VÀI ĐẠO HÀM SUY RỘNG VÀ TỐI ƯU HÓA KHÔNG TRƠN
MAI QUỐC VŨ
Trang nhan đề
Mục lục
Ký hiệu
Lời nói đầu
Chương1: Đạo hàm suy rộng Clarke.
Chương2: Jacobi xấp xỉ.
Chương3: Ứng dụng.
Kết luận
Tài liệu tham khảo
15 trang |
Chia sẻ: maiphuongtl | Lượt xem: 2000 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Luận văn Vài đạo hàm suy rộng và tối ưu hóa không trơn, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
ChUO1lg3
UNG DUNG.
TrangchuangmlYtasedungHessianx~pxi dethi~tl~pdi~uki~ncAnvadlit6iuu
c~phaichobaitmlnquihoC;lchp ituy~nv6irangbuQcd~ngthucvab~td~ngthuc.
Saildota sirdl,mgJacobix~pxi Frechetdetimdi~uki~nduynh~tnghi~mdia
phuangvatoanC\lCd6iv6ibaitminb~td~ngthucbi~nphfmmarQngv6idfrki~n
lient\lCkhongLipschitzdiaphuang.
3.1BAI ToAN QUI HO~CH PHI TUYEN
X6tbaitmin(P) san
mm lex) ,
g(x)~0,
hex)=o.
39
TrongdoI: 9{n~ 9{,g: 9{n~ 9{P,h: 9{n~ 9{q lacachamkhflvi, lient\lCdp m('>t.
D~tg=(gp...,gp),h=(hp...,hq).
lea)={i:gi(a)=O}.
C :={xE 9{n:g(x) ~0,hex)=O}Iat~pch~pnh~nduQ'Cvam6idi~mtrongt~pnay
duQ'cgQiIadi~mch~pnh~nduQ'cuabaitoan(P).
D~t C(.<)={xe c: t.<;g;(X) ~ 0}.
Non cuahuangch~pnh~nduQ'cd6ivai t~pcon S c 9{nt~iXES duQ'Cxacdinhb6i
F(S,x) ={uE9{n:38>O,VO~a~8,x+auES}.
Binb ngbia3.1Di~mch~pnh~nduQ'caEC duQ'cgQileidi~mchinhquicuabai
toan(P)n~ucacvectaVgi,ViE lea),Vhj(a),j =1,...,q d('>cI~ptuy~ntinh.
HamLagrangeduQ'cxacdinhb6i
L(x,1,Jl):=lex) +(1,g(x))+(Jl,hex)).
B8d~3.1( DinhIi Karush-Kuhn-Tucker)Choa lil cvctiiudiaphlfO'ngcuahili
loan (P). Niu a lil didmchinh qui cua hili loan (P) thi t{mtc;zi1 E 9{P,JlE 9{qsao
cho
[
VL(a,1,Jl) =0
1Tg(a)=O,1~O
g(a)~O,h(a)=O.
Di~uki~ntrenduQ'cgQiIadi~uki~nKarush-Kuhn-Tucker.
Di~uki~n1Tg(a)=0 duQ'cgQileidi~uki~nd('>l~chbu.
Nb~nxet3.1 N~ubaitoan(P) labaitoanC1JCd~ithidi~uki~n1~0 duQ'cthay
bing di~uki~n1 ~0 ( max lex) =-mill (-lex))).Cacdi~uki~nkhacvftngill
nguyen.
3.1.1ei~uki~ncan t6i U'ucAphai
Binh Ii 3.1 Choa fa cvc tiJu iliaphuangcuahai toim(P). Gid sir vaim6i
1E 9F"uE 9)Q,J2L(a,1"u) faHessianxdpxihichi}.ncuaL(.,l"u)tqia.Niu a fa
iliJm chinhqui thi t6n tqi 1 E9)P"uE9)QsaDcho (a,l"u) thod maniliJu ki?n
Karush-Kuhn-Tucker.Han nua
Vu E F(C(1),a),3M E J2 L(a,l"u) saDcho (u,Mu);:::O.
