Mục lục
Lời cam đoan 2
Lời cám ơn . 3
Danh mục các ký hiệu, các chữ viết tắt 6
Danh mục các bảng 7
Danh mục các hình vẽ, đồ thị . 8
Mở đầu . 10
Chương 1 - Tổng quan 13
Chương 2 - Hệ thống thông tin địa lý (GIS) 17
2.1 Khái niệm 17
2.1.1 Một số định nghĩa . 18
2.1.2 Lịch sử phát triển của GIS 20
2.2 Thu thập dữ liệu . 21
2.2.1 Thu thập dữ liệu không gian . 22
2.2.2 Thu thập dữ liệu thuộc tính 22
2.3 Thao tác dữ liệu . 22
2.4 Quản lý dữ liệu 22
2.5 Truy vấn và phân tích dữ liệu 23
2.6 Hiển thị dữ liệu 24
2.7 Mô hình dữ liệu . 25
2.8 Các đối t-ợng trong GIS 26
2.9 Kết nối dữ liệu không gian và dữ liệu thuộc tính 34
2.10 Chồng xếp và phân tích trong GIS 35
Chương 3 - ứng dụng logic mờ trong hệ thống thông tin địa lý 37
3.1 Giới thiệu chung 37
3.1.1 Nguyên lý mở rộng các hệ thống GIS 40
3.1.2 Tính không rõ ràng và hạn chế của Logic rõ trong GIS . 40
3.1.3 Tính chất mờ trong các hệ thống GIS . 43
3.2 Logic mờ trong GIS . 44
3.2.1 Khái niệm về tập hợp rõ và tập hợp mờ 44
3.2.2 Hệ mờ trong GIS 51
3.2.3 So sánh giữa Logic mờ và logic rõ (logic kinh điển) . 56
3.3 Mô hình dữ liệu không gian và các phép toán 57
3.3.1 Mô hình dữ liệu không gian . 57
3.3.2 Phân lớp các phép toán GIS 58
3.4 Mở rộng mô hình dữ liệu với Logic mờ 61
3.5 Mở rộng các phép toán với Logic mờ . 61 5
3.5.1 Phép toán phân lớp mờ (Fuzzy Reclasification) . 62
3.5.2 Phép toán vùng đệm mờ (Fuzzy Buffer) . 63
3.5.3 Khoảng cách mờ (Fuzzy Distance) 66
3.5.4 Chồng xếp mờ (Fuzzy Overlay) . 68
3.5.5 Lựa chọn mờ (Fuzzy Select), tìm kiếm mờ 69
3.5.6 Suy luận mờ 70
3.6. Lựa chọn vị trí dựa trên một chuỗi các phép toán GIS . 73
3.6.1 Lựa chọn vị trí sử dụng logic mờ . 74
3.6.2 Bài toán ra quyết định không gian và logic mờ 75
Chương 4 - Giải một số bài toán bằng ứng dụng logic mờ trong GIS 79
4.1 Tìm vị trí mở rộng thành phố Thái Bình . 79
4.1.1 Phát biểu bài toán . 79
4.1.2 Ph-ơng pháp tiến hành . 79
4.1.3 Kết quả đạt đ-ợc . 83
4.2 Bài toán xác định đ-ờng đi ngắn nhất sử dụng logic mờ 88
4.2.1 Phát biểu bài toán . 88
4.2.2 Ph-ơng pháp tiến hành . 88
4.2.3 Kết quả đạt đ-ợc . 90
4.3 Bài toán tìm vị trí xây dựng nhà máy xi măng 90
4.3.1 Phát biểu bài toán . 90
4.3.2 Ph-ơng pháp tiến hành . 91
4.3.3 Kết quả đạt đ-ợc . 94
Kết luận 96
Tài liệu tham khảo97
97 trang |
Chia sẻ: maiphuongtl | Lượt xem: 1593 | Lượt tải: 1
Bạn đang xem trước 20 trang tài liệu Luận văn Ứng dụng logic mờ trong hệ thống thông tin địa lý (GIS), để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
SELECT ID, ®« thÞ tù trÞ, ([®Êt ph¼ng]^2 + [h−íng nam]^2 + [®é gÇn]^2 +
[®é thÊp]^2 + [khu tù trÞ]^2) AS Result
FROM TK
WHERE
®Êt ph¼ng Is Not Null AND h−íng nam Is Not Null AND ®é gÇn Is Not
Null AND ®é thÊp Is Not Null AND [khu tù trÞ] Is Not Null;
SELECT
ID, ®« thÞ tù trÞ
FROM
b¶ng tæng hîp
WHERE
®é dèc Is Not Null AND h−íng nam Is Not Null AND ®é gÇn Is Not Null
AND ®Êt thÊp Is Not Null AND [khu tù trÞ] Is Not Null;
56
§Çu ra cña hÖ mê lµ gi¸ trÞ mê. Cã mét lùa chän khi sö dông gi¸ trÞ nµy
kh«ng cã bÊt kú sù söa ®æi (®Ó l¹i c«ng viÖc lµm râ cuèi cïng cho thao t¸c cña
con ng−êi) hoÆc ®Ó sö dông l−îc ®å gi¶i mê vµ s¶n sinh ra ®Çu ra râ.
C¸c l−îc ®å gi¶i mê chung nhÊt bao gåm c¸c ph−¬ng ph¸p cña
Tsukamoto's, Träng t©m (Center of Area - COA) vµ Trung b×nh lín nhÊt
(Mean of Maximum - MOM).
§Çu ra ®−îc x¸c ®Þnh trong bèn líp nh− trong b¶ng sau. C¸c gi¸ trÞ ng÷
nghÜa nµy lµ tõ thÕ giíi thùc vµ cã c¸c môc d÷ liÖu ra quyÕt ®Þnh th−êng sö
dông trong c«ng viÖc cña hä. V× vËy thËm chÝ kh«ng cã sù chØnh söa nµo kÕt
qu¶ vÉn ®óng:
C¸c líp h¹ng Tõ §Õn
ThÝch hîp l¹ th−êng 75 100
RÊt thÝch hîp 50 75
ThÝch hîp 25 50
Kh«ng thÝch hîp 0 25
B¶ng 3.3. B¶ng minh häa vÝ dô gi¶i mê
3.2.3 So s¸nh gi÷a Logic mê vµ logic râ (logic kinh ®iÓn)
Logic râ Logic mê
NhËn 1 trong 2 gi¸ trÞ {0,1}; {Yes,
No}; {True, False}
C¸c tËp mê [0,1], {c¸c gi¸ trÞ ng÷
nghÜa}...
Mäi thø lµ phÇn cña A hoÆc kh«ng-A
Nã kh«ng thÓ lµ A vµ kh«ng-A t¹i
cïng thêi ®iÓm
Mäi thø lµ phÇn cña A vµ phÇn cña
kh«ng-A t¹i cïng thêi ®iÓm
Ðp buéc con ng−êi nghÜ r»ng rÊt tèt Cho phÐp con ng−êi nghÜ vµ quyÕt
®Þnh rÊt tèt
- Ph©n líp s¾c nhän
- V¹ch râ sù kh¸c biÖt
- C¸c quyÕt ®Þnh mê
- Th«ng tin mê
57
- BiÓu thÞ sù chuyÓn tr¹ng th¸i liªn
tôc vµ c¸c kh¸c nhau tåi
- Ng«n ng÷ mê
- Biªn giíi mê
B¶ng 3.4. B¶ng so s¸nh Logic mê vµ Logic râ
H×nh 3.12. Ph©n tÝch víi tËp mê (tr¸i) vµ tËp râ (ph¶i)
3.3 M« h×nh d÷ liÖu kh«ng gian vµ c¸c phÐp to¸n
3.3.1 M« h×nh d÷ liÖu kh«ng gian
HÖ thèng th«ng tin ®Þa lý - GIS lµ hÖ thèng c¬ së d÷ liÖu kh«ng gian
bao gåm mét th− viÖn c¸c b¶n ®å (c¸c líp nãi chung) mµ tÊt c¶ ®· ®−îc chuÈn
ho¸ thèng nhÊt (vÒ to¹ ®é, ®¬n vÞ...). Mçi líp t−¬ng øng víi mét chñ ®Ò vµ
chia thµnh c¸c ®èi t−îng: ®iÓm, ®−êng, vïng. Ch¼ng h¹n líp sö dông ®Êt ®−îc
ph©n chia thµnh c¸c vïng sö dông ®Êt nh−: ®Çm lÇy, s«ng ngßi, sa m¹c, thµnh
phè, c«ng viªn, n«ng nghiÖp, d©n c−...Mçi ®èi t−îng trong mét líp ngoµi c¸c
tÝnh chÊt vÒ kh«ng gian cßn bao hµm c¸c d÷ liÖu thuéc tÝnh liªn quan tíi ®èi
TËp mê TËp râ
58
t−îng trong líp ®ã. C¸c d÷ liÖu thuéc tÝnh nµy cã thÓ t−¬ng øng mét - mét víi
tõng ®èi t−îng kh«ng gian, hoÆc cã thÓ liªn quan tíi c¸c b¶n ghi d÷ liÖu thuéc
c¸c b¶ng d÷ liÖu kh¸c ®−îc kÕt nèi tíi theo m« h×nh d÷ liÖu quan hÖ. §èi víi
m« h×nh d÷ liÖu Raster, mçi pixel trªn b¶n ®å lµ chØ sè trá tíi mét b¶n ghi d÷
liÖu ®Æc tr−ng cho pixel ®ã trªn b¶n ®å. C¸c hÖ thèng GIS hiÖn ®¹i cã kh¶
n¨ng kÕt hîp xö lý gi÷a d÷ liÖu raster vµ vector. C¸c ®èi t−îng kh«ng gian
ngoµi c¸c ®Æc tr−ng cña chóng cßn cã mèi quan hÖ kh«ng gian cña c¸c ®èi
t−îng trong ph¹m vi cña vÞ trÝ ®èi t−îng ®ã (quan hÖ topology)...
3.3.2 Ph©n líp c¸c phÐp to¸n GIS
Kh«ng cã ®¹i sè chuÈn ®−îc ®Þnh nghÜa trªn d÷ liÖu ®Þa lý. §iÒu nµy cã
nghÜa lµ kh«ng cã tËp hîp chuÈn cña c¸c phÐp to¸n c¬ së khi vËn dông ®èi víi
d÷ liÖu ®Þa lý. TËp c¸c phÐp to¸n trong GIS cã thÓ kh¸c nhau gi÷a hÖ thèng
nµy víi hÖ thèng kh¸c dùa trªn ph¹m vi øng dông. Tuy nhiªn kh¶ n¨ng
nguyªn thñy cña chóng kh«ng thay ®æi bao gåm thùc hiÖn bèn nhiÖm vô: lËp
ch−¬ng tr×nh, chuÈn bÞ d÷ liÖu, m« t¶ d÷ liÖu vµ c¸c phÐp to¸n diÔn t¶ d÷ liÖu.
C¸c phÐp to¸n lËp tr×nh: Chóng bao gåm mét sè c¸c thñ tôc ë møc hÖ
thèng, nh− qu¶n trÞ vµ ra lÖnh c¸c phÐp to¸n hÖ thèng vµ ®iÒu khiÓn sù liªn l¹c
tíi c¸c thiÕt bÞ ngo¹i vi ®−îc nèi víi m¸y tÝnh.
C¸c phÐp to¸n chuÈn bÞ d÷ liÖu: Chóng bao gåm c¸c ph−¬ng ph¸p kh¸c
nhau ®Ó thu thËp d÷ liÖu tõ c¸c nguån kh¸c nhau (b¶n ®å sè, b¶n ®å giÊy, ®o
®¹c thùc ®Þa...), chóng xö lý vµ g¸n mét c¸ch thÝch hîp trong c¬ së d÷ liÖu.
C¸c phÐp to¸n hiÓn thÞ d÷ liÖu: Chóng bao gåm c¸c ph−¬ng ph¸p kh¸c
nhau ®Ó diÔn t¶ d÷ liÖu (nh− vÏ c¸c b¶n ®å, biÓu ®å, t¹o b¸o c¸o ...).
C¸c phÐp to¸n diÔn t¶: C¸c phÐp to¸n nµy chuyÓn d÷ liÖu thµnh th«ng
tin vµ chóng ®−îc coi nh− lµ trung t©m cña c¸c hÖ thèng GIS.
