Luận văn Thuật toán tìm không điểm cho tổng hai toán tử đơn điệu cực đại

THUẬT TOÁN TÌM KHÔNG ĐIỂM CHO TỔNG HAI TOÁN TỬ ĐƠN ĐIỆU CỰC ĐẠI NGUYỄN THẾ UY Trang nhan đề Lời mở đầu Mục lục Chương1: Toán tử đơn điệu. Chương2: Thuật toán tiến - lùi cải tiến. Chương3: Thuật toán Glowinski - Le Tallec. Tài liệu tham khảo

pdf19 trang | Chia sẻ: maiphuongtl | Lượt xem: 1966 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Luận văn Thuật toán tìm không điểm cho tổng hai toán tử đơn điệu cực đại, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Chu'dng3 THU~T TOAN GLOWINSKI - LE TALLEC 3.1 Gi6'ithi~uthu~HtoaD G§n day,Glowinskiva Le T,lllec (trong[13],[14],[15]) duaramQt thu~ttocln mdi rho bai tocln(P) , chungta g9i Ia sd d6 a.Trongd,~mg nguyencuano,sdd6adlt9Cvie'tnhltsau:ZO=Zo(chotrong9ill)vdik >0, Zk bie'tva vdi a E [0,1/2]quailh~giua cac zk,zk+l,zk+l-e,zk+edU9cxac dinhbdih~phltdngtrlnhsau k+8 Z - Z k a~t +A (z k+8 )+B(z k )=0, Z k+I-8 k+8 -z (1- 2a) ~t + A (zk+8 )+B(zk+I-8 )=0, (1) Z k+I k+I-8 -z a~t + A (zk+j )+B(zk+I-8 )=O. Ml;!cdichcuachungtaIa nghiencuusvhQitl;!va t6cdQhQitl;!cua sdd6 a khi A va B Ia toantti'ddndi~ucvcd(;lixacdinhtren9ill.Cl;!theIa chungtamu6nxac dinhdi~uki~ncuaA va B de daysinhra bdi sdd6 a hQitl;!Wi nghi~mcua(P). De co d(;lngtudngtvnhucacsdd6nghiencuutrudc,d§u tienchung taphaivie'tI(;lisdd6a dudid(;lngcuagiai thuc.Khi vie'tI(;li,chungta dU9c ke'tqua: Zk+I =(I+AIAtO - A jB)(1+A 2Bt(1 - A2AXI+AjAt(r - A]B)zkf ddayA]=a~t va A2=(1-2a)~t. Trang31 Dltoi di;tngnaychungtaco th~nh~ntha'ydug sd d6 e duQcphan tichthanh3 bltoCti~nva h)i.d daym6ithutl!cuatmintti'A vaB coth~ thayd6idltQC.ChliY r~ngkhi Al =A2thlsdd6eduQcphantichthanhmQt thu~ttmincuaPeaceman-RachfordvamQthu~ttoanti~n-lui. 3.2 HQi T1.,1Cua Sd D6 e Tronglu~nvan nay,chungta giftsti'r~ngbai toan(P) luauco nghi~m,tucla - -- ::JzE 91,a E Az, b E Bz ma a+b =0 . D~nghienCUDslj hQitl;lcuasdd6e (l), d~t AI=BL\tva A2=(1-2B)L\t, bi6nd6id5ngthucd~utientrongh~(1),chungtaco Zk+8_Zk +e~tA(zk+8)+e~tBzk =0, chuy~nv~taduQc zk+8(I+e~tA)=(I+e~tB)zk , tltdngdudng Zk+8= (1+A I A )-1 (1 +A I B~k = J AlA (1 - A 1B~k . Tltdng tl!, taHnhdltQCcft zk+1-8va zk+l Trang32 Zk+tJ =JA,A(I-AIB~k, k+l-tJ =J (I - A B L k+tJZ A2B 2)£' (2) Zk+1 = JAIA(I-AIB~k+l-tJ. Tie"p thea, b~ng cach loi;ti b6 Zk+8va Zk+1-8trong h<%phu'dngtdnh (2), chungta thudu'9Ccong thuc l~pnhu'sau.La'y zOEiRll.Cho k ~ 