VỀ SỰ TỒN TẠI NGHIỆM BẤT ĐẲNG THỨC BIẾN PHÂN VÀ MỞ RỘNG
NGUYỄN XUÂN HẢI
Trang nhan đề
Lời cảm ơn
Mục lục
Mở đầu
Chương1: Bài toán bất đẳng thức biến phân và bài toán cân bằng.
Chương2: Bài toán giả cân bằng tổng quát và hệ quả.
Chương3: Áp dụng vào bất đẳng thức biến phân.
Kết luận
Tài liệu tham khảo
23 trang |
Chia sẻ: maiphuongtl | Lượt xem: 1846 | Lượt tải: 3
Bạn đang xem trước 20 trang tài liệu Luận văn Về sự tồn tại nghiệm bất đẳng thức biến phân và mở rộng, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
5Chu'dng1
, , K 2 , K A
BAI TOAN BAT DANG THUC BIEN PHAN
" , A ~
VA BAI TOAN CAN BANG
1.1MQts6mnhnghiavakhaini~m
Trongvi~cnghienCUllslft6nt~inghi~mcuabaitmlnbfftd~ngthucbie'n
phanvabailoandin b~ngthltinhlientl;lc,tinhdondi~uvatinh16i-16mthu'ong
xuyendu'Qcsudl;lng.Trongph:1naycacdinhnghlachocaclo~ilienWc, don
di~uva16i-16mkhacnhausedu'QcgiOithi~u.
Giii suX va Y la haikhonggianvectdtopo.AcX la mQtt~p16i,dong,
khactr6ng.L(X, Y) la khonggiatfftcii cacanhx~tuye'ntinhlienWctil X vao
Y.
DJNH NGHiA 1.1.1.ChoF:X ~ 2Y la anhx~datrio
(i)A.nhx~F du'QcgQilanualienwc tren(vie'ta:tla usc)t~iXoEdomF :=
{xE X: F(x):;t:0}ne'uvoimQiHinc~nN cuaF(xo),t6nt~iIanc~nM cuaXosaD
choF(M)eN.
F du'Qcgoila nualientl;lctrentrenmQtt~pV ne'uF nualientl;lctrent~i
mQidi~mthuQcV. Saildayla cacla cackhaini~mlien tl;lckhacdu'Qcdinh
nghlatru'oclien t~imQtdi~m,dinhnghlatrenmQtt~pclinggi6ngnhu'd tren
nentakhongnha:cl~imla.
(ii) A.nhx~F du'QcgQila nualien tl;lcdu'oi(vie'tta:tla lsc) t~iXoE damF
ne'uvoi mQiN mo, N nF(Xo) :;t:0 , t6nt~iIan c~nM cua XosaDcho Vx E M,
F(x)nN :;t:0 , ho(Lcphatbi~utu'ongdu'ong:V y E F(xo),V xa~ Xo,::J Ya E
F(xa)'Ya ~ y.
Anh x~F du'QcgQila lien tl;lct~iXone'uF vila nua lien tl;lctrenvila nua
lienWcdu'oit~iXo.
6(iii) Anh X(;lF du'QcgQila mYalien tl;lctrentheohu'ang(vie'ttat la uhc)t(;li
Xone'uanhX(;ldatri tH F((1-t)xo+ty)usct(;li0+.
Ne'uanhX(;lF Ia ddntri thl tanoi F Ia lien tlJCtheohu'ang.
(iv)Anh X(;lF du'QcgQila dongne'ugraphFla dongtrongX x Y.
DfNH NGHIA 1.1.2.Chof: A ~ Y la anhX(;lddntrioGia saY du'Qcsap
thutlJ'bdimQtnon16i,dongvai ph~ntrangkhactr6ngC.
(i) Anh X(;lf du'QcgQila naa lien tlJCdu'ai(trenK) (vie'ttat la Isc) ne'uvai
mQiexE Y, t~pmuc {xE K :f(x) ~ex+intC}la dong.
(ii) Anh X(;lf du'QcgQiIa naa lien tl;lctren(trenK) (vie'ttatla usc)ne'uvai
mQi exE Y, t~pmuc {xE K :f(x) ~ex-intC}ladonghay co nghlala anh X(;l-f
la lsc.
DfNH NGHIA 1.1.3.Cho anhX(;ldatri T: A ~ 2L(X,Y),C: A ~ 2Y. Trang
do,anhX(;ldatfi C co anhla non16i,dongvacoph~ntrangkhactr6ng.Ta co
cacdinhnghlasau:
(i) T du'QcgQila C_ddn di~u(trenA) ne'u'\I x,y E A, '\I s E Tx, '\I t E ty
thltaco (s-t, x - y) E C(x).
(ii) T du'QcgQila C_tlJ'addndi~une'u'\I x,y E A: ne'u[:3s E Tx, (s,Y - x)
E -intC(x)]thl['\I tE Ty, (t,Y - x) E -intC(x)].
(iii)T du'QcgQila C_tlJ'addndi~uye'une'u"'\It" trong(ii) du'Qcthayb~ng
":3t".
(iv)T du'QcgQila C_gia ddndi~une'u'\I x,y E A: ne'u[:3s E Tx, (s,Y - x)
E -C(x)]thl['\I tE Ty, (t,Y - x) E -intC(x)].
(v) T du'QcgQila C_gia ddndi~uye'une'u"'\It" trong(iv) du'Qcthayb~ng
":3t".
Ne'uT la anhX(;lddntri thlhaic~pkhaini~mC_tlJ'addndi~uva C_tlJ'a
ddndi~uye'u,C_giaddndi~uvaC_giaddndi~uye'ula tIlingnhauvakhidota
gQichunghai c~pkhaini~mdo la C_tlJ'addndi~uva C_giaddndi~utu'dng
ung.
7Neu C(x)==R+,thl cac khai ni<%mC_ddn di<%u,C-W'a ddn di<%u,C_tlfa ddn
di<%uyell, C_gia ddn di<%u,C_gia ddn di<%uyeu du'c;5cgQi l(;li tu'dngling la ddn
di<%u,t1;1'addndi<%u,t1;1'addn di<%uyell, gia ddn di<%u,gia ddn di<%uyeu
(vi) T du'c;5cgQila ml'alien tl;lCtrentheohu'angsuyrQng(viet Ult la guhc)
t(;liXone'uanhX(;ldatri tH (T((1-t)xo+ty),y - xo)usct(;li0+.
