Luận văn Wavelet và ứng dụng trong nén tín hiệu video

WAVELET VÀ ỨNG DỤNG TRONG NÉN TÍN HIỆU VIDEO NGUYỄN NGỌC LONG Trang nhan đề Mục lục Chương 1: Đặt vấn đề. Chương 2: Cở sở toán học của xử lý tín hiệu Chương 3: Khai triển tín hiệu dùng bộ lọc. Chương 4: Nén tín hiệu video. Chương 5: Cài đặt chương trình. Chương 6: Các hạn chế và hướng phát triển. Phụ lục Tài liệu tham khảo

pdf50 trang | Chia sẻ: maiphuongtl | Lượt xem: 2101 | Lượt tải: 0download
Bạn đang xem trước 20 trang tài liệu Luận văn Wavelet và ứng dụng trong nén tín hiệu video, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
z)=Go(z)H 0(z) = H 0(z)H1(-z) detHm(z) (dodet(H",(z))=-det(H",(-z))) 52 ( X(z) J]Ho(-z)] X(-z) (3.2.9) II II (3.2.11a) (3.2.12) " II 3.Khaitriln tinhi~udungb(j l(Jc -2 GJz)H] (z)= Ho(-z)H] (z)=P(-z) detHm(z) (3.2.10)cothec1uqcvie'tl~i: P(z) +P(-z) =2 (3.2.13) V~y,ne'uPia mQt?athuctheozthlP coH(tcacach<%sf)chanb~ng0,trup[O]=1. dodo,P(z)cod~ng: P(z) = 1+L:p[2k +1]z-(2k+]) kel MQtc1athucho?c mQthamhuuti thoa(3.2.13)c1uQcgQi la hqp 1<%(valid).Ham P(z) dongmQtvai trc)quail trQngtrongvi<%cphantich va thie'tke'cac bQ lQc.Cong thuc (3.2.10)co thec1uqcvie'tl~ila : Go(z)Ho(Z)+Go(-z)Ho(-z) =2 vie'tdudid~ngcuahamc1apling xung,hayd khiac~nhthaigianla : L:go[k]ho[n- k] +(-I)nL:go[k]ho[n-k] =2J[n] kel kel 2L: go[k]ho[2n - k] =2J[n] kel hay (go[k],ho[2n- k) =J[n] vdiqJk,qJkc1uqcc1inhnghlanhu(3.2.4)va(3.2.6),c1~ngthuclIentrdthanh: (qJO,qJ2n)= J[n] tu'clngtV SU'd~ng(3.2.10 - 3.2.11)taseco : (qJj,f{J2n+]) = J[n] (ifto,rP2n+])= 0 (ift] ,f{J2n+])= 0 VI({>lk,C{Jzk+1l~nluqt la phienb~mtinhtie'ncua f{Jo,f{J1nencach<%thucco thec1uqcvie't l~i: (iftk'f{Jz) =J[ k -I] V~ydieuki<%nkhoi ph~cloanhaDkeDtheoc1ieuki<%nsongtnfc giao.Dao l~i,ne'uC?P cdsa {qJk,iftk}suydien tu ho,hI, go,gIla songtnfc giao thl bQ lQc la khoi phvcloan haG. Nhu'v~yb~ngcachxemxet lIen khia c~nhc1ieuche'tinhi<%uta co clingke'tqua nhu khixemxet lIen khia c~nhthai gian : ndu ki~nkh6iph{lcloan hao tu:angdu:angwii dduki~nsongtri!Cgiao . 1.3Phantichtheokhfa c~nhdapha Phiintichtheokhia c~nhc1ieuche'cho mQtbieu dien tV nhien nhungco mQtnhuqc di€mladuthua.Trangmatr~nH1ll(z),cach<%sf)xua'thi<%n2 l~nVI ca lQcHi(z)va phienbanc1ieuche'Hi(-z) cuano clinghi<%ndi<%n.MQtcachbieudiengQnhdnla phan tichtheokhiac~nhc1apha.Ta se phanfa ca tin hi<%uva lQcthanhcac thanhph~nc1a pha.Dungcongthuc (2.4.11)vdi N =2 c1ebieu dien tin hi<%uke'tqua sail khi lQCva la'ym~uxu6ng. 53 3.Khai triln tin hi~udung bQ 19C ( Yo(z) ] = ( Hoo(Z) HOl(Z) ] ( Xo(Z) ]~(z) HIO(Z) Hl1(Z) X1(z) ' v ' ' , ' v ' Y(z) H v(z) X (z) p p TrangdoHi}la thanhphc1ndaphathll j cuaIQcn, vabieudi€n cuaHi rheacacthanh phc1ndapha,rhea(2.4.10- 2.4.11)la : Hi(z)=HiO(l) +ZHil(l) Y(z)la tinhi<$ucida~lllgiuacuah<$th6ngtranghlnh(3.4a), Hiz) lamatr?nvoicaethanhphc1ndaphacuacacIQcthanhphc1n,congQilamatr(in dapha. . Xp(z)g6mcaethanhphc1ndaphacuatin hi<$unh?pXova Xl, tinhi<$unh?pdu'<;1cbieu di€n rheacacthanhphc1ndaphabCii(2.4.8) X(z)=XoCl) +Z-lxl(l) Hlnh(3.4b)chi ra so d6 kh6i cua (3.2.14).Tin hi<$uX du'<;1cta hthanhhai thanhphc1n daphaXovaXl dungbiend6i dapha.Ma tr?n daphaHpbiend6i2 tinhi<$unh?PXO,Xl thanh2tinhi<$uxua'tYO'yI. (3.2.14) ~ ,.~ Yo ~t + R2t Z.IJ\ (a) Yo x Hp YI (b) Gp £ Yo YI (c) ffinh 3-4 Phiin tich tIeDkhia Cl;lnhdapha (a) Bie'nd6i dapha di toi va di lui. (b)Phftnphiin tich.(c)phftnt6nghcJp. Phfint6ngh<;1ptranghlnh(3.4a)clingdu'<;1cphanrichrheacachtu'ongtV.No co the du'QCthvchi<$nnhophepbiend6idaphangu'<;1c,matr?ndaphat6ngh<;1pdu'<;1cdinh nghial : 54 3.Khai triin tinhi~udungb(J lr;c ( Goo(z) GlO(Z) ] Gp(z)= GOI (z) Gll (z) Trongdo Gi(z)=Gw(l) + Z-IGil(Z2) (3.2.16) Trangcacthanhph~ndaphacuaIQct8ngh<;5pdu'<;5cdinhnghlavoi phangu'<;5cvoi cac IQcphantich.Tin hit$usankhi t8ngh<;5pX(z) du'<;5cviSt la : ( Goo(Z2) GlO(Z2) J ( Yo(Z2) JX(z)=(1 Z-l) GOl(Z2) Gll(Z2) ~(Z2) (3.2.15) (3.2.17) I '--v ' G (Z2) Y (Z2) P p Tin hit$utu mlii kenhdu'<;5cIffym~uleu b6i 2, ta du'<;5cYi(Z2),sando du'<;5cIQ b6i Gi(z)=Gw(l) +Z-IGil(l) voihaithanhph~ndaphaGwva Gil.PhepIffytichmatri;ln Gpva thanhph~netaphay la theoZ2,dodoco th6du'<;5cthl/chit$ntru'ockhi Iffym~u tenb6i2,nhu'6h'inhve(3.4c) BQIQcphantichvabQIQct8ngh<;5plad6ing~ucuanhau.BQIQcphantichdungphep biSnd8i daphadi Wi, pha 1du'<;5clamnhanhmQtnhip,ky hit$ub~ngchITztrongsod6 kh6ih'inh(3.4b).BQIQct8ngh<;5pdungphepbiSnd8i daphadi lui, pha1du'<;5clam tr~ (delay)mQtnhip,ky hit$ub6iZ-I trangvangtrail 6 nhanhdu'oih'inh(3.4c). HQp2 phepbiSnd8i daphaphantichva t8ngh<;5p,tadu'<;5cbQIQcphantich,t8ngh<;5p comatr(mchuyinddi dapha (transferpolyphasematrix)la : Tp(z)=Gp(z)Hp (z) Tinhit$usankhi quabQIQcphanticht8ngh<;5pla : A ( l\r. 2 2X(z) =1 z- pp(z )y(z ) =(1 Z-1 )Gp(z2)Hp(Z2)Xp(Z2) =(1 Z-1 )rp(Z2)Xp(Z2) DiSukit$nkh6iphvcloanhaocuaht$th6ngla : X(z) =X(z) khiTp(z)=I, taco : X(z) =(1 Z-l) ( Xo(z:) ) =XO(Z2) +Z-lXj (Z2) =X(z) X1(z) V~yTp(z)=I ladiSukit$ndudeht$th6nglakh6iphvcloanhao. 11.1.4Quanh~giii'acaebiiu di~ntheoth«igian,di~uche'biende)vadapha. Bi€udi~ntheothaigian,diSuchSbiendQva daphala 3 cachnh'inkhacnhaucua clingillQtht$th6ng,v'ivi;lychungco lienht$qual~il~nnhau. VlX(z)=~(Xo(Z2)+Z-IX1(z)) (tu(2.4.8))tacoth6viSt:2 ( XO(Z2)j 1 ( 1 J( 1 1 )( X(z) JXl(Z2))=2 z 1 -1 X(-z) (3.2.18) 55 3.Khai triflntinhi?udungb(3irc Nhu'v~y,tathie'tl~pdu'Qcm6i lien hl$giuabi€u di€n dapha X p(Z2) =(xo(Z2)XI(Z2)r vabi€u di€ndi€u che'biende) X"'(z)=(X(z)X(-z)Y hayI I cuatinhil$u. Xet lQcphanrich,taco m6i lienhl$giuaHp(z)vaH",(z)nhu'sau: ( Hoo(Z:) Hol(Z:) ] =! ( Ho(Z) HI(Z) ]( 1 1 )( 1 -I JHlO(Z) H1\(z) 2 Ho(-z) H](-z) 1 -1 Z 2 1 ( 1 1 J( 1 J Hp(z ) =-H m(z) -I2 1 -1 Z tu'ongW',taco : ( Goo(Z2) GOI(Z2) J =~ ( 1 J( 1 GlO(Z2) G1\(Z2) 2 Z 1 Gp(Z2) =~( 1 J( 1 1 J Gm(Z) 2 Z 1 -1 Caecongthlic (3.2:19),(3.2.20)la chuy€n vi cuanhau. (3.2.19) 1 J( Go(z) G](Z) )-1 Go(-z) G](-z) hay (3.2.20) Dethie'tl~pm6iquailhl$giuabi€u di€n rheathaigianvadapha,taxetcaclQct6ng hqpgi.Trenkhiaqnh thaigian,matr~nt6nghQpTscod~ngnhu'(3.2.5).D?tTsCz)la matr~ntu'onglingvoimatr~nTsdinhnghlanhu'sau: k'-] T,(z) =LSiZ-i ;=0 trongdo,Sila matr~nca'p2x 2 cod~ng(k' la chi€u dailQc) ( g [2i] g [2i] J - S = 0 I i =0 k'-1 1 go[2i+l] g][2i+l] , V~y: -r,(z)= k'-l Lgo[2i]z-; ;=0 k'-I Lgo[2i +l]z-; ;=0 k'-] L gl [2i]z-i i=O k'-] LgI[2i +l]z-i ;=0 k'-] L goo[i]Z-i =I i=D k'-] Lgo] [i]Z-i ;=0 k'-] LglO[i]Z-i i=O k'-] L g1\[i]z-; i=O = ( Goo(z) GlO (Z) JGOl (z) G1\ (z) TsCz)= Gp(z) V~yTlz) clingchinhla matr~ndaphaGp(z).D~ngthlictrenchatam6ilienhl$giua 56 3.Khaitriln tinhi~udungb(j Irc bieudi~ntheothai gianvdi matr~nTsva bieudi~ndaphavdi ma tr~nGp(z).T11'ong tv,matr~nphantichtheothaigianTaco lien ht$vdi matr~nphanitchdaphaHp(z) K Ta(z)=L:Aiz-i i=O KIa ehieudailQephantich,A lamatr~nea'p2 x 2 A = ( ho[2(K- i) -1] ho[2(K - i) - 2] JI hi[2(K -i)-I] hi[2(K -i)-2] K-I L:ho[2(K - i) -1]z-i T (z) =I i=1a K-I L:~[2(K -i)-I]z-i i=1 K-I L:hol [K - i]Z-i =1 i=1K-I L:~I[K -i]Z-i i=1 = K-] z-KL:hOl[K -i]ZK-i i=1 K-I Z-K L:hll [K - i]ZK-i ;=1 K-I L:ho[2(K -i)-2]z-i i=1 K-I L:~[2(K -i)-2]z-i i=1 K-I L:hoo[K -1- i]Z-i ;=1 K-I L:hlO[K -1- i]z-; ;=1 K-I Z-K+IL:hoo[K -1-i]ZK-I-i ;=1 K-I Z-K+IL:hlO[K -I-i]zK+i ;=1 =Z-K+I ( Z-IHol (Z-I) Hoo(Z-I) ]z-IHll(Z-I) HIO(Z-I) =Z-K+I ( Hoo (Z-I) HOl(Z-I) )( 0 HIO(Z-I) Hll(Z-I) Z-I To(z)=Z"'H,Vto, ~) d~ngthuetIeDthietl~pm6ilienht$gifi'amatr~nphanitchtheothaigianTavdi ma tr~nphantichdaphaHp(z). 11.2Caetinhcha'tcuabe)IQc: Trangphgnnay,tatoml11'9tcaeketqualienquaildencaebQlQesad\lngcaee6nge\l vuathietl~p,caeketquahoikhaehonsovdieaeke'tqualienquaildenslft6nt~ieua cdsatrveehu§'nhoi;iesongtnfegiao.d day ta quail tam den slf khoi phl:lcgdn dung, vanha'nm<;lnhvaonhfi'ngva'ndelienquaildenthietkelQe. Trangcaephgntrude,dieukit$nkh6iph\leloanhaoconghlala xua'tlit$ubiingdung nMplit$u.d daytat6ngquathoavadjnhnghlakh6iph\leloanhaonghlalaxua'tlit$u coth€ lamQtphienbanlamtn~,vacothed11'9CnhantYlt$sovdinh~plit$u: X(z)=cz-kX(z) Voicaeketquad ph§ntrudc,tatha'ydieutIeDt11'dngdu'dngvdi, quamQtpheptinh ~) 57 3.Khaitriln tinhifit dungbQlQc tie'nvanhanty l~,thlcachamdaplingKungcuacaclQCphanrichvalQctanghcjpt~o thanhmQtcdsasongtnfcgiao. Trongs6 cach~th6ngthoakhoiphlJ.cxa'pxi, taquailtamde'ncach~th6ngtranh du'cjcalias.TrangmQtbQlQcphantich/ tanghcjpbie'ndaitheothaigian,xua'tli~ula hamCllacii x[n]vaphienbandieuche'(-ltx[n] (hayX[z]va X[-z] trongmienz). Nhu'v~y,lo~iboaliasla mQtrangnhii'ngva'ndequailtrQng. Djnhnghia3.2 Matr~nca'pn x n Fij(z)du'cjcgQila matr~ntVayang(pseudocicularmatrix)ne'uco d~ng: { F. .(z) J .?:.i F (z)= O,J-I IJ Z.Fo,N+f-;(z) j <i Nhu'v~y,matr~nt(tayangtu'dngtvnhu'matr~nYang,nhu'ngami'atamgiacdu'oi,cac s6h~ngdu'cjcnhanthemz. M~nhd~3.4 TrangmQth~th6nglQcphantich/ tanghcjphaibangchotinhi~umQtchien,aliasse du'cjclo~ibone'uvachine'umatr~ndaphaTplamatr~ntvaYang. Changminh.. Giii si'tTiz) Ia matr~nh,tavong,Tp(Z)co d1;lng: ( Fo(Z) ~(Z» ) T (z)= p z~(z) Fo(z thayvao(3.2.18)taco : X(z) =(1 Z-I)rp(Z2)Xp(Z2) =(1 Z-l (FO(Z2)Z2~(Z2) ~ (Z2))[Xo (Z2»)FO(Z2) Xl(Z2) =(Fo(Z2) +zF;.(Z2) F;.(Z2) +Z-IFo(Z2){X 0(Z2» )\Xl (Z2) =(F(z) Z-lF(Z)(XO(Z: »)X1(z) =F(z)(Xo(Z2) Z-IXl(Z2») =F(z)X(z) V~yM th6nglabfftbie'ntheothaigiandodolO1;liboalias. H" ?~qua: Ne'uh~th6ngla lo~ibo alias,thldieuki~ndn vadud€ khoiphlJ.cloanhaGla ma tr~nchuy€ndaidaphala ffiQtmatr~nyanglamtIe,ho~ctremQts6channhip2k. k ( l O JTp(z)=cz- o 1 ho~cmQts6l6nhip: T (z)=CZ-k-l ( O 1 Jp z o . 58 3.Khai triin tin hi~udung bQ [flC Changmink: BS kh6iph1,1cto~mhilo,taco : X(z) =cz-k-IX(z) 2 2 ~ hay: F(z) =Fo(z ) +zF;(z ) =cz- v~y: FO(Z2)=CZ-k', Fl(Z2)=O hoi[Lc:F; (Z2)=CZ-k'-l, Fo(Z2)=0 ne'u: FO(Z2)=CZ-k', k'chan,tacok'=2kva Fo(z)=cz-k ( l'o(Z) 0 ) ( I 0 )khido: Tp(z)= =CZ-ko l'o(z) o 1 vaM th6ngla lamtrc~2knhjp: X(z) =CZ-2kX(z) 17 ( 2 ) -k'-l F] Z =cz ne'u: k'-I chanhayk' =2k+l, F; (z) =cz-k-] khido,matr~ndaphala : , ( OF, (Z) ) ( 0 Tp(z) = zF1(z) 0 =C Z-k vah~th6ngla lamtr~2k+1nhjp: X(z) =CZ-2k-1X(Z) Z;-l) =CZ-k-{~~) . M~nhd~3.5 rhomQtbQ19C2 kenhH(ymiluxu6ngbdi2 voi matr~ndaphaHp(z),khi do,kh6i ph~clakh6ngcoaliasneuvachineuHp(z)codinhthUGkhac0,noicachkhac,Hp(z) cohc;mgdli la 2. Changmink: Ch<;m atr~nt6ngh<,1pla matr~nph1,1h<,1pcuaHp(z) Gp(z) =cofactor (H(z» taco: Tp(z)=Gp(z)Hp(z)=del (Hp(z».I hiSnnhien Tp(z)la matr~nt1!aYang,dodo, co aliasdu'<,1clo;:liboo daDl;:li,ne'uM th6ngkhOngalias,khidoTp(z)lagiayangnencoh;:lngdula2. SuyraHp(z)coIwngdula2. M~nhd~3.6 rho mQtbQ19Cphantlch FIR, di~uki~nkh6i pht).cloan hao voi 19CFIR du'Qcthoa ne'uvachineudel (Hp(z» la mQtpheplamtr6thu§nlily. Changmink: GiasU'Hp(z)lami)tphept011nlamtr~thuiintuy,chQnbi)IQct6ngh<,1pco Gp(z) =cofactor(H(z» tmhiSnnhientacokh6iph1,1cloanhilovoi IQcFIR (theom~nhde3.5).Bao l;:li,ne'u tacodi~uki~nkh6iph1,1cloanhilovoiIQcFIR tmTp(z)lagiayangtinhtie'n,nghiala ( I 0 ) k ( O I )Tp(z)=Z-kO 1 hOi[LcTp(z)=Z--IZo trongca 2 tru'ongh<,1p,taco : . 59 3.Khaitriin tinhifjudungb(j lClc det(Tp(z»)=det(Gp(z))det(Hp(z»)=z-I vllQc t6ngh<,Jpcling Iii IQcFIR, det(Gp(Z»chi co th~co nghi~mho~cco Qic t(;li0, vii det(Hp(Z))clingv~y. Suy fa det(Hp(Z))la mQtpheplamtn~thu1lntuy. Giua(Hp(Z»va matri;lndieuch€ Hm(z) co m6i lien ht%bdi (3.2.19) 2 1 ( 1 1 J( 1 J Hp('z ) =-Hm(z) -]2 1 -1 z suyra : del (Hm(Z»=-zdet(Hp(l» vi;ly :del (Hm(Z»co d;;mg: del (Hm(Z»= a Z-2k+l Vi;lyn€u det(Hp(Z»khongconghit%mngoai0,del (Hm(Z»clingvi;ly. N6uht%th6ngla khoi ph\lc loan haGkhong co lam tr~,khi do, Hi,Gj =0,1lien ht% rheaGongthuG(3.2.11a): ( Go(Z) J 2 ( H] (-Z) JG](z) - detHm(z) -Ho(z) Go(z) =~Z2k+]H] (z)a G](z)=_~Z2k+]Ho(-z)a . (3.2.21) Nhu'vi;ly,tube)h/cphantichFIR, taKaydvngdu'9cbe)h/ct5ngh9Pdeht%th6ngphan rich/ tangh9Pla khoiph\lcloanhaGkhongbi lamtr~.Tuy nhien,loi giai la khong nhanqua.Decoloigiainhanqua,tanhanGo,G1voithuaso'Z-2k-l,nhu'nght%th6ngla kh6iph\lcloanhaGlamtr~2k+1m~u. Tu'dngttfnhu'trongbiendi~ndapha,k€t qualIenveIO(;libi)aliasclingco du'9ctrong lanhvtfcdieuch€. Tinhit%uxua'tquaht%th6ngsankhiphantich/ t5ngh9Pxettrong lanhvtfcdieuch€ la : 2(z) =~(Go(z) G](z){Ho(z) Ho(-Z» )( X(z) )2 \H](z) H](-z) X(-z) I ( X(z) ) =-(Go (z) G](z»)Hm(z) 2 X( -z) V~yc1ieukit%nde IO(;libi)alias(nghlala thanhph§n aliasX(-z) khongt6nt(;litrongk€t quaxua't)lavectordong(Go(z) G] (z»)Hm(z)cothanhph§nthuhaib~ngO.Hay: { Go(z)Ho (z) +G](z)H] (z) =F(z) (3.2.22) Go (z )H 0(- z) + G] (z )H 1(- z) =0 Nhu'vi;ly,matri;lnTm(z)=Gm(z)Hm(z)co d(;lng , ( F(Z) J