0 ,Zkbie"t,ta co Zk+l=JA,JI -AjB)JA2B(1-A2A)JA1A(1-AIB)Zk. Tronglu~nvan naychungtagia sli'r~ngAla da triva B la ddntrio Chungtavie"tcongthuctrendltdidi;lllgkhacb~ngcachdungbiend6iph\! sau(deki~mtrat\tctie"p) (I-vT)=;(yJ~T -IXI+~T), (3) d dayT la toantli'ddndi0,sdd68 trd thanh z'.' =J", [I-,-,B]J"" ~' [aJ"A -I][I-,-,B],2 ') d A l A,d ay a = +T.2 (4) f)~sosanhsdd68vd~thu~toanPeaceman-Rachford,taviet thu~t toanPeaceman-Rachford di;lngkhacla yk+l=J1J3[2J1cA-1][I-AB]yk. (5) VI the"d\tavao(4), chungta d~t k=1 A2 k V =J 1J3 [~][ a J )'IA - I ][1- AIB ]z ,j Trang33 khi Al =Az suyra a =2,tatha'ythu~tmintrengi6ngnh11'thu~tmincua Peaceman-Rachford.Va tad~t l+l =J;. J! -A1B]Vk+1I , Zk+ld<;lt d11'<;5ctU Vk+l t11'dngtv nh11'd thu~ttoantiSn-lui. Tac6th6la'yAl va Az E[O,CX)J,t6nt~ieE[O,+]va ~t>Oma Al=B~t , Az=(1-2B)~t, vdi AlB= va 2A]+A2 ~t=2A]+A2 . Tr11'dckhiquailHimdSnSvhQit\lcuasdd6e chungtaquailtam dSnsvhQit\lcuathu~toantie'n-luivathu~ttoanPeaceman-Rachford. DinhIj 3.1 Giasll'z* lamQtnghi~mcuabaitoan(P)va'A>a.Ne'utoantii'B- 1 la ddndi~um~nhvdi modulo(j >a ,thlday{xk}sinhbdi thu~ttoan tiSn-luiXk+l=J ",JI - AB]Xkthoamanba'td~ngthuc Ilxk+l-z*llz ~llxk-z*1I2-'A(2(j-'A~IBxk-z*112-'A21Iuk-Bz*1I2, d day k I ( k '\ B k k+1) A k+1 U ="i X -I\, X -x EX. Trang34 Ne'uA<2crthl day {Xk}bi ch~nva hQi tl;}Wi nghit%n:tZOOcua (P) .HdnmJa B {xk}~ B ZOOva uk ~-Bzoo. Ne'uA hayB la toantU'ddndit%um~nhvdi moduloyva 8 ,thls\ihQi I tvitnhttla tuy€ntinhvditys6 1- 52A(20"- A) I+A2y2 Dink If 3.2(LionsandMerrier( [21])) Gia sU'z* la mQtnghit%mcuabaitoan(P) va vdi A >O.Day {yk} sinhbdi yk+l=JAB[2JAA -III-AB)yk, ne'uchungtad~t ~k=[I+AB]yk , wk = [I-AB]yk, ~=[1 +AB]z* , w= [1 - AB]z* , . Vk, thlbtt ding thucsailthoaman I II~k+l - ~II ~Ilwk ~ wll ~II~k - ~II. Hdn nlia, (Byk - Bz* ,Yk ...:.z.)~ 0 khi k ~ +00. Trang35 Gia sit B thoaman\;j{xk}c 0(8) va x ED(B) ma {B(xk)}la dang, xk~;Z va (Bxk-Bx,xk -x)~o khi k~+<X),va x=;Z.Thl {yk}hQitl;}duynha'tWinghi~mz* cua(P). Bli' d€ 3.1 Gia sitT la mQttoclntit ddndi~uqtc d~idu'cjcdinhnghlatren91n vagiasLY~lvav lahaisothtfcdu'dng.