WAVELET VÀ ỨNG DỤNG TRONG NÉN TÍN HIỆU VIDEO
NGUYỄN NGỌC LONG
Trang nhan đề
Mục lục
Chương 1: Đặt vấn đề.
Chương 2: Cở sở toán học của xử lý tín hiệu
Chương 3: Khai triển tín hiệu dùng bộ lọc.
Chương 4: Nén tín hiệu video.
Chương 5: Cài đặt chương trình.
Chương 6: Các hạn chế và hướng phát triển.
Phụ lục
Tài liệu tham khảo
50 trang |
Chia sẻ: maiphuongtl | Lượt xem: 2121 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Luận văn Wavelet và ứng dụng trong nén tín hiệu video, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
z)=Go(z)H 0(z) = H 0(z)H1(-z)
detHm(z)
(dodet(H",(z))=-det(H",(-z)))
52
(
X(z)
J]Ho(-z)] X(-z)
(3.2.9)
II
II
(3.2.11a)
(3.2.12) "
II
3.Khaitriln tinhi~udungb(j l(Jc
-2
GJz)H] (z)= Ho(-z)H] (z)=P(-z)
detHm(z)
(3.2.10)cothec1uqcvie'tl~i:
P(z) +P(-z) =2 (3.2.13)
V~y,ne'uPia mQt?athuctheozthlP coH(tcacach<%sf)chanb~ng0,trup[O]=1.
dodo,P(z)cod~ng:
P(z) = 1+L:p[2k +1]z-(2k+])
kel
MQtc1athucho?c mQthamhuuti thoa(3.2.13)c1uQcgQi la hqp 1<%(valid).Ham P(z)
dongmQtvai trc)quail trQngtrongvi<%cphantich va thie'tke'cac bQ lQc.Cong thuc
(3.2.10)co thec1uqcvie'tl~ila :
Go(z)Ho(Z)+Go(-z)Ho(-z) =2
vie'tdudid~ngcuahamc1apling xung,hayd khiac~nhthaigianla :
L:go[k]ho[n- k] +(-I)nL:go[k]ho[n-k] =2J[n]
kel kel
2L: go[k]ho[2n - k] =2J[n]
kel
hay
(go[k],ho[2n- k) =J[n]
vdiqJk,qJkc1uqcc1inhnghlanhu(3.2.4)va(3.2.6),c1~ngthuclIentrdthanh:
(qJO,qJ2n)= J[n]
tu'clngtV SU'd~ng(3.2.10 - 3.2.11)taseco :
(qJj,f{J2n+]) = J[n]
(ifto,rP2n+])= 0
(ift] ,f{J2n+])= 0
VI({>lk,C{Jzk+1l~nluqt la phienb~mtinhtie'ncua f{Jo,f{J1nencach<%thucco thec1uqcvie't
l~i:
(iftk'f{Jz) =J[ k -I]
V~ydieuki<%nkhoi ph~cloanhaDkeDtheoc1ieuki<%nsongtnfc giao.Dao l~i,ne'uC?P
cdsa {qJk,iftk}suydien tu ho,hI, go,gIla songtnfc giao thl bQ lQc la khoi phvcloan
haG.
Nhu'v~yb~ngcachxemxet lIen khia c~nhc1ieuche'tinhi<%uta co clingke'tqua nhu
khixemxet lIen khia c~nhthai gian : ndu ki~nkh6iph{lcloan hao tu:angdu:angwii
dduki~nsongtri!Cgiao .
1.3Phantichtheokhfa c~nhdapha
Phiintichtheokhia c~nhc1ieuche'cho mQtbieu dien tV nhien nhungco mQtnhuqc
di€mladuthua.Trangmatr~nH1ll(z),cach<%sf)xua'thi<%n2 l~nVI ca lQcHi(z)va
phienbanc1ieuche'Hi(-z) cuano clinghi<%ndi<%n.MQtcachbieudiengQnhdnla phan
tichtheokhiac~nhc1apha.Ta se phanfa ca tin hi<%uva lQcthanhcac thanhph~nc1a
pha.Dungcongthuc (2.4.11)vdi N =2 c1ebieu dien tin hi<%uke'tqua sail khi lQCva
la'ym~uxu6ng.
53
3.Khai triln tin hi~udung bQ 19C
(
Yo(z)
]
=
(
Hoo(Z) HOl(Z)
] (
Xo(Z)
]~(z) HIO(Z) Hl1(Z) X1(z)
' v ' ' , ' v '
Y(z) H v(z) X (z)
p p
TrangdoHi}la thanhphc1ndaphathll j cuaIQcn, vabieudi€n cuaHi rheacacthanh
phc1ndapha,rhea(2.4.10- 2.4.11)la :
Hi(z)=HiO(l) +ZHil(l)
Y(z)la tinhi<$ucida~lllgiuacuah<$th6ngtranghlnh(3.4a),
Hiz) lamatr?nvoicaethanhphc1ndaphacuacacIQcthanhphc1n,congQilamatr(in
dapha. .
Xp(z)g6mcaethanhphc1ndaphacuatin hi<$unh?pXova Xl, tinhi<$unh?pdu'<;1cbieu
di€n rheacacthanhphc1ndaphabCii(2.4.8)
X(z)=XoCl) +Z-lxl(l)
Hlnh(3.4b)chi ra so d6 kh6i cua (3.2.14).Tin hi<$uX du'<;1cta hthanhhai thanhphc1n
daphaXovaXl dungbiend6i dapha.Ma tr?n daphaHpbiend6i2 tinhi<$unh?PXO,Xl
thanh2tinhi<$uxua'tYO'yI.
(3.2.14)
~
,.~
Yo
~t + R2t Z.IJ\
(a)
Yo
x
Hp
YI
(b)
Gp
£
Yo
YI
(c)
ffinh 3-4
Phiin tich tIeDkhia Cl;lnhdapha (a) Bie'nd6i dapha
di toi va di lui. (b)Phftnphiin tich.(c)phftnt6nghcJp.
Phfint6ngh<;1ptranghlnh(3.4a)clingdu'<;1cphanrichrheacachtu'ongtV.No co the
du'QCthvchi<$nnhophepbiend6idaphangu'<;1c,matr?ndaphat6ngh<;1pdu'<;1cdinh
nghial :
54
3.Khai triin tinhi~udungb(J lr;c
(
Goo(z) GlO(Z)
]
Gp(z)=
GOI (z) Gll (z)
Trongdo Gi(z)=Gw(l) + Z-IGil(Z2) (3.2.16)
Trangcacthanhph~ndaphacuaIQct8ngh<;5pdu'<;5cdinhnghlavoi phangu'<;5cvoi cac
IQcphantich.Tin hit$usankhi t8ngh<;5pX(z) du'<;5cviSt la :
(
Goo(Z2) GlO(Z2)
J (
Yo(Z2)
JX(z)=(1 Z-l) GOl(Z2) Gll(Z2) ~(Z2)
(3.2.15)
(3.2.17)
I '--v '
G (Z2) Y (Z2)
P p
Tin hit$utu mlii kenhdu'<;5cIffym~uleu b6i 2, ta du'<;5cYi(Z2),sando du'<;5cIQ b6i
Gi(z)=Gw(l) +Z-IGil(l) voihaithanhph~ndaphaGwva Gil.PhepIffytichmatri;ln
Gpva thanhph~netaphay la theoZ2,dodoco th6du'<;5cthl/chit$ntru'ockhi Iffym~u
tenb6i2,nhu'6h'inhve(3.4c)
BQIQcphantichvabQIQct8ngh<;5plad6ing~ucuanhau.BQIQcphantichdungphep
biSnd8i daphadi Wi, pha 1du'<;5clamnhanhmQtnhip,ky hit$ub~ngchITztrongsod6
kh6ih'inh(3.4b).BQIQct8ngh<;5pdungphepbiSnd8i daphadi lui, pha1du'<;5clam tr~
(delay)mQtnhip,ky hit$ub6iZ-I trangvangtrail 6 nhanhdu'oih'inh(3.4c).
HQp2 phepbiSnd8i daphaphantichva t8ngh<;5p,tadu'<;5cbQIQcphantich,t8ngh<;5p
comatr(mchuyinddi dapha (transferpolyphasematrix)la :
Tp(z)=Gp(z)Hp (z)
Tinhit$usankhi quabQIQcphanticht8ngh<;5pla :
A
( l\r. 2 2X(z) =1 z- pp(z )y(z )
=(1 Z-1 )Gp(z2)Hp(Z2)Xp(Z2)
=(1 Z-1 )rp(Z2)Xp(Z2)
DiSukit$nkh6iphvcloanhaocuaht$th6ngla :
X(z) =X(z)
khiTp(z)=I, taco :
X(z) =(1 Z-l)
(
Xo(z:)
)
=XO(Z2) +Z-lXj (Z2) =X(z)
X1(z)
V~yTp(z)=I ladiSukit$ndudeht$th6nglakh6iphvcloanhao.
11.1.4Quanh~giii'acaebiiu di~ntheoth«igian,di~uche'biende)vadapha.
Bi€udi~ntheothaigian,diSuchSbiendQva daphala 3 cachnh'inkhacnhaucua
clingillQtht$th6ng,v'ivi;lychungco lienht$qual~il~nnhau.
VlX(z)=~(Xo(Z2)+Z-IX1(z)) (tu(2.4.8))tacoth6viSt:2
(
XO(Z2)j 1
(
1
J(
1 1
)(
X(z)
JXl(Z2))=2 z 1 -1 X(-z)
(3.2.18)
55
3.Khai triflntinhi?udungb(3irc
Nhu'v~y,tathie'tl~pdu'Qcm6i lien hl$giuabi€u di€n dapha
X p(Z2) =(xo(Z2)XI(Z2)r
vabi€u di€ndi€u che'biende)
X"'(z)=(X(z)X(-z)Y
hayI
I
cuatinhil$u.
