Luận văn Vài đạo hàm suy rộng và tối ưu hóa không trơn

VÀI ĐẠO HÀM SUY RỘNG VÀ TỐI ƯU HÓA KHÔNG TRƠN MAI QUỐC VŨ Trang nhan đề Mục lục Ký hiệu Lời nói đầu Chương1: Đạo hàm suy rộng Clarke. Chương2: Jacobi xấp xỉ. Chương3: Ứng dụng. Kết luận Tài liệu tham khảo

pdf15 trang | Chia sẻ: maiphuongtl | Lượt xem: 2000 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Luận văn Vài đạo hàm suy rộng và tối ưu hóa không trơn, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
ChUO1lg3 UNG DUNG. TrangchuangmlYtasedungHessianx~pxi dethi~tl~pdi~uki~ncAnvadlit6iuu c~phaichobaitmlnquihoC;lchp ituy~nv6irangbuQcd~ngthucvab~td~ngthuc. Saildota sirdl,mgJacobix~pxi Frechetdetimdi~uki~nduynh~tnghi~mdia phuangvatoanC\lCd6iv6ibaitminb~td~ngthucbi~nphfmmarQngv6idfrki~n lient\lCkhongLipschitzdiaphuang. 3.1BAI ToAN QUI HO~CH PHI TUYEN X6tbaitmin(P) san mm lex) , g(x)~0, hex)=o. 39 TrongdoI: 9{n~ 9{,g: 9{n~ 9{P,h: 9{n~ 9{q lacachamkhflvi, lient\lCdp m('>t. D~tg=(gp...,gp),h=(hp...,hq). lea)={i:gi(a)=O}. C :={xE 9{n:g(x) ~0,hex)=O}Iat~pch~pnh~nduQ'Cvam6idi~mtrongt~pnay duQ'cgQiIadi~mch~pnh~nduQ'cuabaitoan(P). D~t C(.<)={xe c: t.<;g;(X) ~ 0}. Non cuahuangch~pnh~nduQ'cd6ivai t~pcon S c 9{nt~iXES duQ'Cxacdinhb6i F(S,x) ={uE9{n:38>O,VO~a~8,x+auES}. Binb ngbia3.1Di~mch~pnh~nduQ'caEC duQ'cgQileidi~mchinhquicuabai toan(P)n~ucacvectaVgi,ViE lea),Vhj(a),j =1,...,q d('>cI~ptuy~ntinh. HamLagrangeduQ'cxacdinhb6i L(x,1,Jl):=lex) +(1,g(x))+(Jl,hex)). B8d~3.1( DinhIi Karush-Kuhn-Tucker)Choa lil cvctiiudiaphlfO'ngcuahili loan (P). Niu a lil didmchinh qui cua hili loan (P) thi t{mtc;zi1 E 9{P,JlE 9{qsao cho [ VL(a,1,Jl) =0 1Tg(a)=O,1~O g(a)~O,h(a)=O. Di~uki~ntrenduQ'cgQiIadi~uki~nKarush-Kuhn-Tucker. Di~uki~n1Tg(a)=0 duQ'cgQileidi~uki~nd('>l~chbu. Nb~nxet3.1 N~ubaitoan(P) labaitoanC1JCd~ithidi~uki~n1~0 duQ'cthay bing di~uki~n1 ~0 ( max lex) =-mill (-lex))).Cacdi~uki~nkhacvftngill nguyen. 3.1.1ei~uki~ncan t6i U'ucAphai Binh Ii 3.1 Choa fa cvc tiJu iliaphuangcuahai toim(P). Gid sir vaim6i 1E 9F"uE 9)Q,J2L(a,1"u) faHessianxdpxihichi}.ncuaL(.,l"u)tqia.Niu a fa iliJm chinhqui thi t6n tqi 1 E9)P"uE9)QsaDcho (a,l"u) thod maniliJu ki?n Karush-Kuhn-Tucker.Han nua Vu E F(C(1),a),3M E J2 L(a,l"u) saDcho (u,Mu);:::O. ChungminhTheogiathuy€tthiB6d~3.1thoamannentirdi~uki~nKarush- Kuhn-Tuckertaco (uV'Lt (a,l"u),u)= 1imsup(uV'L)(a+tu,l"u) - (uV'L)(a,l"u) lio