C¸c phÐp to¸n diÔn t¶ d÷ liÖu cã thÓ ®−îc xem nh− lµ viÖc ph©n chia
thµnh c¸c cÊp ®é d÷ liÖu. ë møc cao nhÊt lµ mét th− viÖn c¸c b¶n ®å (c¸c líp
nãi chung), tÊt c¶ chóng ®−îc chuÈn hãa (vÒ cïng hÖ to¹ ®é, cïng ®é ®o...).
59
Mçi líp ®−îc ph©n chia thµnh vïng, c¸c vïng lµ tËp hîp cña c¸c vÞ trÝ víi gi¸
trÞ thuéc tÝnh chung. VÝ dô líp sö dông ®Êt ®−îc chia thµnh c¸c vïng sö dông
®Êt “®Çm lÇy”, “s«ng”, hoang m¹c, thµnh phè, c«ng viªn vµ c¸c vïng n«ng
nghiÖp; cßn líp m¹ng ®−êng bao gåm c¸c tuyÕn ®−êng ch¹y qua kh«ng gian
®−îc bao phñ bëi líp ®ã.
C¸c phÐp to¸n diÔn t¶ d÷ liÖu trong c¸c hÖ GIS gåm:
- C¸c phÐp to¸n víi mçi vÞ trÝ riªng biÖt
- C¸c phÐp to¸n vÞ trÝ bªn trong vïng l©n cËn
- C¸c phÐp to¸n vÞ trÝ bªn trong mét vïng
C¸c phÐp to¸n ®−îc ph©n chia thµnh 3 líp phÐp to¸n:
- Líp c¸c phÐp to¸n côc bé.
- Líp c¸c phÐp to¸n trung t©m.
- Líp c¸c phÐp to¸n vïng.
TÊt c¶ c¸c xö lý d÷ liÖu ®−îc lµm trªn tõng líp d÷ liÖu c¬ së. Mçi phÐp
to¸n nhËn mét hoÆc nhiÒu líp nh− lµ ®Çu vµo (c¸c to¸n h¹ng) vµ s¶n sinh ra
mét líp míi nh− lµ ®Çu ra (s¶n phÈm). Líp s¶n phÈm nµy cã thÓ ®ãng vai trß
nh− lµ líp ®Çu vµo cho c¸c xö lý tiÕp theo.
Líp c¸c phÐp to¸n côc bé: Bao gåm viÖc tÝnh to¸n gi¸ trÞ míi cho mçi
vÞ trÝ trªn mét líp nh− lµ hµm cña d÷ liÖu tån t¹i liªn quan cô thÓ víi vÞ trÝ ®ã.
D÷ liÖu ®−îc sö lý bëi c¸c phÐp to¸n nµy cã thÓ bao gåm c¸c gi¸ trÞ khu vùc
liªn quan víi mçi vÞ trÝ trªn mét hoÆc nhiÒu líp.
Líp c¸c phÐp to¸n trung t©m: Bao gåm viÖc tÝnh to¸n c¸c gi¸ trÞ míi
cho mçi vÞ trÝ nh− lµ mét hµm l©n cËn cña nã. Mét l©n cËn ®−îc x¸c ®Þnh nh−
lµ tËp bÊt kú cña mét hay nhiÒu vÞ trÝ mµ h−íng vÒ mét kho¶ng c¸ch ®−îc chØ
ra hoÆc mét quan hÖ h−íng tíi mét vÞ trÝ riªng biÖt, tiªu cù l©n cËn.
Líp c¸c phÐp to¸n vïng: Bao gåm viÖc tÝnh to¸n gi¸ trÞ míi cho mçi vÞ
trÝ nh− lµ hµm cña c¸c gi¸ trÞ tån t¹i t−¬ng øng víi mét vïng chøa vÞ trÝ ®ã.
60
Líp c¸c phÐp to¸n Minh häa c¸c phÐp to¸n
C¸c phÐp to¸n côc bé
- C¸c phÐp to¸n t×m kiÕm NhËn th«ng tin liªn quan tíi c¸c vÞ trÝ
riªng biÖt trªn mét líp.
- Ph©n líp và m· hãa l¹i T¹o l¹i m·, tÝnh to¸n l¹i, ph©n líp l¹i
- Tæng qu¸t hãa Kh¸i qu¸t hãa, tãm l−îc
- Chång xÕp (liªn kÕt kh«ng gian) Chång xÕp, chång lªn nhau
C¸c phÐp to¸n trung t©m
C¸c phÐp to¸n L©n cËn G¸n gi¸ trÞ thuéc tÝnh míi tíi c¸c vÞ trÝ
riªng biÖt trªn mét líp, m« t¶ kho¶ng
c¸ch hoÆc h−íng cña chóng trong mét
l©n cËn ®èi víi tiªu cù l©n cËn
- Hái ®¸p theo cöa sæ và ®iÓm Zoom (in/out), ®iÓm trong 1 polygon
- Topological Rêi nhau, gÆp nhau, b»ng nhau, chøa
®ùng, bªn trong, bao phñ, chång ®Ì
- H−íng B¾c, ®«ng-b¾c, yÕu-giíi h¹n biªn-b¾c,
cïng-møc
- H×nh häc (kho¶ng c¸ch) vµ vïng
®Öm (buffer zone)
GÇn, kh«ng xa, vïng ®Öm, hµnh lang
- L¸ng giÒng gÇn nhÊt L¸ng giÒng gÇn nhÊt, k-l¸ng giÒng gÇn
nhÊt
Néi suy
- C¸c ®Æc tr−ng vÞ trÝ §iÓm-®−êng, (nghÞch ®¶o) kho¶ng c¸ch
träng sè
- C¸c Polygon Vïng, biÓu ®å
BÒ mÆt
- HiÓn thÞ, h×nh dung §−êng b×nh ®é, m« h×nh m¹ng tam gi¸c
- C¸c ®¨c tr−ng vÞ trÝ §é cao, ®é dèc, h−íng dèc
TÝnh nèi ®−îc
- §−êng ®i vµ ®Þnh vÞ T×m hµnh tr×nh tèi −u, ®−êng ®i tèi −u,
lan to¶, t×m kiÕm
- TÇm nh×n HiÓn thÞ, chiÕu s¸ng, khung nh×n, trùc
giao, chiÕu räi
C¸c phÐp to¸n vïng khu vùc
- C¸c hái ®¸p dÊu hiÖu (lùa chän
kh«ng gian)
Hái ®¸p theo SQL, gäi l¹i
61
- T×m kiÕm NhËn th«ng tin ®Æc tr−ng c¸c vÞ trÝ
riªng biÖt trªn mét líp x¶y ra víi c¸c
vïng cña líp kh¸c
- §o ®¹c Kho¶ng c¸ch, diÖn tÝch, chu vi, thÓ tÝch
B¶ng 3.5. B¶ng ph©n líp c¸c phÐp to¸n trong GIS
3.4 Më réng m« h×nh d÷ liÖu víi Logic mê
Trong lý thuyÕt tËp mê kh¸i niÖm ®é thuéc (®é tham gia cña c¸c phÇn
tö trong mét tËp hîp) ®−îc sö dông ®Ó miªu t¶ c¸c vÞ trÝ riªng biÖt. Sù hîp
nhÊt tÝnh mê thµnh m« h×nh d÷ liÖu kh«ng gian kÐo theo viÖc ®Þnh nghÜa l¹i
c¸c cÊu thµnh cña m« h×nh d÷ liÖu. Trong lý thuyÕt tËp hîp râ c¸c vÞ trÝ riªng
biÖt trªn mét líp ®−îc g¸n víi c¸c gi¸ trÞ thuéc tÝnh. Trong lý thuyÕt tËp mê
chóng ®−îc g¸n c¸c gi¸ trÞ ®é thuéc ®èi víi mçi gi¸ trÞ thuéc tÝnh. C¸c gi¸ trÞ
nµy ®−îc ®−a vµo b»ng c¸ch vËn dông c¶ c¸c hµm mê thÝch hîp vµ tri thøc
chuyªn gia. C¸c d÷ liÖu ®−îc mê hãa vµo c¸c tr−êng mê t−¬ng øng víi c¸c ®èi
t−îng trong m« h×nh c¬ së d÷ liÖu.
M« h×nh më réng m« h×nh d÷ liÖu ®−îc ®−a ra bëi s¬ ®å sau:
ID F1 F2 .... Fn µ1 µ2 ... µn
#1 .... .... .... ... ... ... ... ...
...... ........ ........ ....... ... ... ... ... ...
#100 ...... .......... ....... ... ... ... ... ...
......... ........ ....... ...... ... ... ... ... ...
H×nh 3.13. M« h×nh më réng ®èi víi c¸c b¶ng d÷ liÖu
3.5 Më réng c¸c phÐp to¸n víi Logic mê
Sau khi më réng m« h×nh d÷ liÖu kh«ng gian víi logic mê, b−íc tiÕp
theo chóng ta tiÕn hµnh më réng víi c¸c phÐp to¸n. M« h×nh d÷ liÖu sau khi
më réng ®· chøa c¸c th«ng tin d÷ liÖu phï hîp víi tÝnh mê trong GIS. C¸c
C¸c tr−êng ®é thuécC¸c tr−êng râ
62
phÐp to¸n còng ph¶i cã sù thay ®æi ®Ó phï hîp víi m« h×nh ®· më réng ë trªn.
§iÒu nµy bao hµm sù hîp nhÊt cña lý thuyÕt tËp mê vµo trong c¸c phÐp to¸n
diÔn t¶ d÷ liÖu c¬ b¶n s½n cã trong c¸c gãi phÇn mÒm GIS.
Ba líp phÐp to¸n diÔn t¶ d÷ liÖu ®−îc ®Þnh nghÜa nh− sau ®Ó hîp nhÊt
tÝnh mê:
C¸c phÐp to¸n côc bé mê: Chóng bao gåm viÖc tÝnh to¸n gi¸ trÞ mê míi (gi¸
trÞ ®é thuéc) cho mçi vÞ trÝ riªng biÖt trªn mét líp nh− mét hµm mê cña d÷
liÖu mê tån t¹i kÕt hîp râ rµng víi vÞ trÝ ®ã. (phÐp to¸n chång xÕp mê).
C¸c phÐp to¸n trung t©m mê: Chóng bao gåm tÝnh to¸n c¸c gi¸ trÞ mê míi cho
mçi vÞ trÝ riªng biÖt nh− lµ 1 hµm mê l©n cËn cña nã (phÐp to¸n kho¶ng c¸ch
mê).
C¸c phÐp to¸n vïng mê: Chóng bao gåm viÖc tÝnh c¸c gi¸ trÞ mê míi cho mçi
vÞ trÝ riªng biÖt cho mçi vÞ trÝ riªng biÖt nh− 1 hµm mê cña c¸c gi¸ trÞ mê tån
t¹i t−¬ng øng víi 1 vïng mê chøa ®ùng vÞ trÝ ®ã (phÐp to¸n lùa chän mê).
3.5.1 PhÐp to¸n ph©n líp mê (Fuzzy Reclasification)
Ph©n líp d÷ liÖu lµ ph©n chia c¸c ®èi t−îng theo c¸c møc kh¸c nhau
phôc vô cho môc ®Ých hiÓn thÞ hoÆc c¸c ph©n tÝch sau nµy. C¸c d÷ liÖu thu
thËp ®−îc cÇn ®−îc ph©n lo¹i thµnh c¸c chñ ®Ò kh¸c nhau ®Æc tr−ng cho mét
nhãm ®èi t−îng nµo ®ã (ch¼ng h¹n ®èi víi líp rõng cho thÓ ph©n lo¹i thµnh
c¸c lo¹i rõng nh−: rõng giµ, rõng non, rõng nguyªn sinh, rõng quèc gia cÇn
®−îc b¶o vÖ, rõng trång, ®Êt trèng...). Ph©n líp mê còng t−¬ng tù nh− ph©n
líp kinh ®iÓn. ChØ kh¸c nã cã thÓ thùc hiÖn ®−îc trªn c¸c d¹ng ng÷ nghÜa kh¸c
nhau. Mçi chñ ®Ò trªn mét líp ®−îc ph©n lo¹i vµ sÏ ®−îc g¸n víi ®é thuéc mµ
chóng tham gia vµo trong tËp hîp. Trong øng dông mê ph©n líp theo kho¶ng
®−îc vËn dông nhiÒu trªn c¸c tr−êng d÷ liÖu ®èi víi c¸c bµi to¸n ph©n tÝch
kh«ng gian. B¶ng sau lµ mét vÝ dô vÒ ph©n líp mê ®èi víi chñ ®Ò ®é dµy ®Þa
tÇng, vµ ®é dèc bÒ mÆt:
63
Líp Fuzzy (®é thuéc) Legend (Chñ ®Ò líp)
1 0.1 “1 mÐt”
2 0.3 “2 mÐt”
3 0.9 “3 mÐt”
4 0.9 “4 mÐt”
5 0.9 “5 mÐt”
6 0.9 “6 mÐt”
B¶ng 3.6. B¶ng minh häa ®é thuéc vÒ ®Þa tÇng
Líp Fuzzy (®é thuéc) Legend (Chñ ®Ò líp)
1 0.9 “ThÊp”
2 0.9
3 0.7
4 0.5 “Trung b×nh”
5 0.4
6 0.1
7 0.1
8 0.1 “dèc ®øng”
B¶ng 3.7. B¶ng minh häa ®é thuéc vÒ ®é dèc
3.5.2 PhÐp to¸n vïng ®Öm mê (Fuzzy Buffer)
C¸c phÐp to¸n vïng ®Öm (buffer) lµm t¨ng kÝch th−íc cña ®èi t−îng
b»ng viÖc më réng ranh giíi cña nã.