Tm(Z)= G,nCz)Hm(z)= F(-z) MQtrongnhungWigiaicho(3.2.22)du'9CdenghibdiCroirier,Estenban,Galandla lQcQMF(quadraturemirrorfilter),trongdo,aliasdu'9clo(;libi): 60 3.Khaitriln tinhi~udungbQ19C [ HJZ)=HO(-Z) Go(z)=Ho(z) Gj(z)=-Hj (z)=-Ho(-z) Nghic$mtrenthoadi~ukic$nGo(z)Ho(-z)+GI(z)HI(-z)=0,dodo,aliasdu'Qclo(;liboo D~cokhoiphvctO~lllhaodi~ukic$nc§nvadula X(z) lake'tquatn~cuaX(z). ~ lr ]x I X(z)=-LGo(z)Ho(z)+Gj (z)Hj(z) (z)=z- X(z)2 hay Go(z)H0(z)+Gj(z)Hj(z)=2z-1 vdilQcQMF,di~ukic$ntrentrathanh H;Cz)- H;(-z) =2z-1 (3.2.24) VdilQcFIR, d€ tha'yr~nglQcHaarthoadi~ukic$n(3.2.24).Ngu'oitachlingminhdu'Qc r~nglQcHaarla lQcFIR duynha'thoa(3.2.24) Tatomt~tcacke'tquav~bQlQcsongtnfcgiaob~ngdinhly sail: DinhIy 3.1 TrangmQtbQlQchaikenhsongtnfcgiao,cacphatbi€u saildayla tu'dngdu'dng: a) hi[-n], g}n-2m])=bli-Jl bln-m] b) Go(z)Ho(z)+Gj (z)Hj(z) =2 va Go(z)Ho(-z)+Gj(z)H](-z)=O c) T.f.Ta=Ta.Ts=I d) GI1I(z)HI1I(z)=HIIl(z)G,nCz)=21 e) Gp(z)Hp(z) =Hp(z)Gp(z) =I J CaebQIQctqic chu§n Trangph~n aytaxetcacbQlQcthoacacrangbuQcsail: a) T(;lo<facd satnfcchuftncho12(Z),nghiala cactinhic$utrong12(Z)co th~khaitri€n trl;l'chuftntheocachamcdsasurdi€n tii'bQlQc. b) BQlQclaFIR. X6tbQlQcphantfch/ tanghQphaikenhvoicachamdaplingxungho,hI,go,gIthoa gi[n] =hi[-n] i =0,1, taxaydl;l'nghamcdsa {(jJk}nhu'sau: (fJ2k[n]=go[n-2k] (3.2.25) (fJ2k+I[n]=gI[n-2k] (3.2.26) Nhu'v~yhamdaplingxungcualQctanghQpla phienbanduonguqcthdigiancua hamdaplingxungcualQcphantich,vacachamcdsala phienbantinhtie'nmQts6 channhipcuahaihamdaplingxungcualQctanghQpgo,gl. d~t qJk=(jJk khid6di~ukic$nd~{(jJk}lamQttnfcchuftntu'dngdu'dngvoidi~ukic$n{qJk,(jJk}la mQt cosatrt1cgiao. , Ne'uM {(jJdt(;lOthanhmQtcdsatnfcchuftn,tanoibQ19Cla trlfcchudn. .1Trt1ehuintronglinhvl,l'cthO'igian VdibQlQcphantfchtanghQptangquatthoadi~ukic$n(3.2.25)va cachamcd sa (3.2.23) 61 III""""" 3.Khaitrain tin hi?u dung bi?19C dliqcdinhnghIabdi (3.2.26),dieDkit%n{lpdt?o thanhme)tcdsd tntcchuffntrdthanh: < gi[n-2k],gAn-21])=bIz-)] bIk-l] vacdsdd6ing~u{ifJk}trungvdi{lpk}nen< hi[n-2k],hAn-21])=bIi--:j]bIk-l] A ~ h 1,matr?n tong <,5pa: --" =TTa TaTs =TaT;=I V~ydieDkit%nlIen tu'dngdu'dngvdi Ta la ma tr?n Unita. N6i cach khac, dieDkit%n thaiphvcloanhaocuame)tbe)IQctntcchuffntu'dngdu'dngvdi matr?nphantichTa Ia matr~nUnita. b~ngcachd~tHi Ia thanhphgntu'dngling vdi kenh i cua be)IQctrongmatr?n phan tichTava Gi Ia thanhphgntu'dngling vdi h~nhi cuabe)IQctrongmatr?nt6ngh<,5pT,s, taco: G- =HT1 1 SHYra : HjH; =5[i - j]I iJ =0,1 V~ytinhit%usaDkhi du'<,5clQcphantichHi'ym~uxu6ng,Iffym~uIen r6i IQct6ngh<,5pd 62 go[O] gIrO] 0 0 go[1] gl[I] 0 0 go[2] gl[2] go[0] gIrO] T =I'" go [3] gl[3] go[1] gl[I]s I'" go[L-I] gl[L-I] go[L-3] gl[L-3] ... 0 0 go[L-2] gl[L-2] ... 0 0 go[L-I] gl[L-I] ... ho[O] hI[0] 0 0 ho[-1] hI[-1] 0 0 ho[-2] hI[-2] ho[O] hI[0] T =I'" ho[-3] hI[-3] ho[-1] hI[-1]s I'" ... ho[1- L] hI[1- L] ho[3- L] hI[3- L] ... 0 0 ho[2-L] hI[2-L] ... 0 0 ho[1-L] hI[1-L] ... 3.Khaitriln tin hi~udung bl}[flC kenhi se du'Qcbi~udiSnb~ngloantd'Mi Y. =Mx=HTH.x1 I I 1 MT =Mva M2 =M1 1 1 1 dodoMi la loanHi'chie'utntcgiao,nhu'v~y,bQlQchai kenhtu'ongli'ngvdi phepchie'u tnfcgiaoxuo'nghaikhonggiancontu'ongli'ngsinhbdicaehamcosd{lpzk}va{lpzk+l} tuongli'ngvdikenh0vakenh1, Dieukit$nkhoiphl,lcloanhllOla : H~Ho+H;H1 =1 BieudiSnTll,Tsdu'did~lllgcacmatr~nkho'ivdiAla matr~nca'p2x 2,dieukit$ntnfc chu5ntrdthanh: K-l" ATA =IL... 1 1 taco 1=0 K-I" AT A =0,L... 1+] 1 ;=0 j=I,...,k-l ,3.2Tqfc chufi'ntrong Ianh v1;icdi~uche' 'firdieukit$ntnjc chu5n,taco : <go[n],go[n+2m])=b'[m] (3.2.26) vip[l]=<go[n],go[n+l])la day tu'ongquailcuaday {go[n]}tC;licacchi so'chanl =2m, d~tp'[m]=p[2m]lala'ym~uxuo'ngbdi2cuap,taco: P'(z)=~[P(ZI/2)+P( -ZI/2)]2 P'(Z2)=~[P(z)+P(-z)]2 vifez)=Go(z)Go(Z-l)nen(3.2.26)trdthanh ~[Go(z)Go(Z-I) +Go(-z)Go (_Z-I)] =12 hay: Go(z)Go(Z-l) +Go(-z)Go (_Z-l) =2 tudngtl1vdi: <go[n],gl[n+2m]) =0 <gl[n],gl[n+2m])=b'[m] G1(z)G](Z-I) +G](-z)G1(_Z-I) =2 GO(z)G1(Z-I) +GO(-z)G1(-Z-I) =o Teenvongtroll donvi, (3.2.27a,b)trdthanh: IG; (elaJr + IG; (el(aJ+1r) r =2 V~ybQlQctnjc chu5nthoadieukit$nt6ngbinhphu'ongbien dQb~ngh~ngso',congQi ladieukit$nSmith-Barnwell.Dieu kit$nlIen duQcdungd~thie'tke'bQlQctnjc chu5n. Viet(3.2.27- 3.2.28)du'didC;lngmatr~n,taco : ( Go(z-]) Go(-z-] ) J( Go(z) G](z) ) = ( 2 0 )G1(Z-1) GJ_Z-l) Go(-z) G](-z) o 2 (3.2.27a) taco: (3.2.27b) (3.2.28) (3.2.29) 63 3.Khaitriin tinhi?u dungb(J19c hay G~(Z-I)Gm(Z)=21 VIhilaphienb~mdaongu9cthaigiancuagilienht$thuclIencoth~dU9Cvie't Hm(Z-I)H~(z)=21 Matr?nthoadieukit$n(3.2.29)dU9CgQila matr?nParaUnita.Ne'ucacthanhph~n cuamatr?nla6ndinh,matr?nlIendU9CgQilabaaloanthongtin(lostless). Matr?nchuy~nd6ila baaloanthongtinthltu'angduangvoibQlQct<:t°ramQtphep bie'nd6itnfcgiao.Vi lQctadangxetla lQcFIR lienmatr?nlabaaloanthongtin. Tir(3.2.27)taco : (G](Z-I )G1(- Z-I)Ytn1cgiaovoi(Go(z)Go(- Z-I)Y. C6 th~chungminhdU9C: G1(z)=_Z-2k+lGO(_Z-I) hay: gI[n]=(-IYgo[2k-l-n] V?y trongmQtbQlQc2 kenhtnfcgiao,m9i19Cdtu du(/csuydiln titmQt19Cduynh{lt. Ngoaifa, doFez)+P(-z) =2 lien lQcphaico chiendai la mQts6ch~n(b6de 3.1). (3.2.30) ,,3Tn;icchu!introng lInh v1;icdapha Matr?ndaphalien ht$voi matr?ndieuche'bdiht$thuc(3.2.20) Gp (z2)=~ ( 1 J( 1 1 ) Gm(z)2 z 1 -1 Dodo, G;(Z')Gp(Z')~~G:(Z-l{: ~r =~G~(Z-l)Gm(Z)2 V?y,ne'ubQlQcla tn1cgiaothl: GJ (Z-l)Gp(Z)=1 tacfingco: Gp(z)GJ(z-1)=1 VdibQlQcphantichcomatr?ndapha: Hp(z)=GJ(Z-I) thl: Gp(z)Hp(z) =Hp (z)Gp(z) =I V?ybQlQctn1cgiaothoadieukit$nkhoiphvcloanhaGkhongtr6nhip. 1.4TomHitcacke'tquavi:bQlQctr1;ichu!in: Dinhly 3.2: TrongmQtbQlQcFIR tnfcchuffnht$s6thlfc,tacocacke'tquasan: a) <gi[-n], gAn+2m])=b[i-j] o[m] ij =0,1 b) Go(z)Go(Z-I)+G1(-Z)GO(-Z-l)=2 va G1(Z)=-Z2k+IGo(-Z-1) c) T,TT,=1'.,1'.,T=I, Ta =T,T d) G~(Z-l)Gm(z)=Gm(z)G~(Z-I) =21,H m(z)=G~(Z-I) z-T J: ~l)Gm(Z) 64 3.Khai trifi'ntin hi~udung b(J lr;c e) G;(Z-I)Gp(Z) =Gp(z)G;(Z-I) =I, Hp(z)=G;(Z-I) LQcFIRtnjcgiaocochiendai1amt)tsO'chillinhub6desan: B6d~3.1 BQ1Qchaikenhtnjc chuffn,FIR, ht%s6th1fCfuoacacHnhcha'tsan: a) Chien dai L cuabt)1Qc1achilli , hayL =2K. b) Bt) 1Qcthoa dieu kit%nSmith-Barnwell ve t6ng blnh phuongbien dt) trenvangtrail donvi. IGo (eim r +IGo (ei(m+JT)r =2 IG1(eimr+IG1 (ei(m+;r)r =2 Ne'u1Qcbangtha'pco nghit%mti;lin nghla1aGo(-1) =0thl