NeuT laanhX(;lddntrithltanoiT la lienWctheohu'angsuyrQng.
DJNH NGHIA 1.1.4.Cho anhX(;lhaibienf: A x A ---+R.
(i) f du'c;5cgQiIa ddndi<%uneu 'V x,y E A, taco f(x,y) +f(y,x)~0;
(ii) f du'c;5cgQi la t1;1'addn di<%uneu'V x,y E A, ne'uta co f(x,y);::::0 thl
f(y,x)~0;
(iii) f du'c;5cgQila gia ddndi<%une'u'Vx,y E A, ne'utaco f(x,y» 0 thl f(y,x)
~o;
Con neuanhX(;lf: A x A ---+Y va Y du'c;5cs~pthli t1;1'boi mQtnon l6i, dong
vaiph~ntrongkhactr6ngC thltacocackhaini<%msail:
(iv) f du'c;5cgQila C_ddndi<%uneu 'V x,y E A, taco f(x,y)+f(y,x) E -C;
(v)f du'c;5cgQila C_t1;1'addndi<%uneu 'V x,y E A, taco
f(x,y)E intC =>f(y,x) E - intC;
(vi) f du'c;5cgQila C_gia ddndi<%une'u'V x,y E A, taco
f(x,y)E intC =>f(y,x) E - C.
DJNH NGHIA 1.1.5.Cho anhX(;lg:A ---+Y. Gia suY du'c;5cs~pthli t1;1'boi
mQtnonl6i, dongvai ph~ntrongkhactr6ngC.
(i) Anh X(;lg du'c;5cgQila C_16mne'u 'V x,y E A, 'V tE[O, 1],g(tx+(1-t)y)
E tg(x) +(1- t).g(y)- C.
(ii) Anh X(;lg du'c;5cgQila C_16ineu-g la C_16m.
(iii) Anh X(;lg du'c;5cgQila C_gia 16mneu 'V Xj,X2E A va y E Y, va neu
{g(Xj),g(X2)}cy+C thl g(tXj+(1-t)X2) E y+C, 'V t E [0,1].
8(iv)AnhX';lgduQcgQilaC_gial6i n€u -g la C_gia16m.
(v)AnhX';lgduQcgQila C_gia16mchi;itn€u voimQixl 7:x2thuQcA vay
E Y, van€u {g(XI),g(X2)}cy +C thl getXl+(1- t) X2) E Y +intC,V t E (0,
I).
(vi)Anh X';lg duQcgQiIa C_gia l6i chi;itn€u -g la C_gia 16mchi;it.
Ta cob6d€ sail:
A> ;:;
BODE 1.1.1.
(i) g:A ~ Y Ia C- gia16mkhivachIkhi, v Y E Y, t~pmilc{xE A: g(x)
E y +C} la l6i.
(ii) N€u g:A ~ Y la C- gia16mthl v Y E Y, t~pmilc {x E A: g(x) E y +
intC}la l6i.
1.2.811t6n t~inghi~mbai toaDba'td~ngthuc bie'nphan
1.2.1.GiOithi~ucaebaitoaDba'tdiingthucbie'nphan
Giasux, Y la cackhanggianvectotapa.AcX la mOt~pl6i,dongva
khactr6ng.C :A ~ 2Y Ia mQtanhX';ldatrithai cactinhcha't: V x E A, C(x)
lamOtnonl6i, dongvaintC(x) 7:0. Ky hi~ux* la khanggiand6ingftutapa
cuaX, L(X,Y) lakhanggiancacphi€mhamtuy€ntinhlientvctuX vaGY.
TrongtruonghQp T: A ~ x* la mOtanhX';ldontri, taco bai toanba't
d£ngthilcbi€n phan(VI) phat bi€u nhusail :
-
(VI) TIm x E A saGchovoi mQiYEA,
- -
( T( x ), y - x) ;::: O.
*
Conn€u T:A ~ 2x la anhX';lda tri thl taco bai toanba'td£ngthilcbi€n
phandatri(GVI) nhusau:
- -
(GVI) TIm x E A saGcho V YEA, :3t Er( x),
9( t,Y - x) ~o.
BaygiOtaxetanhx~T: A ~ L(X,Y). Khi do, ta co bai toanba'td~ng
thucbie'nphanvecto(VVI):
-
(VVI) TIm x E A saGcho V YEA,
- - -
( T( x ), Y - x) ~- intC(x ).
Tie'pthea,ne'uT: A ~ 2L(X,y)la anhx~da tri thl ta co bai toanba'td~ng
thucbie'nphanvectddatri (GVVI) sail:
- -
(GVVI) TIm x E A saGcho V YEA, :3t Er( x),
- -
( t, Y - x) ~- intC(x).
C ,.('., . ? ? K A 2x T A 2L(XY) 1
, h . ' h d
.
UOlcling,gla su : ~ , : ~ ' a al an x~ a tq trong
doK(x) la mQtt~p16i,khactr6ngt~imQix E A. g:A~ A la mQtanhx~cho
trudc.Khi do,tacobaitoangiiiba'td~ngthucbie'nphanvectddatri t6ngquat
(GQVVI)sail:
- - --
(GQVVI) TIm x E AnclK(x) saGcho V Y E K(x), :3t Er( x),
- -
(t, Y - g(x» ~ - intC(x).
Tatha'y(GQVVI) labaitoant6ngquatcuab6nbaitoanconl~i.
- Ne'uK(x)=:A va g(x)=:x vdi mQix E A thl bai toan (GQVVI) trd thanh
baitoan(GVVI).
- Ne'uK(x)=:A , g(x)=:xvdi mQix E A va T: A ~ L(X,Y) la anhx~don
tri thlbai toan(GQVVI) trdthanhbai toan(VVI).
*
- Ne'uK(x)=:A,g(x)=:xvdimQix E A vaT: A ~ 2x la anhX~datfi thl
baitoan(GQVVI) trdthanhbaitoan(GVI).