£)~tr=1+if.Thltoclnttl' J /iT- I la lien tl;}CLipschitzvdi h~ngso L =max~,~}.Khi~ =v thl toclnttl' 2JpT- I lakh6ngdan. Ne'uT-1 la toclnttl'ddndi~um~nhvdi modulo1 > 0, va ~l<V<21 thl JUT - I laLipschitzvdih~ngsoL =if. Chttngminh Gia slYZl'Z2E91nvaxet Zi=~JpT- Ik choi=l,2. Do Zi+Zi - J Z. cho i=1,2,- - pT I r chungtaca ~[z, J ;z}T(; ;z,) , i =1,2. BdiT laadnai~u,chungtaca Trang36 1( ~+z\ ~+Z2 ~+Z\ ~+Z2 ) 0 8- z -Z - + - > ( )] 2 , - , ~ y y y y tu'dngdu'dngvdi (y - 1~Iz\ - z2112-IIZ\ - Z2112+ (y - 2)(z\ - Z2'z\ - Z2)~0. Ne'u y~2 (nghiala ~~v), dungb~td~ngthucCauchy-Schwarz,tasoy ra (y-Qlz] _Zzll2-II~ -z2112+(y-2~lz\-z21111;\+~211~O, nghiala l(y- 1~Iz\ - z211-11~- Z:IIHlz]- z211+II~- Z:IIJ2 0. Do bi€u thlicthli hai la khongam,soyra bi€u thucthunh~tclingkhong amva VIv~y II~- Z:II~(y- 1)Ilz] - z211=~Ilz \ - z211'- Ne'u y < 2 nghiala ~ <v thlb~ngcachdungb~td~ngthucCauchy- Schwarzl§nnii'achungtaco (y-l~lz\ -z2112-II~ -~112+(2-y)lIz\ -z2111111~\-Z-2II~O, nghiala l(Y-l~lz]-z211-11~- IIHlzl -z211-11~- IIJ~O. VI v~ychungtaco Trang37 IIZ:- Z211~Ill} - z211 ' nghlala ljJT - I la lien t\lcLipschitzvdi moduloL =max~,~}. Baygio gia sl( T-1 la toantli'ddndi~um 0va I-l<v<21.Thlb3'tdgngthuc(8)coth~thayb~ng ~>((y-l)(z}-zJ-(~ -~}(z}-Z2)-(~ -~))~ ~.,2>II(y-IXzl-Z2)-(~ -Z2r, tu'dngdu'dngvdi (y-Qlz} -Z2[[2-II~ -~~r +(y-2+ ~1(Y-l)Xz}-Z2'~ -~) ~~(y-lrllzl -z2112+;II~-~~r. Tli ~l<V <21, chungtaco r-2~;(r-l»O. Dungb3'tdgngtucCauchy-Schwarzchungtathudl«;1Ck€t qua (y-l)llz] -z2112-II~ -~112+(y-2+ 2~1(y-l)~lzl-z21111~-z211 ~;(y-lrllz1 -Z2[[2+;II~-~112, vaVIv~y, (y-l~lzl -z2112-II~ -~112+(Y-2+~1(y_1)XZJ-Z2'~ -~)~O. V~ychungminhhoanthanhvdib3'tdgngthuc Trang38 II~- ~IIs (y- qlZI - Z211. D~co du'Qck6tquahQit\lcuachungta,c~nchuysail bk =BZk , (9) (10) (11) (12) (13) b* =Bz* , - k k vk=z -zlb v=zk-Albk , k+l J )..2 r J It-v =).. 2B~ La )..2A - JY k . K6t quahQit\l d~utienc~nquailHimla tru'ongh<;1pAl ?A2.NghIalae E [1/3,1/2]. DinhIf 3.3 Giasaz* la mQtnghi~mcuabaitoc1n(P). Giasar~ngB-1 la ddn di~um~nhvdicr > 0 va 0<A2::;;Al <2a .Thlday{zk}sinhrabdisd d6e (4)chota Ilzk+l-z*II~llzk -z*II,Vk. Hdnll11'aday {zk}hQit\lWi nghi~mcua(P). Chlingminh B~ngcachlamgi6ngnhu'd tren,chungtachiasdd6e thanh2 thu~t toan: thu~toantien- llii va thu~toanPeaceman- Rachford.Chungta quailtamWihai toanti't J AIJI - AlB] va J A2B~:laJ AlA- I J . Trang39 B~ngeachchia,chungtaco Zk+l=JAlAli -AIBJvk+l. Ap d\lllg dinh ly 3.1,cho taba'td~ngthucsail IIZk+l_Z*112~llvk+l_Z*112-Al(2cr-Al~IBvk+l_b*112 -A~lluk-b*112, ddayuk E Az k+l.DoA1 <2cr,ba't'd~ngthti'ctrd thanh Ilzk+l_Z*112~[[Vk+l-z*r -A~[luk-b*112. (14) Va * AI' ]Z =J. B [-][ aJ A A-I V. AZI A 212 Th~tv~y,tuz* lamQtnghi~mcua(P),chungtaco - b* E Az * va v=z* - A lb' E (I+AlA~: VI v~y * J v =z ,AlA Va A2 I L [ * * L * JA2B~laJA1A -Ijv=JA2bLz-A2b JY=z. HdnnuaA vaB la tmlntli'ddndi~uqic d~i,giaithti'cJ A2E la kh6ngclan nentheob6d~3.1thItmlntli'~:lJAlA- Ij lalient\lcLipschitzvdih~ngs6 L =max{f;,l}.Dung(13),chotabatd~ngthuc Trang40 \Iv k+\ - Z* II ~Lllv~ - vii (15) baiainhnghIacuavkvav(nhln(11)va(12»vagiasa r~ngB-1la adnai~um(;lnhvoimodulo0",taco Ilv~-v112= Ilzk-z* -AI(bk -b*f II k * 11 2 2 11( k * ~ 1 2 ( k * k * )= z -z +A'I b -b~ -2AIZ -z,b-b ~ Ilzk-z*112-AI(20"-A\~lbk -b*112. (16) KthQp (14)va (16) chungtasuyra II k+1 * 11 2 2 11 k * 11 2 2 ( ~ I k * 11 2 2 11 k * 11 2 z - z ~L z - z - L A\ 20" - A\ ~b - b - A \ U - b .(17) Do A2~AI<20", chungtacoL=I va (17)choba'td~ngthlic sau: Ilzk+1 - Z*r ~IIz k - Z* II II k * 11 2 I ~ I k * 11 2 II k+\ .* 11 2 ]b - b ~A ,(2-oA1) ~z - z - z - Z Iluk+b*112~A\~~lzk-z*112-llzk+\-z*112]. Tli ba'ta~ngthuc Ill+1- z*112~Ill- z*11' chungtathudl(Qck€t qua {zk}ladongva day ~IZk - z*ll} lahQi~.Hai ba'td~ngthucsaucohamy la bk~ b* va uk~ -b* . Baygiochungtaxet ZOOla mQtgioih(;lncuaday{zk}.Tli A vaB ladongvatlibk=Bzkvauk-lEAzkchungtacob*=Bzoova-bEAzk .Co nghIalaZOOlamQtnghi~mcua(P). Trang41 CuO'icungb~ngcachdungchungminhtrong(Ref [24]trang885) chungtathuduQcke'tquala day {zk}hQitl;!Wizoo, D€ tlmto'cdQhQitl;!cuacuasdd6e , chungtac~ncob6d6 sail EIJ d~3.2. Gia SltT la loan tU'ddn di~uqtc d~im~nhxac dinh tren iRnvdi modulo~>O.ChoA >0 , thlgiaithucJ AT la lienh,lcLipschitzvdih~ng sO' 1 1+ T T Chungminh Gia Slt A>O) X,YEiRn lac{)dinhva- - XEJ;'TX va YEJ;'TY' Do dinhnghlacuagiai th((cloantU',chungtaco x - X E T~va Y - Y ETy. A A tuday,giaSltT la loantltddndi~uvdimodulocJ,chungtaco (x ~~- y ~y. ~- y)~ ~II~- yll' . nghlala (x- y,x - y) ~ (1 + A 1~lx- yl12. Dungba'td~ngth((cCauchy-Schwartz Trang42 VI v~ychung tathuduQcke'tqua Ilx-ylls~llx-yll. Eo?di 3.3 GiasO'Tla loantltddndi~uqtcd~ixacdinhtren91n. GiasO'r~ng T-1 la roanto'ddndi~um~nhvdimodulo0'>0(vdiT la ddntri). Thl T la loanto'ddndi~um~nhneuvachineuT-1 la lientvcLipschitz. Ch((ngminh Trudc lien chungtaquailsatr~ngT-1 la lien t\lCLipschitzapd\lng b6 de tntdc,Gia SltT la loan to'ddndi~um~nhvdi modulo1>0va xet (tl',:\J,(t2,xJ E T-1 . Do Tx]=t] va TX2=t2' chungtaco (t]-t2,x] -xJ;:::rllx] -x2112 Dungba'td~ngth((cCauchy-Schwartz,keo theo Ilx] -x21Is~llt] -t211 V~yT-1 Lipschitzvdih~ngs6 ~ Trang43 Baa l(;li,giasiTr~ngT-1 la lien tvcLipschitzvdi h~ngsf{L, thl, cho ta"tca (XptJ,(X2,t2)ET chungtaco (T:Xj- TX2,XI- X2)=(t]- t2,T-]t]- T-\) ~ allt] - t2112 II 11 2 II 11 2 >..!!