Go(1)=J2 LQckenhcaoco th€ duQcSHYdi€n tu 1Qckenhtha'pb~ngcachdao nguQcthaigianvalamtr€ mt)ts616nhip. G1(z) =_Z-2k+1GO(_Z-I) trongdo,2K=L 1achiendai1Qc. Chungmink: a) c) d) Khongmit tinht6ngquat,co th~gilt su cac M s6 cua 19CgoIii go[O],.., go[L-1] di;Lt: p[l]=(go[n],go[n+l])ladaytu'dngquailcuaday{go[n]} thl: p[L-l]= Lgo[n]go[n+L-l]=go[O]go[L-l]:;i:O nEZ b) Mi;Ltkhac,biSnd6izcuap laP(z)=Go(z)GO([I)thoa P(z) +P(-z) =2 do do, cacM s6 b~cchilli cuaP(z) pMi bhg 0, (tn)'p[O]=1). SHYrap[L-1] la hi!?s6b~cIe, hayL chilli Ta cotli (3.2.27a)vdiz=ejm, VIcacM s6cuagoIii thvclien Go(-elm)=Go(eim) taco' Go(elm)Go(ejm)+Go(-elm)Go(-e jm)=2 IGo(ei"r +IGo(ei(mT=2hay tu'dngtv,dung: Co(z)Co(-z) + C1(z)C1(-z) =2 vdi z=eim taco: IGo(ei"f+IG\(ei"f =2 Tli(b),vdiw=0,tacoIGo(lf+IG\(-lf=2,dodo Go(l)=.J2 Xemtrong[1]. c) d) M~nhd~3.7 TrangmQtbQ 1Qctnjc giao, Hang1uQngduQcbaa roan: Ilx112=IIYoI12+IIYll12 Chungminh: NangItiQngcuatinhii!?uxuitlIencackenhla : 65 3.Khaitriln tinhi{!udungbr?19C IIYol12+llyJ2 =~ nYo(ej&r+I~(ej&r~w27r0 (Yo(Z»)Y(z) = =H (z)X (z),, Y,(z) p pvoi taco: ~ f~Yo(ei& ~2 +IY,(ei& ~2~w=~ f[Y(ei&)]"Yo(ei&flw 27r 0 27r 0 =_ 21 f[xp (ei&)]*[Hp (ei&)]"Hp (ei&)xp (ei&flw7r 0 1 2. . . =- f[x (eJ&)jx (eJ&}iw 27r 0 p p = IIxo112+IIxl1l2= Ilxlf (VIHp(z)lEimatr~nParaUnita) . III CAC Be>LOC CO cAU TRUC CAY: BQlQcnhiSukenhco thedu'QCthie'tl~ptli'bQlQc2 kenhb~ngcachl?p l?i vit%ctach tinhit%u(j cackenhcan.MQttru'onghQpthongdvngla l?p l?i vit%ctachtinhit%u(j kt~nht<1nsatha'p.TagQibQlQcnaylabQlQCbatdQ(octavebasefilterbank). x giai dO1)1l2 "~ ~ (a) giai dOI)Il.T ; giai do,!1l1 .. giaidol)ll2 giai dol)l1.T (b) Hlnh 3-5 BQ h.>cbat dQquaJ giai do~n,voi phan fa thanhcac kh6nggian con tntc giao. ~=~+1EB~+1'Ne'uHi[n] la illQt lQc tntc giao vdi gi[n] =hi[-n]ca'utrucbatdQtfent~ofa khaitri6n tntcchuifn chu6iWaveletfCiif~C.(a)Phiin phantich.(b) Phiin t6nghqp. III.! B(ilQCbatdOvachu&iWaveletrO'ir~c: X6tbQlQcnhu'(j hlnh 3.5ta tha'ytin hit%udu'Qcphantachthanh2 nhanhqua IDQtbQ 66 3.Khaitriln tinhi~udunghi?l(Jc IQc2 kenh,saud6ph~ntinhit$ud kenhthffpIf;liduQctachlamhaivdi cungmQtbQ IQC,va cli tie'pt~c.Gia sabQIQcthoaDietlkit$nkhaiphl,lCtoanbaa,tasethffycffu trucnaycaid?tchu6iWaveletroi rf;lcsongtntcgiao.Ne'ubQIQcla tntcchu§'n,tase duQchu6iWaveletroi rf;lctntcchu§'n. Trangca2 tru'onghQpsongtntcgiaova tntcchu§'n,ht$cosd duQcsuydi€n titcac hamGaplingxungcuabQIQct6nghQp.VI V?ytase t?PtrungvaobQIQct6nghQp. Vi dl:l: Xet IQc Haar vdi cac ham Gapling xungdinhnghlad (3.1.9)cac bie'nd6i z tttongungla:Go(z)=~(l+Z-)~ G)(z)=~(l-Z-)) I Taxetquatrlnht6nghQpnhudhlnhve (3.5b),quaJ =3giaidof;ln,nhuV?y,tadung3 bQIQchaikenh.Vi IQcbdiG(z)saud6Iffymfiulenbdi2thltu'ongduongvdi Iffymfiu lenbdi2 nSiIQcbdi G(l) lienquatrmhtrentuongduongvdi bQIQc4 kenhvdi cac IQc: G(1)(z)=G(z)=~ (l-z-) ) ) ) 12 G?)(z) =Go(z)G)(z2)=~(I+Z-)_Z-2_Z-3)2 G?)(z) =Go (z)Go (Z2)G) (Z4)= If,. (1+z-1+Z-2+Z-3 _Z-4 _Z-5 _Z-6 _Z-7)2...;2 G~3)(z)=Go(z)Go(Z2)Go(Z4)= If,. (1+z-) +Z-2+Z-3+Z-4+Z-5+Z-6+Z-7) " 2...;2 duQcthltchit$nsailkhi tinhit$udil duQcIffymfiul~nluQtbdi2,4,8,8. CaehamGaplingxungduQcrutrab~ngcachIffybie'nd6iznguQc. Takyhit$ug6k)[n]la hamGaplingxungtuonglingvdi quatrlnhIQCk giaidof;lnd bangthffp,m6igiai dof;lnduQcthltchit$nsaukhi tinhit$uduQcIffymfiu!enbdi 2. g;k)[n]lahamGaplingxunglingvdiIQcbangcaotheosaubdik-I giaidof;lnIQc bangthffp,dm6igiaidof;lndeliduQcthltchit$ntru'dcb~ngphepIffymfiuIenbdi2. ) 2./2(1,1,1,1,1,1,1,1) 1 2 (I, I, -I, -1) . 1 2./2(1,1,1,1,-1,-1,-1,-1) Hlnh 3-6 BQh?cbatdQtangh(jpvdilQcHaarvaqua3giaidoliln. Trangvi d~tn3n,tac6 : 67 3.Khaitriln tinhi~itdungbQlQc 2 2 k G63)(Z)=Go(z2)G62)(Z)=flGo(22 ) k=O 2 2) k G?)(z)=G) (Z2 )G~2)(Z)=G1(Z2 )flGO(z2 ) k=O hayt6ngquat: J-) k G6J)(Z) =flGo(Z2 ) k=O (3.3.1) J-2 (J) 2J-) fl 2kGj (z)=G) (z ) Go(z ) k=O vih~th6ng1atnfcchu§'n,lienmatr?nphantichTavamatr?nt6nghQpT.51achuyen vi clla nhau. Ma tr?n phan tich bien di6n bdi cac ham dap U'ngxung h;1)[n],h;2)[n],h;3)[n],h63)[n],g8mcacdongchU'acach~so'cuacachamtren,Ta co d~ng: (3.3.2) AO Ta= AO Matr?nnay rho tha'y1Qcg?)[n] du'Qcthtfchi~nsankhi 1a'ym~u1enbdi 2 (dongsan du'Qcdichph,h2 cQtsovdidongtru'dcdo), g)2[n]du'Qcthtfchi~nsankhi1a'ym~u!en bdi4, gj(3),g63)du'Qcthtfchi~nsankhi 1a'ym~u1enbdi 8. Xettheokhia qmh thaigian,xua'tli~ucuah~th6ngd hinh (3.5a)trentungkenhdu'QC viet1a: HpH)L-)X j =1,2,...,J-1 vaakenhcu6irung 13: H; x trangdoHo,H] 1acacmatr;!in1Qctu'dngungvai 2kenhlQcth5pva caD. 68 trongdo 2 -2 0 0 0 0 0 0 0 0 2 -2 0 0 0 0 0 0 0 0 2 -2 0 0 A = 0 0 0 0 0 0 2 -2 0 2.fi .fi.fi -.fi -.fi 0 0 0 0 0 0 0 0 .fi.fi - .fi - .fi 1 1 1 1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 3.Khaitriln tinhi~udungb(J l(Jc Ma tr?n phan rich Ta co duQcb~ngcach xen ke cac dong cua cac ma tr?n HpH]Ho,...,H]H;-I,H; 1 I... 1 -1 0 0 H=- 1 2J21... 0 0 1 - 1 ... H =~I'" 1 1 0 0 ... 0 J21... 0 0 1 1 ... 11... 1 1 -1 -1 0 0 0 0 HI H 0=- 21... 0 0 0 0 1 1 -1 -1 ... 2 1 I... 1 1 1 1 -1 -1 -1 -1 0 0 ... H]HO = f,..,2'\/21... 0 0 0 0 0 0 0 0 1 1 ... 1 I... 1 1 1 1 1 1 1 1 0 0 ... H3=- 0 2J21... 0 0 0 0 0 0 0 0 1 1 ... 1 Chu6iWaveletrO'ir~c TruonghQpHaar vila xet la mQttruong hQpd?c bit%tcua chu6i Wavelet roi r<:ic.Trang phgnay,tase t6ngquathoakhai nit%mchu6iWaveletroi r<:icvdi lQctn!cchu§'nba't ky. X6tbQlQc2 kenh tn!c chu§'nvdi cac lQc ho,hI, go,gI trongdo hi[n]= gi[-n]. Lam tl!dngtVnhutrlionghQpHaard phgnlIen,tinhit%ungu6ncothe'duQcvie'tla : x[n]=Lx(1)[2k+I]g?)[n- 2] k] +Lx(1)[2k]g61)[n- 21k] ~Z ~Z (3.3.3) Trangdo: x(1)[2k]=(h6])[2]k -/],x[l]) x(1)[2k+1]=(hl(1)[2]k -I], x[/]) \ake'tquaclla phep lQc qua ho,hIcua tin hit%ungu6n x t<:iicac chi s(f chan, vdi 69 3.Khaitriin tinhi~udungbQ lQe he])=h h(1)=h0 0' 'II Tinhi~uxua'td kenhtha'px(l)[2k]l~idu'Qctachthanh2 kenhtha'pvacao,dodothanh phhthlihaid vephaiCl1a(3.3.3)trdthanh: Lx(1)[2k]h~I)[2jk - n]=L xe2)[2k+1]gle2)[n- 21k] +L xe2)[2k]g~2)[n- 21k] ~Z ~Z ~Z (3.3.4) vdi: xe2)[2k]=\hC;2)[22 k -7], x[l]) xe2)[2k + 1]= \hle2)[22k -7], x[l]) Nghlala taapdvng(3.3.3)themmQtl~nmla.g62)[n]la phienbancuaphepIQcd kenhtha'phail~nkethelpvoi la'ym~ulen,nghlala G62)(z) cod~ng: G62) (z) =Go(z)Go(Z2) congle2)[n]tu'dnglingvoi la'ym~ulen,IQcquabangcaor6iquabangtha'p: Gje2)(z)=Go(z)GI(Z2) xetrheathaigian,(3.3.3)cothSdu'QCvietl~ithanhtinhi~ut6nghelptu3kenh: x[n]=2:>(1)[2k+1]g?)