- Ne'uK(x)=:A,g(x)=:xvdimQix E A vaT: A ~ x* la anhx~dontfi thl
baitoan(GQVVI) trdthanhbaitoan(VI).
10
1.2.2.811t6nt~inghi~mcuabili toaDba'tdiingthucbie'nphan
D€ chungminhs1,ft6ntC;tinghi~mtac~nmQts6kStquac6 di€n sau.
",? ;:;
BO DE 1.2.1.Gia saE la khanggiantapacompactvad~tF ={Fi: i E I}
lamQthQcact~pcondongcuaE. NSumQihQconhuuhC;tncuaF d€u coph~n
giaokhactr6ngthi nFi *-0 .
iEI
D:JNHNGHiA 1.2.1.Gia sa E la t~pconcuakhanggianvectdtapax .
Anh XC;tdatri F : E ~ 2xdu<;1cgQila anhXC;tKKM lIen E nSuvoi mQit~p huu
n
hC;tn {Xl, . . .,xn}trongE, tacoco{XI.. . ., xn}c UF(xJ, d daycoAla kyhi~u
i=l
bao16icuat~pA.
DJNH LY 1.2.1.(KKM - Fan).Gia saE la t~pconcuakhanggianvectd
tapaHausforffX vaF :E ~ 2Xla anhXC;tKKM co anh dong.NSu co it nha"t
mQtX E E d€ F(x)compacthi nF(x)*-0.
XEE
D€ chungminh s1,ft6ntC;tinghi~mchobai loan(VI) tac~ncacb6 d€ sau.
'" ;:;
BO DE 1.2.2.GiasaK lamQt16idongtrongkhanggianBanachth1,fcX, T
la tmintat1,faddndi~utuA vaox* va lienWclIen mQikhanggianconhUll
hC;tnchi€u. Khi do ~E A langhi~mcuabailoan(VI) khivachIkhi
-
( T(y), Y - x) ~ 0 voi mQi YEA. (2.1)
Hdnnuaduoicacdi€u ki~nlIent~pnghi~mcuabailoan(VI) la dongva
16i.
Chungminh:Gia sa x EA la nghi~mcuabai loan(VI). Do T la t1,faddn
di~unentaco(2.1).
Ngu<;1cIC;ti,gill sa x E A la nghi~mcua(2.1).D~tYEA tuyy vavoi0<t- -
~1d~tXt =ty+(l-t)x. Nhuv~yXtE A vatu (2.1)taco t(T(Xt),Y - x)~ O.
Dodo
-
(T(Xt), Y - x)~ O. (2.2)
11
Chot ~ O.Do tinhlien Wctrenkh6nggianconhUllh~nchi~ucuaT, lien
T(xt)hQitl,lv~T( x) trongt6p6ye'u*.Do do tU(2.2)tadu'Qc(T(y), y - x)~ O.
Cu6iclingdot~pnghit%mcua(2.1)la lai vadonglient~pnghit%mcuabai
toan(VI) clinglai vadong.0
SaildaylamQtke'tquac6di€n.
A' ~
BO DE 1.2.3.Gia sli' A la mQtt~pcon lai, compactcua kh6ng gian
Banach Ullh~nchi~uX va T : A ~ x* la toantli'lienWc. Khi dobai toan
(VI) conghit%m.
Saildaylake'tquacua[Yao1994]v~sljtant~inghit%mchobaitoan(VI).
DJNH LY 1.2.2.Gia sli'A Ia mNt~pconlai, compactye'ucuakh6nggian
BanachthljcX, T la toantli'tljadondit%utii'A vaGx* va lien tl,lCtrenkh6ng
gianconhUllh~nchi~uba'tkycuaX. Khi dobaitoan(VI) conghit%m.
Chungminh: D~tM la mQtkh6nggianconhUllh~nchi~uba'tky cuaX
saGchoAnM khactr6ng.D~tPMla mQtanhx~donca'utUM vaGX va P~
toantli'lienhQpcuano.Tii'Hnhlientl,lCcuaT taco P~TPMla mQtanhx~lien
tl,lCtii'AnM vaGM* . Do K compactye'uliennobich~nvadodot~pAnM la
dong,bich~nvalai tromgM. Ap dl,lngB6d~2.2.3,tant~iXME AnM saGcho
*
(PM TPM (XM), Y - XM) ~ 0 voi mQiy E AnM. (2.3)
Tii' (2.3)ta d~ntoi (T(XM),y - XM)~ 0 voi mQiYEA nM. Theo B6 d~
2.2.2taco
(T(y), Y - XM) ~Ovoi mQiy E AnM. (2.4)
Voi m6iu E A tad~t
Sell)={x E K: (T(u),u - x) ~ O}.
Ta se chungminhhQ {Sell):u E A} co Hnhcha'tgiaohUllh~n.Th~tv~y,
voi ba'tky t~pconhUllh~n{Ul, . . ., un}cuaA, chQnM la kh6nggianconsinh
bdi t~p{Ul, . . ., un}.Tii' (2.4),tant~i XME AnM saGcho
(T(y), y - XM)~Ovoi mQiy E AnM.
12
Tli day ta co ( T(uj), Y - XM) ~Ovai mQi i = 1, . . ., n. Nhu v~yXM E
n
nS(Xj)' Hon nii'aSell)khac tr6ngvai mQiU E A. M~tkhac Sell)la t~pdong
i=l
yeuva K la t~pcompactyeti,nentli B6 d~2.2.1ta co nS(x) *- 0. D~t~
XEK
E nS(x) thl ( T(x), Y - ~) ~0 vai mQiYEA. Theo B6 d~2.2.2thl ~clingla
XEK
nghi~mcuabaitoan(VI). D
Saudayladinhly v~t6nt(;linghi~mrhobaitoan(GVVI) cua[Lin- Yang
- Yao1997].
D'NH LY 1.2.3.Gia sii'X vaY la cackh6nggianBanachthlfc,A la mQt
t~pconkhactr6ng,16i,dongcuaX. Gia sii'C :A -+ 2Y la anhX(;ldatri thoa
tinhchit:C(x)la non16i,dong,intC(x)*-0, C(x) *-X vaimQix E A vad6thi
cuaanhX(;ldatriW : A -+ 2Y duQcdinhnghla W(x)=Y\(- intC(x))ladong
yeu trongX x Y. Neu T: A -+ 2L(X,Y)la C_tlfa don di~uyeti, nh~ngia tri
compactkhactr6ngvanii'alien tl,lCtrentheohuangsuyrQngtrenA thlbai toan
(GVVI) conghi~m.
