngth((cCauchy-Schwartz
Trang42
VI v~ychung tathuduQcke'tqua
Ilx-ylls~llx-yll.
Eo?di 3.3
GiasO'Tla loantltddndi~uqtcd~ixacdinhtren91n. GiasO'r~ng
T-1 la roanto'ddndi~um~nhvdimodulo0'>0(vdiT la ddntri). Thl T la
loanto'ddndi~um~nhneuvachineuT-1 la lientvcLipschitz.
Ch((ngminh
Trudc lien chungtaquailsatr~ngT-1 la lien t\lCLipschitzapd\lng
b6 de tntdc,Gia SltT la loan to'ddndi~um~nhvdi modulo1>0va xet
(tl',:\J,(t2,xJ E T-1 . Do
Tx]=t] va TX2=t2'
chungtaco
(t]-t2,x] -xJ;:::rllx] -x2112
Dungba'td~ngth((cCauchy-Schwartz,keo theo
Ilx] -x21Is~llt] -t211
V~yT-1 Lipschitzvdih~ngs6 ~
Trang43
Baa l(;li,giasiTr~ngT-1 la lien tvcLipschitzvdi h~ngsf{L, thl, cho
ta"tca (XptJ,(X2,t2)ET chungtaco
(T:Xj- TX2,XI- X2)=(t]- t2,T-]t]- T-\)
~ allt] - t2112
II 11
2
II 11
2
>..!!-. -] - -] -..!!-. -
- L' T t) T t2 - L' XI X2
d c1ay ba"tc1~ngthlic(1) do tinhc1dnc1i~um(;lnhcuaT-1 va ba'tc1~ngthlic
(2) doT-1 Lipschitz.V~yT latmintuc1dnc1i~uvdimodulo:, .
DinhIf 3.4
Gia Sl(r~ngcacgia thi€t cuab6 c1€3.1c1U9Cthoa.Themgia thi€t la
A la toantuc1dnc1i~um~nhvdi modulo11>0 hayT-1 la lien tvcLipschitz
vdih~ngs68 >O.
Thl z* langhi~mduynha'tcua(P)vaday{zk}hQitvWiz* it nha't
la tuy€nHnh,nghIala"v'ktaco .
Ilzk+l - z*ll::;c,llzk - z*11
dc1ay
I <I
c] = I + A 117
n€u A la toantuc1dnc1i~um~nhva
JI-,(1(2rr-,(1)< 1CI =. 0" n€u B-1lalientvc.
Chlingminh
Trang44
Quansattntdclien,dungb6as 3.3,B la tmintti'adnai~um~nhkhi
B-1 la lient\lCLipschits.DoA +Bla loantti'adnai~um~nhz* la nghi~m
duynh~tcua(P).Chungtaxet
J;'IA,[I - PclB]JA2B va ~:[CXJAIA- I].
Tru'dclienloantt(J A ,A la khongdan,hdnnnakhiA la loantti'adnai~u
m~nhvdi modulo11>0,dungb6as 2.2,no lien tl;lcLipschitzvdi h~ngs6
~
I+A I'l .
Dung (3) vdi =A1 va f.l =A 2 thlloantti'thilhaicoth~bi~udien
la
[1-AIBVA2~=~:[ftJA2B-1]
d day
fi=l+~.I
Do B-1 la loan ttt adnai~um~nh , va do b6 as 3.1 vdi T=B,va
lfiJ;'zB- I J la lien tl;lclipschitzvdi h~ngs6 ~:. Suyra[I-AIB]JA2Bla
khongdan.
Cu6icungdungb6as 3.1mQtl~nnnanhu'ngvdiT=A,loantitk€
ti€p : 2[a.lA I A - I] la lien tl;lc Lipschitz vdi h~ng s6I
L=max{~:,l}=l do A2~A1.
K€t h<jpcabaloanhi, chungtadedangk€t lu~nr~ng
Ilzk+1- z*11~ ~llv~- vii (18)
d day c = 1+~"111.N€u A la loan tti'adn ai~uvdi ~=1 vdi cac tru'ongh<jp
khac.
HdnmIa,dungchangminhainh19(3.1)va(16)chungtaco
Trang45
Ilvk-vl12~IIZk_Z*W-AI(2cr-AI~lbk-b*1I2 ~llzk_Z*112(19)
Ne'uB-1 la lien t~cLipschitz vdi h~ngs6 0> 0 thl
Ilzk -z*ll~ollbk - b*11
Ap d~ngvaba'ta~ngthlic(19)taauQc
Ilv'k-v112~[I-AI(:G2-AI)]lzk-z*'12 (20)
V~y tu (18) va 20) chung ta suyra r~ng
Ilzk+l-z*II~CI"Zk -z*11
V~y
I <1
CI =I +A /7
n€u Ala roantuadnai~um(;lnhva
J I--.<,(20--'< I) <1CI = Ii' ne'uB-1 la lient\lClipschitz
Chuy3.1
. Khai ni~ma§u tieDla h~ngs6 c1khongph\l thuQcthallis6 ,,1.2'Tn(dc
tieD Al <20-la c6 ainh, ch<;)ll,,1.2 <AI khonganhhuangt6caQhQi t\l
tuy€n tinhcuasda68.Tuynhien,chungtalienkiSmtrab~ngHnhroan
th~cnghi~m.