[n-2Ik] kEZ +I>e2)[2k+l]gle2)[n-22k]+Lxe2)[2k]g62)[22k-n] kEZ kEZ (3.3.5) Tie'ptvcquatdnh(3.3.5)J l~n, tadu'QCchu6iWaveletrai r~cvoi J batdQ,clingvoi batdQcu6iclingvoiphienbant~ns6tha'p,(3.3.5)trdthanh: x[n]~ ~(~x(j'[2k +l]g?'[ n - 21k] ) +~X"'[2k ]g~J'[n- 2J k](33.6) trongdo, XU) [2k+1]=\h?) [2f k -7], x[l]) xeJ)[2k] =\h~J)[2J k -7], x[l]) j=1,...,J (3.3.7) Trangcongthlic(3.3.6)kS tren,day g?)[n] la phienbanrheathaigiancua(3.3.2), cong6J)[n]la phienbantheothaigiancua(3.3.1). VIffiQiday {x[n]}deli co thSdu'Qckhai triSnthanhchu6irheacongthlic (3.3.7)lien t~pIH/p{g?)[21k - n],gi2)[22k - n],...,gf)[2Jk- n],gf)[2J k -n]} k,nE Z tflo thank m(JtCdsa tTlleehudn eua l2(Z) Netd?ctIlingcuachu6iWaveletrai r~clacachla'ym~u.KS tukenhthli2trddi,m6i b~nhduQcla'ym~uxu6ngbdi2 sovoi kenhtruocdo,vacodQrQnggiaithonggiam xu6ngmQtmh sovoikenhtruoc.Cachla'ym~unayco thSdu'QcbiSudi€n bdihlnh (3.7)vaduQcgQila lily miiulu:dinh,it6: 70 .....- 3.Khaitriln tinhi~udungbQh?c 9 + 10 11 12 13 14 15 16 I I I I I I I . . . mnh 3- 7 Lu'oin~ to'dungtrongchu6iwaveletri'1irl;lc.Trong lllnh la cac 4nh tie'nCliacacham cd sa gif) j =l,J va g?). Cac chii'm tu'dng«ng voi phep lii'u miiu cua chu6i Wavelet. 2.1CaeHnhcha'tcua'chu6iWavelet rO'ir~c : -Tuye'nfink : Vlchu6iWaveletroir~cchibaagdmph§ntichtrongvatichch~pla caeloantU'tuyen tinh,nentuyentinh. (x+y)Cf)[2k +1]=xU) [2k +1]+yU) [2k +1] (x+y)V)[2k]=x(J)[2k]+ yeJ) [2k] -finklien MQth~tho'ngdato'cthu'ongkhongbfftbientheopheptinhlienngang,trongmQth<$ th6ngvoibQlQchaikt~nhIffym~uxuo'ngbdi 2 taco sVbfftbienvoi pheptinhlien ngangffiQtso'channhip.VI v~ycothehinhdungmQtchu6iWaveletroir~cJ-batdQ seba'tbientheopheptinh lien k.2Jnhip,va bien d6i khi tinhlien mQtso'nhipkhong cod~ngk.2J.Hinh ve (3.7)chothffykhi ta tinh lien quamQtbQi so'cua 2J, cac diem tronghioi se changkhit leu chinhno, di~udo khongxay ra khi tinh lien quamQtso' khacbQicuak.2J. M<$nhd~sandaysechungminhl~plu~ncotmhtrlfcquanlIen. M~nhd~3.8 TrangffiQtkhaitri~nchu6iWaveletJbat dQ,neu: x[l]Bxw[2k+l] , j=I,2,...,J x[l- m2J]B xU)[2(k - m2J)+1]thi Changmink: Ne'uy[l] =x[1-m2J)tmcaeM so'khaitri~nchu6iWavelet,heocongthuc(3.3.14)Hi: yU)[2k+1]=(h1W[2jk -I], x[l- m2J]) =(h1U)[2jk-l' -m2J],x[I']) =xU)[2j(k-m2J-i)+1) Lamtu'dngtl,idkenhthftptaseeo: y(J) [2k]=x(J) [2(k-m)] . -Trl,lcgiao: Caehamgf)[n] va gjeJ)[n],j =1,...,Jva cacbansaotinhlien thichhQpt~othanh ffiQt~ptrt!'cchuffn,di~udocodu'Qclavi cachamlIendu'QCxaydvngtirbQIQctrvc chugn,trongdo : 71 0 1 2 3 4 5 6 7 8 I I I I I I I I I g\I) . . . . . g\2) . . . g\3) . . g\4) . g&4) . . . . . . . 3.Khai triln tin hi?u dung bQ 19C (g i [ n - 2k], g] [ n - 21]) = 5[ i - j]5[ k -I] M~nh d~ 3.9 Trangm9tkhaitrienWaveletroir?c,tacocacd~ngthlicvetrt1cgiaosan: (gf)[n - 2J k],g~J)[n- 2J 1])=5[k -I] (g;J)[n - 2]k],g?)[n - 2'I]) =5[i - j]5[k -I] (gf)[n - 2J k],g;f)[n - 2fI]) =0 Changminh: Ta ch(ingminhbhg quyn'ilP Xet 19Cg~])voi biSn d6i Ztu'dngung la G~]).G9i pC])la day tl! tu'dngquancua day g~]), voi biSn d6i z la pu) till : pC;)(z)=G~1)(z)G~;)(_Z-I) VI {go[n]}la tn!cgiaovoi pheptinhtiSnquaffiqts6 chan,taSHYra p(I)(Z)+p(l)(-z) =2 V~ycac M s6b~cchancua pCI)(z) biing0,nga'ilitnl p(1)[O]=1. Do d6, thanhphin daphadiu W~ncua p(1)(z) bhg 1. p(1)(z)c6 thSdu'<;1cviSt la : p(1) =l+z~(1)(z2) GilLsa g~f)[n]tn!cgiaavoi g~f)[n-mi], khid6daytvtu'dngquanc6thSdli<;1cviStla 2f-I . pU) (z) =1+L z' p,U)(Z21) ;=1 vI: G~j+l)(z) = G~1)(z)Go (Z2] ) pU+1)(z) =pU) (z)p(1) (Z2f)nen: =(1+~Zip'(j)(Z2f ))(1+Z2f~(I)(Z2f+I)) Ta dn ch(ingminhthanhphitndaphath(i0 cuap!J+I)(Z)biing1,nghlala cach~s6 f+1 lingvoi Z2 'bhg O.Trangrichd vSphai,tachidn xetrichs6chuathanhphitnda pha. 21-] .. .+1L z' p,U)(z 2])022]~(l)(Z2J ) ;=1 sO'mil cuaZtrongrichs6 lIen c6 d'ilng: l =i +ki +i +mi+1 trongd6i =0, i-I, k,mEZ v~yl khongthSla bqis6cuai+l, dod6: 2]+1 pi+!(z) =1+L Zi p,U+l) (z2f+1) ;=1 tom l<:tibiing quy IWP, ta chung minh du'<;1c: 2] -) . pi(z)=I+Lzip,U)(z2]) )=1,...,1 ;=1 Nghlala g6]) trvc giaovoi g6])[n-ki] 72 3.Khaitriin tinhi~udunghi?[(lC . D~ngthucParseval: Vi t?Ph9P {gf)[n],g?)[n]},j=1,...,Jla tntcchugn,hdnnuabQlQcla khoiphvcloan haonent?Ph9PlIen la d~ydu,t~othanhmQtcdsdtn,(cchugncua12(Z).Dodo,taco d~ngthlicParseval,: 11x[n~I' =&=, (lx(J) [2kf +tIxU) [2k + 1]1'J II.3BQIQCbatdQvacdche'phdngiaidacd'p BQlQcHaarvaSinccod~cdiemtinhi~udu'9Ctachthanh2phienban: phienbantho vaphienbansaibit?tdekhoiphvcchitie'ttuphienbantho.Phienbantholingvai ph~nt~nsr5tha'pcodQphangiaitha'pvaphienbansaibi~tlingvai ph~nta'nsr5cao euatinhi~ungu6n.Ne'utatie'ptvcphantichph~ntinhi~uthot~nsr5tha'pthanh2 kenhvaiclingbQlQCvaapdvngd~quynhi€u bu'ac,tadu'9CmQtcayphanca'pcacdQ phangiai, con gQi la ph~nra da phangiai hay phanra dQphangiai phanca'p (multiresolutiondecomposition).Cdche'phanradaphangiaiconhi€u lingdvngtrong xalytinhit?unhu'lienanh,lientinhi~uVideo. d~t Va=12(Z). ffiQtphantichaaphangidibaog6mmQtdaycackhonggiancondong16ngnhau. Vj c CV2CVICVO Wj+1la ph~nbli tntc giao cua Vj+Itrong Vj, Vj =Wj+1EB Vj+1 J U Vj =Vo j~O giiistY{go[n]}la mQtph~ntU"cua Vasaocho {go[n-l]tz la mQtcd sd cua Va. {go[n- 2k]tz lamQtcd sdcuaVI. b~ngeachd~t : gl[n]=(-It go[-n+1] (*) thlhi€nnhien: (go[n-2k],gl[n-21])=0 nghlal : {gl[~- 21]}IEZC ~ valamQtcdsdcuaWI. V~y: (go[n- 2k],gl[n- 21])k,IEZt~othanhmQtcdsdcuaVa. Tavie't Va=VI EB WI PhantichVIthanhV2EBW2va tie'ptvcquatrinhnaytadu'9C Va=WI EB W2EB ""'" EB Wj EB Vj XetbQlQcbatde)d hlnh(3.5a),lQcphantichla phienbandaongu'9cthai giancualQc t6nghQp. Vlv~y,pheplQcd kenh1,2,...,J+11ala'ytichch?p,chinhla tichvo huangcuatinhi~u gQI taeo va 73 3.Khaitriln tinhi~udunghi) IflC ngu8nvdi dic hamcd s6cua W},Wz,...,WJvaVJ. Tin hi<$usankhi du'Qct6nghQpvdi cac lQc t6nghQp,ta du'Qcke'tqua la hlnh chie'u trQ'cgiaocuatinhi<$ungu8nxu6ngcackhonggianconW1,WZ,...,WJvaVJ. V~ytinhi<$ungu8ndu'Qcphanra thanhphienban tho6 trongVJ va cac chi tie'tthem vao6 Wi, i =1,...J. Tangcllacacthanhphgnthovacacthanhphgnchitie'tthemVaGkhoiphvctinhi<$u ngu8nbandgu. TagQiVJ lakhonggianxa'pxi vaWjla cackhonggianchitie't. Quatrlnhkhoiphvctinhi<$ungu8ndu'Qcthlfchi<$nnhu'san:Tab~tdguvdiphienban thodQphangiaitha'ptrongVJ,sand6b6sungthemchitie'tva tie'ptvcquatrlnhli[lp chode'nkhid?tdu'QcdQphangiaicaDnha'tcu6irung. Vidl,l: Bi) IflC hat di) dung IflC sinc. LQcsincsli'dvngbQlQcg8mlQcnli'arhobangtha'pqua19tu'6ngc6tgnso'dt nIl va lQchobangcaDqualy tu'6ng.KhonggianVo=h(z)co~h6trendo~n(-n,n).Vodu'~c tachdoithanhVI EJjWI vdi VI tren(-nl2,nl2),WI trenkhoangconl~i.VI l?i duQC phantichthanhV2tren(-n/4,n/4)... _V2-' Vl- Vo~ ., ... VIWI'... W2 WI ~... n n n ? 