ChungminhTheogiathuy€tthiB6d~3.1thoamannentirdi~uki~nKarush-
Kuhn-Tuckertaco
(uV'Lt (a,l"u),u)= 1imsup(uV'L)(a+tu,l"u) - (uV'L)(a,l"u)
lio t
1. (u,V'L(a+tu,l"u))-(u,VL(a,l"u))= Imsuplio t
1. (u,V'L(a+tu,l"u))= Imsup .
lio t
Cho uEF(C(l),a), theodinhnghlat6nt~i(J >0 saochov6i mQi0S;as; (J,
a+auEC(l).
Khido O<~«J,
k
1 1
L(a+-U,A"u)=f(a +-,u);:::lea) =L(a,A"u).k k
Hay
1
L(a+-u,l"u)-L(a,l"u);::: O.
k
Theo£)inhIi giatritrungbinht6nt~is6nguyenN >0 va 0N saocho
(u,V'L(a +tkU,A"u));:::0,Vk;:::N.
Dodo
. (u,VL(a+tu,A,j.i))
hmsup 2 0 .
11,0 t
Vi J2L(a,A,j.i) laHessianx~pxicuaLCA,j.i) t~ia nentaco VuEF(C(A),a),
sup (Nu,u)2 (uVLY ((a,A,j.i),U)
NEJ'L(a,A,fl)
1. (u,VL(a+tU,A,j.i))= Imsup 20.
Ita t
Theogiathuy~tJ2L(a,A,j.i) bi ch~nnen3M E J2L(a,A,j.i) saGcho
(Mu,u)2 sup (NU,U)20.
NEJ'L(a,A.fl)
0
H~ qua 3.1 Cho a fa qrc tidu aia ph14angcua hai loan (P). Gia s14
J2lea),J2g(a),J2h(a) facacHessianxdpxi hi ch(mcuaf,g,h t14angungt(lia.
Niu a faaiimchinhquithi t6nt(liAE9iP,f1E9iqsaGcho(a,A,j.i)thoamanai~u
ki?nKarush-Kuhn-Tucker.Han mfa,
Vu E F(C(A),a),3N E J2 f(a),P E J2g(a),Q E J2h(a) saGcho
((N +ATP +j.iTQ~,u) 2 O.
Chtfngminh TuTinhch~t(iii)taco
J2 L(a, A,j.i) = J2 lea) +ATJ2g(a) +j.iTJ2h(a)
litHessianx~pxi cuaLC A,j.i) t~ia.
V~ytheoDinhIi 3.1 3M E J2L(a,A,j.i) saGcho
Vu E F(C(A),a) ,(u,Mu) 2 O.
Vi M =N +ATP+ j.iTQ, trongdo N E J2 f(a),P E J2g(a),Q E J2h(a) nen
((N+J! P +j.iTQ~,u)20, VuEF(C(A),a).
0
42
3.1.2£)i~uki(!ndu tOiU'ucAp hai
Trangphc1nnaytasetrinhbaydi~uki~ndud.phaichobaitmln(P).
f)~t
J ={iE I(a) :A;>O}.
Q ={yE Bn :yTVg;(a) =O,iE J, yTVhj(a)=O,j =1,...,q}.
Cho c:>0,0 >0,
2 (c:,0) = {dE B n :3y E Y,O <g(d) <0, lid - yll < c:,a +g(d)d E C} .
Djnh Ii 3.2 Choa la ilidmchapnhqnillf9'Ccuabaitoim(P).GiGsir (a,A"u)thoG
manili~uki?nKarush-Kuhn-Tucker.GiGSltthemrlingvaimQix trongIancqncua
a,J2L(x,A"u)laHessianxapxi hich(mcuaL(-,A"u)tgia. Niu t6ntgic:>0,0>0
saGchovaim9i dE 2(8,0) vavaimQi0<a <1,
\:1ME J2 L(a +ad,A"u),(Md,d) ~0,
thi a la cvc tiduilia phlfO'ngcua bai toim(P).