H×nh 3.14. C¸c vÝ dô vÒ vïng ®Öm (®iÓm, ®−êng, vïng)
NhËn hoÆc lùa chän c¸c ®Æc tr−ng bªn trong hoÆc bªn ngoµi ranh giíi
cña vïng ®Öm.
C¸c phÐp to¸n vïng ®Öm cã rÊt nhiÒu øn dông trong thùc tÕ:
64
- X¸c ®Þnh c¸c vÞ trÝ n»m ngoµi c¸c nhµ m¸y hãa chÊt ch¼ng h¹n nã
kh«ng c¸ch c¸c nhµ m¸y hãa chÊt d−íi 10 km.
- T×m tÊt c¶ c¸c vïng bªn trong 300 m cña vïng ®èn gç ®−a ra
- X¸c ®Þnh c¸c vïng « nhiÔm tiÕng ån xung quanh c¸c con ®−êng chÝnh
- C¸c vïng ®Öm xung quanh vïng ®Êt « nhiÔm ®Ó khoanh vïng b¶o vÖ
nguån n−íc ngÇm.
- C¸c vïng dÞch vô (2000 m xung quanh t©m t¸i chÕ )
- T¹o c¸c vïng b¶o vÖ tµi nguyªn (dù tr÷ tµi nguyªn thiªn nhiªn)
- Côm bÖnh dÞch xung quanh c¸c ®Æc tr−ng nµo ®ã...
C¸c phÐp to¸n vïng ®Öm mê bao gåm viÖc tÝnh to¸n ®é thuéc cho c¸c
vïng ®−îc më réng ranh giíi bëi c¸c ®èi t−îng trªn c¸c líp d÷ liÖu trong GIS.
§èi víi b¶n ®å vector xö lý víi phÐp to¸n buffer ®¬n gi¶n h¬n. Nh−ng ®èi víi
b¶n ®å raster phÐp to¸n buffer cã sù kh¸c biÖt so víi c¸c phÐp to¸n kh¸c.
Kh«ng nh− c¸c phÐp to¸n tËp hîp, c¸c phÐp to¸n buffer raster kh«ng thÓ
x¸c ®Þnh bëi chÝnh l−íi cell trªn b¶n ®å raster. §Ó x¸c ®Þnh gi¸ trÞ míi cña mét
cell l trong b¶n ®å raster râ, c¸c gi¸ trÞ cña tÊt c¶ 4 cell l©n cËn cña l ®−îc suy
xÐt. NÕu Ýt nhÊt mét gi¸ trÞ lµ 1 th× gi¸ trÞ cña l thay ®æi thµnh 1. Trong tr−êng
hîp kh¸c gi¸ trÞ míi cña l lµ sè lín nhÊt cña gi¸ trÞ gèc cña l vµ c¸c gi¸ trÞ cña
tÊt c¶ c¸c cell l©n cËn cña l. B¶n ®å raster mê cã thÓ ®−îc lµm t−¬ng tù: Gi¸
trÞ cña l ®−îc thay ®æi b»ng gi¸ trÞ mê lín nhÊt trong l©n cËn cña l, mµ ph¶i lµ
gi¸ trÞ trong kho¶ng [0,1].
Hµm buffer lµ hµm t¨ng ®¬n ®iÖu β: [0, 1] → [0, 1] mµ ë ®ã gi¸ trÞ
kh«ng bao giê v−ît qu¸ ®Çu vµo cña nã: ∀ m ∈ [0, 1]: β (m) ≤ m
VÝ dô ®¬n gi¶n cña hµm buffer mê lµ β (m) = max{0, m - 0,1}.
NÕu l0 lµ l©n cËn cña l1, khi ®ã ®é thuéc cña l1 ®−îc x¸c ®Þnh:
µ(l1) ← max{µ(l1), β(µ(l0))}
65
Khi cËp nhËt ®é thuéc cña l1 cã mét ¶nh h−ëng ®Õn c¸c cell l©n cËn cña l1 v×
thÕ ph¶i thùc hiÖn lÆp l¹i cho ®Õn t×nh huèng ®¹t ®−îc. ThuËt to¸n buffer cho
b¶n ®å raster ®−îc thùc hiÖn nh− sau:
Brute-Force β-Buffering
Cho µ lµ hµm mê cña b¶n ®å
Cho β lµ hµm buffer
Cho L lµ tËo tÊt c¶ c¸c cell trong b¶n ®å ®Ó t¹o buffer
Repeat Until µ lµ æn ®Þnh:
For each l0 ∈ L do:
For all neighbors li cña l0 do:
µ(li) ← max{µ(li), β(µ(l0))}
β-Buffering by Local Propagation
Cho µ lµ hµm mê cña b¶n ®å
Cho β lµ hµm buffer
Cho L lµ tËo tÊt c¶ c¸c cell trong b¶n ®å ®Ó t¹o buffer
While L ≠ ∅ do:
Select l0 ∈ L.
L ← L – {l0}
For all neighbors li cña l0 do:
µ(li) ← max{µ(li), β(µ(l0))}
If µ(li) bÞ thay ®æi, then L ← L ∪ {li}
β-Buffering With Ordered Cells
Cho µ lµ hµm mê cña b¶n ®å
Cho β lµ hµm buffer
Cho L lµ tËo tÊt c¶ c¸c cell trong b¶n ®å ®Ó t¹o buffer
While L ≠ ∅ do:
66
Select l0 ∈ L : µ(l0) lµ max trong L
L ← L – {l0}
For all neighbors li cña l0 do:
µ(li) ← max{µ(li), β(µ(l0))}
3.5.3 Kho¶ng c¸ch mê (Fuzzy Distance)
Kho¶ng c¸ch th−êng ®ßi hái ®Ó ph©n tÝch c¸c quan hÖ kh«ng gian gi÷a
c¸c ®èi t−îng trong GIS. Cã mét sè hÖ ®¬n vÞ ®−îc sö dông, viÖc lùa chän hÖ
®¬n vÞ phô thuéc vµo øng dông cô thÓ vµ c¸c ®ßi hái ®−a ra bëi viÖc ra quyÕt
®Þnh. §èi víi hai ®iÓm i vµ j kho¶ng c¸ch Euclidean ®−îc ®−a ra bëi c«ng thøc
sau:
d(i,j) = 22 )()( jiji yyxx −+− ë ®ã (xi, yi) (xj, yj) lµ to¹ ®é cña 2 ®iÓm i vµ j.
Hai tr−êng hîp kho¶ng c¸ch mê ®−a ra: Tr−êng hîp thø nhÊt chóng chØ
ra c¸c vÞ trÝ riªng biÖt nh− thÕ nµo trªn líp ®−îc ph©n lo¹i dùa trªn kho¶ng
c¸ch cña chóng tõ mét vÞ trÝ ®−a; Tr−êng hîp thø hai Chóng chØ ra c¸c vÞ trÝ
riªng biÖt nh− thÕ nµo trªn mét líp ®−îc ph©n líp dùa trªn kho¶ng c¸ch cña
chóng tõ mét vïng mê ®−a vµo. §Ó x¸c ®Þnh mét vÞ trÝ ®Æc tr−ng riªng biÖt X
dùa trªn kho¶ng c¸ch cña nã tõ vÞ trÝ L ®−a vµo.
H×nh 3.15. PhÐp to¸n kho¶ng c¸ch mê gi÷a 2 vÞ trÝ(a);vÞ trÝ víi vïng mê(b)
X
L
d(L,X)
(a)
X
d(L1,X) d(L2,X)
d(Ln,X)
L1
L2
Ln
(b)
67
§Ó m« t¶ mét vÞ trÝ riªng biÖt X dùa trªn kho¶ng c¸ch cña nã tõ mét vÞ
trÝ ®−a vµo L (h×nh .a) thñ tôc sau ®−îc thùc hiÖn. Thø nhÊt kho¶ng c¸ch
Euclidean d tõ L tíi X ®−îc tÝnh sö dông ph−¬ng tr×nh d(i,j) =
22 )()( jiji yyxx −+− . Khi ®ã mét hµm mê ®−îc chän ®Ó chuyÓn c¸c kho¶ng
c¸ch thµnh c¸c gi¸ trÞ ®é ®o (mê) trªn c¸c gi¸ trÞ thuéc tÝnh ®−îc x¸c ®Þnh
tr−íc (d−íi d¹ng gi¸ trÞ ng«n ng÷) ®Æc tr−ng cho chñ ®Ò “®é gÇn” (l©n cËn,
gÇn, võa ph¶i, xa, qu¸ xa). Cuèi cïng, kho¶ng c¸ch tõ L tíi X ®−îc chuyÓn
thµnh c¸c gi¸ trÞ ®é ®o mê. ë ®©y s¶n phÈm cña phÐp to¸n kho¶ng c¸ch mê
bao gåm tËp cña c¸c líp vµ mçi líp cung cÊp c¸c gi¸ trÞ ®é ®o ®èi víi mét gi¸
trÞ thuéc tÝnh (l©n cËn, gÇn, võa ph¶i, xa, qu¸ xa) ®Æc tr−ng cho chñ ®Ò “gÇn
víi vÞ trÝ L”.
§Ó m« t¶ mét vÞ trÝ riªng biÖt X dùa trªn kho¶ng c¸ch tõ mét vïng mê
®−a vµo mµ bao gåm tËp c¸c vÞ trÝ riªng biÖt {L1,L2,...Ln} víi c¸c gi¸ trÞ ®é ®o
kh¸c nhau trong vïng mê, thñ tôc sau ®−îc thùc hiÖn. Thø nhÊt kho¶ng c¸ch
Euclidean di tõ tÊt c¶ c¸c vÞ trÝ Li(i =1,2,...,n) tíi X ®−îc tÝnh vµ chuyÓn thµnh
c¸c gi¸ trÞ ®é ®o trªn c¸c gi¸ trÞ thuéc tÝnh ®−îc x¸c ®Þnh tr−íc ®Æc tr−ng cho
chñ ®Ò tÝnh gÇn (vÝ dô: l©n cËn, gÇn, võa ph¶i, xa, qu¸ xa ). §èi víi mçi gi¸
trÞ thuéc tÝnh A, vÞ trÝ riªng biÖt X ®−îc g¸n víi 1 tËp c¸c cÆp (MFFA(X),
MFFZ(Li)), (i = 1,2,...,n), ë ®ã MF(X) lµ gi¸ trÞ ®é ®o ®èi víi ®Æc tr−ng A chñ
®Ò “tÝnh gÇn”, vµ MFFZ(Li) lµ gi¸ trÞ ®é ®o cña vÞ trÝ Li trong vïng mê Z. Cuèi
cïng mét hµm mê ®−îc chän bëi c¸c chuyªn gi¸ ®−îc vËn dông ®Ó ¸nh x¹ tËp
c¸c cÆp thµnh gi¸ trÞ ®é do ®¬n gi¶n (ch¼ng h¹n ®é ®o tæng thÓ) ®èi víi A ®Æc
tr−ng cho chñ ®Ò “gÇn víi vïng mê Z”.
Mét vµi hái ®¸p t−¬ng ®èi chung mµ ë ®ã phÐp to¸n kho¶ng c¸ch mê
®−îc vËn dông trong kÕt hîp víi phÐp to¸n lùa chän mê lµ: “t×m tÊt c¶ c¸c
vïng gÇn víi m¹ng ®−êng giao th«ng ®· tån t¹i”. “t×m tÊt c¶ c¸c vïng xa
tr−êng häc”...T−¬ng tù nh− phÐp to¸n kho¶ng c¸ch mê c¸c phÐp to¸n trung
68
t©m kh¸c nh− h−íng mê (víi gi¸ trÞ ng÷ nghÜa: b¾c, ®«ng, nam, t©y);
topological mê (víi c¸c gi¸ trÞ ng÷ nghÜa: liªn th«ng, chång ®Ì) cã thÓ ®−îc
x¸c ®Þnh.