t 1. (u,V'L(a+tu,l"u))-(u,VL(a,l"u))= Imsuplio t 1. (u,V'L(a+tu,l"u))= Imsup . lio t Cho uEF(C(l),a), theodinhnghlat6nt~i(J >0 saochov6i mQi0S;as; (J, a+auEC(l). Khido O<~«J, k 1 1 L(a+-U,A"u)=f(a +-,u);:::lea) =L(a,A"u).k k Hay 1 L(a+-u,l"u)-L(a,l"u);::: O. k Theo£)inhIi giatritrungbinht6nt~is6nguyenN >0 va 0N saocho (u,V'L(a +tkU,A"u));:::0,Vk;:::N. Dodo . (u,VL(a+tu,A,j.i)) hmsup 2 0 . 11,0 t Vi J2L(a,A,j.i) laHessianx~pxicuaLCA,j.i) t~ia nentaco VuEF(C(A),a), sup (Nu,u)2 (uVLY ((a,A,j.i),U) NEJ'L(a,A,fl) 1. (u,VL(a+tU,A,j.i))= Imsup 20. Ita t Theogiathuy~tJ2L(a,A,j.i) bi ch~nnen3M E J2L(a,A,j.i) saGcho (Mu,u)2 sup (NU,U)20. NEJ'L(a,A.fl) 0 H~ qua 3.1 Cho a fa qrc tidu aia ph14angcua hai loan (P). Gia s14 J2lea),J2g(a),J2h(a) facacHessianxdpxi hi ch(mcuaf,g,h t14angungt(lia. Niu a faaiimchinhquithi t6nt(liAE9iP,f1E9iqsaGcho(a,A,j.i)thoamanai~u ki?nKarush-Kuhn-Tucker.Han mfa, Vu E F(C(A),a),3N E J2 f(a),P E J2g(a),Q E J2h(a) saGcho ((N +ATP +j.iTQ~,u) 2 O. Chtfngminh TuTinhch~t(iii)taco J2 L(a, A,j.i) = J2 lea) +ATJ2g(a) +j.iTJ2h(a) litHessianx~pxi cuaLC A,j.i) t~ia. V~ytheoDinhIi 3.1 3M E J2L(a,A,j.i) saGcho Vu E F(C(A),a) ,(u,Mu) 2 O. Vi M =N +ATP+ j.iTQ, trongdo N E J2 f(a),P E J2g(a),Q E J2h(a) nen ((N+J! P +j.iTQ~,u)20, VuEF(C(A),a). 0 42 3.1.2£)i~uki(!ndu tOiU'ucAp hai Trangphc1nnaytasetrinhbaydi~uki~ndud.phaichobaitmln(P). f)~t J ={iE I(a) :A;>O}. Q ={yE Bn :yTVg;(a) =O,iE J, yTVhj(a)=O,j =1,...,q}. Cho c:>0,0 >0, 2 (c:,0) = {dE B n :3y E Y,O <g(d) <0, lid - yll < c:,a +g(d)d E C} . Djnh Ii 3.2 Choa la ilidmchapnhqnillf9'Ccuabaitoim(P).GiGsir (a,A"u)thoG manili~uki?nKarush-Kuhn-Tucker.GiGSltthemrlingvaimQix trongIancqncua a,J2L(x,A"u)laHessianxapxi hich(mcuaL(-,A"u)tgia. Niu t6ntgic:>0,0>0 saGchovaim9i dE 2(8,0) vavaimQi0<a <1, \:1ME J2 L(a +ad,A"u),(Md,d) ~0, thi a la cvc tiduilia phlfO'ngcua bai toim(P). Chungminh Gicisu a khonglaqlc ti~udiaphuangcuabaitoim(P). Khi dot6nt(;lidaych~pnh~nduQ'c{xk}cuabaitmln(P)saocho Xk ~ a khik ~ +00va f(Xk) <f(a), \:Ik. Gicisu Xk=a+okdk. Trongdolldkll=l,ok >0,Ok~O khik ~+oo. Vi Ildkll=1 nenday{dk}codayconhQitl,1. Khongm~tinht6ngquatavin ki hi~uladay{dk }saocho dk ~ y khik ~ +00 v6i Ilyll =1. TheoTinh ch~t(iv) taco 0> f(Xk) - f(a) =okd[Vf(a +17okokdk),O<17ok<1, 43 0 ~ gj(Xk) - gj(a) =gkdJVgj(a +17jkgkdk),O<17jk<1,Vi E lea), 