Chungminh:Ta dinhnghlacacanhX(;lFl, F2 :A -+ 2Anhusau:
Fl(y) ={xE A: t6nt(;lis E Tx saorho (s,y - x) \l - intC(x)},
F2(y)={x E A: t6nt(;lis E Ty saorho (s,y - x) \l - intC(x)},
vdi mQiYEA. Do Y E F1(y)nenF1(y)*- 0 vai mQiYEA.
D~utien tase chungminhFI la anhX(;lKKM trenA. D~t{Yl, . . ., Yn}la
mQt~pconhii'llh(;lnbit ky cuaA. Cho ~E CO{YI, . . ., Yn}thl se t6nt(;li Ai
n - n - n
~O,i= 1,.. ., n; LAi =1saorho X=LAi Yi' Ta c~nchungminh x E UFI (yD.
j=l i=l i=l
- n - -
Th~tv~y,gia sii'x \l UFI (Yi)thl x \l F1(Yi),'V i. Vai bit ky s E Tx, taco (s,
i=l-
Yi- x) E - intC(x), V i =1,. . .,n. Nhuv~ytaduQc
n - -
LAi (S'Yi-x) E - intC(x).
i=l
Di~unaydin Wi
13
n n-
0=(S,x - X) =(S, LAj Yi - LAj X)
i=l i=l
n -
=(S,LAj (Yj - X))
i=l
n - -
=LAi (S,Yi - x) E - intC(X).
i=l
Nhu'v~y0 E - intC(x), di€u nay mall thu~nvdi gia thi€t C(x) *- Y. Do
n
d6CO{Yl,. . .,Yn}E UFI (yJ V~yFl Ia anhX(;lKKM.
j=l
Do T la anhX(;lC_giadondi~uy€u nenFl(Y )c F2(y),V YEA. M~t
khac,F1(y)laanhx(;lKKM, nenF2(y)clingla anhx(;lKKM.
Ti€p theotase chungminhF2(y)la compacty€u vdi mQiYEA. Cho Y E
A tuyy. La'y{xa}Ia mQtlu'diba'tky trongF2(Y)vaxa~ x* E A. Vdi m6i a,
do xaE F2(y) nen t6n t(;li taE T(y) thoa (ta, t - xa) ~ - intC(xa). Do
{ta}c T(y), compactrongtapachuffnL(X,Y), {ta}co lu'diconhQitv d€n t* E
T(y). Khangma'ttfnht6ngquat,taco th€ gia sa ta~ t*.Ta c6 t* E L(X,Y), t*
lientlJCt11tapay€u lIen X d€n tapay€u lIen Y. Do do
* * * ,.('
(t , Y - xa) ~ (t , Y -x ), yell trongY.
M~tkhac,tac6
II(ta-t*,y-xa)t=llta -t*IIL(X,Y) Ily-xallx'
Do Iita-t*IIL(X,Y)~ 0 va IIY-Xallx la t~pb~ch~n,nen (ta- t*,Y -Xa)~O,
y€u trongY. V~ytaco
* * * * ,.('
(ta, Y - Xa)=(ta-t , Y -Xa) + (t , Y - Xa) ~ (t , Y -x ), yell trongY.
Do d6 (xa, (ta, Y - xa))~ (x*, (t*,Y -x*)) y€u trongX x Y. Vi Gr(W)
d6ngy€u trongX x Y nen(x*,(t*,y -x *)) E Gr(W). Vi v~y,(t*,Y -x *)E Gr(W)
nghlala (t*,y -x*) ~ - intC(x*).V~y F2(Y)dongy€u. Do A compacty€u va
14
F2(y)c A nenF2(y)compacty€u vai mQiYEA. Nhuv~y, theof)~nh192.2.1
(KKM-Fan),tac6 nF2(y) * 0.
yeA
f)~t~E nF2(y). Vai mQi YEA, ta xay dvng anh x<.lF: [0, 1]--) 2Y d~nh
yeA
bdi
- -
F(a) =(T(ay - (1-a)x), y - X).
DoT ml'alient\lctrentheohuangsuyrQng,c6giatq compactkhactr6ng
nenF nualient\lCtrenva clingc6giatq compactkhactr6ng.Do d6,F([O,l])
compacttrongtapachuffnY. f)~t{an}la daytrong[0,1]giamv€ O.Vai m6i
an, t6nt<.litnE T( a nY+ (1 - a n)~) thoa
- -
(tn,Y- X) ~- intC(x).
Do {(tn,Y - X)}c F([O,l])la t~pcompact,nenkhangma"ttinht6ngquat
c6thegiasading(tn,Y- X)--) w,vaiw E Y. Vi F naalient\lCtren,nenWE
F(O).Do d6t6nt<.lit E T(x) de w =(t,Y - x). Vi d6th~cuaW d6ngy€u, nen- - - -
(t,Y - x) ~ - intC(x). V~y X E nF1(y) nghiala x la nghi~mcua bai toan
yeA
(GVVI). 0
Saudayla k€t quav€ sv t6nt<.linghi~mcho bai toan(GQVVI) cua
[Khanh- Lu'u2000].
DJNH LY 1.2.3.Gia sa K compact,g: A --) A la anhX<.ldontq, lien wc,
E:={xE K: x E clK(x)}*0 vacacgiathi€t sauduQcthoa:
(i)AnK(x) la t~pl6i, khactr6ngvaimQix E A, K-1(y)la t~pmdtrongA
voimQiYEA, vaclK(x)lausc;
(ii) N€u xa --) x, Ya --) Y va n€u taE T( xa), thi t6n t<.lit E T(x) va cac
luoicon x~,Y~vat~E T(x~) thoa(t~,Y~)--) (t,y);
(iii)Y\ - intC(.)la d6ngva V x E A, ::3t E T(x) saocho
(t,x - g(x)) E Y\ - intC(x).