3.5.4 Chång xÕp mê (Fuzzy Overlay)
§èi víi bµi to¸n chång xÕp kh«ng gian gièng nh− phÐp to¸n join trong
c¸c hÖ thèng CSDL th«ng th−êng. VÊn ®Ò kh¸c biÖt quan träng lín nhÊt lµ sö
dông c¸c ®iÒu kiÖn quan hÖ kh«ng gian. Ch¼ng h¹n ta cã m« h×nh chång xÕp
hai líp b¶n ®å nh− sau:
KÕt qu¶ chång xÕp:
Líp C Líp A Líp B
c1 a1 b1
c2 a1 b3
c3 a2 b3
c4 a1 b2
c5 a1 b4
c6 a2 b4
H×nh 3.16. M« t¶ chång xÕp c¸c líp
PhÐp to¸n chång xÕp mê t−¬ng tù nh− bµi to¸n chång xÕp b¶n ®å th«ng
th−êng. PhÐp to¸n chång xÕp ®−îc ®Þnh nghÜa nh− lµ viÖc g¸n c¸c gi¸ trÞ thuéc
a1
a2
b3
b2
b4
b1
c1
c2
c4
c3
c6
c5
Líp A Líp B
Líp C
69
tÝnh míi tíi c¸c vÞ trÝ riªng biÖt mµ kÕt qu¶ thu ®−îc tõ viÖc kÕt hîp cña hai
hay nhiÒu líp víi nhau qua phÐp to¸n chång xÕp b¶n ®å.
PhÐp to¸n chång xÕp mê lÊy d¹ng tæng qu¸t h¬n vµ ®−îc ®Þnh nghÜa
nh− lµ viÖc tÝnh to¸n vµ g¸n cña mét phÐp ®o tæng thÓ (gi¸ trÞ mê) tíi mçi vÞ
trÝ riªng biÖt mµ ®−îc ®−a ra tõ sù suy xÐt cña c¸c gi¸ trÞ ®é thuéc trªn hai
hoÆc nhiÒu líp ®−a vµo vµ thùc hiÖn c¸c phÐp to¸n mê thÝch hîp. §é ®o tæng
thÓ còng ®−îc ®−a ra trong ph¹m vi mê [0,1].
H×nh 3.17. M« t¶ chång xÕp mê cã träng sè.
3.5.5 Lùa chän mê (Fuzzy Select), t×m kiÕm mê
Ph¹m vi cña phÐp to¸n lùa chän mê lµ lµm næi bËt c¸c vÞ trÝ riªng biÖt
trªn mét líp dùa trªn c¸c gi¸ trÞ mê cña chóng khi quan s¸t mét ®Æc tr−ng
thuéc tÝnh ®¬n gi¶n hoÆc ®a hîp hoÆc mét sù kÕt hîp cña c¸c líp. ë ®©y dùa
trªn c¸c ®iÒu kiÖn ®−a ra bëi c¸c truy vÊn, phÐp to¸n lùa chän mê cã thÓ næi
bËt:
¾ C¸c vÞ trÝ riªng biÖt ë ®ã cã gi¸ trÞ mê trong kho¶ng gi¸ trÞ ng−ìng ®−îc
x¸c ®Þnh tr−íc.
Giao th«ng
Sö dông ®Êt
§é dèc
Kh¶ n¨ng ®i l¹i
Gi¸ trÞ sö dông ®Êt
x 0.65
x 0.35
Träng sè
C¸c vÞ trÝ thuËn lîi
70
¾ C¸c vÞ trÝ n-riªng lÎ v−ît tréi víi vÞ trÝ kh¸c trªn c¸c gi¸ trÞ mê cña
chóng (kh¸i niÖm bËc).
H×nh d−íi ®©y minh häa vÝ dô cña phÐp to¸n lùa chän mê. H×nh (a)
miªu t¶ gi¸ trÞ ®é ®o ®èi víi thuéc tÝnh gÇn víi ®−êng quèc lé ®−îc g¸n tíi c¸c
vÞ trÝ riªng biÖt. H×nh (b) lµm næi bËt c¸c vÞ trÝ víi gi¸ trÞ ®é ®o lín h¬n hoÆc
b»ng 0.8. H×nh (c) lµm næi bËt c¸c vÞ trÝ ë xa m¹ng ®−êng ®· tån t¹i.
0.0 0.0 0.0 0.1 0.1 0.7 1.0 0.7 0.0 0.0 0.0 0.1 0.1 0.7 1.0 0.7 0.0 0.0 0.0 0.1 0.1 0.7 1.0 0.7
0.2 0.0 0.0 0.2 0.2 0.7 1.0 0.7 0.2 0.0 0.0 0.2 0.2 0.7 1.0 0.7 0.2 0.0 0.0 0.2 0.2 0.7 1.0 0.7
0.7 0.3 0.2 0.4 0.6 0.8 0.9 0.6 0.7 0.3 0.2 0.4 0.6 0.8 0.9 0.6 0.7 0.3 0.2 0.4 0.6 0.8 0.9 0.6
0.9 0.7 0.7 0.6 0.7 0.9 0.8 0.6 0.9 0.7 0.7 0.6 0.7 0.9 0.8 0.6 0.9 0.7 0.7 0.6 0.7 0.9 0.8 0.6
0.8 1.0 0.8 0.7 0.7 1.0 0.7 0.4 0.8 1.0 0.8 0.7 0.7 1.0 0.7 0.4 0.8 1.0 0.8 0.7 0.7 1.0 0.7 0.4
0.3 0.7 0.9 0.7 0.9 0.8 0.6 0.3 0.3 0.7 0.9 0.7 0.9 0.8 0.6 0.3 0.3 0.7 0.9 0.7 0.9 0.8 0.6 0.3
0.0 0.5 0.7 0.9 0.7 0.3 0.2 0.1 0.0 0.5 0.7 0.9 0.7 0.3 0.2 0.1 0.0 0.5 0.7 0.9 0.7 0.3 0.2 0.1
0.0 0.2 0.6 0.8 0.5 0.2 0.0 0.0 0.0 0.2 0.6 0.8 0.5 0.2 0.0 0.0 0.0 0.2 0.6 0.8 0.5 0.2 0.0 0.0
(a) (b) (c)
H×nh 3.18. PhÐp to¸n lùa chän mê
Kh¸c víi phÐp t×m kiÕm kinh ®iÓn trªn c¸c d÷ liÖu trong GIS. C¸c phÐp
to¸n t×m kiÕm mê nhËn th«ng tin dùa trªn gi¸ trÞ ng−ìng ®−îc x¸c ®Þnh tr−íc
®èi víi ®é ®o tæng thÓ ®−îc g¸n tíi c¸c vÞ trÝ riªng biÖt trªn mét líp d÷ liÖu.
Trong GIS sö dông chøc n¨ng ph©n líp chñ theo ng−ìng cã thÓ lùa chän c¸c
gi¸ trÞ theo c¸c ng−ìng ®−a vµo.
3.5.6 Suy luËn mê
Trong logic kinh ®iÓn chóng ta chØ cã 2 gi¸ trÞ cã thÓ cho biÕn logic,
®óng hoÆc sai, 1 hoÆc 0. C¸c tËp mê còng cã thÓ vËn dông suy luËn khi c¸c
kh¸i niÖm mËp mê ®−îc bao hµm.
Trong logic kinh ®iÓn khi suy luËn dùa trªn sù suy diÔn cña nã hoÆc quy
n¹p. Trong lËp luËn mê chóng ta sö dông sù suy diÔn mµ ®−îc ®äc nh− sau:
Gi¶ thuyÕt1 : If x is A then y is B
Gi¶ thuyÕt2 : x is A’
KÕt luËn : y is B’
71
ë ®©y A, B, A’, B’ lµ c¸c tËp mê A’ vµ B’ kh«ng chÝnh x¸c gièng nh−
A vµ B.
Ph−¬ng ph¸p ®iÒu khiÓn MAMDANI
Ph−¬ng ph¸p Mamdani dùa trªn suy diÔn tæng qu¸t sau:
p ⇒ q:
nnn C
C
C
is
is
is
z
z
z
then
then
then
B
B
B
is
is
is
y
y
y
and
and
and
A
A
A
is
is
is
x
x
x
If
If
If
2
1
2
1
2
1
...
⎪⎪⎩
⎪⎪⎨
⎧
':
',':
1
1
Ciszq
BisyAisxp
Gi¶ thuyÕt1 trë thµnh tËp cña c¸c luËt.
A,B,C lµ c¸c tËp mê x, y lµ c¸c biÕn gi¶ thuyÕt z lµ c¸c biÕn kÕt luËn
Xö lý suy diÔn ®−îc t−êng minh theo thñ tôc sau:
Cho x0 vµ y0 lµ ®Çu vµo cho c¸c biÕn gi¶ thuyÕt.
- VËn dông c¸c gi¸ trÞ ®Çu vµo tíi c¸c biÕn gi¶ thuyÕt cho mçi luËt vµ
tÝnh min cña µ Ai (x0) vµ µ Bi(y0):
LuËt1: m1 = min(µ A1 (x0) vµ µ B1(y0))
LuËt 2: m2 = min(µ A2 (x0) vµ µ B2(y0))
. . .
LuËt n: mn = min(µ An (x0) vµ µ Bn(y0))
- C¾t c¸c hµm mê cña kÕt luËn µ Ci (z) t¹i mi:
KÕt luËn cña luËt1: µ C’1 (z) = min(m1, µ C1 (z))
KÕt luËn cña luËt2: µ C’2 (z) = min(m2, µ C2 (z))
....
Gi¶ thuyÕt KÕt luËn
x is A and y is B thenIf z is C
72
KÕt luËn cña luËtn: µ C’1 (z) = min(m1, µ C1 (z))
TÝnh kÕt luËn cuèi cïng b»ng c¸ch x¸c ®Þnh hîp c¸c tÊt c¶ c¸c kÕt luËn
riªng biÖt tõ b−íc trªn:
µ C (z) = max( µ C’1(z), µ C’2(z),...,µ C’n(z) ).
KÕt qu¶ cña kÕt luËn cuèi cïng lµ mét tËp mê. Chóng ta cÇn thiÕt ph¶i
gi¶i mê. Cã mét vµi luËt ®Ó gi¶i mê mét trong c¸c luËt ®ã lµ träng t©m.
Z0 = ∑
∑
)(
).(
Z
zz
c
c
µ
µ
Ph−¬ng ph¸p ®¬n gi¶n hãa
p ⇒ q:
nnn c
c
c
is
is
is
z
z
z
then
then
then
B
B
B
is
is
is
y
y
y
and
and
and
A
A
A
is
is
is
x
x
x
If
If
If
2
1
2
1
2
1
..
⎪⎪⎩
⎪⎪⎨
⎧
':
',':
1
1
ciszq
BisyAisxp
- VËn dông c¸c gi¸ trÞ ®Çu vµo tíi c¸c biÕn gi¶ thuyÕt cho mçi luËt vµ
tÝnh min cña µ Ai (x0) vµ µ Bi(y0):
LuËt1: m1 = min(µ A1 (x0) vµ µ B1(y0))
LuËt2: m2 = min(µ A2 (x0) vµ µ B2(y0))
. . .
LuËtn: mn = min(µ An (x0) vµ µ Bn(y0))
- TÝnh to¸n gi¸ trÞ kÕt luËn trªn luËt
KÕt luËn cña luËt1: c’1 = m1 .c1
KÕt luËn cña luËt2: c’2 = m2 .c2
Gi¶ thuyÕt KÕt luËn
x is A and y is B then z = C If
73
....
KÕt luËn cña luËtn: c’n = mn .cn
- TÝnh to¸n kÕt luËn cuèi cïng nh− sau: c’ = ∑
∑
=
=
n
i i
n
i i
m
c
1
1
'
3.6. Lùa chän vÞ trÝ dùa trªn mét chuçi c¸c phÐp to¸n GIS
Môc ®Ých cña viÖc lùa chän vÞ trÝ dùa trªn mét chuçi c¸c phÐp to¸n lµ
®−a ra tuÇn tù c¸c phÐp to¸n diÔn t¶ d÷ liÖu mµ cã thÓ x¾p xÕp c¸c thñ tôc ®Ó
hoµn thµnh nhiÖm vô lùa chän vÞ trÝ. Ch¼ng h¹n lùa chän vÞ trÝ cho viÖc ph¸t
triÓn khu t¸i ®Þnh c−. Ph−¬ng ph¸p c¬ b¶n ®Ó lµm ®iÒu nµy lµ t¹o mét tËp hîp
c¸c rµng buéc ®−îc giíi h¹n bëi ph¹m vi quy ho¹ch vµ tËp c¸c ®iÒu kiÖn cho
phÐp. Trong t×nh huèng ®¬n gi¶n xÐt tËp c¸c rµng buéc vµ ®iÒu kiÖn gåm:
¾ Vïng ®Êt trèng.