Xet lQcphanrich,taco m6i lienhl$giuaHp(z)vaH",(z)nhu'sau:
(
Hoo(Z:) Hol(Z:)
]
=!
(
Ho(Z) HI(Z)
](
1 1
)(
1 -I
JHlO(Z) H1\(z) 2 Ho(-z) H](-z) 1 -1 Z
2 1
(
1 1
J(
1
J
Hp(z ) =-H m(z) -I2 1 -1 Z
tu'ongW',taco :
(
Goo(Z2) GOI(Z2)
J
=~
(
1
J(
1
GlO(Z2) G1\(Z2) 2 Z 1
Gp(Z2) =~(
1
J(
1 1
J
Gm(Z)
2 Z 1 -1
Caecongthlic (3.2:19),(3.2.20)la chuy€n vi cuanhau.
(3.2.19)
1
J(
Go(z) G](Z)
)-1 Go(-z) G](-z)
hay (3.2.20)
Dethie'tl~pm6iquailhl$giuabi€u di€n rheathaigianvadapha,taxetcaclQct6ng
hqpgi.Trenkhiaqnh thaigian,matr~nt6nghQpTscod~ngnhu'(3.2.5).D?tTsCz)la
matr~ntu'onglingvoimatr~nTsdinhnghlanhu'sau:
k'-]
T,(z) =LSiZ-i
;=0
trongdo,Sila matr~nca'p2x 2 cod~ng(k' la chi€u dailQc)
(
g [2i] g [2i]
J
-
S = 0 I i =0 k'-1
1 go[2i+l] g][2i+l] ,
V~y: -r,(z)=
k'-l
Lgo[2i]z-;
;=0
k'-I
Lgo[2i +l]z-;
;=0
k'-]
L gl [2i]z-i
i=O
k'-]
LgI[2i +l]z-i
;=0
k'-]
L goo[i]Z-i
=I i=D
k'-]
Lgo] [i]Z-i
;=0
k'-]
LglO[i]Z-i
i=O
k'-]
L g1\[i]z-;
i=O
=
(
Goo(z) GlO (Z)
JGOl (z) G1\ (z)
TsCz)= Gp(z)
V~yTlz) clingchinhla matr~ndaphaGp(z).D~ngthlictrenchatam6ilienhl$giua
56
3.Khaitriln tinhi~udungb(j Irc
bieudi~ntheothai gianvdi matr~nTsva bieudi~ndaphavdi ma tr~nGp(z).T11'ong
tv,matr~nphantichtheothaigianTaco lien ht$vdi matr~nphanitchdaphaHp(z)
K
Ta(z)=L:Aiz-i
i=O
KIa ehieudailQephantich,A lamatr~nea'p2 x 2
A =
(
ho[2(K- i) -1] ho[2(K - i) - 2]
JI hi[2(K -i)-I] hi[2(K -i)-2]
K-I
L:ho[2(K - i) -1]z-i
T (z) =I i=1a K-I
L:~[2(K -i)-I]z-i
i=1
K-I
L:hol [K - i]Z-i
=1 i=1K-I
L:~I[K -i]Z-i
i=1
=
K-]
z-KL:hOl[K -i]ZK-i
i=1
K-I
Z-K L:hll [K - i]ZK-i
;=1
K-I
L:ho[2(K -i)-2]z-i
i=1
K-I
L:~[2(K -i)-2]z-i
i=1
K-I
L:hoo[K -1- i]Z-i
;=1
K-I
L:hlO[K -1- i]z-;
;=1
K-I
Z-K+IL:hoo[K -1-i]ZK-I-i
;=1
K-I
Z-K+IL:hlO[K -I-i]zK+i
;=1
=Z-K+I
(
Z-IHol (Z-I) Hoo(Z-I)
]z-IHll(Z-I) HIO(Z-I)
=Z-K+I
(
Hoo (Z-I) HOl(Z-I)
)(
0
HIO(Z-I) Hll(Z-I) Z-I
To(z)=Z"'H,Vto, ~)
d~ngthuetIeDthietl~pm6ilienht$gifi'amatr~nphanitchtheothaigianTavdi ma
tr~nphantichdaphaHp(z).
11.2Caetinhcha'tcuabe)IQc:
Trangphgnnay,tatoml11'9tcaeketqualienquaildencaebQlQesad\lngcaee6nge\l
vuathietl~p,caeketquahoikhaehonsovdieaeke'tqualienquaildenslft6nt~ieua
cdsatrveehu§'nhoi;iesongtnfegiao.d day ta quail tam den slf khoi phl:lcgdn dung,
vanha'nm<;lnhvaonhfi'ngva'ndelienquaildenthietkelQe.
Trangcaephgntrude,dieukit$nkh6iph\leloanhaoconghlala xua'tlit$ubiingdung
nMplit$u.d daytat6ngquathoavadjnhnghlakh6iph\leloanhaonghlalaxua'tlit$u
coth€ lamQtphienbanlamtn~,vacothed11'9CnhantYlt$sovdinh~plit$u:
X(z)=cz-kX(z)
Voicaeketquad ph§ntrudc,tatha'ydieutIeDt11'dngdu'dngvdi, quamQtpheptinh
~)
57
3.Khaitriln tinhifit dungbQlQc
tie'nvanhanty l~,thlcachamdaplingKungcuacaclQCphanrichvalQctanghcjpt~o
thanhmQtcdsasongtnfcgiao.
Trongs6 cach~th6ngthoakhoiphlJ.cxa'pxi, taquailtamde'ncach~th6ngtranh
du'cjcalias.TrangmQtbQlQcphantich/ tanghcjpbie'ndaitheothaigian,xua'tli~ula
hamCllacii x[n]vaphienbandieuche'(-ltx[n] (hayX[z]va X[-z] trongmienz).
Nhu'v~y,lo~iboaliasla mQtrangnhii'ngva'ndequailtrQng.
Djnhnghia3.2
Matr~nca'pn x n Fij(z)du'cjcgQila matr~ntVayang(pseudocicularmatrix)ne'uco
d~ng:
{
F. .(z) J .?:.i
F (z)= O,J-I
IJ Z.Fo,N+f-;(z) j <i
Nhu'v~y,matr~nt(tayangtu'dngtvnhu'matr~nYang,nhu'ngami'atamgiacdu'oi,cac
s6h~ngdu'cjcnhanthemz.
M~nhd~3.4
TrangmQth~th6nglQcphantich/ tanghcjphaibangchotinhi~umQtchien,aliasse
du'cjclo~ibone'uvachine'umatr~ndaphaTplamatr~ntvaYang.
Changminh..
Giii si'tTiz) Ia matr~nh,tavong,Tp(Z)co d1;lng:
(
Fo(Z) ~(Z»
)
T (z)=
p z~(z) Fo(z
thayvao(3.2.18)taco :
X(z) =(1 Z-I)rp(Z2)Xp(Z2)
=(1 Z-l (FO(Z2)Z2~(Z2) ~ (Z2))[Xo (Z2»)FO(Z2) Xl(Z2)
=(Fo(Z2) +zF;.(Z2) F;.(Z2) +Z-IFo(Z2){X 0(Z2»
)\Xl (Z2)
=(F(z) Z-lF(Z)(XO(Z: »)X1(z)
=F(z)(Xo(Z2) Z-IXl(Z2»)
=F(z)X(z)
V~yM th6nglabfftbie'ntheothaigiandodolO1;liboalias.
H" ?~qua:
Ne'uh~th6ngla lo~ibo alias,thldieuki~ndn vadud€ khoiphlJ.cloanhaGla ma
tr~nchuy€ndaidaphala ffiQtmatr~nyanglamtIe,ho~ctremQts6channhip2k.
k
(
l O
JTp(z)=cz- o 1
ho~cmQts6l6nhip:
T (z)=CZ-k-l
(
O 1
Jp z o
.
58
3.Khai triin tin hi~udung bQ [flC
Changmink:
BS kh6iph1,1cto~mhilo,taco :
X(z) =cz-k-IX(z)
2 2 ~
hay: F(z) =Fo(z ) +zF;(z ) =cz-
v~y: FO(Z2)=CZ-k', Fl(Z2)=O
hoi[Lc:F; (Z2)=CZ-k'-l, Fo(Z2)=0
ne'u: FO(Z2)=CZ-k', k'chan,tacok'=2kva Fo(z)=cz-k
(
l'o(Z) 0
) (
I 0
)khido: Tp(z)= =CZ-ko l'o(z) o 1
vaM th6ngla lamtrc~2knhjp:
X(z) =CZ-2kX(z)
17 (
2
)
-k'-l
F] Z =cz
ne'u: k'-I chanhayk' =2k+l,
F; (z) =cz-k-]
khido,matr~ndaphala :
,
(
OF, (Z)
) (
0
Tp(z) = zF1(z) 0 =C Z-k
vah~th6ngla lamtr~2k+1nhjp:
X(z) =CZ-2k-1X(Z)
Z;-l) =CZ-k-{~~)
.
M~nhd~3.5
rhomQtbQ19C2 kenhH(ymiluxu6ngbdi2 voi matr~ndaphaHp(z),khi do,kh6i
ph~clakh6ngcoaliasneuvachineuHp(z)codinhthUGkhac0,noicachkhac,Hp(z)
cohc;mgdli la 2.
Changmink:
Ch<;m atr~nt6ngh<,1pla matr~nph1,1h<,1pcuaHp(z)
Gp(z) =cofactor (H(z»
taco: Tp(z)=Gp(z)Hp(z)=del (Hp(z».I
hiSnnhien Tp(z)la matr~nt1!aYang,dodo, co aliasdu'<,1clo;:liboo
daDl;:li,ne'uM th6ngkhOngalias,khidoTp(z)lagiayangnencoh;:lngdula2.