Chungminh Gicisu a khonglaqlc ti~udiaphuangcuabaitoim(P).
Khi dot6nt(;lidaych~pnh~nduQ'c{xk}cuabaitmln(P)saocho
Xk ~ a khik ~ +00va f(Xk) <f(a), \:Ik.
Gicisu Xk=a+okdk.
Trongdolldkll=l,ok >0,Ok~O khik ~+oo.
Vi Ildkll=1 nenday{dk}codayconhQitl,1.
Khongm~tinht6ngquatavin ki hi~uladay{dk }saocho dk ~ y khik ~ +00
v6i Ilyll =1.
TheoTinh ch~t(iv) taco
0> f(Xk) - f(a) =okd[Vf(a +17okokdk),O<17ok<1,
43
0 ~ gj(Xk) - gj(a) =gkdJVgj(a +17jkgkdk),O<17jk<1,Vi E lea),
0=h/Xk) - h/a) =gkdJVhj(a +;jkgkdk),O<;jk <1,Vj =1,...,q .
Chiacacphuongtrinhvab:ltphuangtrinhtrencho gkvaI:lygi6ih(;1nkhi k ~ +00.
Ta duQ'c
yTVf(a)~O,yTVgi(a)~0,Vi E l(a),yTVh/a) =0,Vj =1,...,q.
Giasutfmt(;1iitnh:lti E J saochoyTVgj(a)<O.Taco
q
0~yTVf(a) =-LAjyTVgj(a)- LPjyTVh/a) >0,
jEJ j=l
voly.
V?y yTVg;{a)=O,ViEJ hoi;icJ=0. V?y YEQ.
Theogiathuy~t(a,A,p) th6amandi~uki~nKarush-Kuhn-Tucker.Ta co
Aj~0,Ajgj(a)=O,i=1,...,p,
q
VL(a,A,p) =Vf(a) + LAiVgi(a) +LPjVhj(a) =O.
jE/(a) j=l
Mi;itkhacvi f(Xk) <lea),Vk vasudt,mgTinh ch:lt(ix) chohamL(x,A,J1)t(;1ia.
Taco
lea) >f(Xk)
q
~f(Xk)+ LAjgi(Xk) +LPjh/Xk)
jE/(a) j=1
;, f(a) +,~)A,g,(a)+ tJljh/a) +Okdi(Vf(a) +,~)A,vg,(a) +tJljVhj (a)J
+! - 2min (Mkgkdk,gkdk)
2 MkECOJ L(a+8kokdk,A,/l)
=lea) +!g; mill (Mkdk,dk)
2 MkEJ2L(a+Okokdk,A,/l)
1 J
(
0
}=lea)+2g; Mkdk,dk.
Trongdo O<Bk<1va MZ EJ2L(a+Bkgkdk,A,p).
Dodov6imQik, (MZdk,dk}<O.
44
Mauthufinv6i giathuy~tsauIldkll=l,dk~ Y E Y,5k~ 0 khi k ~ +00,0<B/ik <1
khi k du Ian va a +5kdk la huang ch<1pnh~nduQ'cv6i 1119ik .
Dodov6ik dulan,dkEZ(&,5)va(M~dk,dk)?o.
V~ya IaClJCti~udiaphuOTIgcuabaitmin(P).
0
Binh Ii 3.3 Cho a lit aiim chdpnhijnalt(lccuabatloan(P). GiGsir (a,A"u) thoa
manaiJu ki?nKarush-Kuhn-Tucker.GiGsirthemding vaimQix trongfancijncua
a,J2L(x,A"u) laHessianxdpxibichij.ncua L(.,A"u) t(1ia.Niutfmtgi &>0,5>0
saDchovaimQid E Z(&,5) vavaimQi0<a <1,
\/M E J2 L(a +ad,A,J-L),(Md,d) >0
thi a la C1!Ctiiu chij.taiaphltang cua bat loan (P).