¾ §Êt kh«.
¾ VÞ trÝ b»ng ph¼ng
¾ GÇn m¹ng giao th«ng ®· tån t¹i
¾ H−íng dèc lµ h−íng nam.
¾ Vïng ®Êt quy ho¹ch cã diÖn tÝch gi÷a 1 vµ 1.5 km2.
Trong 6 ®iÒu kiÖn trªn ®iÒu kiÖn cuèi cïng cho c¸c vïng cã kÝch th−íc
phï hîp cho c«ng t¸c quy ho¹ch ®−îc thùc hiÖn sau cïng khi ®· tiÕn hµnh xö
lý víi 5 ®iÒu kiÖn ban ®Çu vµ tÝnh to¸n diÖn tÝch cho tÊt c¶ c¸c vïng tháa m·n
5 ®iÒu kiÖn ®Çu. Sau ®ã c¸c nhµ quy ho¹ch sÏ xem xÐt c¸c vïng ®Êt tho¶ ®iÒu
kiÖn rµng buéc thø 6 ®¸p øng cho môc ®Ých quy ho¹ch.
C¸c ®ßi hái trªn sö dông ba líp d÷ liÖu ®Çu vµo cña vïng nghiªn cøu:
- Líp th«ng tin ®Þa h×nh ®Þa chÊt (m« h×nh sè ®é cao cña vïng).
- Líp th«ng tin ®« thÞ: Bao gåm c¬ së h¹ tÇng ®· tån t¹i cña vïng
(®−êng x¸, c¸c toµ nhµ,...)
- Líp ®é Èm: Bao gåm ®é Èm ®Êt cña vïng (hå, ®Çm lÇy, ®Êt kh«,...).
74
3.6.1 Lùa chän vÞ trÝ sö dông logic mê
§èi víi bµi to¸n lùa chän vÞ trÝ cho viÖc ph¸t triÓn khu d©n c− ®· nªu ra
ë trªn, nhiÒu tiÕn bé ®· ®−îc ®−a ra bëi c¸c phÐp to¸n diÔn gi¶i d÷ liÖu mê cã
thÓ ®−îc coi lµ ®iÓm s¸ng. §Ó c¸c ®iÒu kiÖn ®−a ra quyÕt ®Þnh c¸c gi¸ trÞ ng÷
nghÜa cã thÓ ®−îc suy xÐt nh− sau:
- §é dèc nÒn { ph¼ng,thoai tho¶i, võa ph¶i, dèc ®øng }
- TÝnh ph¸t triÓn { hoang, nöa ph¸t triÓn, ®· ph¸t triÓn }
- §é Èm ®Êt { kh«, võa ph¶i, Èm, n−íc }
- TÝnh thuËn lîi vÒ giao th«ng { l©n cËn, gÇn, võa ph¶i, xa, qu¸ xa }
- H−íng dèc { b¾c, ®«ng, nam, t©y }
C¸c hµm chuyÓn ®æi sÏ chÊp nhËn ¸nh x¹ c¸c ®é ®o nÒn tíi c¸c gi¸ trÞ
d.o.m ®Æc tr−ng cho c¸c vÞ trÝ riªng biÖt cña vïng nghiªn cøu. B»ng c¸ch thùc
hiÖn mét ph©n líp mê, mét líp d.o.m sÏ ®−îc s¶n sinh ®èi víi mçi gi¸ trÞ ng÷
nghÜa ®Æc tr−ng cho 1 chñ ®Ò. VÝ dô c¸c layer t−¬ng øng víi c¸c gi¸ trÞ ng÷
nghÜa quan t©m (hoang v¾ng, kh«, ph¼ng, gÇn, nam) mét phÐp chång xÕp mê
sÏ ®−a ra mét líp míi mµ ph©n líp tÊt c¶ c¸c vÞ trÝ riªng biÖt cña vïng nghiªn
cøu dùa trªn ®é tham gia cña chóng ®èi víi c¸c ®iÒu kiÖn ®−a ra bëi ra quyÕt
®Þnh. PhÐp to¸n lùa chän mê sÏ lµm næi bËt tÊt c¶ c¸c vÞ trÝ tèt nhÊt cho ho¹t
®éng quy ho¹ch.
S¶n sinh c¸c líp víi c¸c gi¸ trÞ mê
C¬ së h¹ tÇng
§é Èm ®Êt
§é dèc nÒn
H−íng dèc
GÇn ®−êng
Ph©n líp
côc bé mê
Ph©n líp
côc bé mê
Ph©n líp
côc bé mê
Ph©n líp
côc bé mê
Ph©n líp
côc bé mê
§é ®o ®Êt trèng
§é ®o ®é kh«
§é ®o ®é cao
§é ®o Nam
§é ®o ®é gÇn
75
S¶n sinh líp c¸c vïng tèt vµ ®éc lËp tháa m∙n ®iÒu kiÖn quy ho¹ch
3.6.2 Bµi to¸n ra quyÕt ®Þnh kh«ng gian vµ logic mê
Lý thuyÕt tËp mê cã nh÷ng −u thÕ ®Ó miªu t¶ vµ vËn dông sù mËp mê
mµ quan hÖ tíi viÖc ph©n líp cña c¸c vÞ trÝ riªng biÖt theo c¸c gi¸ trÞ thuéc tÝnh
cña chóng. Thay cho c¸c gi¸ trÞ sè cña c¸c thùc thÓ thÕ giíi thùc vµ c¸c gi¸ trÞ
®o ®−îc g¸n b»ng c¸c gi¸ trÞ ng«n ng÷. “Ch¼ng h¹n vÞ trÝ lµ xa víi ®−êng
quèc lé”. C©u lÖnh nµy cã c¸c ®Æc tr−ng kh«ng râ rµng. Sù kh«ng râ rµng quan
hÖ tíi nhËn thøc vÒ kho¶ng c¸ch gi÷a vÞ trÝ vµ m¹ng ®−êng. NhËn thøc kho¶ng
c¸ch cã thÓ ®−îc t¹o thµnh bëi ®é ®o kho¶ng c¸ch tõ môc tiªu tíi ®−êng quèc
lé gÇn nhÊt ch¼ng h¹n 20 km, c¶m gi¸c vµ nhËn thøc cña sù quan s¸t. Kh¸i
niÖm kh«ng râ rµng miªu t¶ møc ®é thuéc cña mét ®èi t−îng trong mét tËp
hîp. §é ®o nµy ®−îc ®−a ra nh− lµ ®é thuéc. §é thuéc th−êng lµ gi¸ trÞ trong
kho¶ng [0,1] vµ ®−îc gäi nh− lµ lÜnh vùc mê.
C¸c gi¸ trÞ ng«n ng÷ ®−îc g¸n tíi c¸c thùc thÓ t−¬ng øng víi kho¶ng
gi¸ trÞ vËt lý (xa => kho¶ng c¸ch ∈ [15 km, ∞]). ViÖc chuyÓn c¸c gi¸ trÞ vËt lý
thµnh gi¸ trÞ mê ®−îc thiÕt lËp qua c«ng viÖc c¸c hµm chuyÓn ®æi theo d¹ng:
f : R → [0,1].
H¹ tÇng (d.o.m)
§é Èm (d.o.m)
§é dèc (d.o.m)
h−íng (d.o.m)
gÇn (d.o.m)
Chång xÕp mê
(côc bé)
C¸c vïng tèt
(d.o.m)
T×m kiÕm
vïng mê
C¸c vïng tèt
76
Thñ tôc chuyÓn ®æi c¸c gi¸ trÞ vËt lý thµnh gi¸ trÞ mê ®−îc gäi lµ mê
hãa vµ c¸c gi¸ trÞ mê lµ ®¬n vÞ mê t−¬ng øng gi¸ trÞ vËt lý thuéc tËp hîp biÓu
thÞ bëi gi¸ trÞ ng÷ nghÜa.
Mét vÊn ®Ò quan träng víi viÖc ra quyÕt ®Þnh lµ lËp luËn dùa trªn c¸c
gi¸ trÞ ng÷ nghÜa ®−îc g¸n tíi c¸c thùc thÓ vËt lý. Theo l−îc ®å ®−a ra mét tËp
hîp c¸c gi¸ trÞ ng÷ nghÜa sÏ kh«ng cã thËt ®Ó ph©n líp c¸c thùc thÓ vµ c¸c ®é
®o trong c¸c kho¶n môc. Mçi gi¸ trÞ ng÷ nghÜa t−¬ng øng tíi mét giíi h¹n cña
c¸c gi¸ trÞ vËt lý khi c¸c hµm chuyÓn ®æi ®−îc ®−a ra ®Ó ¸nh x¹ c¸c gi¸ trÞ vËt
lý ®èi víi c¸c gi¸ trÞ mê. Cã mét hµm chuyÓn ®æi ®−îc g¸n tíi mçi gi¸ trÞ ng÷
nghÜa. ë ®©y sè c¸c hµm chuyÓn ®æi b»ng sè c¸c gi¸ trÞ ng÷ nghÜa. Cã c¸c
d¹ng hµm chuyÓn ®æi sau:
- TuyÕn tÝnh t¨ng : Nã ®−îc sö dông trong c¸c tr−êng hîp ë ®ã ¸nh x¹
th¼ng c¸c gi¸ trÞ vËt lý tíi ph¹m vi mê lµ cÇn thiÕt. Hµm tuyÕn tÝnh t¨ng ®−îc
m« t¶ bëi ph−¬ng tr×nh:
LI(x) = (x-c0)/c1-c0), ∀ x ∈ [c0, c1]
- TuyÕn tÝnh gi¶m: Nã biÓu diÔn bëi ph−¬ng tr×nh:
LD(x) = (x-x0)/c0-c1) + 1, ∀ x ∈ [c0, c1]
- Tam gi¸c: TËp c¸c gi¸ trÞ vËt lý ®−îc ph©n chia thµnh k phÇn: [c0, c1],
[c1, c2], ...,[ck-1, ck]. Hµm chuyÓn ®æi c¸c gi¸ trÞ vËt lý thµnh gi¸ trÞ mê :
TR1(x) = (x- c0)/ (c0- c1) + 1, ∀ x ∈ [c0, c1]
TR2(x) = 2(x- ci)/ (ci+1- ci), ∀ x ∈ [ci, (ci +ci+1)/2]
TR3(x) = (x- c0)/ (c1- c0), ∀ x ∈ [ck-1, ck]
Suy xÐt ph©n líp cña c¸c vÞ trÝ riªng biÖt trªn mét líp dùa trªn c¸c gi¸
trÞ ®é dèc cña ®Êt (c¸c gi¸ trÞ vËt lý). Bèn gi¸ trÞ ng÷ nghÜa ®−îc sö dông:
[ph¼ng, thoai tho¶i, võa ph¶i, dèc]. Hµm chuyÓn ®æi tuyÕn tÝnh gi¶m vµ t¨ng
cho tr−êng hîp ®Çu vµ cuèi. Chó ý r»ng ph−¬ng ph¸p quy −íc ®Ó ph©n líp ®é
dèc bao gåm c¸c líp riªng rÏ víi giíi h¹n chØ ra khi thu thËp ph©n líp mê.
77
ViÖc chuyÓn dÇn dÇn gi÷a c¸c líp, khi ®−a ra mét ph−¬ng ph¸p tèt h¬n tíi
viÖc ph©n lo¹i c¸c kh¸i niÖm m¬ hå nh− thoai tho¶i vµ dèc. Dùa trªn ph©n líp
mê 1 vÞ trÝ víi ®é dèc 6% ®−îc g¸n b»ng 0.6 ®èi víi møc b»ng ph¼ng, 0.1 ®èi
víi thoai tho¶i, 0 ®èi víi võa ph¶i vµ 0 ®èi víi dèc ®øng.