Khid6baitoan(GQVVI) c6nghi~m.
15
Chungminh:Tnfochtt tachungminhE la t~pdong.Th~tv~y,doeIR(.)
la anhX(;luscva co gia tri dong,neneIK(.)dong.Ltiy {xa}c E, nghlala
{xa}cA, xaE eIK( Xa) va Xa~ Xo.Do d6 thi cua eIK(.) dong nen Xu E
clK(xo).V~yE la t~pdong.Voi m6iX E A, YEA tad~t
reX) :={y E A: ( T(x), y - g(x))c - intC(x)},
{
K(X) n rex) ntu xEE,
(x):= /
AnK(x) neuxEA \E,
Q(y) :=K\ -\y).
Tasechungtof5ngQ la anhX(;lKKM. Giii sadi€u nguQcl(;lila t6nt(;li~
n n - n -
=I-
~ ~ i~
l(Yi),vaVIv~yYi E (~), voi mQii. Ntu ~E E, thl (~) =K(~)nP( ~).Tit
day,tacoYi E P( x), i =1,. . . , n,nghlala
- - -
(T(x), Yi - g(x))c - intC(x).
VI v~Y
- - n -
(T(x), x - g(x)) =(T(x),Iai(Yi -g(x)))
i=l
n - - -
=I<Xi(T(X),Yi- g(x))c - intC(x),
i=l
di€u trenmallthu~nvoi (iii).Do do,chico th€ ~E A\ E. Tit dinhnghla- -
cuaE, x ~K(x). M~tkhac,voi i=I,..., n,
- -
Yi E (x) =A II (x ).
n
Do do, x= IaiYi E K(x), la mQtmall thu~n.V~y, Q la mQtanh X(;l
i=l
KKM.
Titp theotasechIfadng Q(y)dong,\j YEA. Voi mQiYEA, taco
-l(y)={xEA:YE(X)}
16
={xE E:y E K(x)nP(x)} u {xE A \ E:y E K(x)}
={xE E :x E K -1 (y)n P-1(y)} U {X E A \ E :x E K -I (y)}
=[EnK-1(y) np-1(y)] U [(A\E) nK-1(y)]
=[(Enp-1(y»u(A\E)] nK-1(y)
=[(A\E)UP-l(y)] nK-1(y).
Vlv~y
Q(y) =A\([(A\E)uP-I(y)] nK-1(y»
={A\[(A\E)uP-I(y)]} u[A\K-1(y)]
=[En(A\p-I(y»] u[A\K-1(y)]. (2.5)
f)~utien,taseki€m tratinhdongcuaA\p-I(y),V YEA. Tli dinhnghla
cuarex)taco
A\P-I(y)={x E A: :3t E T(x), (t,Y - g(x» E Y\ - intC(x)}.
Gia sa ding Xa E A\P-l(y), Xa --j>xu.Khi do, t6n t~i ta E T(xa) sao cho
(ta,y-g(Xa»E Y\-intC(xa).
sad1,lllgiathie't(ii),t6nt~itovacaclu'oiconxpva tpE T(xp)saocho
(tp, y- g(x~»--j>(to,y- g(xo».
Gia thie't(iii) d~nWi
(to,y - g(XO»E Y\ - intC(xo),
nghlala, XoE A\P-l(y). Nhu'v~y,A\P-I(y) la dong.Tli cacgia thie't rong(i)
va tli (2.5)la mQtt~pcondongcuat~pcompactA. Nhu'v~y,Q(y) la compact.
Ap dl,lllgdinhly KKM-Fan, t6nt~i
~E n(A \ -1(y»=A \ ( U-1(y» .
YEA YEA
17
VI v~y,(~) =0. Co haitru'onghQpKayfa.D~utien,n6u ~E A\E, theo
dinhnghlacua ,(~) =A nK( ~)-:F 0 , lamQtmatithu§:n.Nhu'v~y~E E,- - - - -
nghlala x E clK(x). Hannlla,tadingco 0 =(x)=K(x)n(P(x). VI v~y,
vaiffiQiy E K(~),Y ~P(~),nghlala, :3t E T(~),d~cho
- - -
(t,y- g(X))E Y\-intC(x).
V~yx langhi~mcuabaitmln(GQVVI).0
1.3.811t6nt~inghi~mbaitoaDdin b~ngvabaitoaDbfft
diingthucbie'nphiln~n
1.3.1.Gi6'ithi~ubaitoaDdin b~ngvabaitoaDba'tdiingthti'cbie'nphanffn
Trangph~nnay,giasuX va Y la haikhanggianvecyatapa;Kc X la
ffiQt~p16i,dong,khactr6ngvaf: AxA~ Y.
N6uY=R,tacobaitoancanb~ngvahu'angla
- -
(EP): tlm YEA saGchof(x, y )S;O,v X E A.
Baitoand6ing§:uvaibaitoantrenla
- -
(DEP): tlm x E A saGchof(x, y):2:0,V YEA.
Trangtru'onghQpt6ngquathall,khi Y du'Qcs~p thli t1!bdimQtnon16i,
dongvacoph~ntrongkhactr6ng,thlbaitoancanb~ngvecWla
- -
(VEP): tlm YEA saGchof(x, y)~ intC, V x E A.
Lucnay,baitoand6ing§:utu'anglingvainola
- -
(DVEP): tlm x E A saGchof(x ,y)~ intC, V YEA.
18
Ne'unonC du'Qcthaybdinonchuy€ndQngC: A ~ 2Y thoaC(x)la mQt
non16i,dongvoi ph~ntrongkhactr6ngt~imQix E A, thl c~pbai toantrentrd
thanh
- --
(GVEP): tim YEA sao cho f(x, y) \tointC( y), '\j X E A,
va
- -
(DGVEP): tim x E A saochof( x ,y)\tointC, '\j YEA.
Cu6icling,chungtaxetmQtbai toanco d~ngra"tgi6ngvoi bai toandin
b~ng.Giasaf: L(X,Y)xAxA~ Y lahamdontItvaT :A ~ 2L(X,Y)lahamda
tIt.Baitoanba"td~ngthlicbie'nphan~n(IVVI) du'QcdtnhnghIala:
- - -
(IVVI): tim x E A saocho '\j YEA, :3 t E T( x) thoaman
- - -
f(t, y, x) \tointC(x).