21-1 4" n 2 n (j) ffinh 3-8 Chu6i Wavelet rdi r~edung1gesineco phiin cat ph6 1)'tuf1ng,khong gian Vi duWi+lling vdi ph6 ~ tudngling vdi ph6 [O,nl2!]du<Je phiincat thanh[O,nI2!+1]va[nl2J+\nI2!] tudngling 1ftn11«JtvOiV!+lva WJ+l. K A', A AI THIET KE CAC BO LOC TRfjC CHUAN : Trangphgnnaytasexetde'n2 cachthie'tke'lQctrlfcchu§'n,cachthlinha'tdlfatren phuongphapphantichthanhthuaso',va cachthlihaidlfatrenca'utrucgi~m.Ta se thie'tke'caclQct6nghQp,VIbQlQcla trlfcchu§'n encaclQcphantichc6thesuytu lQctanghQpb;}ngcachdaDnguQcthaigian: hi[n]=gi [-n]. M~nhde3.10 Choh lahamGaplingxungcuamQtlQCvapIa daytVtu'dngquailcuah. p[m]=(h[n],h[n+m]) Giiisli'p tu'dnglingvdi lQcFIR. Khi d6bie'nd6izcuap c6d?ng: 74 3.Khaitriin tinhi~udunghi) l(Jc v~y y'[ZI,Z2]= Ly[n;,n;](ZIZ2rn;(Zlz;}rn~ =Y(ZIZ2,ZIZ;}) Y(ZjZ2'Z}Z;I)=!(X(ZpZ2) +X(-Zp-Z2)) 2 d~t tadu'Qc -I Z2 =ZIZ2Z} =ZIZ2 ; Y(z;,z;) =~(X«z; )1/2(z;Y/2,(z;Y/2(z; rl/2) +X( -(z; )1/2(z; )1/2,-(z; )1/2(z;rl/2): Y(Z Z ) =! (X(ZI/2ZI/2 ZI/2Z-I/2) +X(_ZI/2ZI/2 _ZI/2Z-I/2)) 1'2212'12 12'12 ke'tie'ptaxettru'onghQpH(ym~u1en: [z Z ]= { x[n;,n;] ne'unl =n;+n;, n2=n;-n~ y l' 2 0 ndi khac 1 [ n}+n2 nl - n2 ] A' ' h - h ~ , I ? = x 2 ' 2 neu n},n2clingc an °<;lccunge 0 ndi khac bie'nd6izduQctinhdedang1a: Y(z) =X(ZIZ2'ZIZ;I) ke'tquasankhi 1a'ym~uxudng,sando 1a'ym~u1enSHYtir (1)va (2)1a: { X[nl,n2] ne'un I +n2chan y[npn2]= 0 d' kh'n 1 ac 1 Y(zpzJ =-(X(zpzJ +X(-Zp-Z2»2 [tacoth€ tinhtnfctie'p(3.5.1)tir (*)) hay Thie'tke'bc)1Qcnhi~uchi~u: Vi~cthie'tke'cacht%thdngkhongtachduQCkho khanhdn truonghQpmQtchien.Ta sexet2tru'onghQp: tachduQcva khongtachduQC. 83 (1) (2) (3.5.1) 3.Khaitriin tinhi~udungb(j lQc Nu N N Fez) =an((1- ZiZ-1XI- ZiZ))n (1- ZZiZ-I)n (1- Z;iZ) ;=1 ;=! ;=1 TOngd6 Nu la so'nghi~mtrenvongtrondonvi, N la so'nghi~mbentrongvongtrondonvi, Zli la cacnghi~mtrenvongtrondonvi IZliI=1, Z2i lacacnghi~mbentrongvongtrondonvi IZZil<1va 1/z;; la cacnghi~mn~mngoaivongtrondonvi. 'hztngmink : ~ BiSn d6i Fouriercuap la : P(ej<V)=fp[n]e-j"" =ffh'[k]h[k+n]e-j"" n=-" n=-.,k=., = f fh'[k]h[k +n]e-j""k=-.,n=-., ., ., = L Lh'[k]ej<Vkh[k+n]e-j<V(k+n)k=-.,n=-., ., ro = Lh'Ck]ejd>kLh[k+n]e-j<V(k+n)k=-" n=-" =H'(ej<v)H(ej")=IH(ej"r v~y p[m]=(h[n],h[n+m])~ P(ej<V)=jH(ej<vf BiSnd6izcuap la : p(z)=~>[n]z-n=f fh'[k]h[k +n]z-nn=-.,k=-., ., ., =LLh"[k]zkh[k+n]z-(n+k)k=-.,n=-., =fh'[k](l/ zt Ih[k +n]z-(n+k) k=-ro n=-'" =H.(l/z}H(z) V~y, p[m]=(h[n],h[n+m])~ P(z)=H(z)H.(l/z) . voi It (z)ladathuctheozcocaeM s6la lienh<;fpcuacaeh~s6trongdathuc H(z). Tirrangthuctren,ne'uZkla mQtnghi~mcua P thl 1/z; dIng la nghi~mcua P. Khi h[n]Iiidaythl!c,ne'uZklanghi~mcuaH(z)thl z;,1/Zk,1/z; clinglanghi~mcuaP(z). DoIylu~ntren,P(z) c6 d~.lllg: Fez)=aIT(1- ZliZ-1XI- zliz)fI (1- ZZiZ-I)fI (1- Z;iZ) i=1 i=1 i=1 TllrangthuclIen, ta c6 the tlm H(z), cach lam nay gQi la phan rich thanhthila so'. H(z)duQcgQila thila56'ph6 . Cac thuaso'ph6thl khongduynha't.MQt trongnhung IdjgiiiichoH(z)du'QchQnc6d~ng: N" N H(z) =Fan (1- ZIiZ-I)TI (1- ZZiZ-I) i=1i=! Trangdo,tachQnZ2ila cacnghi~mn~mbentrongvongtron,Zlila cacnghi~mtren 75 3.Khai triin tin hifU dung be?IflC vangtrail,Nula s6nghi~mtrenvangtraildonvi vaN la s6nghi~mbelltrongvang trolldonvi V.l Thie'tke'b{)IQcb5ngcachphfintfchthanhthitas{f: Dungphu'ongphap'phantichthanhthU'as6,tacothethi€t k€ cacbQlQcthoamanmQt s({yetidu chotruck.Debauchiesthi€t k€ hQcaclQcthoadiSuki~nph~ngt6i da (maximallyHatfilters).LQcDebauchiesdaihoi lQckenhtha'pconghi~mbQit6ida t?i OJ=;rr,noicachkhac,daytv Wongquailcobi€n d6iFourierconhiSunghi~mt~i w=;rr(hayt~i~=-1). NgoairaVI P(z) +P(-z) =2 nenP(z)cod~ng: Fez)=(l+z-1Y(I+zYR(z) trongdoR(z) d6i xling (R(z)=R(z-1))va du'ongtrenvangtrail donvi. X6t tru'ongh9P R(z)cob?ct6i thi€u, cacs6h~ngcos6miltU'-k+1d€n k -1 . Khi dovoi rangbuQc tren,tacothetImdu'9CGo(z) Vidu :TimlQcD2tronghQlQcDebauchies Vdik=2lingvoi19ccochiSudai4,P(z) cod~ng Fez)=Go(z)Go(Z~l)=(1+Z-l Y (1+zY R(z) VdirangbuQcb?ct6ithi€u choR(z),R(z) cod~ng: R(z)=az+b+az~l v~y:P(z)=az3+(4a+b)z2+(7a+4b)z+(8a+6b)+(4b+7a)z~1+(b+4a)z-2+az-3 do(*),cach~s6b?cchancuaP(z)b5ng0vap[O]=I,taco : 4a+b=O 8a+6b=1 1 1 a=-- b=- 16' 4 1 1 1 -] R(z) =--z +---z 16 4 16 phantichR(z)thanhthU'as6,tacothechQn: R(z){~-J[1 +v'3 +(1- v'3 )d~+v'3 +(1- v'3 )z] chQncacnghi~md trongvangtraildonvi,setu'onglingvoi lQcbangtha'p: Go(z)=4~(I+Z-1Y[I+./3+(I-./3)Z-I] Go(z)= 1",[1+./3+(3+./3)Z-1+(3_./3)Z-2+(I-./3)z-3]4'\12 (*) hay [ 3]= [ 1+./33+./33-./3 1-./3 :go0.. 4J2' 4J2' 4J2' 4J2 76 3.Khaitrilfntinhi~udungbq h;c g[-2..1]= [ I-J3, _3-J3, 3+J3, _1+J3 ]1 4.[2 4.[2 4.[2 4.[2 Vi du : xet tru'onghQpphlic t<:iPhdn, k =3ling vdi lQcD3co chieudai 6,P(z)co d<:ing: Fez)=(l+z-1Y(I+zY R(z) vdirangbuQcbellct6i thieuchoR(z),R(z)co d<:ing: R(z)=az2 +bz+c+bz-1+az-2 tatinhdu'QcP(z)=(z3+6Z2+15z+20+15z-1+6z-2+z-3Xaz2+bz+c+bz-1+az-2) =az5+6az4+15az3+20az2+15az+6a+az-I +bz4+6bz3+15bz2+20bz+15b+6bz-I+bz-2 +cz3+6cz2+15cz+20c+15cz-1+6cz-2+cz-3 +bz2+6bz+15b+20bz-1+15bz-2+6bz-3+bz-4 +az+6a+15az-1+20az-2+15az-3+6az-4+az-5 =az5+(6a+b)Z4+(15a+6b+C)Z3+(20a+16b+6C)Z2 +(16a+26b+15c)z+(12a+30b+20c)+(16a+26b+15c)Z-1 +(20a+16b+6C)Z-2+(15a+6b+C)Z-3+(6a+b)Z-4+az-5 vip[2k]=0trup[O]=I,taco : { 6a+b=0 lOa+8b+3c=0 giiiih<$,tadu'Qc 6a +15b+10c=1 R(z) =~(3Z2 -18z +38-18z-1+3z-2)128 philntichthanhthuaso',gQia,fJla cacnghi<$mbelltrongvongtrollddnvi, taco: R(z)=A2(1- az-l)(1- fJz-l)(1-az)(I- fJz) R(z) =A2(afJz-2 - (a + 13)(1+afJ)z-1 + 1+(a +13)2 +a2132- (a +13)(1+ap)z +afJz2) d6ngnha'th<$so',ta du'QC: [ A2.afJ=3/128 A 2.(1+afJ)(a +13)=9/64 A2.(1+a 2132+(a+13)2)=19/64 giiiiMphu'dngtrinhtrentadu'Qc: A =1+.Jlo +~5+2.Jlo , 16.