C¸c vÞ trÝ riªng biÖt cña vïng nghiªn cøu cã thÓ chØ ra trong c¸ch t−¬ng
tù dùa trªn sù ngõng l¹i cña tiªu chuÈn ®−a ra bëi ra quyÕt ®Þnh. §èi víi c¸c
rµng buéc lùa chän vÞ trÝ t¸i ®Þnh c− nªu ra ë trªn c¸c gi¸ trÞ ng÷ nghÜa cã thÓ
®−îc suy xÐt:
- §« thÞ: [®Êt trèng, ®ang quy ho¹ch , ®· quy ho¹ch]
- Møc ®é Èm ®Êt: [kh«, võa ph¶i, ®Çm lÇy, n−íc]
- §é dèc nÒn: [ph¼ng, thoai tho¶i, võa ph¶i, dèc]
- GÇn ®−êng giao th«ng: [liÒn kÒ, gÇn, võa ph¶i, xa, qu¸ xa]
- H−íng dèc: [b¾c, ®«ng, nam, t©y]
Tiªu chuÈn quyÕt ®Þnh lµ kÕt hîp cña nhiÒu h¬n mét líp vµ gi¸ trÞ ng÷
nghÜa (nÒn ph¼ng vµ ®Êt kh«) ®é ®o tæng thÓ sÏ ®−îc tÝnh vµ g¸n tíi c¸c vÞ trÝ
riªng biÖt. §é ®o nµy ®−îc ®−a ra b»ng c¸ch suy xÐt ®é thuéc trªn hai hay
nhiÒu líp. §èi víi tËp mê A ∈ X víi hµm mê µA(x) ∈ [0,1], ®é ®o tæng thÓ cã
thÓ ®−a ra bëi hµm tiÒm n¨ng theo c«ng thøc sau:
e(A) = ∑ E[ µA(x)] víi mäi x ∈ X, ë ®©y E: µA[0,1] → [0,1]
Mét hµm nh− thÕ ®−îc sö dông chung nhÊt lµ:
e(A) = ∑ µqA(x) ë ®©y q lµ sè nguyªn d−¬ng. Hµm nh− thÕ víi gi¸ trÞ
träng sè lín nã chiÕm −u thÕ cßn víi c¸c gi¸ trÞ nhá gÇn nh− kh«ng ®−îc ®¸nh
gi¸.
Víi vÝ dô trªn, nÕu cã mét ®ßi hái lµm næi bËt c¸c vÞ trÝ ph¼ng vµ kh«
®é ®o tæng thÓ ®−îc ®−a ra bëi: e(ph¼ng-kh«) = µ2ph¼ng(x) + µ2kh«(x) cho mçi vÞ
trÝ riªng biÖt x.
78
LËp luËn dùa trªn c¸c gi¸ trÞ ng÷ nghÜa bao hµm c¸c phÐp to¸n ph©n líp,
chèng xÕp vµ t×m kiÕm côc bé vµ lý thuyÕt logic mê sÏ ®−îc hîp nhÊt trong
chóng nh− sau:
- C¸c phÐp to¸n ph©n líp mê, g¸n ®é thuéc cho mçi gi¸ trÞ ng÷ nghÜa
tíi c¸c vÞ trÝ riªng biÖt trªn mét layer. §é thuéc ®−a ra bëi viÖc vËn dông hµm
chuyÓn ®æi thÝch hîp.
- C¸c phÐp to¸n chång xÕp mê: tÝnh to¸n vµ g¸n ®é ®o tæng thÓ tíi mçi
vÞ trÝ riªng biÖt ®−îc ®−a ra tõ viÖc suy xÐt ®é thuéc trªn 2 hay nhiÒu layer. §é
do mê còng ®−a tra ph¹m vi mê [0,1].
- C¸c phÐp to¸n t×m kiÕm mê: nhËn th«ng tin dùa trªn gi¸ trÞ ng−ìng
x¸c ®Þnh tr−íc ®èi víi c¸c ®é ®o tæng thÓ ®−îc g¸n tíi c¸c vÞ trÝ riªng biÖt trªn
mét líp.
Thñ tôc lùa chän vÞ trÝ t¸i ®Þnh c− dùa trªn tËp c¸c rµng buéc ®−îc ®−a
ra trong d¹ng ng÷ nghÜa ch¼ng h¹n (vïng ®Êt trèng, kh«, ph¼ng gÇn ®−êng
giao th«ng, h−íng dèc nam) cã thÓ bao gåm c¸c phÐp to¸n sau:
Trèng = Local (ph©n líp mê) cña layer ®« thÞ
Kh« = Local (ph©n líp mê) cña layer ®é Èm
Ph¼ng = Local (ph©n líp mê) cña layer ®é dèc
GÇn = Local (ph©n líp mê) cña layer ®é dèc
Nam = Local (ph©n líp mê) cña layer l©n cËn giao th«ng
VÞ trÝ tèt = Local (chång xÕp mê) cña trèng, kh«, ph¼ng, gÇn, nam
C¸c vÞ trÝ tèt nhÊt = Local (t×m kiÕm mê) cña vÞ trÝ tèt
79
Ch−¬ng 4 - Gi¶i mét sè bµi to¸n b»ng øng dông
logic mê trong GIS
4.1 T×m vÞ trÝ më réng thµnh phè Th¸i B×nh
4.1.1 Ph¸t biÓu bµi to¸n
Theo quyÕt ®Þnh cña thñ t−íng chÝnh phñ cho phÐp chuyÓn ThÞ x· Th¸i
B×nh thµnh Thµnh phè lo¹i 2 (thµnh phè trùc thuéc tØnh). C¸c ®iÒu kiÖn më
réng thµnh phè ®−îc c¸c chuyªn gia ®« thÞ ®−a ra nh− sau:
(1). Ph¶i liÒn kÒ thµnh phè (thÞ x· cò) hiÖn t¹i.
(2). Khu ®Êt ph¶i cã ®é dµy ®Þa tÇng tèi thiÓu vµ kh«ng ®øt gÉy.
(3). N¬i mµ kh«ng bÞ óng lôt (trong 100 n¨m trë l¹i) (®é cao t−¬ng ®èi 5 m so
víi mÆt n−íc biÓn).
(4). Lµ ®Êt n«ng nghiÖp, kh«ng ph¶i ®Êt thµnh phè vµ khu c«ng nghiÖp.
(5). Kh«ng ph¶i lµ ®Êt ®· ®−îc xÕp lo¹i −u tiªn qui ho¹ch kinh tÕ träng ®iÓm.
(6). C¸ch ®−êng giao th«ng chÝnh mét kho¶ng c¸ch nhÊt ®Þnh.
(7). Kh«ng ph¶i lµ khu vùc nhËy c¶m vÒ m«i tr−êng.
(8). Yªu tiªn ph−¬ng ¸n s«ng n»m gi÷a thµnh phè t−¬ng lai.
4.1.2 Ph−¬ng ph¸p tiÕn hµnh
NhËn xÐt bµi to¸n.
Do ®Æc thï ®Þa h×nh thÞ x· Th¸i b×nh b»ng ph¼ng vµ kh«ng bÞ óng lôt
trong vßng 100 n¨m trë l¹i ®©y cho nªn tiªu chÝ thø 3 kh«ng cÇn ph¶i xÐt tíi.
§iÒu kiÖn thø 8 kh«ng cÇn xÐt ®Õn v× kÕt qu¶ sau khi ph©n tÝch viÖc −u tiªn
®−îc ®¸nh gi¸ sau cïng, ®iÒu kiÖn 4 vµ 5 cã thÓ ghÐp l¹i thµnh mét. C¸c b−íc
tiÕn hµnh nh− sau:
* Líp th«ng tin vÒ ®Êt bao gåm c¸c lo¹i ®Êt sau: (§Êt thæ c−,§Êt ®« thÞ,
§Êt chuyªn lóa, S«ng hå).Víi bèn lo¹i ®Êt theo d¹ng ng«n ng÷ tù nhiªn nªu
trªn sö dông luËt IF THEN ta sÏ g¸n ®é thuéc nh− sau:
80
Lo¹i ®Êt Gi¸ trÞ mê
§Êt thæ c− 0.7
§Êt ®« thÞ 0
§Êt chuyªn lóa 1
S«ng hå 0
B¶ng 4.1. B¶ng mê hãa líp th«ng tin ®Êt
*Líp th«ng tin vÒ sù më mang ®−îc t¹o b»ng c¸ch t¹o vïng ®Öm cho
khu vùc ®« thÞ cò. Ta sÏ t¹o c¸c vïng ®Öm c¸ch nhau 100 m vµ sö dông hµm
mê d¹ng tuyÕn tÝnh gi¶m ®Ó tÝnh gi¸ trÞ mê cho mçi vïng ®Öm ®−îc tÝnh. Hµm
mê ®−îc sö dông ®Ó mê ho¸ nh− sau:
H×nh 4.1. Hµm mê sö dông líp th«ng tin më mang
Hµm mê sö dông µ më mang(l)=⎩⎨
⎧
>
≤≤−
20000
200002000/)2000(
x
xx
*Líp th«ng tin vÒ giao th«ng theo quy ®Þnh ph¶i cã hµnh lang giao
th«ng cña c¸c tuyÕn ®−êng. Do ®ã c¸c gi¸ trÞ trong ph¹m vi 200 m vÒ mçi bªn
cña mçi tuyÕn ®−êng lµ ranh giíi ph©n ®Þnh kh«ng cho phÐp. Hµm mê tuyÕn
tÝnh gi¶m ®−îc x¸c ®Þnh nh− sau:
H×nh 4.2. Hµm mê sö dông cho líp th«ng tin giao th«ng
2000
1.0
10000 1500500
0.5
0.1
0.2
0.3
0.4
0.6
0.7
0.8
0.9
0.0
200010000 1500500200 3000 4000
1.0
0.5
0.1
0.2
0.3
0.4
0.6
0.7
0.8
0.9
0.0
81
Hµm mê sö dông µ giao th«ng(l)= ⎩⎨
⎧
≤≤−
2000;40000
40002003800/)4000(
xx
xx
* Líp th«ng tin vÒ « nhiÔm do ¶nh h−ëng cña nhµ m¸y g¹ch sù « nhiÔm
phô thuéc vµo kho¶ng c¸ch tõ nhµ m¸y g¹ch tíi khu më réng Thµnh phè. C¸c
vÞ trÝ cµng gÇn nhµ m¸y ®é ¶nh h−ëng cµng cao, cµng ë xa sù « nhiÔm cµng
gi¶m. Do ®ã sö dông hµm mê tuyÕn tÝnh t¨ng ®Ó x¸c ®Þnh sù ¶nh h−ëng cña
c¸c vÞ trÝ më réng thµnh phè. C¸c vÞ trÝ ë xa sù ¶nh h−ëng cµng thÊp khi ®ã ®é
thuéc cµng cao. C¸c vÞ trÝ ë gÇn ®é thuéc cµng nhá hµm tuyÕn tÝnh sau ®−îc sö
dông. Theo kinh nghiÖm chuyªn gia vïng bÞ ¶nh h−ëng nhiÒu nhÊt trong vßng
b¸n kÝnh 500 m vµ vïng ngoµi vïng ¶nh h−ëng lµ 1500 m. Hµm mê sö dông
cã d¹ng sau.
H×nh 4.3. Hµm mê sö dông cho líp th«ng tin « nhiÔm
Hµm mê sö dông µ « nhiÔm(l)=⎪⎩
⎪⎨
⎧
<
>
≤≤−
500
1500
0
1
15005001000/)500(
x
x
xx
* §èi víi líp th«ng tin vÒ ®Þa chÊt cã hai lo¹i theo ký hiÖu ®Þa chÊt
vïng cã ®é dµy thÝch hîp vµ vïng ®Êt yÕu kh«ng phï hîp cho viÖc ph¸t triÓn
c¸c khu cao tÇng ë ®©y ta cã thÓ x¸c ®Þnh hai lo¹i gi¸ trÞ (1 cho vïng ®Êt cã ®é
dµy bÒn v÷ng vµ 0 cho vïng ®Êt yÕu.
§Þa tÇng Gi¸ trÞ mê
amQ…-†™š 1
aQ…-†™š 0
B¶ng 4.2. B¶ng mê hãa líp th«ng tin ®Þa tÇng
2000
1.0
10000 1500500
0.5
0.1
0.2
0.3
0.4
0.6
0.7
0.8
0.9
0.0
82
Thùc hiÖn chång xÕp 5 líp th«ng tin trªn sö dông c«ng thøc:
µE(l) = ∑
=
k
i
q
i lA
1
)]([µ . LÊy q = 2 Ta cã:
µE(l)={[µthæ c−(l)]2+[µmë mang(l)]2+[µgiao th«ng(l)]2 + [µ®Þa tÇng(l)]2 + [µ« nhiÔm(l)]2}/5;
ë ®©y ta cã 5 líp tham gia chång xÕp ®Ó b¶o ®¶m gi¸ trÞ sau khi tÝnh to¸n vÉn
n»m trong kho¶ng [0,1] ta nh©n víi 1/5 = 0.25 nh− lµ träng sè ngang b»ng cho
n¨m líp nªu trªn. µE ®−îc gäi lµ ®é ®o tæng thÓ tõ 5 líp tham gia trong qu¸
tr×nh chång xÕp.