SuyraHp(z)coIwngdula2.
M~nhd~3.6
rho mQtbQ19Cphantlch FIR, di~uki~nkh6i pht).cloan hao voi 19CFIR du'Qcthoa
ne'uvachineudel (Hp(z» la mQtpheplamtr6thu§nlily.
Changmink:
GiasU'Hp(z)lami)tphept011nlamtr~thuiintuy,chQnbi)IQct6ngh<,1pco
Gp(z) =cofactor(H(z»
tmhiSnnhientacokh6iph1,1cloanhilovoi IQcFIR (theom~nhde3.5).Bao l;:li,ne'u
tacodi~uki~nkh6iph1,1cloanhilovoiIQcFIR tmTp(z)lagiayangtinhtie'n,nghiala
(
I 0
)
k
(
O I
)Tp(z)=Z-kO 1 hOi[LcTp(z)=Z--IZo
trongca 2 tru'ongh<,1p,taco :
.
59
3.Khaitriin tinhifjudungb(j lClc
det(Tp(z»)=det(Gp(z))det(Hp(z»)=z-I
vllQc t6ngh<,Jpcling Iii IQcFIR, det(Gp(Z»chi co th~co nghi~mho~cco Qic t(;li0, vii
det(Hp(Z))clingv~y.
Suy fa det(Hp(Z))la mQtpheplamtn~thu1lntuy.
Giua(Hp(Z»va matri;lndieuch€ Hm(z) co m6i lien ht%bdi (3.2.19)
2 1
(
1 1
J(
1
J
Hp('z ) =-Hm(z) -]2 1 -1 z
suyra : del (Hm(Z»=-zdet(Hp(l»
vi;ly :del (Hm(Z»co d;;mg: del (Hm(Z»= a Z-2k+l
Vi;lyn€u det(Hp(Z»khongconghit%mngoai0,del (Hm(Z»clingvi;ly.
N6uht%th6ngla khoi ph\lc loan haGkhong co lam tr~,khi do, Hi,Gj =0,1lien ht%
rheaGongthuG(3.2.11a):
(
Go(Z)
J
2
(
H] (-Z)
JG](z) - detHm(z) -Ho(z)
Go(z) =~Z2k+]H] (z)a
G](z)=_~Z2k+]Ho(-z)a
.
(3.2.21)
Nhu'vi;ly,tube)h/cphantichFIR, taKaydvngdu'9cbe)h/ct5ngh9Pdeht%th6ngphan
rich/ tangh9Pla khoiph\lcloanhaGkhongbi lamtr~.Tuy nhien,loi giai la khong
nhanqua.Decoloigiainhanqua,tanhanGo,G1voithuaso'Z-2k-l,nhu'nght%th6ngla
kh6iph\lcloanhaGlamtr~2k+1m~u.
Tu'dngttfnhu'trongbiendi~ndapha,k€t qualIenveIO(;libi)aliasclingco du'9ctrong
lanhvtfcdieuch€. Tinhit%uxua'tquaht%th6ngsankhiphantich/ t5ngh9Pxettrong
lanhvtfcdieuch€ la :
2(z) =~(Go(z) G](z){Ho(z) Ho(-Z»
)(
X(z)
)2 \H](z) H](-z) X(-z)
I
(
X(z)
)
=-(Go (z) G](z»)Hm(z)
2 X( -z)
V~yc1ieukit%nde IO(;libi)alias(nghlala thanhph§n aliasX(-z) khongt6nt(;litrongk€t
quaxua't)lavectordong(Go(z) G] (z»)Hm(z)cothanhph§nthuhaib~ngO.Hay:
{
Go(z)Ho (z) +G](z)H] (z) =F(z)
(3.2.22)
Go (z )H 0(- z) + G] (z )H 1(- z) =0
Nhu'vi;ly,matri;lnTm(z)=Gm(z)Hm(z)co d(;lng
,
(
F(Z)
J
Tm(Z)= G,nCz)Hm(z)=
F(-z)
MQtrongnhungWigiaicho(3.2.22)du'9CdenghibdiCroirier,Estenban,Galandla
lQcQMF(quadraturemirrorfilter),trongdo,aliasdu'9clo(;libi):
60
3.Khaitriln tinhi~udungbQ19C
[
HJZ)=HO(-Z)
Go(z)=Ho(z)
Gj(z)=-Hj (z)=-Ho(-z)
Nghic$mtrenthoadi~ukic$nGo(z)Ho(-z)+GI(z)HI(-z)=0,dodo,aliasdu'Qclo(;liboo
D~cokhoiphvctO~lllhaodi~ukic$nc§nvadula X(z) lake'tquatn~cuaX(z).
~ lr
]x
I
X(z)=-LGo(z)Ho(z)+Gj (z)Hj(z) (z)=z- X(z)2
hay Go(z)H0(z)+Gj(z)Hj(z)=2z-1
vdilQcQMF,di~ukic$ntrentrathanh
H;Cz)- H;(-z) =2z-1 (3.2.24)
VdilQcFIR, d€ tha'yr~nglQcHaarthoadi~ukic$n(3.2.24).Ngu'oitachlingminhdu'Qc
r~nglQcHaarla lQcFIR duynha'thoa(3.2.24)
Tatomt~tcacke'tquav~bQlQcsongtnfcgiaob~ngdinhly sail:
DinhIy 3.1
TrangmQtbQlQchaikenhsongtnfcgiao,cacphatbi€u saildayla tu'dngdu'dng:
a) hi[-n], g}n-2m])=bli-Jl bln-m]
b) Go(z)Ho(z)+Gj (z)Hj(z) =2 va Go(z)Ho(-z)+Gj(z)H](-z)=O
c) T.f.Ta=Ta.Ts=I
d) GI1I(z)HI1I(z)=HIIl(z)G,nCz)=21
e) Gp(z)Hp(z) =Hp(z)Gp(z) =I
J CaebQIQctqic chu§n
Trangph~n aytaxetcacbQlQcthoacacrangbuQcsail:
a) T(;lo<facd satnfcchuftncho12(Z),nghiala cactinhic$utrong12(Z)co
th~khaitri€n trl;l'chuftntheocachamcdsasurdi€n tii'bQlQc.
b) BQlQclaFIR.
X6tbQlQcphantfch/ tanghQphaikenhvoicachamdaplingxungho,hI,go,gIthoa
gi[n] =hi[-n] i =0,1,
taxaydl;l'nghamcdsa {(jJk}nhu'sau:
(fJ2k[n]=go[n-2k] (3.2.25)
(fJ2k+I[n]=gI[n-2k] (3.2.26)
Nhu'v~yhamdaplingxungcualQctanghQpla phienbanduonguqcthdigiancua
hamdaplingxungcualQcphantich,vacachamcdsala phienbantinhtie'nmQts6
channhipcuahaihamdaplingxungcualQctanghQpgo,gl.
d~t qJk=(jJk
khid6di~ukic$nd~{(jJk}lamQttnfcchuftntu'dngdu'dngvoidi~ukic$n{qJk,(jJk}la mQt
cosatrt1cgiao. ,
Ne'uM {(jJdt(;lOthanhmQtcdsatnfcchuftn,tanoibQ19Cla trlfcchudn.
.1Trt1ehuintronglinhvl,l'cthO'igian
VdibQlQcphantfchtanghQptangquatthoadi~ukic$n(3.2.25)va cachamcd sa
(3.2.23)
61
III"""""
3.Khaitrain tin hi?u dung bi?19C
dliqcdinhnghIabdi (3.2.26),dieDkit%n{lpdt?o thanhme)tcdsd tntcchuffntrdthanh:
< gi[n-2k],gAn-21])=bIz-)] bIk-l]
vacdsdd6ing~u{ifJk}trungvdi{lpk}nen< hi[n-2k],hAn-21])=bIi--:j]bIk-l]
A ~ h 1,matr?n tong <,5pa: --"
=TTa
TaTs =TaT;=I
V~ydieDkit%nlIen tu'dngdu'dngvdi Ta la ma tr?n Unita. N6i cach khac, dieDkit%n
thaiphvcloanhaocuame)tbe)IQctntcchuffntu'dngdu'dngvdi matr?nphantichTa Ia
matr~nUnita.
b~ngcachd~tHi Ia thanhphgntu'dngling vdi kenh i cua be)IQctrongmatr?n phan
tichTava Gi Ia thanhphgntu'dngling vdi h~nhi cuabe)IQctrongmatr?nt6ngh<,5pT,s,
taco:
G- =HT1 1
SHYra : HjH; =5[i - j]I iJ =0,1
V~ytinhit%usaDkhi du'<,5clQcphantichHi'ym~uxu6ng,Iffym~uIen r6i IQct6ngh<,5pd
62
go[O] gIrO] 0 0
go[1] gl[I] 0 0
go[2] gl[2] go[0] gIrO]
T =I'" go [3] gl[3] go[1] gl[I]s
I'"
go[L-I] gl[L-I] go[L-3] gl[L-3] ...
0 0 go[L-2] gl[L-2] ...
0 0 go[L-I] gl[L-I] ...
ho[O] hI[0] 0 0
ho[-1] hI[-1] 0 0
ho[-2] hI[-2] ho[O] hI[0]
T =I'" ho[-3] hI[-3] ho[-1] hI[-1]s
I'"
... ho[1- L] hI[1- L] ho[3- L] hI[3- L] ...
0 0 ho[2-L] hI[2-L] ...
0 0 ho[1-L] hI[1-L] ...