0=h/Xk) - h/a) =gkdJVhj(a +;jkgkdk),O<;jk <1,Vj =1,...,q . Chiacacphuongtrinhvab:ltphuangtrinhtrencho gkvaI:lygi6ih(;1nkhi k ~ +00. Ta duQ'c yTVf(a)~O,yTVgi(a)~0,Vi E l(a),yTVh/a) =0,Vj =1,...,q. Giasutfmt(;1iitnh:lti E J saochoyTVgj(a)<O.Taco q 0~yTVf(a) =-LAjyTVgj(a)- LPjyTVh/a) >0, jEJ j=l voly. V?y yTVg;{a)=O,ViEJ hoi;icJ=0. V?y YEQ. Theogiathuy~t(a,A,p) th6amandi~uki~nKarush-Kuhn-Tucker.Ta co Aj~0,Ajgj(a)=O,i=1,...,p, q VL(a,A,p) =Vf(a) + LAiVgi(a) +LPjVhj(a) =O. jE/(a) j=l Mi;itkhacvi f(Xk) <lea),Vk vasudt,mgTinh ch:lt(ix) chohamL(x,A,J1)t(;1ia. Taco lea) >f(Xk) q ~f(Xk)+ LAjgi(Xk) +LPjh/Xk) jE/(a) j=1 ;, f(a) +,~)A,g,(a)+ tJljh/a) +Okdi(Vf(a) +,~)A,vg,(a) +tJljVhj (a)J +! - 2min (Mkgkdk,gkdk) 2 MkECOJ L(a+8kokdk,A,/l) =lea) +!g; mill (Mkdk,dk) 2 MkEJ2L(a+Okokdk,A,/l) 1 J ( 0 }=lea)+2g; Mkdk,dk. Trongdo O<Bk<1va MZ EJ2L(a+Bkgkdk,A,p). Dodov6imQik, (MZdk,dk}<O. 44 Mauthufinv6i giathuy~tsauIldkll=l,dk~ Y E Y,5k~ 0 khi k ~ +00,0<B/ik <1 khi k du Ian va a +5kdk la huang ch<1pnh~nduQ'cv6i 1119ik . Dodov6ik dulan,dkEZ(&,5)va(M~dk,dk)?o. V~ya IaClJCti~udiaphuOTIgcuabaitmin(P). 0 Binh Ii 3.3 Cho a lit aiim chdpnhijnalt(lccuabatloan(P). GiGsir (a,A"u) thoa manaiJu ki?nKarush-Kuhn-Tucker.GiGsirthemding vaimQix trongfancijncua a,J2L(x,A"u) laHessianxdpxibichij.ncua L(.,A"u) t(1ia.Niutfmtgi &>0,5>0 saDchovaimQid E Z(&,5) vavaimQi0<a <1, \/M E J2 L(a +ad,A,J-L),(Md,d) >0 thi a la C1!Ctiiu chij.taiaphltang cua bat loan (P). Chungminh (TuO'ngtlJ chungminhDinhIi 3.2) 0 3.2BM ToAN BAT DANG THUC BIEN PHAN ChoK Iat~p16i,dong,khacr6ngtrongkh6nggianEuclidean~n. Anhx~f,g: ~n~ ~nIatoantuphituy~nlientl,lC,g xacdinhtrenK. Bai toanb<1td~ngthucbi~nphanmafQngV(f, g,K) duQ'cxacdinhnhusau. Tim a E ~n saDcho (f(a),g(x) - g(a))? 0,\/x E ~n. Nontiip xuccuat~pK t~ix EK duQ'cxacdinhbat T(K,x):= ~imti(xi -x): Xi E K'Xi ~ x,ti >OJ.->oo Nonsinhb6'it~pK duQ'cxacdinhbai cone(K):={tx:x EK,t? O}. 45 Cho A ~9{nhi t~pkhaer6ng.Nonlidxaeuat~pA duQ'exaedinhb6i A", :=~limtiXj:Xi E A,tj >0,~imti=Of~'" ,~"" Nonet6iC1!Ceuat~pK duQ'cxacdinhb6i K' :={UE9{n:(u,x)~O,VxEK}. Non t&ihc;zncua I, g t~iX duQ'cxacdinhb6i CU,g)(K,x):={vET(K,g(x)):(/(x),v)=O}. M(>t~pduQ'cgQiIaetadi?nn€u no Iagiaohlhlh~ncaelllIakh6nggiandong. Tinheh~t?Pdadi~nA~ 9{n: (a) T(A,x)=cone(A- x),VxE A; (b)V6'imQia E A t6nt~iIfmc~nU cuaa saocho cone(A- a)~ cone(A- x),VxE An U . D~tJ tea)=JI(a) u ((JI(a))",\ {o}). B6d~3.2 GiGsu I: 9{n -+ 291mla hametatrj nua lien t1j.ctren tc;zia E 9{n,Cho ti >0 h6it1j.etin 0, qj Ecol(a+tjBn) saocho limllq,II=00 valim ll qi .ll =q.,Khieto ,~'" ,~",q, q.E (col(a)L. Han nfra,niu co(/(a))oocoetinhthi q.Eco(/(a)L =(col(a))",. ChungminhTheogiathuy€tI lahamdatftlllIalient\Jctrent~iaE9{n.Thea dinhnghla,v6'imQiF::>0,t6nt~iiodu1611saocho I(a +tjBJ c tea) +F::Bm'Vi ~io' Dodo qi E co(/(a +F::Bm))C co(/(a +F::Bm))+F::Bm'Vi ~io' Vi v~y 46 q. E [co(f(a)+t:BJ+ t:B(O,l)L,c [co(f(a)+t:BJL, c (cof(a)L. M~tkhacta1uanco co(f(a)L c (cof(a)L b6'ivi lea) c cof(a)va co(f(a)L 1anon 16i,dong. Ta c~nchungminhchi~ungugcl(;li. m+l Cho P E (cof(a)L,p:I: o. Theo dinh 1yCaratheodory,t6n t(;lit6 hgp 16iPi =LAijPij' ~ /=1 m+1 v6i Aij2 O'Pij E lea) va LAij =1 saocho /=1 II~II=~~~II~:IIva~~~llpill=oo. Khangm~tinht6ngquattagicistr m+1 limAij =A/2O,j=l,...,m+1vaLA/ =1.1-->00 /=1 V6i m6i j, xetday {AijPijIllpilltl . Ta dn chungminhdaynaybi ch~n. Th~tv~y,gicistrday {AijPijIllpilltl khangbi ch~n. Cho aij =AijPijIllpJ N~uc~ntal~ydaycon,gicistrr~ng Ilaijoll=max~laijll:j=l,...,m+l},Vi. Do do ~~~llaijoII=00 . m+l Vi PiIllp,ll=L aulientaco j=l m+1a.. 0=hm Pi =hmL !!- . HOO Ilpililiaijoll HOO J=l Ilau",1 Ta gicistrday {auIllauollL,oh0itl,1d~naOjE (cof(a))oo,j=1,"',m+1.B6'ivi daynaybi m+1 ch~nlienkhi aD/a:I:0 phuangtrinh0=Lao/ chirar~ngco(f(a)L khangcodinh. /=1 Mfmthuftnv6i gicithuy~t. 47 V?y day {AijPijflip,lit!bich~n.Tagiilsirday{AijPij/Ilpilitlh(>it\l d~nPO}E (f(a)L . Khi do m+l P =LPo) E co(f(a)L. }=I 0 3.2.1 Tinh duy nhatdia phlJ'O'ng Blnh Ii 3.4 Cho K ~innla t()p16i,ilong,khacr6ng,f, g :inn---+innla toimtIrphi tuyin lien t7,lC,g xac ilinh trenK va Jf(a),Jg(a) la cac Jacobi xap xi cua f,g tuangungtgia. Niu a langhi?mcuaV(f,g,K) thim(jttrangbailiJu ki?nsaula iluili choa langhi?miliaphuangduynhat. (i) K la t()p16iiladi?nva vaim9iME J lea), N E J g(a)taco (M(v),N(v)) >0,\Iv E inn\ {O}, trongilo N(v) E CU,g)(K,a),M(v) E [CU,g)(K,a))*,. (ii) K la t(zp16i ila di?nvava-im9iME J f(a),N E J g(a)taco (M(v),N(v)) >0,\Iv E inn\ {O}, trongilo N(v) E CU,g)(K,a),lea) +M(v) E [T(K,g(a)))*,. - - (iii) Vaim9iME J lea),N E J g(a) taco (M(v),N(v))>0,\IvE inn\ {O}, trongilo N(v) E CU,g)(K,a). Chung minh TruactientachUngminh(ii) suyra(i). - - Th?tV?y,cho vEinn\ {O},ME J f(a),N E J g(a) taco N(v)E CU,g)(K,a),lea) +M(v) E [T(K,g(a)))*. Ta c~nchungto M(v) E [CU,g)(K,a))*. 