Ta tha"ydn& bai toancanb~ng( haybai toancanb~ngd6ing~utu'ong
ling)chliabaitoanba"td~ngthlicbie'nphandu'QcdtnhnghIaphlihQpnhu'mQt
tru'onghQprieng.Th~tv~y:
(a)GiasaT:X ~ X* la anhx~dontrt,ne'ud~tf(x, y):=( T(y), y - x), thl
baitoan(EP)setrdthanhbaitoan(VI) .
(b)Conne'uT:X ~ L(X,Y) vane'ud~tf(x,y):=( T(y),y - x), thl bai toan
(VEP)' setrdthanhbaitoan(VVI).
Ngoaifa, taclingtha"ygiii'abai toancanb~ngva bai toancanb~ngd6i
ng~utu'onglingco m6iquailh~ra"tg~nnhau.Nghi~mcuabai toancanb~ng
lingvoihamf(x,y)clingchinhla nghi~mcuabaitoancanb~ngd6ing~utu'ong
linglingvoihamg(x,y):=-f(y,x).Conne'uxettrenclingmQthamthlgiii'ahai
baitoannaycom6iquailh~sauday.
MtNH DE 1.3.1.GidsitC fanoncodlnhvaanhX(lI AxA ~ Y thod
j(x,x)E C, '\j X E A. Khi do:
(i) nfuf( . , y) fa uhcvaimQiYEA vaf(x, . ) fa C_f6i vaimQix E A, thi
nghi~mcuabailoan(VEP)fanghi~mcuabailoan(DVEP);
19
(ii) ne'uf za C_t1;tadan di~u,thi nghi~mcua bai roan (DVEP) ciing la
nghifmcuabai roan(VEP).
Chungminh:Kh£ngdinh(ii) la r5rangtudinhnghiaC_tlfaddndi~ucua
anhX<:lf. Bay giOta chungminhkh£ngdinh (i). Gia sa yla nghi~mcuabai
toan(VEP), tucla
-
f(x, y) ~intC, V x E A.
CO'dinhx E A ba'tky. Voi m6i t E (0,1),d~tXt=tx + (l-t)y. The'XtvaGbitiu
thuctn3ntaco:f(Xt,y) ~intc.Dotinh16icuaf(x, . ),taco
-
t.f(Xt,x) +(l - t).f(xt, y) E f(xt, Xt) +C =C.
Dodo
I-t -
f(xt, x) E - ( - f(xt, y) +C )
t
E 1- t ((Y\ - intC) +C) =1- t (Y\ -intC)=(Y\ -intC).
t t
Do f( . , y) la uhcva do(Y\ -intC) la dong,nend bitiuthuctrenchot ~ 0+ta- -
du'Qc: f(y ,x) E Y\ -intC. V~y Y la nghi~mcua(DVEP). D
1.3.2.SItt6nt~inghi~mcuabai tmindin b~ngva bai tminba'tdiingthuc
bie'nphanftn
Sandayla ke'tquav~slft6nt;;tinghi~mchobai toan(EP) cua[Chadli-
Chbani- Riahi 2000].
DfNH LY 1.3.1.Chox la khonggianvect{ftapaHausdorff,A la tqpl6i,
dong,khacding. Gid sU:f, g:AxA -f R thoa
(i) V6im9ix,y E A, g(x,y):5:0,thif(x,y):5:0;
(ii)Co'dtnh XE X, hamf(x,.) nu:alien tl;lcdu6i tren m9i ti)p compactcon cua
A;
20
(iii)VaimQit4pconL hiluhc;mcuaA, taco
sup ming(x,y) 5{0;
YEco(L) xEL
(iv)Gid thiit vi tinhcompact.Gid sit t6n tr;tit4pcompact,I6i C c A sao
choitnhfitm(Jttranghaidiiu ki~n(a),(b) thoa
(a) tiYEA\C, 3xECsaochof(x,y) >0;
(b)3XOEC saocho tiYE K'\C: g(xo,y)>0.
Khido,bili loancanbling(EP) conghi~m.Hannila, t4pnghi~mIa t4pcompact.
Chung minh: E>~tM ={Xl, ..., Xn} la t~pconhUllh<;lncuaA, va B =
co{MuC}.Khi dodoC la t~p16ivacompactnenB cling16iva compact.X6t
anhX<;lS:B ~ 2Bxacdinhboi
SeX)={yE B: g(x,y) <O}.
La'y{Zl,...,Zm}la t~pconhUllh<;lntrongB; tac~nchungminh
m
CO{ZI,...,zm}cU S(zJ.
i=l
Gia saphanchung,nghlala t6nt<;liYE CO{ZI,...,zm}saocho
g(Zj,Y)>0, voimQi =1,...,m.
Bi~unay suyJ;a .mill g(Zi'y) >0:mall thu~n(iii). M~t khac, tU (iii) va tinh
l=l,...,m
compactcuaB, voi mQiX E B tacoXE Sex);dodo Sex)khactr6ngva compact.
ApdlJngBinhly KKM-Fan,taco
n deSex))7'0.
XEB
Tli (ii)va(iii),taco
n deSex))c n d({YEB:f(x,y)~O})
XEB XEB
= n {YEB:f(x,y)~O}.
XEB
(3.2.1)
21
£)~t
YEn deSex)).
XEB
Dung(iv),tachungminh Y E C. Ne'u(iv), (a) thoa,gia sa Y ~ C suyfa t6n
t?i XOEC saDchof(xo,y) >0:matithu~n(3.2.1).Do do Y E C. Ne'u(iv), (b)
thoa,tacoS(xo)c C. M~tkhacdoC dongnen Y E C.
Dodo,voimQit~pM hii'llh?ncuaA, taco
n {YEC:f(x,y)~O}*-0.
XEM
VOimQix E A, d~tT(x) ={YE C: f(x,y)~O}.Til (ii), T(x) compactvoi mQiXE
A, doC compact.Khi do ( theotlnhcha'tcompact),taco
n T(x) *-0.