3.Khaitriln tin hi~udung bl}[flC
kenhi se du'Qcbi~udiSnb~ngloantd'Mi
Y. =Mx=HTH.x1 I I 1
MT =Mva M2 =M1 1 1 1
dodoMi la loanHi'chie'utntcgiao,nhu'v~y,bQlQchai kenhtu'ongli'ngvdi phepchie'u
tnfcgiaoxuo'nghaikhonggiancontu'ongli'ngsinhbdicaehamcosd{lpzk}va{lpzk+l}
tuongli'ngvdikenh0vakenh1,
Dieukit$nkhoiphl,lcloanhllOla :
H~Ho+H;H1 =1
BieudiSnTll,Tsdu'did~lllgcacmatr~nkho'ivdiAla matr~nca'p2x 2,dieukit$ntnfc
chu5ntrdthanh:
K-l" ATA =IL... 1 1
taco
1=0
K-I" AT A =0,L... 1+] 1
;=0
j=I,...,k-l
,3.2Tqfc chufi'ntrong Ianh v1;icdi~uche'
'firdieukit$ntnjc chu5n,taco :
<go[n],go[n+2m])=b'[m] (3.2.26)
vip[l]=<go[n],go[n+l])la day tu'ongquailcuaday {go[n]}tC;licacchi so'chanl =2m,
d~tp'[m]=p[2m]lala'ym~uxuo'ngbdi2cuap,taco:
P'(z)=~[P(ZI/2)+P( -ZI/2)]2
P'(Z2)=~[P(z)+P(-z)]2
vifez)=Go(z)Go(Z-l)nen(3.2.26)trdthanh
~[Go(z)Go(Z-I) +Go(-z)Go (_Z-I)] =12
hay: Go(z)Go(Z-l) +Go(-z)Go (_Z-l) =2
tudngtl1vdi: <go[n],gl[n+2m]) =0
<gl[n],gl[n+2m])=b'[m]
G1(z)G](Z-I) +G](-z)G1(_Z-I) =2
GO(z)G1(Z-I) +GO(-z)G1(-Z-I) =o
Teenvongtroll donvi, (3.2.27a,b)trdthanh:
IG; (elaJr + IG; (el(aJ+1r) r =2
V~ybQlQctnjc chu5nthoadieukit$nt6ngbinhphu'ongbien dQb~ngh~ngso',congQi
ladieukit$nSmith-Barnwell.Dieu kit$nlIen duQcdungd~thie'tke'bQlQctnjc chu5n.
Viet(3.2.27- 3.2.28)du'didC;lngmatr~n,taco :
(
Go(z-]) Go(-z-] )
J(
Go(z) G](z)
)
=
(
2 0
)G1(Z-1) GJ_Z-l) Go(-z) G](-z) o 2
(3.2.27a)
taco: (3.2.27b)
(3.2.28)
(3.2.29)
63
3.Khaitriin tinhi?u dungb(J19c
hay G~(Z-I)Gm(Z)=21
VIhilaphienb~mdaongu9cthaigiancuagilienht$thuclIencoth~dU9Cvie't
Hm(Z-I)H~(z)=21
Matr?nthoadieukit$n(3.2.29)dU9CgQila matr?nParaUnita.Ne'ucacthanhph~n
cuamatr?nla6ndinh,matr?nlIendU9CgQilabaaloanthongtin(lostless).
Matr?nchuy~nd6ila baaloanthongtinthltu'angduangvoibQlQct<:t°ramQtphep
bie'nd6itnfcgiao.Vi lQctadangxetla lQcFIR lienmatr?nlabaaloanthongtin.
Tir(3.2.27)taco :
(G](Z-I )G1(- Z-I)Ytn1cgiaovoi(Go(z)Go(- Z-I)Y.
C6 th~chungminhdU9C:
G1(z)=_Z-2k+lGO(_Z-I)
hay: gI[n]=(-IYgo[2k-l-n]
V?y trongmQtbQlQc2 kenhtnfcgiao,m9i19Cdtu du(/csuydiln titmQt19Cduynh{lt.
Ngoaifa, doFez)+P(-z) =2 lien lQcphaico chiendai la mQts6ch~n(b6de 3.1).
(3.2.30)
,,3Tn;icchu!introng lInh v1;icdapha
Matr?ndaphalien ht$voi matr?ndieuche'bdiht$thuc(3.2.20)
Gp (z2)=~
(
1
J(
1 1
)
Gm(z)2 z 1 -1
Dodo,
G;(Z')Gp(Z')~~G:(Z-l{: ~r
=~G~(Z-l)Gm(Z)2
V?y,ne'ubQlQcla tn1cgiaothl:
GJ (Z-l)Gp(Z)=1
tacfingco: Gp(z)GJ(z-1)=1
VdibQlQcphantichcomatr?ndapha:
Hp(z)=GJ(Z-I)
thl: Gp(z)Hp(z) =Hp (z)Gp(z) =I
V?ybQlQctn1cgiaothoadieukit$nkhoiphvcloanhaGkhongtr6nhip.
1.4TomHitcacke'tquavi:bQlQctr1;ichu!in:
Dinhly 3.2:
TrongmQtbQlQcFIR tnfcchuffnht$s6thlfc,tacocacke'tquasan:
a) <gi[-n], gAn+2m])=b[i-j] o[m] ij =0,1
b) Go(z)Go(Z-I)+G1(-Z)GO(-Z-l)=2 va G1(Z)=-Z2k+IGo(-Z-1)
c) T,TT,=1'.,1'.,T=I, Ta =T,T
d) G~(Z-l)Gm(z)=Gm(z)G~(Z-I) =21,H m(z)=G~(Z-I)
z-T J: ~l)Gm(Z)
64
3.Khai trifi'ntin hi~udung b(J lr;c
e) G;(Z-I)Gp(Z) =Gp(z)G;(Z-I) =I, Hp(z)=G;(Z-I)
LQcFIRtnjcgiaocochiendai1amt)tsO'chillinhub6desan:
B6d~3.1
BQ1Qchaikenhtnjc chuffn,FIR, ht%s6th1fCfuoacacHnhcha'tsan:
a) Chien dai L cuabt)1Qc1achilli , hayL =2K.
b) Bt) 1Qcthoa dieu kit%nSmith-Barnwell ve t6ng blnh phuongbien dt)
trenvangtrail donvi.
IGo (eim r +IGo (ei(m+JT)r =2
IG1(eimr+IG1 (ei(m+;r)r =2
Ne'u1Qcbangtha'pco nghit%mti;lin nghla1aGo(-1) =0thl Go(1)=J2
LQckenhcaoco th€ duQcSHYdi€n tu 1Qckenhtha'pb~ngcachdao
nguQcthaigianvalamtr€ mt)ts616nhip.
G1(z) =_Z-2k+1GO(_Z-I)
trongdo,2K=L 1achiendai1Qc.
Chungmink:
a)
c)
d)
Khongmit tinht6ngquat,co th~gilt su cac M s6 cua 19CgoIii go[O],..,
go[L-1]
di;Lt: p[l]=(go[n],go[n+l])ladaytu'dngquailcuaday{go[n]}
thl: p[L-l]= Lgo[n]go[n+L-l]=go[O]go[L-l]:;i:O
nEZ
b)
Mi;Ltkhac,biSnd6izcuap laP(z)=Go(z)GO([I)thoa
P(z) +P(-z) =2
do do, cacM s6 b~cchilli cuaP(z) pMi bhg 0, (tn)'p[O]=1).
SHYrap[L-1] la hi!?s6b~cIe, hayL chilli
Ta cotli (3.2.27a)vdiz=ejm, VIcacM s6cuagoIii thvclien
Go(-elm)=Go(eim)
taco' Go(elm)Go(ejm)+Go(-elm)Go(-e jm)=2
IGo(ei"r +IGo(ei(mT=2hay
tu'dngtv,dung:
Co(z)Co(-z) + C1(z)C1(-z) =2
vdi z=eim
taco: IGo(ei"f+IG\(ei"f =2
Tli(b),vdiw=0,tacoIGo(lf+IG\(-lf=2,dodo Go(l)=.J2
Xemtrong[1].
c)
d)
M~nhd~3.7
TrangmQtbQ 1Qctnjc giao, Hang1uQngduQcbaa roan:
Ilx112=IIYoI12+IIYll12
Chungminh:
NangItiQngcuatinhii!?uxuitlIencackenhla :
65
3.Khaitriln tinhi{!udungbr?19C
IIYol12+llyJ2 =~ nYo(ej&r+I~(ej&r~w27r0
(Yo(Z»)Y(z) = =H (z)X (z),, Y,(z) p pvoi
taco: ~ f~Yo(ei& ~2 +IY,(ei& ~2~w=~ f[Y(ei&)]"Yo(ei&flw
27r 0 27r 0
=_
21 f[xp (ei&)]*[Hp (ei&)]"Hp (ei&)xp (ei&flw7r 0
1 2. . .
=- f[x (eJ&)jx (eJ&}iw
27r 0 p p
= IIxo112+IIxl1l2= Ilxlf
(VIHp(z)lEimatr~nParaUnita)
.
III CAC Be>LOC CO cAU TRUC CAY:
BQlQcnhiSukenhco thedu'QCthie'tl~ptli'bQlQc2 kenhb~ngcachl?p l?i vit%ctach
tinhit%u(j cackenhcan.MQttru'onghQpthongdvngla l?p l?i vit%ctachtinhit%u(j
kt~nht<1nsatha'p.TagQibQlQcnaylabQlQCbatdQ(octavebasefilterbank).
x
giai dO1)1l2 "~
~
(a)
giai dOI)Il.T
;
giai do,!1l1
..
giaidol)ll2
giai dol)l1.T
(b)
Hlnh 3-5
BQ h.>cbat dQquaJ giai do~n,voi phan fa thanhcac kh6nggian
con tntc giao. ~=~+1EB~+1'Ne'uHi[n] la illQt lQc tntc giao vdi
gi[n] =hi[-n]ca'utrucbatdQtfent~ofa khaitri6n tntcchuifn
chu6iWaveletfCiif~C.(a)Phiin phantich.(b) Phiin t6nghqp.