Chungminh (TuO'ngtlJ chungminhDinhIi 3.2)
0
3.2BM ToAN BAT DANG THUC BIEN PHAN
ChoK Iat~p16i,dong,khacr6ngtrongkh6nggianEuclidean~n.
Anhx~f,g: ~n~ ~nIatoantuphituy~nlientl,lC,g xacdinhtrenK.
Bai toanb<1td~ngthucbi~nphanmafQngV(f, g,K) duQ'cxacdinhnhusau.
Tim a E ~n saDcho
(f(a),g(x) - g(a))? 0,\/x E ~n.
Nontiip xuccuat~pK t~ix EK duQ'cxacdinhbat
T(K,x):= ~imti(xi -x): Xi E K'Xi ~ x,ti >OJ.->oo
Nonsinhb6'it~pK duQ'cxacdinhbai
cone(K):={tx:x EK,t? O}.
45
Cho A ~9{nhi t~pkhaer6ng.Nonlidxaeuat~pA duQ'exaedinhb6i
A", :=~limtiXj:Xi E A,tj >0,~imti=Of~'" ,~""
Nonet6iC1!Ceuat~pK duQ'cxacdinhb6i
K' :={UE9{n:(u,x)~O,VxEK}.
Non t&ihc;zncua I, g t~iX duQ'cxacdinhb6i
CU,g)(K,x):={vET(K,g(x)):(/(x),v)=O}.
M(>t~pduQ'cgQiIaetadi?nn€u no Iagiaohlhlh~ncaelllIakh6nggiandong.
Tinheh~t?Pdadi~nA~ 9{n:
(a) T(A,x)=cone(A- x),VxE A;
(b)V6'imQia E A t6nt~iIfmc~nU cuaa saocho
cone(A- a)~ cone(A- x),VxE An U .
D~tJ tea)=JI(a) u ((JI(a))",\ {o}).
B6d~3.2 GiGsu I: 9{n -+ 291mla hametatrj nua lien t1j.ctren tc;zia E 9{n,Cho
ti >0 h6it1j.etin 0, qj Ecol(a+tjBn) saocho limllq,II=00 valim
ll
qi
.ll
=q.,Khieto
,~'" ,~",q,
q.E (col(a)L.
Han nfra,niu co(/(a))oocoetinhthi q.Eco(/(a)L =(col(a))",.
ChungminhTheogiathuy€tI lahamdatftlllIalient\Jctrent~iaE9{n.Thea
dinhnghla,v6'imQiF::>0,t6nt~iiodu1611saocho
I(a +tjBJ c tea) +F::Bm'Vi ~io'
Dodo
qi E co(/(a +F::Bm))C co(/(a +F::Bm))+F::Bm'Vi ~io'
Vi v~y
46
q. E [co(f(a)+t:BJ+ t:B(O,l)L,c [co(f(a)+t:BJL, c (cof(a)L.
M~tkhacta1uanco co(f(a)L c (cof(a)L b6'ivi lea) c cof(a)va co(f(a)L 1anon
16i,dong.
Ta c~nchungminhchi~ungugcl(;li.
m+l
Cho P E (cof(a)L,p:I: o. Theo dinh 1yCaratheodory,t6n t(;lit6 hgp 16iPi =LAijPij'
~ /=1
m+1
v6i Aij2 O'Pij E lea) va LAij =1 saocho
/=1
II~II=~~~II~:IIva~~~llpill=oo.
Khangm~tinht6ngquattagicistr
m+1
limAij =A/2O,j=l,...,m+1vaLA/ =1.1-->00
/=1
V6i m6i j, xetday {AijPijIllpilltl .