XEA
V~yb~litoan(EP)co nghi~m.T~pnghi~mcuabai toan(EP) la n {yE C :
XEA
f(x,y)~O}compact.D
£)~chungminhs1;(t6nt?i nghi~mchobai toan(DVEP), tac~nb6 d€ sau.
~ ;:. "
BO DE 1.3.1.Cho Y la kh6nggianW!ctathf:CC,l6i djaphlfrJng,C la nonl6i
dong,codlnhva intC,r:0. Laya,bEY, vaiaE - intC va b Ii!C. Khi do, t(ip
ch(intrencuaa vab khacrangvacophdngiaovai Y\ C.
Chungminh: Ta phai chi fa dng t6nt?i c ~C saDchoc -a E C va b - c
E C.Do intC*-0, t6nt?i d E intC saDchod - b E C. Voi t E [0,1],d~t
dt=td+( 1- t)b,
dt E C, voi mQit E [to,1],
dt~C, voi mQit E [0,to).
£)~cbi~t,taco dtoE C, a E -intC;dodo
dto- a E intc.
22
Dodo,voimQitl <to,dug§n to,tav~nc6
dtl - a E intc.
D~tc=dtl .Khi d6c ~C, hannuatac6
c- a E C vac- b=tied- b)E C. 0
DJNH LY 1.3.2.Chox Ia khanggianvectatapaHausdorffth1!c,Y Ia
khangianvectath1!C,Iaidtaphuong.CIa nonIai,dong,codlnhvaintC:;c0, A
{;;X IatqpIai,dong,khactr6ng.Xerhamhaibie'nI AxA ~ Y saDchof(X,x) E
C,tfxEAvathoacacgia thie'tsau
(i)V6'imQicli!C va \7XEA,tqp(YEA:c- f(x,y)E intC}Ia tqpIai;
(ii) Ne'uf(x,z)- f(x,y) E intC vaf(x,z) Ii!intC, thif(x,z) - f(x,zt) E intC, v6'i
mQiZt=ty+(l-t)zvatE (0,1);
(iii)f(',y) Ia lien t1;tCrheahuangvai mQiYEA vaf(x,.) Ia mla lien t1;tCdu6'i
v6'imQix E A;
(iv)f(x,y)Ia C- t1!adondi~u;
(v)vdu ki~nhac.Tan tqi tqpcompactB c A va vectaY*E B saDcho
f(x,y*)E - intCv6'imQixEA\B.
Khidohai roan(DVEP) conghi~m.
Chungminh:f)~t
S(y)={XE A: f(x,y)~ - intC }, 'If YE A.
Tli giiithi6tf(X,X)EC, tac6 y E S(y),voi mQiy.Bay giOtad~t
S*(y) ={XE A: f(y,x)~ intC },'If YE A.
Tli (iv),tac6
S(y)c S*(y), 'If YE A.
DungtinhmYa lien tl,lCdu'oi(iii), S*(y) la t~pd6ng.Do d6 S(y)c S*(y). Ti6p
theo,tachungminh
23
nS*(y)c n S(y).
YEA YEA
Th~tv~y,la'yXE n S*(y). Do d6 f(y,x) t1.intC, \j YE A. La'yy c6 dinh,YE A,
YEA
d~t
Yt=ty+(1-t)y,tE (0,1).
Khid6
f(YbX)t1.intC,vai mQitE (0.1). (3.2.2)
Ta dn ki€m traf(YbY)t1.- intC, vai mQitE (0,1).Gia su phanchungnghlala
t6nt~it*E (0,1)saorho f(Yt*,Y) E - inte. Ta xethaitruonghQP.
TruonghQp(1).NSuf(Yt*,x)EC, thlf(Yt*,x)- f(Yt*,Y)Einte.Tli'giathiSt
(ii),tac6f(Yt*,x)- f(Yt*,Yt*)E inte. Khi d6,dof(Yt*,Yt*)E C suyra f(Yt*,X)EintC
:mallthu~n(3.2.2). .
TruonghQp(2).NSu f(Yt*,x)t1.C, theob6 d~tIeDthl t6nt<;tic t1.C saorho
c - f(Yt*,X)E C va c - f(Yt*,Y)Ee. Theogia thiSt(i), tac6 c - f(Yt*,Yt*)E C, di~u
naYc6nghlala c E C : mau thu§.n.
Dod6,f(Yt,Y)t1.-intC va dotinhlien tlJCtheohuangDenf(x,y)t1.- intC, vai mQi
Y E K. V~YX E nS(y ). Do d6,
YEA
nS(y)c n S*(y)c n S(y).
YEA YEA YEA
TiSp theo, tli'di~uki~n(i) t~p{YEA: f(x,y) E - intC} la t~p16i,dungphan
chung,tachungminhduQcS Ia anhX<;tKKM. Han nlla, tli'di~uki~nbuc(v) ap
dlJngdinhly v~KKM, tac6
n S(Y)"*0.
YEA
Dod6
nS(y) "* 0,
YEA
nghlala,bai loan(DVEP) c6nghi~m.0
24
Tadn dinhnghlasauday.
DJNH NGHIA 1.3.1.Anh xC;lg:A ~ Y duQcgQila C_16irnarQngnC'uvoi
IDQix,YEA, tE [0,1]ta co
g(tx+(1- Oy- [tg(x)+(1- t)g(y)]E intC(tx+(1- t)y)u {O}.
[Chadli- Riahi2000]dilduadi€u ki~nduchosl;(t6ntC;linghi~rncuabai
tmln(DGVEP).
DJNH LY 1.3.3.Chox la khonggianvectCltapaHausdorff,Y la khonggian
vectCltapa,K la t(lpkhactrang,dong,lbi concuaX. AnhX(II AxA -;. 2Y, co
f(x,x)=0, \iXE A va C: A -;. 2YsaDchoWYimQiXEA, C(x) la non lbi, dongco
dlnh.Gidsa themcacddu sauthoa
(i)f la anhX(I t1jadelndi?u ma rQng,nghzala WYimQix, YEA, f(x,y)fi!
intC(x)thlf(y,x)E C(x);
(ii) Vai mQix E A, (y E A: f(x,y) E Cry)}la t(lpdong vaf(x,.) la anhX(I
C_l6imarQng;
(iii) C la anhX(IuhctrenA;
(iv)VaimQiYEA, f(',y) lientl;lctrentheohuang;
(v)rbnt(Iit(lpcompactBe X vavectClYoEAn B saDchof(x,yo)E intC(x),
wYimQix E K\ B.