III.! B(ilQCbatdOvachu&iWaveletrO'ir~c:
X6tbQlQcnhu'(j hlnh 3.5ta tha'ytin hit%udu'Qcphantachthanh2 nhanhqua IDQtbQ
66
3.Khaitriln tinhi~udunghi?l(Jc
IQc2 kenh,saud6ph~ntinhit$ud kenhthffpIf;liduQctachlamhaivdi cungmQtbQ
IQC,va cli tie'pt~c.Gia sabQIQcthoaDietlkit$nkhaiphl,lCtoanbaa,tasethffycffu
trucnaycaid?tchu6iWaveletroi rf;lcsongtntcgiao.Ne'ubQIQcla tntcchu§'n,tase
duQchu6iWaveletroi rf;lctntcchu§'n.
Trangca2 tru'onghQpsongtntcgiaova tntcchu§'n,ht$cosd duQcsuydi€n titcac
hamGaplingxungcuabQIQct6nghQp.VI V?ytase t?PtrungvaobQIQct6nghQp.
Vi dl:l: Xet IQc Haar vdi cac ham Gapling xungdinhnghlad (3.1.9)cac bie'nd6i z
tttongungla:Go(z)=~(l+Z-)~ G)(z)=~(l-Z-))
I Taxetquatrlnht6nghQpnhudhlnhve (3.5b),quaJ =3giaidof;ln,nhuV?y,tadung3
bQIQchaikenh.Vi IQcbdiG(z)saud6Iffymfiulenbdi2thltu'ongduongvdi Iffymfiu
lenbdi2 nSiIQcbdi G(l) lienquatrmhtrentuongduongvdi bQIQc4 kenhvdi cac
IQc:
G(1)(z)=G(z)=~ (l-z-) )
) ) 12
G?)(z) =Go(z)G)(z2)=~(I+Z-)_Z-2_Z-3)2
G?)(z) =Go (z)Go (Z2)G) (Z4)= If,. (1+z-1+Z-2+Z-3 _Z-4 _Z-5 _Z-6 _Z-7)2...;2
G~3)(z)=Go(z)Go(Z2)Go(Z4)= If,. (1+z-) +Z-2+Z-3+Z-4+Z-5+Z-6+Z-7)
" 2...;2
duQcthltchit$nsailkhi tinhit$udil duQcIffymfiul~nluQtbdi2,4,8,8.
CaehamGaplingxungduQcrutrab~ngcachIffybie'nd6iznguQc.
Takyhit$ug6k)[n]la hamGaplingxungtuonglingvdi quatrlnhIQCk giaidof;lnd
bangthffp,m6igiai dof;lnduQcthltchit$nsaukhi tinhit$uduQcIffymfiu!enbdi 2.
g;k)[n]lahamGaplingxunglingvdiIQcbangcaotheosaubdik-I giaidof;lnIQc
bangthffp,dm6igiaidof;lndeliduQcthltchit$ntru'dcb~ngphepIffymfiuIenbdi2.
)
2./2(1,1,1,1,1,1,1,1)
1
2 (I, I, -I, -1)
. 1
2./2(1,1,1,1,-1,-1,-1,-1)
Hlnh 3-6
BQh?cbatdQtangh(jpvdilQcHaarvaqua3giaidoliln.
Trangvi d~tn3n,tac6 :
67
3.Khaitriln tinhi~itdungbQlQc
2 2 k
G63)(Z)=Go(z2)G62)(Z)=flGo(22 )
k=O
2 2) k
G?)(z)=G) (Z2 )G~2)(Z)=G1(Z2 )flGO(z2 )
k=O
hayt6ngquat:
J-) k
G6J)(Z) =flGo(Z2 )
k=O
(3.3.1)
J-2
(J) 2J-) fl 2kGj (z)=G) (z ) Go(z )
k=O
vih~th6ng1atnfcchu§'n,lienmatr?nphantichTavamatr?nt6nghQpT.51achuyen
vi clla nhau. Ma tr?n phan tich bien di6n bdi cac ham dap U'ngxung
h;1)[n],h;2)[n],h;3)[n],h63)[n],g8mcacdongchU'acach~so'cuacachamtren,Ta co
d~ng:
(3.3.2)
AO
Ta= AO
Matr?nnay rho tha'y1Qcg?)[n] du'Qcthtfchi~nsankhi 1a'ym~u1enbdi 2 (dongsan
du'Qcdichph,h2 cQtsovdidongtru'dcdo), g)2[n]du'Qcthtfchi~nsankhi1a'ym~u!en
bdi4, gj(3),g63)du'Qcthtfchi~nsankhi 1a'ym~u1enbdi 8.
Xettheokhia qmh thaigian,xua'tli~ucuah~th6ngd hinh (3.5a)trentungkenhdu'QC
viet1a:
HpH)L-)X j =1,2,...,J-1
vaakenhcu6irung 13: H; x
trangdoHo,H] 1acacmatr;!in1Qctu'dngungvai 2kenhlQcth5pva caD.
68
trongdo
2 -2 0 0 0 0 0 0
0 0 2 -2 0 0 0 0
0 0 0 0 2 -2 0 0
A = 0 0 0 0 0 0 2 -2
0 2.fi .fi.fi -.fi -.fi 0 0 0 0
0 0 0 0 .fi.fi - .fi - .fi
1 1 1 1 -1 -1 -1 -1
1 1 1 1 1 1 1 1
3.Khaitriln tinhi~udungb(J l(Jc
Ma tr?n phan rich Ta co duQcb~ngcach xen ke cac dong cua cac ma tr?n
HpH]Ho,...,H]H;-I,H;
1 I... 1 -1 0 0
H=-
1 2J21... 0 0 1 - 1 ...
H =~I'" 1 1 0 0 ...
0 J21... 0 0 1 1 ...
11... 1 1 -1 -1 0 0 0 0
HI H 0=-
21... 0 0 0 0 1 1 -1 -1 ...
2 1 I... 1 1 1 1 -1 -1 -1 -1 0 0 ...
H]HO = f,..,2'\/21... 0 0 0 0 0 0 0 0 1 1 ...
1 I... 1 1 1 1 1 1 1 1 0 0 ...
H3=-
0 2J21... 0 0 0 0 0 0 0 0 1 1 ...
1 Chu6iWaveletrO'ir~c
TruonghQpHaar vila xet la mQttruong hQpd?c bit%tcua chu6i Wavelet roi r<:ic.Trang
phgnay,tase t6ngquathoakhai nit%mchu6iWaveletroi r<:icvdi lQctn!cchu§'nba't
ky.
X6tbQlQc2 kenh tn!c chu§'nvdi cac lQc ho,hI, go,gI trongdo hi[n]= gi[-n]. Lam
tl!dngtVnhutrlionghQpHaard phgnlIen,tinhit%ungu6ncothe'duQcvie'tla :
x[n]=Lx(1)[2k+I]g?)[n- 2] k] +Lx(1)[2k]g61)[n- 21k]
~Z ~Z
(3.3.3)
Trangdo: x(1)[2k]=(h6])[2]k -/],x[l])
x(1)[2k+1]=(hl(1)[2]k -I], x[/])
\ake'tquaclla phep lQc qua ho,hIcua tin hit%ungu6n x t<:iicac chi s(f chan, vdi
69
3.Khaitriin tinhi~udungbQ lQe
he])=h h(1)=h0 0' 'II
Tinhi~uxua'td kenhtha'px(l)[2k]l~idu'Qctachthanh2 kenhtha'pvacao,dodothanh
phhthlihaid vephaiCl1a(3.3.3)trdthanh:
Lx(1)[2k]h~I)[2jk - n]=L xe2)[2k+1]gle2)[n- 21k] +L xe2)[2k]g~2)[n- 21k]
~Z ~Z ~Z
(3.3.4)
vdi: xe2)[2k]=\hC;2)[22 k -7], x[l])
xe2)[2k + 1]= \hle2)[22k -7], x[l])
Nghlala taapdvng(3.3.3)themmQtl~nmla.g62)[n]la phienbancuaphepIQcd
kenhtha'phail~nkethelpvoi la'ym~ulen,nghlala G62)(z) cod~ng:
G62) (z) =Go(z)Go(Z2)
congle2)[n]tu'dnglingvoi la'ym~ulen,IQcquabangcaor6iquabangtha'p:
Gje2)(z)=Go(z)GI(Z2)
xetrheathaigian,(3.3.3)cothSdu'QCvietl~ithanhtinhi~ut6nghelptu3kenh:
x[n]=2:>(1)[2k+1]g?)[n-2Ik]
kEZ
+I>e2)[2k+l]gle2)[n-22k]+Lxe2)[2k]g62)[22k-n]
kEZ kEZ
(3.3.5)
Tie'ptvcquatdnh(3.3.5)J l~n, tadu'QCchu6iWaveletrai r~cvoi J batdQ,clingvoi
batdQcu6iclingvoiphienbant~ns6tha'p,(3.3.5)trdthanh:
x[n]~ ~(~x(j'[2k +l]g?'[ n - 21k] ) +~X"'[2k ]g~J'[n- 2J k](33.6)
trongdo,
XU) [2k+1]=\h?) [2f k -7], x[l])
xeJ)[2k] =\h~J)[2J k -7], x[l])
j=1,...,J
(3.3.7)
Trangcongthlic(3.3.6)kS tren,day g?)[n] la phienbanrheathaigiancua(3.3.2),
cong6J)[n]la phienbantheothaigiancua(3.3.1).