Ta dn chungminhdaynaybi ch~n.
Th~tv~y,gicistrday {AijPijIllpilltl khangbi ch~n.
Cho aij =AijPijIllpJ N~uc~ntal~ydaycon,gicistrr~ng
Ilaijoll=max~laijll:j=l,...,m+l},Vi.
Do do ~~~llaijoII=00 .
m+l
Vi PiIllp,ll=L aulientaco
j=l
m+1a..
0=hm Pi =hmL !!- .
HOO Ilpililiaijoll HOO J=l Ilau",1
Ta gicistrday {auIllauollL,oh0itl,1d~naOjE (cof(a))oo,j=1,"',m+1.B6'ivi daynaybi
m+1
ch~nlienkhi aD/a:I:0 phuangtrinh0=Lao/ chirar~ngco(f(a)L khangcodinh.
/=1
Mfmthuftnv6i gicithuy~t.
47
V?y day {AijPijflip,lit!bich~n.Tagiilsirday{AijPij/Ilpilitlh(>it\l d~nPO}E (f(a)L .
Khi do
m+l
P =LPo) E co(f(a)L.
}=I
0
3.2.1 Tinh duy nhatdia phlJ'O'ng
Blnh Ii 3.4 Cho K ~innla t()p16i,ilong,khacr6ng,f, g :inn---+innla toimtIrphi
tuyin lien t7,lC,g xac ilinh trenK va Jf(a),Jg(a) la cac Jacobi xap xi cua f,g
tuangungtgia. Niu a langhi?mcuaV(f,g,K) thim(jttrangbailiJu ki?nsaula
iluili choa langhi?miliaphuangduynhat.
(i) K la t()p16iiladi?nva vaim9iME J lea), N E J g(a)taco
(M(v),N(v)) >0,\Iv E inn\ {O},
trongilo N(v) E CU,g)(K,a),M(v) E [CU,g)(K,a))*,.
(ii) K la t(zp16i ila di?nvava-im9iME J f(a),N E J g(a)taco
(M(v),N(v)) >0,\Iv E inn\ {O},
trongilo N(v) E CU,g)(K,a),lea) +M(v) E [T(K,g(a)))*,.
- -
(iii) Vaim9iME J lea),N E J g(a) taco
(M(v),N(v))>0,\IvE inn\ {O},
trongilo N(v) E CU,g)(K,a).
Chung minh TruactientachUngminh(ii) suyra(i).
- -
Th?tV?y,cho vEinn\ {O},ME J f(a),N E J g(a) taco
N(v)E CU,g)(K,a),lea) +M(v) E [T(K,g(a)))*.
Ta c~nchungto M(v) E [CU,g)(K,a))*.
48
Th~tv~y,cho UE CU,g)(K,a), theodinh nghlata c6
U E T(K,g(a)) va(f(a),u)=o.
Khi d6
0~(f(a) +M(v),u)=(f(a),u) +(M(v),u)=(M(v),u).
V~yM(v) E[CU,g)(K,a)]*.
Giasu(ii)thoaman,tac~nchungminha Ianghi~mduynhfttdiaphuongcua
V(f,g,K) .
GiasunguQ'cl~ia kh6nglanghi~mduynhfttdiaphuangeuaV(f, g,K) .
Tuc la tfmt~i{x,}langhi~mcuaV(f, g,K) saGcho {x,}hQit\1d€n a.
Tagiasu {cxi-a)/llxi-all}hQit\1d€nv;tO.
Vi Xivaa langhi~mcuaV(f,g,K) nentac6
lea) E [T(K,g(a))]*,f(xJ E [T(K,g(x,))]*,
(f (a),g(Xi)- g(a));:::0,(f (Xi),g(Xi)- g(a))~0.
TheoTinhchftt(b)cuat~pdadi~n,t6nt~iio;:::1saGeho
[T(K,g(Xi))]*s;;;; [T(K,g(a))]*, Vi;:::io'
Do d6
f(xJ - lea) E [T(K, g(a))]*- lea), Vi;:::io .
HannuaJf(a),Jg(a)lacaeJacobixftpxi Frechetcuaf,g tuangungt~ia.
Ta co Mi E Jf(a), Ni E Jg(a) saGcho
f(xJ - lea) =M;(Xi - a) +rJxi - a),
g(x,) - g(a) =Ni(Xi - a) +r2(Xi- a).
Trang d6 rj(Xi - a) /IIXi- all~ 0 va r2(Xi - a) /IIXi- all~ 0 khi i ~ r:f).
ThayvaGbi€u thuc(3.2)va(3.3)taduQ'c
Mi(Xi-a) +lj(Xi-a) E [T(K,g(a))]*- f(a),
(f(a),Ni(xi -a)+r2(xi-a));:::0,
(f(x,),Ni(Xi -a)+r2(xi -a))~O,Vi;:::io'
49
(3.1)
(3.2)
(3.3)
(3.4)
(3.5)
(3.6)
NSu{Mj}bich~nthitagiaSlrnohQitvdSnME Jf(a). Chia(3.4)choIlxi- allva
choquagiai h,;mkhi i ~ 00, taduqc
M(v) Econe([T(K,g(a))]*- lea)).
Do dotfmt~it >0 saccho
lea) +M(tv) E [T(K, g(a))]*.
NSu {M,}kh6ngbi ch~nthi ta gia Slr
(3.7)
~~~IIMill= 00 va~~~II~:II=ME (Jf(a))" \ {o}.
Chia (3.4) cho IIM,llllXj- all va cho quagiai h~nkhi i ~ 00 taclingthuduqc(3.7).
NSu{Ni}bich~nthitagiaSlrnohQitvdSnN E Jg(a).
Chia(3.5)cho Ilxi- allvachoquagiai h~nkhi i ~ 00, taduqc
(f(a),N(v))~o.
TuangW chia(3.6)cho Ilxi- allvachoquagiai h~nkhi i ~ 00, taduqc
(f(a), N(v))s:;o.
Dodo
(f(a),N(v)) =0. (3.8)
Hannlia,tir(3.5)va(3.6)taco
(f(xJ- f(a),g(xJ-g(a))S:;O. (3.9)
Hay
(M(v),N(v))s:;O. (3.10)
Lienh~gilia(3.7),(3.8)va(3.10)tath~ynomfmthuftnvaigiathuySt(ii).
NSu{Nj}kh6ngbi ch~nthitagiaSlr
~~~IINfII = 00 va~~~II~:II= N E (Jg( a))" \ {O}.
Chia(3.5)va(3.6)choIIN,llllxi- allvachia(3.9)ho~ccho IINjlllixi- al12 khi {M,}bi
ch~nho~ccho IIMj1IIINi1IIIxi- al12khi {Mi}kh6ngbi ch~nva cho quagiai h~nkhi
50
i ~ 00,taclingthuduQ'c(8),(10) cungvai (7) ta th~yno mfmthu~nvai giathuy~t
(ii).
Cho(iii) thoaman.Giasua kh6ng1anghi~mdiaphuangduynh~tcuaV(f, g,K) .
Tilc lat6nt(;li{x,}langhi~mcuaV(f, g,K) saDcho {Xi}hQit1,1d~na thoaman(3.1)
va(3.2).Tird6suyra(3.5),(3.6),b~ngeachIi lu~nnhutrentaclingthuduQ'c(3.8)
va(3.10).M6i lienh~gifra(8)va(10)mfmthu~nvaigiathuy~t(iii).