Khido,baitoan(DGVEP) co nghi?m.
Chungminh:Voi rn6iYEA, ~d~thaianhxC;ldatri nhusau
FJ(y) :={XEK: f(x,y)~intC(x) },
F2(Y):={XE K: f(y,x) E C(x)}.
Nh~ntha'yr~ngFJ(y), F2(y)khactr6ngvoi rnQiYE A, hannuaYE FJ(y)n F2(y),
VYEA.
D€ chungrninhbailoan(DGVEP)conghi~rn,tac~nn FJ(Y)* 0 .Tase
YEA
chungrninh
25
0 * n elF1(y)c n F2(y)c n FI(y).
yeA yeA yeA
1.B~ulien taCOFI(y)c F2(y)(tinh tlfadondit%u(i)). Tli (ii) suyfa Fiy) la
t~pdong,do do elFI(y) C F2(y).B€ chungminh n F2(y) c n FI(y), d~t
yeA yeA
X*E n F2(Y), nghTala yai mQiYEA, taco fey,X*)E C(x*). C6 dinhmQty trong
yeA
A vad~tYt=ty+(1-t)x* yai o x*) E C(x*). Do fey!>. ) la anhX~
C_16imdfQngtaco
fey!>Yt)- [tf(Yt,y) + (1 - t)f(y!>x*)] E intC(Yt) U {O}.
DointC(Yt)yaintC(x*)la nonkhacf6ng,taco
fey!>x*) - fey!>y) E! (f(y!>x*) +intC(Yt)U {O})
t
c C(x*) +C(Yt).
DoC lauhcnenyaiV la Hinc~ncuacuao trongY t6nt~ikv E (0,1)saocho
C(Yt)c C(x*)+V yaimQitE (0,kv).M~tkhac,dof lientlJCtheohuangnen
- f(x*, Y)E C(x*) +V.
Di€u nayv~ndungyaimQiHinc~nV cuaA nen- f(x*,Y)E C(x*).Dononco
dInhnenf(x*,y) ~intC(x*), nghTala X*E FI(Y)' Do do n F2(y)c n F](y).
yeA yeA
2.Tiep theo,tachungminh0 * n elFI(y).B~ulientachIfadng elFI(.)
yeA
la anhX~KKM. La'y {Xl,...,Xn}"C A, gia sa phanchung,nghTala',t6nt~ix E
CO{XI'...,xn}saochoX ~elFI(xJ, yai mQii =1,...,n.Khi do,t6nt~iAi,...)on~o
n n
vaLAi =1yaX=LAi Xisaocho
i=1 i=1
f(x,Xj)E intC(x), yai mQi iE {l, ...,n}.
Honfilla,intC(x) Ia 16inen
n
LAj f(x,Xj) E intC(x).
j=1
26
M~tkhacf(x,.)la anhX<;lC_16imarQngva f(x,x)=0 nentaco
n n
- LAj f(x,xj)=f(x,x) - LAj f(x,xj) E intC(x)u {O},
j=l j=l
mallthll~n,do C(x) la non co dinh.V~y elFl la anh X<;lKKM. Con l<;li,ta chI
dn sad\lngdi€u ki~nbuc(v) la t6nt<;lit~pcompactBe X va vectaYoEAn B
saochof(X,YO)EintC(x), voi mQi XE K\ B. Suy ra Fr(Yo)e B va elFr(yo)la
compact.Ap d\lng Dinh ly KKM-Fan, ta co 0 =t-nelFr(y).Til day suyra
YEA
n Fr(Y)=t-0, haybailoan(DGVEP)conghi~m.0
YEA
Trang[ Kum - Lee 2002],caclacgiadu'arak€t quasauchobailoanba't
d£ngthucbi€n phancin(IVVI).
DfNH LV 1.3.4.Xb bili roan(IWl).Gid sa X la khanggian tapa vecta
Hausdoiff,Y ding la khanggian tapavectaHausdorffsao chokhanggiand6i
ngauy*cuanola tachdiim.GidsaC : A ~ 2Y la anh Xf;lda trt thod man: WYi
mQix E A, C(x) la nonlbi thod - intC(x)=t-0 va C(x)=t-Y. Gid sa p:= nX(x),
XEX
K la m(Jtt(ipcompactytu va anhXf;lda trt W : A ~ 2Y, W(x)= A\( - intC(x)),
thodtinnhscha'tla dbthtcuaWdongytu trongXxY. Gidsacacddu ki~nsau
daythodman:
(i) T la anhXf;lC_t{tadandi~usur r(JngtuangangWYig, nghfala, v x, y E
A, :J s E T(x)saocho
g(s,y,x) ~ - intC(x)=>V E T(y), - get,x,y) ~ - intC(x);
(ii)T lanaalient~ctrentheohuangsurr(Jngtuangungvaig,nghfala, v
x,YEA vaa E [0,1},anhxf;ldatrt
a Hg(T(x + a(y-x)), y,x)
lanrlalient~ctrentf;li0+;
(iii)vaimQix E L(X,Y)vax E A,g(s,.,x) la P_Ibi,nghfala, v y,Z E A va
exE [0,1],
g(s, ay +(1- a)z, x) E ages,y,x) +(1- a)g(s, z,x) -P;
27
(iv)vaim9i t E L(X,Y) va x E A, g(t, ., x) la lien t1;lCkhi cd A va Y du:(!c
tranghi tapaylu;
(v)vaim9ix E A vaS E T(x), g(s,x,x) E P;
(vi)vaim9is E L(X,Y), x,YEA va a E fD,l], g(s, y,x + a (y - x) ) =(1-
a)g(s,y,x);
(vii)vaim9it(ipcanhiluhqnN cuaA, t6ntqimQt(ipcanl6i,compactylu
LNcuaA chu:aN saochoV x E LN\A,:3Y E LNthod-g(t,x,y)yhu- intC(x),V
tET(y).
Khido,bailoan([WI) conghifm.