. LienquailWivaitrocuaAItrongt6caQhQit\ltuye'nHnh,chungtad€
dangnhlnrar~ng,khiA la toaDtuadnai~uvdimodulo11>O,aanhgia
chocj trdthanht6thdnkhi AIXa'px12cr,keotheoc I ~ 1+;1]17 .Khi
B-1 ]a lient\lclipschitzvdih~ngs60>0, cI=~1- ;: auQcdaubgia
t6t,lingvdi AI=0-.
Trang46
Khi A la toaDtttddndi 0 va B-1 Ia lien l\1c
Lipschitzvoih~ngs60>0,keotheotuchungminhcuadinh193.2,ti s6
hQitl;1la
1-"-1(2"-"-1) 1
c1=,/ 02 .1+"-,11.
Bdi b6 d6 3.3 ,Gia sa "B-1 la lien tl;1CLipschitz" thl tu'dngdu'dng
vdi "B-1 la toaDtU'ddndi<$um~nh", VI v~ym<$nhd6 cuadinh ly 3.2co
th€' d6i cong thucb~ngcachthaythe'gia thie'tnay b~nggia thie'td§u
lien. TrongtntonghQpnay,chungtadinhnghjaloanta B ddndi<$um~nh
vdi 8modulo,bdib6d63.3,Ii =)i th"ih~ngs6 cI co th€ bi€u di€n du'di
d~ngtu'dngdu'dngla
- ~l- AJ20"- Al}fcI- .
1+All
Tsengchungminhr~ngtacdQhQil\1chothu~tloanTie'n-Luila
1- AJ (20'- A I~2
C = I. 2 ~
l+AI11~
no IOnhdnCI. Va'nd6 nayco trongchungminhdjnhly 3.4,chungta
khong quail Him tdi loan tU' IJcIA(I - AIR) nhu'ngchungta tachchungfa
.1 va (I - AIB).A,A
Djnh ly ke' tie'p noi ke't qua
Aj<Az,nghiala 8E[O,+].
hQi l\1
?
cua sd d6 e khi
Trang47
Dinhlj 3.5
Gia saz* la mQtnghi~mcuabai tmin(P) va B la tmintll'ddndi~u
m~nhvdi 8> Ovalien tl)cLipschitzvdi h~ngs6 8> O.Ne'uA < 28 va
Ai E lFA2,A2J (d day C2=1- -<1(2:2--<1)),th'iday {zk}hQit\lWi z*, nghi~m
duynhfftcua(P).HdnmJa, '\jk taco
Ill+l-~*II~::F lll-zl
Chlingminh
Ap d\lngb6 de 3.3,B la tminta ddndi~um(;lnh, v'i v~yz* la
nghi~mduynhfftcua(P).Giasa Al<A2va Al<20:. Th'i(17) la dungvdi
L -<2 , h / /= T,va c ling taco
I\Zk+1-lor ~(~:Y~IZk-z*112-Al(2(J-AI~lbk - b*112j (21).
Do B-1 la lien t\lc Lipschitz vdi h~ng s6 8 > 0 va tU
Bzk=bk va Bz* =b* chung taco bfftd£ngthlic sau
Ilzk-z*II~8I1bk- boIl
Cho phepchungtake'tlu~ntu(21)r~ng
IIl+1-z*11~ ~:F:lll-z*11
d day
Trang48
C2=1-A.l(2a-A.l). a 2 .
Do AI <20" , Suy fa C2<1.Ben qmh do, bai dinhnghjacuacrva8,chung
taco U::;(j va
82 -2UAj +A~~U2-2UAj +A~=(u-Ajl ~O vdi c2~O.
Tltdnghi, khi FzAz <Al chungta co r~ng ~:Fz <1 .V~ychungta co
day {zk}hQi tv Wi z* vdi t6cdQtuy6n tinh.
Chuy3.2
Chu y r~ng di~u ki~n Al E lFAz,AzJ thl tudng dudng vdi
f) E ll+1}"~-J. Trang tntongh0 con la mot diu
hoima.
Nglt<;JCl~ivdi tntongh<;JpAz::;Alt6cdQhQitv cuaday {zk}phv thuQc
vaogia tri cua Ivz.T6cdQhQitv t6thdnkhi Ivzgiamva xa'pxi Ivj' Do do
chungtachiquailHimWi tntongh<;JpAz::;Al .
Trang49