0
Nh~nxet3.2 Khi glatocintud6ngnh~tthib~td~ngthilcbi~nphfmV(f, g,K) tra
v~b~td~ngthilcbi~nphanc6di~n.Khi d6di~uki~n(i) a DinhIi 3.4seduQ'cthay
b~ng:vai m6i VECU,g)(K,a)va M(V)E[CU,g)(K,a)f,(M(v),v)=O=>v=O.Khi
f,g 1acachamLipschitzdiaphuangthiJacobimarQngClarkeduQ'cdungnhula
Jacobix~pxi Frechet.
3.2.2 Slf duy nhAttoimcl;IC
Di;it
Ko :=co{xE 9{n:g(x) E K}.
Binh Ii 3.5 Cho f, g :9{n~ 9{nfa toimfirphi tuyin lien t1;lC,g xac atnhtrenK.
Jf, Jg fa cac anh xq Jacobi xdp xi cua f, g tU'O'ngung. Gia sir vai m6i
MEUXEKOCO(Jf(x))u((coJf(x)L\{o})va NEUXEKoCO(Jg(x))u((coJg(x)L\ {Onma
tr(mNTM xacatnhdU'O'ng.KhiaobailoanV(f, g,K) coduynhdtnghi~m.
Ch.rngminh Gia subaitoanV(f, g,K) c6hainghi~mphanbi~tXova Yo'Khi d6
[xo,Yo]c Ko va
(f(xo) - f(Yo),g(xo) - g(yo))~o. ' (3.11)
51
Taxethamvahuangx H (f(x),g(xo) - g(yo)).
Khi d6baad6ngcuat~p
F(x):={M(g(xo)- g(yo)):ME Jf(x)}
laJacobix~pxi cua (fO,g(xo) - g(yo)) t~i x.
Apd\mgTinhch~t(iv)vaihamvahuangnaytren[xo,Yo],tac6
3c E (xo'YO),qiE coF(c) saocho
(f(xo) - f(Yo),g(xo) - g(yo))=~im(qi,g(XO)- g(yo)).1-'>00 (3.12)
Vi coF(c)=[coJf(c)](xo- Yo) ta c6 th€ tim Mi E coJf(c) saocho
qi =Mi(xo - Yo).
Neu {MJ bi chi[Ln,tagiasirn6h<)it1,1den Mo EcoJf(c). Khi d6tir (3.11)va(3.12)
suyra
(f(xo) - f(yo), g(xo)- g(yo)) =(Mo(xo- Yo)'g(xo)- g(yo))~o.
Neu {MJ khongbi chi[Ln,tagiasir
(3.13)
limllM;11=r:fJ va ~im
11
M;
!!
=Mo E (coJf(c)L \ {O}.
1-'>00 1-'>00 M;
Tir phuangtrinh(3.12)tac6
(Mo(xo- Yo)'g(xo)- g(yo))=lim([M,/IIM,II](xo- Yo)'g(xo)- g(yo)) ~o.1-'>00 (3.14)
Xethamvahuangx H (Mo(xo- yo),g(x)),trongd6 Mo lamatr~nthuduQ'ctir
co(Jf(c))u ((coJf(c)L \ {on.
TaIy lu~ntuang1\1nhudillamvaihamxH (f(x),g(xo)- g(yo)),
3d E (xo,yo),N; E coJg(d) saocho
(Mo(xo- yo),g(xo)- g(yo))=lim(Mo(xo- yo)'Ni(xo - Yo)).1-'>00
KethQ'Pvai (3.13)va(3.14)tac6
3NoEco(Jg(d))u ((coJg(d)L\ {onsaocho
(Mo(xo- Yo)'No(xo- Yo))~o.
52
Di€u m'iymfmthu~nv6i giathuy~tleimatr~nN/ M 0 xacdinhduang.
0
Nh~nxet3.3Khi g leitoantud6ngnh~t,aco K =Ko'Khi dob~td~ngthucbi~n
phanV(f,g,K) trav€ b~td~ngthucbi~nphanc6di~n.
53