Sau khi chång xÕp mçi ®èi t−îng cña b¶n ®å kÕt qu¶ bao gåm c¸c tr−êng:
FUZZY_DAT, FUZZY_DC, FUZZY_GT, FUZZY_ON, FUZZY_R
Gi¸ trÞ kÕt qu¶ ®−îc tÝnh vµ cËp nhËt trªn tr−êng FUZZY_OVER theo c«ng
thøc sau ®©y:
FUZZY_OVER = (FUZZY_DAT2 + FUZZY_DC2 + FUZZY_GT2 +
FUZZY_ON2 + FUZZY_R2)/5.
H×nh 4.4. Ph−¬ng tr×nh chång xÕp mê tÝnh to¸n trªn c¸c tr−êng
83
H×nh 4.5. Thuéc tÝnh sau khi chång xÕp
4.1.3 KÕt qu¶ ®¹t ®−îc
Mê hãa
H×nh 4.6. Vïng ®Öm mê hãa líp th«ng tin më mang thµnh phè
84
H×nh 4.7. Vïng ®Öm mê hãa vÒ líp th«ng tin giao th«ng
H×nh 4.8. Vïng ®Öm mê hãa líp th«ng tin « nhiÔm
85
H×nh 4.9. Mê hãa líp th«ng tin ®Þa tÇng ®Êt yÕu
H×nh 4.10. Mê hãa líp th«ng tin hiÖn tr¹ng sö dông ®Êt
86
H×nh 4.11. KÕt qu¶ sau khi chång xÕp
H×nh 4.12. Gi¶i mê l¸t c¾t α = 0.75
87
H×nh 4.13. Gi¶i mê l¸t c¾t α = 0.7
H×nh 4.14. Gi¶i mê l¸t c¾t α = 0.65
88
Qua ba lùa chän gi¶i mê trªn vïng xanh ®Ëm lµ c¸c vÞ trÝ ®Ó cã thÓ quy
ho¹ch cho viÖc më réng thµnh phè. Dùa trªn b¶n ®å trªn mµ c¸c chuyªn gia cã
thÓ lùa chän c¸c ph−¬ng ¸n cÇn thiÕt cho viÖc ra quyÕt ®Þnh khu ®Êt më réng
thµnh phè.
4.2 Bµi to¸n x¸c ®Þnh ®−êng ®i ng¾n nhÊt sö dông logic mê
4.2.1 Ph¸t biÓu bµi to¸n
Mét trong c¸c c«ng cô sö dông th−êng xuyªn trong viÖc thu thËp d÷
liÖu ®Þa lý ®−îc tr×u t−îng ho¸ trong GIS lµ c¸c lo¹i ®å thÞ kh¸c nhau vµ c¸c
thay ®æi ®−îc t¹o ra víi dù ®Þnh sö dông cña chóng. Lý thuyÕt ®å thÞ cã nhiÒu
øng dông kh¸c nhau trong ph©n tÝch hÖ thèng, kinh tÕ vµ giao th«ng vËn t¶i.
Trong nhiÒu tr−êng hîp chóng ta ph¶i sö dông d÷ liÖu kh«ng râ rµng mµ
chóng ta kh«ng thÓ suy xÐt chóng trong c¸c tÝnh to¸n khi sö dông ®å thÞ b×nh
th−êng. Logic mê vµ lý thuyÕt ®å thÞ mê cho chóng ta mét c«ng cô thÝch hîp
®Ó sö dông trong c¸c tr−êng hîp ®ã.
4.2.2 Ph−¬ng ph¸p tiÕn hµnh
XÐt mét ®å thÞ mê G víi kiÓu thuÇn chñng V mê. Cho Π lµ tËp tÊt c¶
c¸c ®−êng ®i tõ ®Ønh va tíi ®Ønh vb vµ cho chiÒu dµi mê cña ®−êng ®i lµ :
lp = length(P) = ∑∈Pek wp, trong ®ã P ∈ Π ë ®©y ek lµ c¸c c¹nh cña G.
TËp mê cña c¸c ®−êng ®i ng¾n nhÊt lµ tËp mê S trªn Π víi c¸c thµnh
viªn πS ®−îc ®−a vµo bëi :
π
S
(P) = min { µ
lp ≤lQ
}, Trong đó P ∈Π, Q ∈ Π
TÝnh hç trî bao gåm tÊt c¶ c¸c ®−êng ®i mµ cã kh¶ n¨ng cã chiÒu dµi
nhá nhÊt:
supp(S) = { P ∈ Π | µ
lp ≤lQ
> 0, ∀Q ∈ Π }
TËp mê cña c¸c ®−êng ®i ng¾n nhÊt ®Þnh nghÜa trªn cã thÓ thu l¹i thµnh
tËp mê ®−êng ®i ng¾n nhÊt, ë ®ã mçi c¹nh ei cã thµnh viªn trong tËp mê S’:
89
µ
S’
(i) =
∏∈∈ PPei ,
max { π
S
(P) }, for i = 1, … , n
E
ThuËt to¸n FSA:
B−íc 1:
X©y dùng ®å thÞ vµ ®ång nhÊt víi G vµ träng sè trªn c¸c
c¹nh cña vµ cã thÓ tÝnh nh− sau:
§èi víi :
§èi víi :
B−íc 2:
T×m ®−êng ®i ng¾n nhÊt p tõ va tíi vb trong . §©y lµ vÊn ®Ò
®−êng ®i ng¾n nhÊt kinh ®iÓn vµ nhiÒu thuËt to¸n tèt cã thÓ sö dông ®Ó gi¶i nã.
BiÓu thÞ k lµ chiÒu dµi cña ®−êng p.
µ
S’
(i) = min { l
p
} P ∈ Π (25)
B−íc 3:
Cho là tËp tÊt c¶ c¸c ®−êng ®i tõ Va tíi Vb trong , mà chiÒu
dài nhá h¬n k. Cho S là tËp tÊt c¶ c¸c ®−êng ®i trong G. H×nh d¹ng cña c¸c
®−êng ®i trong c¶ S và là ®óng. Nh− thÕ S, là tËp cña tÊt c¶ c¸c ®−êng ®i
ng¨n nhÊt mê. Cuèi cïng tÝnh ®é mê cho mçi ®−êng ®i tõ S trong sù suy xÐt
cña k.
H×nh 4.15. §å thÞ G cã h−íng V- mê
a
b d
f
c e
[1,2,3] [1,2,3]
[3,5,6] 4
3
2
2
3
90
4.2.3 KÕt qu¶ ®¹t ®−îc
H×nh trªn chØ ra kiÓu träng sè ®å thÞ mê V. §Ønh a lµ ®iÓm khëi hµnh vµ
®Ønh f lµ ®iÓm ®Õn cña ®−êng ®i. C¸c träng sè cã thÓ lµ c¸c sè cøng cña chóng
hoÆc c¸c sè tam g¸c mê.
C¸c chiÒu dµi mê ®èi víi 4 ®−êng ®i tõ ®Ønh a tíi ®Ønh f ®−îc liÖt kª
trong h×nh trªn - tõ ®iÒu nµy chóng ta thÊy r»ng k=8 vµ ®−êng ®i abdf cã gi¸
trÞ mê πS (abdf)=1, ®−êng ®i abef cã gi¸ trÞ mê πS (abef)=2/5, vµ c¸c ®−êng
kh¸c cã gi¸ trÞ mê πS(acdf) = πS(acef) = 0 trong tËp mê c¸c ®−êng ®i ng¾n
nhÊt. H×nh sau ®©y minh ho¹ ®−êng ®i ng¾n nhÊt mê.
H×nh 4.16. §−êng ®i ng¾n nhÊt mê cña ®å thÞ mê G
4.3 Bµi to¸n t×m vÞ trÝ x©y dùng nhµ m¸y xi m¨ng
4.3.1 Ph¸t biÓu bµi to¸n
TØnh Qu¶ng Ninh lµ tØnh giÇu tiÒm n¨ng vÒ C«ng nghiÖp khai th¸c má
vµ Du lÞch. Do sù ph©n bè vÒ má vµ c¸c lo¹i tµi nguyªn thiªn nhiªn kh¸c. Ba
huyÖn Hoµnh Bå, Ba chÏ, Yªn h−ng lµ c¸c huyÖn cã tû träng vÒ c«ng nghiÖp
khai th¸c thÊp mµ tiÒm n¨ng cña huyÖn nµy ®a d¹ng vµ phong phó. L·nh ®¹o
tØnh muèn ph¸t ®Çu t− vµ x©y dùng nhµ m¸y xi m¨ng t¹i côm 3 huyÖn trªn víi
môc ®Ých sö dông c¸c nguån nguyªn liÖu t¹i chç nh− ®Êt sÐt, than, ®¸ v«i...vµ
nguån nh©n lùc t¹i chç; nh−ng còng ®Æc biÖt tíi vÊn ®Ò b¶o vÖ m«i tr−êng vÞnh
0.2
0.4
0.6
0.8
1
4 5 6 7 8 9 10 11 12
Gi¸ trÞ
§−êng ®i
abdf
abef
acdf
acef
91
H¹ Long di s¶n thiªn nhiªn thÕ giíi. Theo ý kiÕn cña chuyªn gia tiªu chÝ ®Ó
chän vÞ trÝ x©y dùng nhµ m¸y gåm:
(1). GÇn víi c¸c má than ®Ó h×nh thµnh khu c«ng nghiÖp liªn hoµn khai
th¸c than vµ s¶n xuÊt xi m¨ng.
(2). GÇn c¸c khu vùc má ®Êt sÐt nguyªn liÖu ®Ó s¶n xuÊt xi m¨ng.
(3). GÇn má ®¸ v«i nguyªn liÖu ®Ó s¶n xuÊt xi m¨ng.
(4). GÇn c¶ng biÓn ®Ó thuËn lîi cho viÖc bèc rì hµng hãa.
(5). C¸ch ®−êng giao th«ng chÝnh mét kho¶ng nhÊt ®Þnh võa b¶o ®¶m
vËn chuyÓn vµ kh«ng ¶nh h−ëng tíi m«i tr−êng giao th«ng.
(6). C¸ch VÞnh H¹ Long mét kho¶ng nhÊt ®Þnh ®Ó kh«ng bÞ ¶nh h−ëng
« nhiÔm tíi m«i tr−êng vÞnh H¹ Long.
4.3.2 Ph−¬ng ph¸p tiÕn hµnh
NhËn xÐt bµi to¸n.