VIffiQiday {x[n]}deli co thSdu'Qckhai triSnthanhchu6irheacongthlic (3.3.7)lien
t~pIH/p{g?)[21k - n],gi2)[22k - n],...,gf)[2Jk- n],gf)[2J k -n]} k,nE Z tflo thank
m(JtCdsa tTlleehudn eua l2(Z)
Netd?ctIlingcuachu6iWaveletrai r~clacachla'ym~u.KS tukenhthli2trddi,m6i
b~nhduQcla'ym~uxu6ngbdi2 sovoi kenhtruocdo,vacodQrQnggiaithonggiam
xu6ngmQtmh sovoikenhtruoc.Cachla'ym~unayco thSdu'QcbiSudi€n bdihlnh
(3.7)vaduQcgQila lily miiulu:dinh,it6:
70
.....-
3.Khaitriln tinhi~udungbQh?c
9
+
10 11 12 13 14 15 16
I I I I I I I
. .
.
mnh 3- 7
Lu'oin~ to'dungtrongchu6iwaveletri'1irl;lc.Trong lllnh la cac 4nh tie'nCliacacham
cd sa gif) j =l,J va g?). Cac chii'm tu'dng«ng voi phep lii'u miiu cua chu6i
Wavelet.
2.1CaeHnhcha'tcua'chu6iWavelet rO'ir~c :
-Tuye'nfink :
Vlchu6iWaveletroir~cchibaagdmph§ntichtrongvatichch~pla caeloantU'tuyen
tinh,nentuyentinh.
(x+y)Cf)[2k +1]=xU) [2k +1]+yU) [2k +1]
(x+y)V)[2k]=x(J)[2k]+ yeJ) [2k]
-finklien
MQth~tho'ngdato'cthu'ongkhongbfftbientheopheptinhlienngang,trongmQth<$
th6ngvoibQlQchaikt~nhIffym~uxuo'ngbdi 2 taco sVbfftbienvoi pheptinhlien
ngangffiQtso'channhip.VI v~ycothehinhdungmQtchu6iWaveletroir~cJ-batdQ
seba'tbientheopheptinh lien k.2Jnhip,va bien d6i khi tinhlien mQtso'nhipkhong
cod~ngk.2J.Hinh ve (3.7)chothffykhi ta tinh lien quamQtbQi so'cua 2J, cac diem
tronghioi se changkhit leu chinhno, di~udo khongxay ra khi tinh lien quamQtso'
khacbQicuak.2J. M<$nhd~sandaysechungminhl~plu~ncotmhtrlfcquanlIen.
M~nhd~3.8
TrangffiQtkhaitri~nchu6iWaveletJbat dQ,neu:
x[l]Bxw[2k+l] , j=I,2,...,J
x[l- m2J]B xU)[2(k - m2J)+1]thi
Changmink:
Ne'uy[l] =x[1-m2J)tmcaeM so'khaitri~nchu6iWavelet,heocongthuc(3.3.14)Hi:
yU)[2k+1]=(h1W[2jk -I], x[l- m2J])
=(h1U)[2jk-l' -m2J],x[I'])
=xU)[2j(k-m2J-i)+1)
Lamtu'dngtl,idkenhthftptaseeo:
y(J) [2k]=x(J) [2(k-m)] .
-Trl,lcgiao:
Caehamgf)[n] va gjeJ)[n],j =1,...,Jva cacbansaotinhlien thichhQpt~othanh
ffiQt~ptrt!'cchuffn,di~udocodu'Qclavi cachamlIendu'QCxaydvngtirbQIQctrvc
chugn,trongdo :
71
0 1 2 3 4 5 6 7 8
I I I I I I I I I
g\I) . . . . .
g\2) . . .
g\3) . .
g\4) .
g&4) .
. .
.
.
.
.
3.Khai triln tin hi?u dung bQ 19C
(g i [ n - 2k], g] [ n - 21]) = 5[ i - j]5[ k -I]
M~nh d~ 3.9
Trangm9tkhaitrienWaveletroir?c,tacocacd~ngthlicvetrt1cgiaosan:
(gf)[n - 2J k],g~J)[n- 2J 1])=5[k -I]
(g;J)[n - 2]k],g?)[n - 2'I]) =5[i - j]5[k -I]
(gf)[n - 2J k],g;f)[n - 2fI]) =0
Changminh:
Ta ch(ingminhbhg quyn'ilP
Xet 19Cg~])voi biSn d6i Ztu'dngung la G~]).G9i pC])la day tl! tu'dngquancua day
g~]), voi biSn d6i z la pu) till :
pC;)(z)=G~1)(z)G~;)(_Z-I)
VI {go[n]}la tn!cgiaovoi pheptinhtiSnquaffiqts6 chan,taSHYra
p(I)(Z)+p(l)(-z) =2
V~ycac M s6b~cchancua pCI)(z) biing0,nga'ilitnl p(1)[O]=1.
Do d6, thanhphin daphadiu W~ncua p(1)(z) bhg 1. p(1)(z)c6 thSdu'<;1cviSt la :
p(1) =l+z~(1)(z2)
GilLsa g~f)[n]tn!cgiaavoi g~f)[n-mi], khid6daytvtu'dngquanc6thSdli<;1cviStla
2f-I .
pU) (z) =1+L z' p,U)(Z21)
;=1
vI: G~j+l)(z) = G~1)(z)Go (Z2] )
pU+1)(z) =pU) (z)p(1) (Z2f)nen:
=(1+~Zip'(j)(Z2f ))(1+Z2f~(I)(Z2f+I))
Ta dn ch(ingminhthanhphitndaphath(i0 cuap!J+I)(Z)biing1,nghlala cach~s6
f+1
lingvoi Z2 'bhg O.Trangrichd vSphai,tachidn xetrichs6chuathanhphitnda
pha.
21-] .. .+1L z' p,U)(z 2])022]~(l)(Z2J )
;=1
sO'mil cuaZtrongrichs6 lIen c6 d'ilng:
l =i +ki +i +mi+1
trongd6i =0, i-I, k,mEZ
v~yl khongthSla bqis6cuai+l, dod6:
2]+1
pi+!(z) =1+L Zi p,U+l) (z2f+1)
;=1
tom l<:tibiing quy IWP, ta chung minh du'<;1c:
2] -) .
pi(z)=I+Lzip,U)(z2]) )=1,...,1
;=1
Nghlala g6]) trvc giaovoi g6])[n-ki]
72
3.Khaitriin tinhi~udunghi?[(lC
.
D~ngthucParseval:
Vi t?Ph9P {gf)[n],g?)[n]},j=1,...,Jla tntcchugn,hdnnuabQlQcla khoiphvcloan
haonent?Ph9PlIen la d~ydu,t~othanhmQtcdsdtn,(cchugncua12(Z).Dodo,taco
d~ngthlicParseval,:
11x[n~I' =&=, (lx(J) [2kf +tIxU) [2k + 1]1'J
II.3BQIQCbatdQvacdche'phdngiaidacd'p
BQlQcHaarvaSinccod~cdiemtinhi~udu'9Ctachthanh2phienban: phienbantho
vaphienbansaibit?tdekhoiphvcchitie'ttuphienbantho.Phienbantholingvai
ph~nt~nsr5tha'pcodQphangiaitha'pvaphienbansaibi~tlingvai ph~nta'nsr5cao
euatinhi~ungu6n.Ne'utatie'ptvcphantichph~ntinhi~uthot~nsr5tha'pthanh2
kenhvaiclingbQlQCvaapdvngd~quynhi€u bu'ac,tadu'9CmQtcayphanca'pcacdQ
phangiai, con gQi la ph~nra da phangiai hay phanra dQphangiai phanca'p
(multiresolutiondecomposition).Cdche'phanradaphangiaiconhi€u lingdvngtrong
xalytinhit?unhu'lienanh,lientinhi~uVideo.
d~t Va=12(Z).
ffiQtphantichaaphangidibaog6mmQtdaycackhonggiancondong16ngnhau.
Vj c CV2CVICVO
Wj+1la ph~nbli tntc giao cua Vj+Itrong Vj,
Vj =Wj+1EB Vj+1
J
U Vj =Vo
j~O
giiistY{go[n]}la mQtph~ntU"cua Vasaocho {go[n-l]tz la mQtcd sd cua Va.
{go[n- 2k]tz lamQtcd sdcuaVI.
b~ngeachd~t :
gl[n]=(-It go[-n+1]
(*)
thlhi€nnhien:
(go[n-2k],gl[n-21])=0
nghlal : {gl[~- 21]}IEZC ~ valamQtcdsdcuaWI.
V~y: (go[n- 2k],gl[n- 21])k,IEZt~othanhmQtcdsdcuaVa.
Tavie't Va=VI EB WI
PhantichVIthanhV2EBW2va tie'ptvcquatrinhnaytadu'9C
Va=WI EB W2EB ""'" EB Wj EB Vj
XetbQlQcbatde)d hlnh(3.5a),lQcphantichla phienbandaongu'9cthai giancualQc
t6nghQp.
Vlv~y,pheplQcd kenh1,2,...,J+11ala'ytichch?p,chinhla tichvo huangcuatinhi~u
gQI
taeo
va
73
3.Khaitriln tinhi~udunghi) IflC
ngu8nvdi dic hamcd s6cua W},Wz,...,WJvaVJ.
Tin hi<$usankhi du'Qct6nghQpvdi cac lQc t6nghQp,ta du'Qcke'tqua la hlnh chie'u
trQ'cgiaocuatinhi<$ungu8nxu6ngcackhonggianconW1,WZ,...,WJvaVJ.
V~ytinhi<$ungu8ndu'Qcphanra thanhphienban tho6 trongVJ va cac chi tie'tthem
vao6 Wi, i =1,...J.
Tangcllacacthanhphgnthovacacthanhphgnchitie'tthemVaGkhoiphvctinhi<$u
ngu8nbandgu.
TagQiVJ lakhonggianxa'pxi vaWjla cackhonggianchitie't.