[2 a +13=- 8+3.Jlo+6~5+2.Jlo 1+.Jlo +~5 + 2.Jlo afJ =1+.Jlo- 5~5+2.Jlo 1+.Jlo +~5+2.Jlo f a=3/128 b =-9/64 c=19/64 77 3.Khai triin tin hifju dung b(J lQc Vlv~y: Go(z)=(1- Z-1)3A(I- (a +f3)Z-l+af3z-2) =A(I- 3z-1+3z-2- Z-3)(1- (a +P)Z-I +apz-2) =A(I-(3+a+ f3)Z-1+(3(a +f3+1)+ap)z-2 +[3af3- 3(a+f3)-1]z-3 +(3af3+a +p)z-4 - af3z-5) ThaycacgiatrivaotaduQc: [0]=1+J1o +.Js +2J1o go 1612 [1]=5+J1o +3fs +2J1o go 1612 [2]=10- 2J1o+2J5 +2J1o go 1612 [3]=10- 2J1o - 2J5 +2J1o go 1612 [4]=5+J1o- 3)5+2J1o go 1612 go[5]=1+.J1o- J5+2.J1o 1612 .2 Thie'tke' IQc b~ng phlidng phap phan tich thanh thita s6 ki~u gian (lattice factorizations). Matr~ndaphaCl1amQtlQcFIR co chieudai L =2K cod~ng ( Goo(Z) GlO(Z) ] Gp(z)= GOI (z) Gl1 (z) trangd6GI(z)=_Z2k+l1GO(_Z-I) lamatr~nkhongma'thongtin.Ma tr~ntrencothe' dl1qcphantlchthanhthuas6cacmatr~nquaynhu'sau(xem[1]): ( Goo(Z) GlO(Z) ] [n k-I ( 1 ) ] Gp(z)= =Uo I U; GOI (z) Gl1 (z) ;=1 z- Ui = ( c~sai -sinai ]smai cosa; Apd\lllgcacca'utrucphiintlchtren,taco the'thie'tke'bQlQcDz chieudai 4, k =2 matr~nGp la : G (Z)= ( c~sao -Sinao J( 1 - J( c~sal -Sinal ]p smao casaD Z I smal casal ( .. -I .. -I J casaDcasal- smaosmalz - casaDsmal - smaocasalz = sinaocasal +casaosinalz-I -sinaosinal +casaocasalz-I trongd6: 78 3.Khaitriln tinhiiju dungb(}lQc lQckenhtha'pla : Go(z) =Goo(Z2) + z-IGOI (Z2) . =cosaocosal+sinaocosalz-]-sinaosinalz-2+cosaosinalz-3 lQcD2co nghic$mdenca'p2 t;;tiz=-1, dodo : { Go(-I~=casaDcasal- casalsinao- sinatsinao- sina]casaD=0 (1) dGo(e) 1 (=casalsmao+2smatsmao+3smalcasaD=0 2) dO) 0) =:rc (1)tuongduongvoi : cos(ao+a])- sin(ao+al) =0 hay ao +a] =k:rc+:rc4 VI: Go(1)=J2 nen: :rc ao+al ="4 thayvao(2)tadU9C: :rc :rc a =- a =-- 0 4'] 12 Go(z)tra thanh : Go(z)=cos(:rc/3)cos(-:rc/12)-sin(:rc/3)sin(-:rc/I2 )Z-I - sin(:rc/3)sin(-:rc/I2 )Z-2 +cos(:rc/3)sin(-:rc/I2 )Z-3 Go(z) = 1",(1+.J3 +(3- .J3)Z-1+(3- .J3)Z-2+(1- .J3)Z-3)4,,2 D6chinhla lQcDebanchiesD2ta da timdU9Cd tIeDb~ngphuongphapphanrich thanhthuasd. BOLOC NHIEU CHIEU: U'ymill trongkhonggianmchit~u: La'ym~utrongkh6'ngianmchiendU9Cth1!chic$nhokhainic$mgian. Djnhnghja3.3 Gian: ChoaI,a2,...,amla n vectodQcl~ptuyentinh.T~ph9PS ta'tcacact6 h9PtnyentinhcuaaI,a2,...,amvoicachc$sdngnyendU9cgQilamQtgian. GQiD la matr~nvoicacvectocQtlaaI,a2,...,amthlgianS noitIeDCOd;;tng: S ={Dk / k E Zm} tanoiD la matr~nxacdinhquatrinht;;tOmill, haymatr~nbiendieDgian. Tangquat,tanoit~ph9Pcacvectok la giannh~p(trongtru'ongh9PgiantIeD laZm)vat~ph9PcacDk lagianxna't. Giantachd~(C!c: lagiancothedU9CbiendieDb~ngmQtmatr~nduongcheo. M(}te'baadanv,i: la t~ph9PcacdiemsacchohQicacgianxna'tinhlienden 79 3.Khaitriln tinhi~udungbi?lQc ta'tcacacdiemtrongte'baat~othanhgiannh~p.so'phgntd'trongmQte'baa donvi biendi~ndQthu'acuaquatrinht~omfiuvadu'Qcxacdinhbiing N =del (D) MQtcosetla ke'tquacuapheptj1lhtie'nmQtgianxua'tde'nmQtdiemba'tky trongte'baa donvi. Ne'ute'baa donvi co N =del (D) phgntd'thl co dungN cosetphanbi<$t,hQicuaN cosetnaykhoiph\lcl~igiannh~p. Mi?tgiandaocuamQtgianco matr~nbiendi~nD la gianco matr~nbien di~n Dr=(D-l)T Mi?tte'baaVoronoila te'baadonvi cocacphgntd'ggnnha'tvdi tam.Ne'utin hi<$udn t~omfiutrongmientgn so'cobangthongbi ch~ntrongmQtte'baa donvi, cacph6sekhonghungHiplennhauva tinhi<$uco thedu'QCph\lch6i titcaemfiudu'Qct~o. D2 ~ D. DI Im . I -A +......-« , y (a) (b) ffinh 3-9 Hai cii'utruegiim thuongg~p.(a) Uiy m~uMi 2 trongkhonggian2ehi~u.(b)Uiy m~uhlnhngfidi~m .1.1La'ym§utrongkhonggianmchi~u: La'ymfiuxu6ngconghlala cacdiemtronggiandu'Qcgill l~i,boquacacdiemconl~i. GQiD la matr~nbiendi~ngian,la'ymfiuxu6ngmQtdayx : zm-+R sedu'Qcdayy nhu'san: y [II]=x[DII] TrangmienFourier yew)=~ :LX((Dtr1(w - 2n-k))N kEUt c nE Zm N =del(D) wla mQtvectorthtfcmchien II ,k la cacvectornguyenmchien Iffym~ulenmQtdayxsedu'Qcdayynhu'san: y[n]= { X[D-ln] ne'~n~Dk0 notkhac TrangmienFourier: vdi 80 :.Khaitriln tinhifU dungbq lflC Y( m)=XeD I m) .re'uphepla'ym~uco gi~llltu'ongungtachdu'QC,tanoi phepla'ym~ula tachdu'Qc. If d1,1: ~rongphgnnay, taxet2 tru'onghQpla'ym~utachdu'QCva khongtachdu'QC. Ii dl:l1 ..Lity mdu tach du:(/c ,a'ym~uxu6ng(len)bdi2 trongkhonggian2 chieu.quatrlnhla'ym~ucothebieu li~nb~ngmatr?n: Ds=(~ ~)=21 gbaadonvi gdmcacdiem: (nl, n2)E {(O,O), (I,O), (0,1), (I,I)} rangmienz,cacdiemtrentu'ongungvdibie'nd6iz la : {I -1 -] -] -j },Zj,Z2,ZjZ2 gbaoVoronoico4phgntii'tu'ongungvdibl?lQccoN=det(D)=4kenh ,a'ym~uxu6ngsedu'qcdayke'tqua: y[nl , n2] =x[2nl ,2n2] rangmienz,bie'nd6izsela : Y[ZI,Z2]=:(X(ZI~'Z~)+X(zl~,-zh+X(-z1,z~)+X(-Zl;,z~)J ~gu'qcl?i, la'ym~ulen : { [ nj n2 ] A" .:;- [ J - x -,- neunj,n2chany npn2 - 2 2 0 noikhac :cobie'n d6izla: Y(Zl , Z2)=X ( Zj2 ,z;) ie'nd6iZsaukhila'ym~uxu6ngbdi2,rdi la'ym~utenbdi2 sela : 1 Y(Zl,Z2)=-(X(ZI,Z2)+X(-ZI,Z2)+X(ZI,-Z2)+X(-ZI,Z2» 4 (dngungvdi { X[nj, nJ ne'un]>n2chg-n y[npn2J= 0 .kh'nOI ac id!l2..Liiymdukh6ngtachdu:(/c.. ettru'onghqpla'ym~utheohlnhngudiem,daylaca'utruct?Om~uhaichieukhong ~chduqc.Giantrongtru'onghqpnaydu'qcbieudienb~ngmatr?n: DQ :::J( 1 1 )1 -1 '\detDQ=2nenbl?lQctu'ongungselabl?lQc2kenh. laconMnxetlamatr?nDQkhongduynha't,vi dl,lmatr?n: 81 3.Khai trii'n tinhi~udungb(ih}c , ( 1 1 )DQ= -1 1 clingbieudi~ndu'c;Jcquatdnhla'ym~uhlnhngtidiem] Te'b~lOVoronoichogi~illnglidiemla me)thlnhthai(hlnhvuongnghieng)vagiandao clingV?y.Do do,co theapdvngdemahoahlnhanhbdiVIne'ugioih~nvaGmi€n naythl(a)ph6cuatinhi~uva cacphienbanI~pI~ido t~om~usekhongd~mten nhauva (b)miitngu'oikhongnh~yvoi de)phangiaidQcrheadu'ongcheonencothe chQnbe)IQcbangtha'pdt botheoph§ndu'ongcheo. Haidiemtrongte'baadonvi la : 110=(~) 111= (~) tu'c5nglingvoibie'nd6iz trongmi€n z la I va Z;I haicosetu'onglingla2 t?Phc;Jp: {(nl,nz)/ nl +nzchan} va {(nl, nz)/nl +nzIe } La'ym~udu'oirheaca'utrucIa'ym~ungudiemsedilqcke'tqua: y[nl,nz]=x[nl + nz,nl - nz] Betlmcongthliclienh~trongmi€n z , d~ty' ladaynhilsail: , { X[nl,n2] ne'un1+n2chan y [nl,n2]= 0 ,.( I ?neu nl +n2e thlbie'nd6izcuay' la : y'(zpzJ= L y'[npn2] z;nl z~n2 (111,112)EZ2 = L x[ill' n2] z~nl z;n2 nl+n2chan - I [ " [ ] -111 -112 " -"2 L... x npn2 Zl Z2 + L... I =-(X(Zl' Z2)+X(-Zl ,-Z2))2 m~tkhactacothevie't: Y'(ZpZ2)= L x[""n,](-1)""'z;' z~,] (*) [ ] -IIJ. -112-" [ ' ' ] -..;-~ -1IJ.