-. -] - -] -..!!-. - - L' T t) T t2 - L' XI X2 d c1ay ba"tc1~ngthlic(1) do tinhc1dnc1i~um(;lnhcuaT-1 va ba'tc1~ngthlic (2) doT-1 Lipschitz.V~yT latmintuc1dnc1i~uvdimodulo:, . DinhIf 3.4 Gia Sl(r~ngcacgia thi€t cuab6 c1€3.1c1U9Cthoa.Themgia thi€t la A la toantuc1dnc1i~um~nhvdi modulo11>0 hayT-1 la lien tvcLipschitz vdih~ngs68 >O. Thl z* langhi~mduynha'tcua(P)vaday{zk}hQitvWiz* it nha't la tuy€nHnh,nghIala"v'ktaco . Ilzk+l - z*ll::;c,llzk - z*11 dc1ay I <I c] = I + A 117 n€u A la toantuc1dnc1i~um~nhva JI-,(1(2rr-,(1)< 1CI =. 0" n€u B-1lalientvc. Chlingminh Trang44 Quansattntdclien,dungb6as 3.3,B la tmintti'adnai~um~nhkhi B-1 la lient\lCLipschits.DoA +Bla loantti'adnai~um~nhz* la nghi~m duynh~tcua(P).Chungtaxet J;'IA,[I - PclB]JA2B va ~:[CXJAIA- I]. Tru'dclienloantt(J A ,A la khongdan,hdnnnakhiA la loantti'adnai~u m~nhvdi modulo11>0,dungb6as 2.2,no lien tl;lcLipschitzvdi h~ngs6 ~ I+A I'l . Dung (3) vdi =A1 va f.l =A 2 thlloantti'thilhaicoth~bi~udien la [1-AIBVA2~=~:[ftJA2B-1] d day fi=l+~.I Do B-1 la loan ttt adnai~um~nh , va do b6 as 3.1 vdi T=B,va lfiJ;'zB- I J la lien tl;lclipschitzvdi h~ngs6 ~:. Suyra[I-AIB]JA2Bla khongdan. Cu6icungdungb6as 3.1mQtl~nnnanhu'ngvdiT=A,loantitk€ ti€p : 2[a.lA I A - I] la lien tl;lc Lipschitz vdi h~ng s6I L=max{~:,l}=l do A2~A1. K€t h<jpcabaloanhi, chungtadedangk€t lu~nr~ng Ilzk+1- z*11~ ~llv~- vii (18) d day c = 1+~"111.N€u A la loan tti'adn ai~uvdi ~=1 vdi cac tru'ongh<jp khac. HdnmIa,dungchangminhainh19(3.1)va(16)chungtaco Trang45 Ilvk-vl12~IIZk_Z*W-AI(2cr-AI~lbk-b*1I2 ~llzk_Z*112(19) Ne'uB-1 la lien t~cLipschitz vdi h~ngs6 0> 0 thl Ilzk -z*ll~ollbk - b*11 Ap d~ngvaba'ta~ngthlic(19)taauQc Ilv'k-v112~[I-AI(:G2-AI)]lzk-z*'12 (20) V~y tu (18) va 20) chung ta suyra r~ng Ilzk+l-z*II~CI"Zk -z*11 V~y I <1 CI =I +A /7 n€u Ala roantuadnai~um(;lnhva J I--.<,(20--'< I) <1CI = Ii' ne'uB-1 la lient\lClipschitz Chuy3.1 . Khai ni~ma§u tieDla h~ngs6 c1khongph\l thuQcthallis6 ,,1.2'Tn(dc tieD Al <20-la c6 ainh, ch<;)ll,,1.2 <AI khonganhhuangt6caQhQi t\l tuy€n tinhcuasda68.Tuynhien,chungtalienkiSmtrab~ngHnhroan th~cnghi~m. . LienquailWivaitrocuaAItrongt6caQhQit\ltuye'nHnh,chungtad€ dangnhlnrar~ng,khiA la toaDtuadnai~uvdimodulo11>O,aanhgia chocj trdthanht6thdnkhi