Do ®Æc thï ®Þa h×nh khu vùc Hoµnh bå, Ba chÏ, Yªn h−ng lµ c¸c huyÖn
ch−a ph¸t triÓn vÒ mÆt c«ng nghiÖp vµ ®« thÞ cho nªn c¸c tiªu chÝ ¶nh h−ëng
cña vïng ®Êt quy ho¹ch ®« thÞ hÇu nh− kh«ng cã. C¸c b−íc tiÕn hµnh nh− sau:
*Líp th«ng tin vÒ tÝnh gÇn c¸c má than ®−îc t¹o thµnh c¸c vïng ®Öm
bao quanh c¸c vÞ trÝ má than theo c¸c kho¶ng c¸ch 500 m. §Ó thuËn lîi c¸c
nhµ m¸y nªn c¸ch xa trªn 500 m ®Ó thuËn lîi cho viÖc khai th¸c than; c¸c
ph¹m vi trong vong 10.000 m thuËn lîi cho viÖc vËn chuyÓn b»ng c¸c lo¹i xe
vËn t¶i. Hµm mê ®−îc sö dông ®Ó mê ho¸ lµ hµm tuyÕn tÝnh gi¶m nh− sau:
H×nh 4.17. Hµm mê sö dông líp th«ng tin gÇn má than
2000
1.0
10000 500
0.5
0.1
0.2
0.3
0.4
0.6
0.7
0.8
0.9
0.0
3000 50004000 6000 7000 8000 9000 10000
92
Hµm mê sö dông µ má than(l)=⎩⎨
⎧
≤≤−
500;100000
100005009500/)10000(
xx
xx
*Líp th«ng tin vÒ tÝnh gÇn c¸c má ®Êt sÐt ®−îc t¹o thµnh c¸c vïng ®Öm
bao quanh c¸c vÞ trÝ má ®Êt sÐt theo c¸c kho¶ng c¸ch 500 m. Do viÖc khai th¸c
®Êt sÐt cã thÓ khai th¸c nguyªn liÖu t¹i chç, vµ còng cã thÓ vËn chuyÓn trong
vßng b¸n kÝnh 10,000 m b»ng xe vËn t¶i. Hµm mê ®−îc sö dông ®Ó mê ho¸ lµ
hµm tuyÕn tÝnh gi¶m nh− sau:
H×nh 4.18. Hµm mê sö dông líp th«ng tin gÇn má ®Êt sÐt
Hµm mê sö dông µ má ®Êt sÐt (l)=⎩⎨
⎧
>
≤≤−
100000
10000010000/)10000(
x
xx
*Líp th«ng tin vÒ giao th«ng theo quy ®Þnh ph¶i cã hµnh lang giao
th«ng cña c¸c tuyÕn ®−êng (hµnh lang 200 m). §èi víi c«ng nghiÖp s¶n xuÊt
chñ yÕu lµ c¬ giíi ho¸ ranh giíi ph©n ®Þnh tÝnh tíi 500 m. Hµm mê tuyÕn tÝnh
gi¶m ®−îc x¸c ®Þnh nh− sau:
H×nh 4.19. Hµm mê sö dông cho líp th«ng tin giao th«ng
200010000 1500500200 3000 4000
1.0
0.5
0.1
0.2
0.3
0.4
0.6
0.7
0.8
0.9
0.0
2000
1.0
10000 500
0.5
0.1
0.2
0.3
0.4
0.6
0.7
0.8
0.9
0.0
3000 50004000 6000 7000 8000 9000 10000
93
Hµm mê sö dông µ giao th«ng(l)= ⎩⎨
⎧
≤≤−
2000;40000
40002003800/)4000(
xx
xx
*Líp th«ng tin vÒ tÝnh gÇn c¸c má ®¸ v«i ®−îc t¹o thµnh c¸c vïng ®Öm
bao quanh c¸c vÞ trÝ má ®¸ v«i theo c¸c kho¶ng c¸ch 500 m. Do viÖc khai th¸c
®¸ v«i cã thÓ khai th¸c nguyªn liÖu t¹i chç, vµ còng cã thÓ vËn chuyÓn trong
vßng b¸n kÝnh 10,000 m b»ng xe vËn t¶i. Hµm mê ®−îc sö dông ®Ó mê ho¸ lµ
hµm tuyÕn tÝnh gi¶m nh− sau:
H×nh 4.20. Hµm mê sö dông líp th«ng tin gÇn má ®¸ v«i
Hµm mê sö dông µ má ®¸ v«i (l)=⎩⎨
⎧
>
≤≤−
;100000
10000010000/)10000(
x
xx
*Líp th«ng tin vÒ tÝnh gÇn c¸c c¶ng ®−îc t¹o thµnh c¸c vïng ®Öm bao
quanh c¸c vÞ trÝ c¶ng theo c¸c kho¶ng c¸ch 500 m. C¸c vÞ trÝ cµng gÇn c¶ng
cµng tèt. Tuy nhiªn ®Ó thuËn lîi cho viÖc bèc dì hµng hãa c¸c nhµ m¸y nªn
c¸ch xa trªn 500 m ®Ó thuËn lîi cho viÖc tiªu thô hµng hãa vµ khai th¸c khu
c¶ng. Hµm mê ®−îc sö dông ®Ó mê ho¸ lµ hµm tuyÕn tÝnh gi¶m nh− sau:
H×nh 4.21. Hµm mê sö dông líp th«ng tin gÇn c¶ng
2000
1.0
10000 500
0.5
0.1
0.2
0.3
0.4
0.6
0.7
0.8
0.9
0.0
3000 50004000 6000 7000 8000 9000 10000
2000
1.0
10000 500
0.5
0.1
0.2
0.3
0.4
0.6
0.7
0.8
0.9
0.0
3000 50004000 6000 7000 8000 9000 10000
94
Hµm mê sö dông µ gÇn c¶ng (l)=⎩⎨
⎧
≤≤−
500;100000
100005009500/)10000(
xx
xx
* Líp th«ng tin vÒ « nhiÔm cã thÓ g©y ra do nhµ m¸y ®èi víi vÞnh H¹
Long. Hµm mê tuyÕn tÝnh gi¶m sö dông cã d¹ng sau.
H×nh 4.22. Hµm mê sö dông cho líp th«ng tin « nhiÔm
Hµm mê sö dông µ « nhiÔm(l)=⎪⎩
⎪⎨
⎧
<
>
≤≤−
1000
4000
0
1
400010003000/)1000(
x
x
xx
Thùc hiÖn chång xÕp 6 líp th«ng tin trªn sö dông c«ng thøc:
µE(l) = ∑
=
k
i
q
i lA
1
)]([µ . LÊy q = 2 Ta cã: µE(l)={[µmá_than(l)]2+[µmá_sÐt(l)]2+[µmá_®¸
v«i(l)]
2+[µgiao_th«ng(l)]2 + [µgÇn_c¶ng(l)]2 + [µ« nhiÔm(l)]2}/6; ë ®©y ta cã 6 líp tham
gia chång xÕp ®Ó b¶o ®¶m gi¸ trÞ sau khi tÝnh to¸n vÉn n»m trong kho¶ng [0,1]
ta nh©n víi 1/6 nh− lµ träng sè ngang b»ng cho s¸u líp nªu trªn. µE ®−îc gäi
lµ ®é ®o tæng thÓ tõ 6 líp tham gia trong qu¸ tr×nh chång xÕp.
4.3.3 KÕt qu¶ ®¹t ®−îc
Sau khi thùc hiÖn chång xÕp vµ thùc hiÖn gi¶i mê víi l¸t c¾t α = 0.33 vµ
α = 0.36 ta nhËn ®−îc c¸c vïng xanh ®Ëm cã thÓ lµ vÞ trÝ ®Ó x©y dùng nhµ m¸y
xi m¨ng. Tuy nhiªn dùa trªn kÕt qu¶ nhËn ®−îc c¸c vÞ trÝ chØ ra d−íi ®©y cã
thÓ sö dông ®Ó x©y dùng nhµ m¸y.
1.0
0 40001000
0.5
0.1
0.2
0.3
0.4
0.6
0.7
0.8
0.9
0.0
95
H×nh 4.23. Gi¶i mê víi l¸t c¾t α = 0.33
H×nh 4.24. Gi¶i mê lÊy l¸t c¾t α = 0.36
VÞ trÝ tèt
x©y dùng
nhµ m¸y
VÞ trÝ tèt
x©y dùng
nhµ m¸y
96
KÕt luËn
Lý thuyÕt tËp mê ®−îc xem nh− lµ ph−¬ng tiÖn thiÕt kÕ c¸c c«ng cô mét
c¸ch hiÖu qu¶ ®Ó hç trî c¸c xö lý ra quyÕt ®Þnh ®èi víi c¸c bµi to¸n kh«ng
gian mµ ®Æc thï cña nã lµ d÷ liÖu kh«ng râ rµng. Trong luËn v¨n nµy ®·
nghiªn cøu sù hîp nhÊt cña lý thuyÕt tËp mê trong hÖ thèng c¬ së d÷ liÖu quan
hÖ GIS vµ øng dông thµnh qu¶ nghiªn cøu vµo thùc tiÔn mµ ®iÓn h×nh lµ bµi
to¸n më réng Thµnh phè Th¸i B×nh.
Nã chØ ra sù hiÖu qu¶ nh− thÕ nµo cña lý thuyÕt tËp mê ®Ó cã thÓ thùc
hiÖn c¸c diÔn t¶ vµ ph©n tÝch d÷ liÖu ®Þa lý. ë ®ã c¸c ®Æc tr−ng kh«ng râ rµng
lµ kh¸i niÖm cÇn xö lý. Sù ®ãng gãp cña luËn v¨n cã thÓ ®−îc tãm t¾t nh− sau:
Thø nhÊt giíi thiÖu ng¾n gän vÒ hÖ thèng th«ng tin ®Þa lý c¸c tiÕn bé vµ lÞch
sö ph¸t triÓn cña nã, c¸c khuynh h−íng ph¸t triÓn cña c¸c hÖ thèng th«ng tin
®Þa lý, trong ®ã logic mê lµ mét h−íng ph¸t triÓn cã triÓn väng trong t−¬ng lai.
Thø hai ph©n tÝch tÝnh kh«ng râ rµng, kh«ng ch¾c ch¾n vµ mËp mê cña d÷ liÖu
trong c¸c hÖ thèng th«ng tin ®Þa lý vµ c¸c giíi h¹n khi thùc hiÖn víi lý thuyÕt
tËp hîp kinh ®iÓn trong c¶ diÔn t¶ vµ ph©n tÝch d÷ liÖu ®Þa lý, thay thÕ nã b»ng
lý thuyÕt tËp mê. §Ó cã thÓ t¨ng c−êng lý thuyÕt tËp mê vµo trong c¸c hÖ
thèng th«ng tin ®Þa lý cÇn thiÕt ph¶i më réng m« h×nh d÷ liÖu kh«ng gian tæng
thÓ ®Ó thÝch hîp víi sù kh«ng râ rµng, kh«ng ch¾c ch¾n cña c¸c thùc thÓ ®Þa
lý. Sau khi ®· më réng m« h×nh d÷ liÖu kh«ng gian, c¸c phÐp to¸n trong nã
còng ®−îc më réng ®Ó hç trî c¸c lËp luËn kh«ng gian mê. Trong phÇn thùc
nghiÖm t¸c gi¶ gi¶i bµi to¸n quy ho¹ch më réng thµnh phè Th¸i B×nh. §©y lµ
mét øng dông rÊt cã ý nghÜa trong tiÕn tr×nh c«ng nghiÖp hãa, hiÖn ®¹i hãa ®Êt
n−íc. Bµi to¸n më réng Thµnh phè Th¸i B×nh lµ m« h×nh øng dông tiªu biÓu
cã thÓ ¸p dông cho c¸c thµnh phè t−¬ng tù kh¸c. §iÒu ®ã kh¼ng ®Þnh r»ng viÖc
më réng vµ t¨ng c−êng lý thuyÕt tËp mê trong GIS lµ h−íng ®i ®óng vµ thùc
tÕ, nã trang bÞ cho c¸c nhµ quy ho¹ch c¸c c«ng cô mÒm dÎo ®Ó gi¶i quyÕt c¸c
vÊn ®Ò kh«ng gian phøc t¹p khi d÷ liÖu vµ th«ng tin trong chóng lµ mê.
97
Tµi liÖu tham kh¶o
TiÕng ViÖt
1. NguyÔn C¸t Hå, Lý thuyÕt tËp mê vµ c«ng nghÖ tÝnh to¸n mÒm , hÖ mê,
m¹ng n¬ron vµ øng dông, nhµ xuÊt b¶n khoa häc kü thuËt.
2. TrÇn §×nh Khang, X©y dùng hµm ®o trªn ®¹i sè gia tö vµ øng dông trong
lËp luËn ng«n ng÷, t¹p chÝ Tin häc vµ ®iÒu khiÓn häc (1997).
3. TrÇn §×nh Khang, TÝch hîp c¸c ®¹i sè gia tö cho suy luËn ng«n ng÷, t¹p
chÝ Tin häc vµ §iÒu khiÓn häc (1997).
4. NguyÔn Thanh Thñy, Hå CÈm Hµ, §¹i sè quan hÖ vµ nguyªn lý xö lý c©u
hái trªn mét m« h×nh c¬ së d÷ liÖu mê, Héi nghÞ khoa häc 19 Tr−êng §¹i
häc B¸ch khoa Hµ Néi.(2001).
TiÕng Anh
5. Robert Steiner, Fuzzy Logic in GIS.
6. Wolfgang Kainz, Introduction to FuzzyLogic and Applications in GIS.
7. Graeme F.Bonham - Carter, Geographic Infomation systems for
Geoscientists, Modeling with GIS.
8. Altman, D. Fuzzy set theoretic approaches for handling imprecision in
spatial analysis.
9. Emmanuel Stefanakis and Timos Sellis. Enhancing a Database
Management System for GIS with Fuzzy Set Methodologies.
10. Michael F.Goodchild and Karen K.Kemp(1990), Technical Issues In GIS.
Các file đính kèm theo tài liệu này:
- 000000208343R.pdf