+112X npn2 Zl Z2 - L... Y npn2 Zl Z2 nl +n2chan trongd6 n;,n~la2 s6nguyenthoa D(:}(::) nghlala n] =n1+n2 , , n2=n] - n2 82 3.Khai triln tin hi?u dung bQ h,Jc ',2.1Tru'O'nghQ'ptach du'Q'c: -1t 1t f] x HL LH ngang LL LL LH HL HH.~~mdqc (a) (b) Hinh 3-10 Bt) lctachdu<;1chai chi~u,voi phep Iffy mb xu6ngtachdU<;1cbdi 2. (a) Phan di theochi~ungangr6i theochi~udc.(b)Phan chiaph6 trongmi~ntiin so'. Tadungca'utruccascade,vi dVsauset<:\ora4 IQcclingkichthu'dc,phatuye'ntinhva tn!cgiao,trongdo2lQcdo'ixungva2lQcphando'ixung(xemtrong[1]) H"(z,,z,) =[O,R,V(Z"Z,)]So D la matr?nlamtr€ codu'ongcheola 1,Z;I,Z;I,Z;IZ;I Ri vaSola cacmatr?ntvado'ixung(persymmetric),nghlalaRithGa R=JRiJ (3.5.2) phuongtr'inh(3.5.2)cungvdiyelldu Ri lamatr?nUnitasechophepthie'tke'cacIQc cophatuye'ntinhva trvcgiao(trongtru'onghQp1 chi€u kh6ngtheco IQCvila pha tuye'nti hvilatrvcgiao). VdiK thOatvado'ixungvaUnita,Ri cod<:\ng: trongdo I ( 1 J ( 1 1 J ( R2i J ( 1 1 ) ( 1 JRi ="2 J 1 - 1 R2i+1 1 - 1 J R2i,R2i+lla matr?nquayca'p2 x2va s = ( Ro J ( 1 1 J ( 1 )0 RJ 1 - 1 J 2Thie'tke'IQckhongtach du'Q'c,tru'O'nghQ'pngii diim : Trangphftnay,tases\i'dvngca'utruccascadedet<:\oracacbQIQc,cophatuye'ntinh ho~ctnfcgiao.Tu'dngtv nhu'tru'onghQp 1 chi€u, ne'uIQc thGadi€u ki~nkh6i phvc loanhaGthlmatr?ndaphaco thedu'QCthuaso'hoatheoca'utruccascadesau: J ( 1 0 J ( 1 0 J Hp(ZJ,Z2)=OR2i 0 -I RJi 0 ;-1 Rol=k-I Z2 z, dElQcophatuye'ntinh,Rjiphaila matr?ndo'ixung,deIQCla trtfcgiaotaphaicoRji lamatr?ll U nita. (3.5.3) 84 3.Khai triln tin hifU dung b(J 19C XettntonghQptn!cgiao,tasetlmlQcphongtheotru'onghQp1chiSucilaOaubechies. TasetlmlQcconghi~mzerode'nb~ccaDnha't~i(-1,-1) Trudche't,xet(3.5.3)d tru'onghQpdongiannha'tk=2,matr~nHpcod~ng: H/zpzJ =rl [ R2i ( 1 ~I J Rli ( 1 ~I J] Ro i=k-I 0 Zl 0 Zi =R" (~ z~}" (~ z~,)Ro Rijlacacmatr~nUnitanenlamatr~nquay,cod~ng: ( cosaz -Sinaz J( 1 0 J( cosal -Sinal)H (ZI,zZ)= . .p smaz casaz 0 ZJ-I smaJ casaJ (1 ~]Yc~sao -sinaoI 10 ~~ SlOOp cosOp) = l(c~saz -~:-Isillaz ) (c~sa] smaz Zzcosaz lsmal ( cosao smao )smao casaD ( ~.. casazcasa] - Zz smazsma] - sinazcasal +Z;Icosazsina] ( c~sao - sinao )smao casaD -ZI-I sinal ) -I z] cas a] -] . -ZI cosaz smal -I' . -ZI smaz smal -I -I . ) -zz ZI smaz casal +Z;IZ;I cosaz casal H00(ZI' Z2) =casa2casal casaD- Z~Isina2sinal sinao -1 . . -1 -I . . - ZI casa2 sma] smao - Z2Zl sma2 casal smao HO] (ZpZ2) =-casa2casalsinao+Z~Isinazsinalsinao -I' -] -I . - ZI casa2 smal casaD- Z2ZI sma2 casal casaD HIO(ZpZ2) =sina2casalcasaD+Z~Icasa2sina] casaD -I' . . -] -I . - Z] sma2sma] smao +Z2Z] casa2 casal smao Hli (zp Z2)=-sin a2casal sinao - z~]casa2 sina] sinao -].. -] -] - z] sma2sma] casaD+Z2Z] casa2 casal casaD 85 3.Khuitriln tinhi~udungbQltlc lQcchabangthc1pquala : Ho(zj,zz) =Hoo(zjzZ,Zjz~j)-z;jHoj (ZjZZ,Zjz~j) -j . . =casazcasal casaD-Zj Zzsmazsmaj casaD -j -j' -z . . -ZI Zz casazsmajcasaO-zj smazcasajsmao -I . -z. . . -Zj casazcasajsmao+zj zzsmazsmajsmao -z -j' -3 . -Zj Zz casazsmajcasaO-zj smazcasajcasao V~y,hocod?ng: [ ... . . -smaz smajcasaD smazsma]smao hJnj,nz]= casazcasajcasao -casazs~najs~ao -sinazc~sajsinao -casal smajsmao -casalsmajcasaD [ tgaj =sinazcosajcosao-catgaz catgaztgao catgazlgajtgao - sina, COga, cosa" J - tgajtgao tgao catgaztgaj I] D~t Uo=tgao, UI=tgaI, U2= catga2, . , c =-smazcasalcasaD thllQcbangthc1pcod?ng; ho[n,.n,]~ {-a, aj aoaz -uDal ao IJ (3.5.4) aoajaz ajaz lamtu'ongtv lQcquabangcaDla : Hj (Zj, zz) =HJO(ZjZZ,Zjz~])+zj-IHll (ZjZZ'Zjz~j) . -j' =smaz casal casaD+Zj Zzcasal smal casaD -z -1' . . -z . - Zj Zz smazsmaj smao +Zj casal casal smao -1 . . -z .. -Zj smaz casal smao - Zj Zzcasal smaj smao -z -j.. -3 - Zj Zz smaz smaj casaD+Zj casal casal casaD V~y,hIcod?ng; , h, [n, . n,]=[~ 1 ={-l - catgaztgaj tgao tgajtgao catgaztgajtgao - catgaztgao tgaj - cotga, } (3.5.5) - aoaz ao aoajaz - aoaz -a, }ajao aj tacotheviet l?i nhu'sau: H ( ) [ -I -z -] -z -3 ]0 Zj,ZZ =c a1zj Zz -aoajzl Zz -az +aoazzj +aozj +ZI Lamtu'ongtv nhu'lQCOaubechies trong tru'ongh<;$p1 chi€u, ta tim lQc co zero t?i z = 86 /ra;triln tinhifU dungbe?[fie 1,-1)Mn b~ck-I .Trang tru'onghQpk =2,taco Ho(-l,-l)=0 (1) ~o(-1,-1)=0 (2)] :° (-1,-1)=0(3)2 H ( ) ( 1 -] -2 -30 7],Z2 =C - +aDz] -aOa2z] -a2z] -] -2 -] -] -2 -] )- aOa2z] Z2 + aOa]a2z] Z2 +aOa]z] Z2 - a]z] Z2 8H (0 -2 -3 -2 T=c-a]z] Z2+2aoa]z] Z2 -aOa2z]] 2 -3 3 -4 -2 -] 2 -3 -] )- aDz] - z] - aOa]a2z] Z2 - a]a2z] Z2 8H ~ ) 0 -] -2 -] -2 -2 -2 -=ca]z] -aOa]z] -aOa]a2z] Z2 -2a]a2z] Z2 &2 'ongtrlnhtrentu'ongdu'ongvdi : iii { , a]+aoa]-a2 -aoa2+ao-I+aoa]a2-a]a2=0 a~+2:oa] - aoa2+2:0 - 3+aoa]a2- 2a]a2-=0 a] aoa] + aoa]a2 a]a2 - 0 { aJI +ao+aoa2-a2)- a2-aoa2+ao-1 =0 (4) hay,a](1+2ao+aoa2- 2a2)+2ao-aoa2-3: 0 (5)-a](I+ao-aoa2+a2) - 0 (6) I)taco: al=0guyra { a] =2- ao 2ao-aoa2-3 =0 1+ao- aoaz+az=0 guyra ao+1 a2=- ~-,~ !hayvao(5)ta QuQc: 2ao- aoa2- 3 - ag+6ao- 3 a] = = 2 1+2ao+aoa2- 2a2 3ao- 2ao- 3 thayvaophu'ongtrlnh(4) tadu'Qc: 2 ' )( ( ) ao+1 ) 2 )( ( ) ao+1 )(-ao +6ao- 3 1+ao+ ao-1 ao-1 +(3ao- 2ao- 3 ao-1 - ao+1 ao-1 =0 ( -4a J (-ag +6ao-3)(2ao +2)+(3ag-2ao -3) ~ =0 ao-1 (-ag+6ao-3)(ag-1)-2ao(3ag-2ao-3)=0 hay { ao=J3 a2=2-J3 ho~c { ao=-J3 a2 =2+J3 87 '.Khai triin tin hi~udung bQ lflC a4 - 2a2 - 3 = 00 0 (a~+I)(a~- 3)=0 ao =IFJ ao =+FJ a--Tj0 - -V.:J roml<;tita du'Qccac nghit$m: (nl)ao=+J3, a] =0, a2=2-J3,tgao=+J3,tga]=0, catga2=2-J3 (n2) ao =-J3, a] =0, a2 =2+J3, tgao =-J3, tga] =0, catga2 =2+J3 (n3) ao = +J3, a] = -J3, a2 = 2 + J3, tgao = +J3, tga] = ~J3, catga2 = 2 + J3 (n4) ao =-J3, a] =+J3, a2 =2-J3, tgao =~J3, tga] =+J3, catga2 =2~J3 rdi rdi II (n!) ta co ta co : a2=2+FJ a2 =2-FJ a] =-FJ a] = +FJta co : I+FJ. -+- casal =II , sma2- - 2..[2 I casaD =I- , 2 ke'thQpvdi dieu kit$n G(+l,+l) = ..[2 , ta co . I+FJ c = -SIll a2 cas a] casaD = - 412 "I . I-FJ tu(n2)taca casaD =I- , casal =II , sma2 =I~ 2 2-v2 I . I-J] casal =I"2 ' sma2=I 2..[2 I . I-FJ casal=I"2 ' sma2=I 2..[2 I+FJ SUYfa c=-- 812 Thaycacgia tri vaG(3.5.4)va(3.5.5)tadu'QCcacI9Cho,hI- 88 I-FJ suyfa c = 412 I tli(n3)taco casaD=I- , 2 I-FJ suyfa c=- 812 tit(n4)taco 1 casaD=I- , 2

Các file đính kèm theo tài liệu này:

  • pdf4_2.pdf
  • pdf0.pdf
  • pdf1.pdf
  • pdf2_2.pdf
  • pdf3.pdf
  • pdf5.pdf
  • pdf6.pdf
  • pdf7.pdf
  • pdf8.pdf
  • pdf9.pdf
Tài liệu liên quan