Quatrlnhkhoiphvctinhi<$ungu8ndu'Qcthlfchi<$nnhu'san:Tab~tdguvdiphienban
thodQphangiaitha'ptrongVJ,sand6b6sungthemchitie'tva tie'ptvcquatrlnhli[lp
chode'nkhid?tdu'QcdQphangiaicaDnha'tcu6irung.
Vidl,l: Bi) IflC hat di) dung IflC sinc.
LQcsincsli'dvngbQlQcg8mlQcnli'arhobangtha'pqua19tu'6ngc6tgnso'dt nIl va
lQchobangcaDqualy tu'6ng.KhonggianVo=h(z)co~h6trendo~n(-n,n).Vodu'~c
tachdoithanhVI EJjWI vdi VI tren(-nl2,nl2),WI trenkhoangconl~i.VI l?i duQC
phantichthanhV2tren(-n/4,n/4)...
_V2-'
Vl- Vo~ ., ...
VIWI'... W2 WI
~...
n n n
? 21-1 4"
n
2
n
(j)
ffinh 3-8
Chu6i Wavelet rdi r~edung1gesineco phiin cat ph6 1)'tuf1ng,khong gian Vi
duWi+lling vdi ph6 ~ tudngling vdi ph6 [O,nl2!]du<Je
phiincat thanh[O,nI2!+1]va[nl2J+\nI2!] tudngling 1ftn11«JtvOiV!+lva WJ+l.
K A', A AI
THIET KE CAC BO LOC TRfjC CHUAN :
Trangphgnnaytasexetde'n2 cachthie'tke'lQctrlfcchu§'n,cachthlinha'tdlfatren
phuongphapphantichthanhthuaso',va cachthlihaidlfatrenca'utrucgi~m.Ta se
thie'tke'caclQct6nghQp,VIbQlQcla trlfcchu§'n encaclQcphantichc6thesuytu
lQctanghQpb;}ngcachdaDnguQcthaigian: hi[n]=gi [-n].
M~nhde3.10
Choh lahamGaplingxungcuamQtlQCvapIa daytVtu'dngquailcuah.
p[m]=(h[n],h[n+m])
Giiisli'p tu'dnglingvdi lQcFIR. Khi d6bie'nd6izcuap c6d?ng:
74
3.Khaitriin tinhi~udunghi) l(Jc
v~y
y'[ZI,Z2]= Ly[n;,n;](ZIZ2rn;(Zlz;}rn~ =Y(ZIZ2,ZIZ;})
Y(ZjZ2'Z}Z;I)=!(X(ZpZ2) +X(-Zp-Z2))
2
d~t
tadu'Qc
-I
Z2 =ZIZ2Z} =ZIZ2 ;
Y(z;,z;) =~(X«z; )1/2(z;Y/2,(z;Y/2(z; rl/2) +X( -(z; )1/2(z; )1/2,-(z; )1/2(z;rl/2):
Y(Z Z ) =! (X(ZI/2ZI/2 ZI/2Z-I/2) +X(_ZI/2ZI/2 _ZI/2Z-I/2))
1'2212'12 12'12
ke'tie'ptaxettru'onghQpH(ym~u1en:
[z Z ]=
{
x[n;,n;] ne'unl =n;+n;, n2=n;-n~
y l' 2 0 ndi khac
1
[
n}+n2 nl - n2
]
A' ' h
-
h ~ , I ?
= x 2 ' 2 neu n},n2clingc an °<;lccunge
0 ndi khac
bie'nd6izduQctinhdedang1a:
Y(z) =X(ZIZ2'ZIZ;I)
ke'tquasankhi 1a'ym~uxudng,sando 1a'ym~u1enSHYtir (1)va (2)1a:
{
X[nl,n2] ne'un I +n2chan
y[npn2]= 0 d' kh'n 1 ac
1
Y(zpzJ =-(X(zpzJ +X(-Zp-Z2»2
[tacoth€ tinhtnfctie'p(3.5.1)tir (*))
hay
Thie'tke'bc)1Qcnhi~uchi~u:
Vi~cthie'tke'cacht%thdngkhongtachduQCkho khanhdn truonghQpmQtchien.Ta
sexet2tru'onghQp: tachduQcva khongtachduQC.
83
(1)
(2)
(3.5.1)
3.Khaitriin tinhi~udungb(j lQc
Nu N N
Fez) =an((1- ZiZ-1XI- ZiZ))n (1- ZZiZ-I)n (1- Z;iZ)
;=1 ;=! ;=1
TOngd6 Nu la so'nghi~mtrenvongtrondonvi,
N la so'nghi~mbentrongvongtrondonvi,
Zli la cacnghi~mtrenvongtrondonvi IZliI=1,
Z2i lacacnghi~mbentrongvongtrondonvi IZZil<1va
1/z;; la cacnghi~mn~mngoaivongtrondonvi.
'hztngmink : ~
BiSn d6i Fouriercuap la :
P(ej<V)=fp[n]e-j"" =ffh'[k]h[k+n]e-j""
n=-" n=-.,k=.,
= f fh'[k]h[k +n]e-j""k=-.,n=-.,
., .,
= L Lh'[k]ej<Vkh[k+n]e-j<V(k+n)k=-.,n=-.,
., ro
= Lh'Ck]ejd>kLh[k+n]e-j<V(k+n)k=-" n=-"
=H'(ej<v)H(ej")=IH(ej"r
v~y p[m]=(h[n],h[n+m])~ P(ej<V)=jH(ej<vf
BiSnd6izcuap la :
p(z)=~>[n]z-n=f fh'[k]h[k +n]z-nn=-.,k=-.,
., .,
=LLh"[k]zkh[k+n]z-(n+k)k=-.,n=-.,
=fh'[k](l/ zt Ih[k +n]z-(n+k)
k=-ro n=-'"
=H.(l/z}H(z)
V~y, p[m]=(h[n],h[n+m])~ P(z)=H(z)H.(l/z) .
voi It (z)ladathuctheozcocaeM s6la lienh<;fpcuacaeh~s6trongdathuc
H(z).
Tirrangthuctren,ne'uZkla mQtnghi~mcua P thl 1/z; dIng la nghi~mcua P. Khi
h[n]Iiidaythl!c,ne'uZklanghi~mcuaH(z)thl z;,1/Zk,1/z; clinglanghi~mcuaP(z).
DoIylu~ntren,P(z) c6 d~.lllg:
Fez)=aIT(1- ZliZ-1XI- zliz)fI (1- ZZiZ-I)fI (1- Z;iZ)
i=1 i=1 i=1
TllrangthuclIen, ta c6 the tlm H(z), cach lam nay gQi la phan rich thanhthila so'.
H(z)duQcgQila thila56'ph6 . Cac thuaso'ph6thl khongduynha't.MQt trongnhung
IdjgiiiichoH(z)du'QchQnc6d~ng:
N" N
H(z) =Fan (1- ZIiZ-I)TI (1- ZZiZ-I)
i=1i=!
Trangdo,tachQnZ2ila cacnghi~mn~mbentrongvongtron,Zlila cacnghi~mtren
75
3.Khai triin tin hifU dung be?IflC
vangtrail,Nula s6nghi~mtrenvangtraildonvi vaN la s6nghi~mbelltrongvang
trolldonvi
V.l Thie'tke'b{)IQcb5ngcachphfintfchthanhthitas{f:
Dungphu'ongphap'phantichthanhthU'as6,tacothethi€t k€ cacbQlQcthoamanmQt
s({yetidu chotruck.Debauchiesthi€t k€ hQcaclQcthoadiSuki~nph~ngt6i da
(maximallyHatfilters).LQcDebauchiesdaihoi lQckenhtha'pconghi~mbQit6ida
t?i OJ=;rr,noicachkhac,daytv Wongquailcobi€n d6iFourierconhiSunghi~mt~i
w=;rr(hayt~i~=-1).