AIXa'px12cr,keotheoc I ~ 1+;1]17 .Khi B-1 ]a lient\lclipschitzvdih~ngs60>0, cI=~1- ;: auQcdaubgia t6t,lingvdi AI=0-. Trang46 Khi A la toaDtttddndi 0 va B-1 Ia lien l\1c Lipschitzvoih~ngs60>0,keotheotuchungminhcuadinh193.2,ti s6 hQitl;1la 1-"-1(2"-"-1) 1 c1=,/ 02 .1+"-,11. Bdi b6 d6 3.3 ,Gia sa "B-1 la lien tl;1CLipschitz" thl tu'dngdu'dng vdi "B-1 la toaDtU'ddndi<$um~nh", VI v~ym<$nhd6 cuadinh ly 3.2co th€' d6i cong thucb~ngcachthaythe'gia thie'tnay b~nggia thie'td§u lien. TrongtntonghQpnay,chungtadinhnghjaloanta B ddndi<$um~nh vdi 8modulo,bdib6d63.3,Ii =)i th"ih~ngs6 cI co th€ bi€u di€n du'di d~ngtu'dngdu'dngla - ~l- AJ20"- Al}fcI- . 1+All Tsengchungminhr~ngtacdQhQil\1chothu~tloanTie'n-Luila 1- AJ (20'- A I~2 C = I. 2 ~ l+AI11~ no IOnhdnCI. Va'nd6 nayco trongchungminhdjnhly 3.4,chungta khong quail Him tdi loan tU' IJcIA(I - AIR) nhu'ngchungta tachchungfa .1 va (I - AIB).A,A Djnh ly ke' tie'p noi ke't qua Aj<Az,nghiala 8E[O,+]. hQi l\1 ? cua sd d6 e khi Trang47 Dinhlj 3.5 Gia saz* la mQtnghi~mcuabai tmin(P) va B la tmintll'ddndi~u m~nhvdi 8> Ovalien tl)cLipschitzvdi h~ngs6 8> O.Ne'uA < 28 va Ai E lFA2,A2J (d day C2=1- -<1(2:2--<1)),th'iday {zk}hQit\lWi z*, nghi~m duynhfftcua(P).HdnmJa, '\jk taco Ill+l-~*II~::F lll-zl Chlingminh Ap d\lngb6 de 3.3,B la tminta ddndi~um(;lnh, v'i v~yz* la nghi~mduynhfftcua(P).Giasa Al<A2va Al<20:. Th'i(17) la dungvdi L -<2 , h / /= T,va c ling taco I\Zk+1-lor ~(~:Y~IZk-z*112-Al(2(J-AI~lbk - b*112j (21). Do B-1 la lien t\lc Lipschitz vdi h~ng s6 8 > 0 va tU Bzk=bk va Bz* =b* chung taco bfftd£ngthlic sau Ilzk-z*II~8I1bk- boIl Cho phepchungtake'tlu~ntu(21)r~ng IIl+1-z*11~ ~:F:lll-z*11 d day Trang48 C2=1-A.l(2a-A.l). a 2 . Do AI <20" , Suy fa C2<1.Ben qmh do, bai dinhnghjacuacrva8,chung taco U::;(j va 82 -2UAj +A~~U2-2UAj +A~=(u-Ajl ~O vdi c2~O. Tltdnghi, khi FzAz <Al chungta co r~ng ~:Fz <1 .V~ychungta co day {zk}hQi tv Wi z* vdi t6cdQtuy6n tinh. Chuy3.2 Chu y r~ng di~u ki~n Al E lFAz,AzJ thl tudng dudng vdi f) E ll+1}"~-J. Trang tntongh0 con la mot diu hoima. Nglt<;JCl~ivdi tntongh<;JpAz::;Alt6cdQhQitv cuaday {zk}phv thuQc vaogia tri cua Ivz.T6cdQhQitv t6thdnkhi Ivzgiamva xa'pxi Ivj' Do do chungtachiquailHimWi tntongh<;JpAz::;Al . Trang49

Các file đính kèm theo tài liệu này:

  • pdf5.pdf
  • pdf0_2.pdf
  • pdf1.pdf
  • pdf2_2.pdf
  • pdf3.pdf
  • pdf4.pdf
  • pdf6_4.pdf
Tài liệu liên quan