48 Th~tv~y,cho UE CU,g)(K,a), theodinh nghlata c6 U E T(K,g(a)) va(f(a),u)=o. Khi d6 0~(f(a) +M(v),u)=(f(a),u) +(M(v),u)=(M(v),u). V~yM(v) E[CU,g)(K,a)]*. Giasu(ii)thoaman,tac~nchungminha Ianghi~mduynhfttdiaphuongcua V(f,g,K) . GiasunguQ'cl~ia kh6nglanghi~mduynhfttdiaphuangeuaV(f, g,K) . Tuc la tfmt~i{x,}langhi~mcuaV(f, g,K) saGcho {x,}hQit\1d€n a. Tagiasu {cxi-a)/llxi-all}hQit\1d€nv;tO. Vi Xivaa langhi~mcuaV(f,g,K) nentac6 lea) E [T(K,g(a))]*,f(xJ E [T(K,g(x,))]*, (f (a),g(Xi)- g(a));:::0,(f (Xi),g(Xi)- g(a))~0. TheoTinhchftt(b)cuat~pdadi~n,t6nt~iio;:::1saGeho [T(K,g(Xi))]*s;;;; [T(K,g(a))]*, Vi;:::io' Do d6 f(xJ - lea) E [T(K, g(a))]*- lea), Vi;:::io . HannuaJf(a),Jg(a)lacaeJacobixftpxi Frechetcuaf,g tuangungt~ia. Ta co Mi E Jf(a), Ni E Jg(a) saGcho f(xJ - lea) =M;(Xi - a) +rJxi - a), g(x,) - g(a) =Ni(Xi - a) +r2(Xi- a). Trang d6 rj(Xi - a) /IIXi- all~ 0 va r2(Xi - a) /IIXi- all~ 0 khi i ~ r:f). ThayvaGbi€u thuc(3.2)va(3.3)taduQ'c Mi(Xi-a) +lj(Xi-a) E [T(K,g(a))]*- f(a), (f(a),Ni(xi -a)+r2(xi-a));:::0, (f(x,),Ni(Xi -a)+r2(xi -a))~O,Vi;:::io' 49 (3.1) (3.2) (3.3) (3.4) (3.5) (3.6) NSu{Mj}bich~nthitagiaSlrnohQitvdSnME Jf(a). Chia(3.4)choIlxi- allva choquagiai h,;mkhi i ~ 00, taduqc M(v) Econe([T(K,g(a))]*- lea)). Do dotfmt~it >0 saccho lea) +M(tv) E [T(K, g(a))]*. NSu {M,}kh6ngbi ch~nthi ta gia Slr (3.7) ~~~IIMill= 00 va~~~II~:II=ME (Jf(a))" \ {o}. Chia (3.4) cho IIM,llllXj- all va cho quagiai h~nkhi i ~ 00 taclingthuduqc(3.7). NSu{Ni}bich~nthitagiaSlrnohQitvdSnN E Jg(a). Chia(3.5)cho Ilxi- allvachoquagiai h~nkhi i ~ 00, taduqc (f(a),N(v))~o. TuangW chia(3.6)cho Ilxi- allvachoquagiai h~nkhi i ~ 00, taduqc (f(a), N(v))s:;o. Dodo (f(a),N(v)) =0. (3.8) Hannlia,tir(3.5)va(3.6)taco (f(xJ- f(a),g(xJ-g(a))S:;O. (3.9) Hay (M(v),N(v))s:;O. (3.10) Lienh~gilia(3.7),(3.8)va(3.10)tath~ynomfmthuftnvaigiathuySt(ii). NSu{Nj}kh6ngbi ch~nthitagiaSlr ~~~IINfII = 00 va~~~II~:II= N E (Jg( a))" \ {O}. Chia(3.5)va(3.6)choIIN,llllxi- allvachia(3.9)ho~ccho IINjlllixi- al12 khi {M,}bi ch~nho~ccho IIMj1IIINi1IIIxi- al12khi {Mi}kh6ngbi ch~nva cho quagiai h~nkhi 50 i ~ 00,taclingthuduQ'c(8),(10) cungvai (7) ta th~yno mfmthu~nvai giathuy~t (ii). Cho(iii) thoaman.Giasua kh6ng1anghi~mdiaphuangduynh~tcuaV(f, g,K) . Tilc lat6nt(;li{x,}langhi~mcuaV(f, g,K) saDcho {Xi}hQit1,1d~na thoaman(3.1) va(3.2).Tird6suyra(3.5),(3.6),b~ngeachIi lu~nnhutrentaclingthuduQ'c(3.8) va(3.10).M6i lienh~gifra(8)va(10)mfmthu~nvaigiathuy~t(iii). 0 Nh~nxet3.2 Khi glatocintud6ngnh~tthib~td~ngthilcbi~nphfmV(f, g,K) tra v~b~td~ngthilcbi~nphanc6di~n.Khi d6di~uki~n(i) a DinhIi 3.4seduQ'cthay b~ng:vai m6i VECU,g)(K,a)va M(V)E[CU,g)(K,a)f,(M(v),v)=O=>v=O.Khi f,g 1acachamLipschitzdiaphuangthiJacobimarQngClarkeduQ'cdungnhula Jacobix~pxi Frechet. 3.2.2 Slf duy nhAttoimcl;IC Di;it Ko :=co{xE 9{n:g(x) E K}. Binh Ii 3.5 Cho f, g :9{n~ 9{nfa toimfirphi tuyin lien t1;lC,g xac atnhtrenK. Jf, Jg fa cac anh xq Jacobi xdp xi cua f, g tU'O'ngung. Gia sir vai m6i MEUXEKOCO(Jf(x))u((coJf(x)L\{o})va NEUXEKoCO(Jg(x))u((coJg(x)L\ {Onma tr(mNTM xacatnhdU'O'ng.KhiaobailoanV(f, g,K) coduynhdtnghi~m. Ch.rngminh Gia subaitoanV(f, g,K) c6hainghi~mphanbi~tXova Yo'Khi d6 [xo,Yo]c Ko va (f(xo) - f(Yo),g(xo) - g(yo))~o. ' (3.11) 51 Taxethamvahuangx H (f(x),g(xo) - g(yo)). Khi d6baad6ngcuat~p F(x):={M(g(xo)- g(yo)):ME Jf(x)} laJacobix~pxi cua (fO,g(xo) - g(yo)) t~i x. Apd\mgTinhch~t(iv)vaihamvahuangnaytren[xo,Yo],tac6 3c E (xo'YO),qiE coF(c) saocho (f(xo) - f(Yo),g(xo) - g(yo))=~im(qi,g(XO)- g(yo)).1-'>00 (3.12) Vi coF(c)=[coJf(c)](xo- Yo) ta c6 th€ tim Mi E coJf(c) saocho qi =Mi(xo - Yo). Neu {MJ bi chi[Ln,tagiasirn6h<)it1,1den Mo EcoJf(c). Khi d6tir (3.11)va(3.12) suyra (f(xo) - f(yo), g(xo)- g(yo)) =(Mo(xo- Yo)'g(xo)- g(yo))~o. Neu {MJ khongbi chi[Ln,tagiasir (3.13) limllM;11=r:fJ va ~im 11 M; !! =Mo E (coJf(c)L \ {O}. 1-'>00 1-'>00 M; Tir phuangtrinh(3.12)tac6 (Mo(xo- Yo)'g(xo)- g(yo))=lim([M,/IIM,II](xo- Yo)'g(xo)- g(yo)) ~o.1-'>00 (3.14) Xethamvahuangx H (Mo(xo- yo),g(x)),trongd6 Mo lamatr~nthuduQ'ctir co(Jf(c))u ((coJf(c)L \ {on. TaIy lu~ntuang1\1nhudillamvaihamxH (f(x),g(xo)- g(yo)), 3d E (xo,yo),N; E coJg(d) saocho (Mo(xo- yo),g(xo)- g(yo))=lim(Mo(xo- yo)'Ni(xo - Yo)).1-'>00 KethQ'Pvai (3.13)va(3.14)tac6 3NoEco(Jg(d))u ((coJg(d)L\ {onsaocho (Mo(xo- Yo)'No(xo- Yo))~o. 52 Di€u m'iymfmthu~nv6i giathuy~tleimatr~nN/ M 0 xacdinhduang. 0 Nh~nxet3.3Khi g leitoantud6ngnh~t,aco K =Ko'Khi dob~td~ngthucbi~n phanV(f,g,K) trav€ b~td~ngthucbi~nphanc6di~n. 53

Các file đính kèm theo tài liệu này:

  • pdf6.pdf
  • pdf0.pdf
  • pdf1.pdf
  • pdf2.pdf
  • pdf3.pdf
  • pdf4.pdf
  • pdf5.pdf
  • pdf7.pdf
  • pdf8.pdf