NgoairaVI
P(z) +P(-z) =2
nenP(z)cod~ng:
Fez)=(l+z-1Y(I+zYR(z)
trongdoR(z) d6i xling (R(z)=R(z-1))va du'ongtrenvangtrail donvi. X6t tru'ongh9P
R(z)cob?ct6i thi€u, cacs6h~ngcos6miltU'-k+1d€n k -1 . Khi dovoi rangbuQc
tren,tacothetImdu'9CGo(z)
Vidu :TimlQcD2tronghQlQcDebauchies
Vdik=2lingvoi19ccochiSudai4,P(z) cod~ng
Fez)=Go(z)Go(Z~l)=(1+Z-l Y (1+zY R(z)
VdirangbuQcb?ct6ithi€u choR(z),R(z) cod~ng:
R(z)=az+b+az~l
v~y:P(z)=az3+(4a+b)z2+(7a+4b)z+(8a+6b)+(4b+7a)z~1+(b+4a)z-2+az-3
do(*),cach~s6b?cchancuaP(z)b5ng0vap[O]=I,taco :
4a+b=O
8a+6b=1
1 1
a=-- b=-
16' 4
1 1 1 -]
R(z) =--z +---z
16 4 16
phantichR(z)thanhthU'as6,tacothechQn:
R(z){~-J[1 +v'3 +(1- v'3 )d~+v'3 +(1- v'3 )z]
chQncacnghi~md trongvangtraildonvi,setu'onglingvoi lQcbangtha'p:
Go(z)=4~(I+Z-1Y[I+./3+(I-./3)Z-I]
Go(z)= 1",[1+./3+(3+./3)Z-1+(3_./3)Z-2+(I-./3)z-3]4'\12
(*)
hay
[ 3]=
[
1+./33+./33-./3 1-./3
:go0.. 4J2' 4J2' 4J2' 4J2
76
3.Khaitrilfntinhi~udungbq h;c
g[-2..1]=
[
I-J3, _3-J3, 3+J3, _1+J3
]1 4.[2 4.[2 4.[2 4.[2
Vi du : xet tru'onghQpphlic t<:iPhdn, k =3ling vdi lQcD3co chieudai 6,P(z)co d<:ing:
Fez)=(l+z-1Y(I+zY R(z)
vdirangbuQcbellct6i thieuchoR(z),R(z)co d<:ing:
R(z)=az2 +bz+c+bz-1+az-2
tatinhdu'QcP(z)=(z3+6Z2+15z+20+15z-1+6z-2+z-3Xaz2+bz+c+bz-1+az-2)
=az5+6az4+15az3+20az2+15az+6a+az-I
+bz4+6bz3+15bz2+20bz+15b+6bz-I+bz-2
+cz3+6cz2+15cz+20c+15cz-1+6cz-2+cz-3
+bz2+6bz+15b+20bz-1+15bz-2+6bz-3+bz-4
+az+6a+15az-1+20az-2+15az-3+6az-4+az-5
=az5+(6a+b)Z4+(15a+6b+C)Z3+(20a+16b+6C)Z2
+(16a+26b+15c)z+(12a+30b+20c)+(16a+26b+15c)Z-1
+(20a+16b+6C)Z-2+(15a+6b+C)Z-3+(6a+b)Z-4+az-5
vip[2k]=0trup[O]=I,taco :
{
6a+b=0
lOa+8b+3c=0 giiiih<$,tadu'Qc
6a +15b+10c=1
R(z) =~(3Z2 -18z +38-18z-1+3z-2)128
philntichthanhthuaso',gQia,fJla cacnghi<$mbelltrongvongtrollddnvi, taco:
R(z)=A2(1- az-l)(1- fJz-l)(1-az)(I- fJz)
R(z) =A2(afJz-2 - (a + 13)(1+afJ)z-1 + 1+(a +13)2
+a2132- (a +13)(1+ap)z +afJz2)
d6ngnha'th<$so',ta du'QC:
[
A2.afJ=3/128
A 2.(1+afJ)(a +13)=9/64
A2.(1+a 2132+(a+13)2)=19/64
giiiiMphu'dngtrinhtrentadu'Qc:
A =1+.Jlo +~5+2.Jlo
, 16.[2
a +13=- 8+3.Jlo+6~5+2.Jlo
1+.Jlo +~5 + 2.Jlo
afJ =1+.Jlo- 5~5+2.Jlo
1+.Jlo +~5+2.Jlo
f
a=3/128
b =-9/64
c=19/64
77
3.Khai triin tin hifju dung b(J lQc
Vlv~y: Go(z)=(1- Z-1)3A(I- (a +f3)Z-l+af3z-2)
=A(I- 3z-1+3z-2- Z-3)(1- (a +P)Z-I +apz-2)
=A(I-(3+a+ f3)Z-1+(3(a +f3+1)+ap)z-2
+[3af3- 3(a+f3)-1]z-3 +(3af3+a +p)z-4 - af3z-5)
ThaycacgiatrivaotaduQc:
[0]=1+J1o +.Js +2J1o
go 1612
[1]=5+J1o +3fs +2J1o
go 1612
[2]=10- 2J1o+2J5 +2J1o
go 1612
[3]=10- 2J1o - 2J5 +2J1o
go 1612
[4]=5+J1o- 3)5+2J1o
go 1612
go[5]=1+.J1o- J5+2.J1o
1612
.2 Thie'tke' IQc b~ng phlidng phap phan tich thanh thita s6 ki~u gian (lattice
factorizations).
Matr~ndaphaCl1amQtlQcFIR co chieudai L =2K cod~ng
(
Goo(Z) GlO(Z)
]
Gp(z)=
GOI (z) Gl1 (z)
trangd6GI(z)=_Z2k+l1GO(_Z-I) lamatr~nkhongma'thongtin.Ma tr~ntrencothe'
dl1qcphantlchthanhthuas6cacmatr~nquaynhu'sau(xem[1]):
(
Goo(Z) GlO(Z)
] [n
k-I
(
1
) ]
Gp(z)= =Uo I U;
GOI (z) Gl1 (z) ;=1 z-
Ui =
(
c~sai -sinai
]smai cosa;
Apd\lllgcacca'utrucphiintlchtren,taco the'thie'tke'bQlQcDz chieudai 4, k =2
matr~nGp la :
G (Z)=
(
c~sao -Sinao
J(
1 -
J(
c~sal -Sinal
]p smao casaD Z I smal casal
(
.. -I .. -I
J
casaDcasal- smaosmalz - casaDsmal - smaocasalz
= sinaocasal +casaosinalz-I -sinaosinal +casaocasalz-I
trongd6:
78
3.Khaitriln tinhiiju dungb(}lQc
lQckenhtha'pla :
Go(z) =Goo(Z2) + z-IGOI (Z2)
. =cosaocosal+sinaocosalz-]-sinaosinalz-2+cosaosinalz-3
lQcD2co nghic$mdenca'p2 t;;tiz=-1, dodo :
{
Go(-I~=casaDcasal- casalsinao- sinatsinao- sina]casaD=0 (1)
dGo(e)
1
(=casalsmao+2smatsmao+3smalcasaD=0 2)
dO) 0) =:rc
(1)tuongduongvoi :
cos(ao+a])- sin(ao+al) =0 hay ao +a] =k:rc+:rc4
VI: Go(1)=J2
nen:
:rc
ao+al ="4
thayvao(2)tadU9C:
:rc :rc
a =- a =--
0 4'] 12
Go(z)tra thanh :
Go(z)=cos(:rc/3)cos(-:rc/12)-sin(:rc/3)sin(-:rc/I2 )Z-I
- sin(:rc/3)sin(-:rc/I2 )Z-2 +cos(:rc/3)sin(-:rc/I2 )Z-3
Go(z) = 1",(1+.J3 +(3- .J3)Z-1+(3- .J3)Z-2+(1- .J3)Z-3)4,,2
D6chinhla lQcDebanchiesD2ta da timdU9Cd tIeDb~ngphuongphapphanrich
thanhthuasd.
BOLOC NHIEU CHIEU:
U'ymill trongkhonggianmchit~u:
La'ym~utrongkh6'ngianmchiendU9Cth1!chic$nhokhainic$mgian.
Djnhnghja3.3
Gian: ChoaI,a2,...,amla n vectodQcl~ptuyentinh.T~ph9PS ta'tcacact6
h9PtnyentinhcuaaI,a2,...,amvoicachc$sdngnyendU9cgQilamQtgian.
GQiD la matr~nvoicacvectocQtlaaI,a2,...,amthlgianS noitIeDCOd;;tng:
S ={Dk / k E Zm}
tanoiD la matr~nxacdinhquatrinht;;tOmill, haymatr~nbiendieDgian.
Tangquat,tanoit~ph9Pcacvectok la giannh~p(trongtru'ongh9PgiantIeD
laZm)vat~ph9PcacDk lagianxna't.
Giantachd~(C!c: lagiancothedU9CbiendieDb~ngmQtmatr~nduongcheo.
M(}te'baadanv,i: la t~ph9PcacdiemsacchohQicacgianxna'tinhlienden
79
3.Khaitriln tinhi~udungbi?lQc
ta'tcacacdiemtrongte'baat~othanhgiannh~p.so'phgntd'trongmQte'baa
donvi biendi~ndQthu'acuaquatrinht~omfiuvadu'Qcxacdinhbiing
N =del (D)
MQtcosetla ke'tquacuapheptj1lhtie'nmQtgianxua'tde'nmQtdiemba'tky
trongte'baa donvi. Ne'ute'baa donvi co N =del (D) phgntd'thl co dungN
cosetphanbi<$t,hQicuaN cosetnaykhoiph\lcl~igiannh~p.
Mi?tgiandaocuamQtgianco matr~nbiendi~nD la gianco matr~nbien
di~n
Dr=(D-l)T
Mi?tte'baaVoronoila te'baadonvi cocacphgntd'ggnnha'tvdi tam.Ne'utin
hi<$udn t~omfiutrongmientgn so'cobangthongbi ch~ntrongmQtte'baa
donvi, cacph6sekhonghungHiplennhauva tinhi<$uco thedu'QCph\lch6i
titcaemfiudu'Qct~o.
D2 ~
D. DI
Im .
I -A +......-« , y
(a) (b)
ffinh 3-9
Hai cii'utruegiim thuongg~p.(a) Uiy m~uMi 2
trongkhonggian2ehi~u.(b)Uiy m~uhlnhngfidi~m
.1.1La'ym§utrongkhonggianmchi~u:
La'ymfiuxu6ngconghlala cacdiemtronggiandu'Qcgill l~i,boquacacdiemconl~i.
GQiD la matr~nbiendi~ngian,la'ymfiuxu6ngmQtdayx : zm-+R sedu'Qcdayy
nhu'san:
y [II]=x[DII]
TrangmienFourier
yew)=~ :LX((Dtr1(w - 2n-k))N
kEUt
c
nE Zm
N =del(D)
wla mQtvectorthtfcmchien
II ,k la cacvectornguyenmchien
Iffym~ulenmQtdayxsedu'Qcdayynhu'san:
y[n]=
{
X[D-ln] ne'~n~Dk0 notkhac
TrangmienFourier:
vdi
80
:.Khaitriln tinhifU dungbq lflC
Y( m)=XeD I m)
.re'uphepla'ym~uco gi~llltu'ongungtachdu'QC,tanoi phepla'ym~ula tachdu'Qc.
If d1,1:
~rongphgnnay, taxet2 tru'onghQpla'ym~utachdu'QCva khongtachdu'QC.
Ii dl:l1 ..Lity mdu tach du:(/c
,a'ym~uxu6ng(len)bdi2 trongkhonggian2 chieu.quatrlnhla'ym~ucothebieu
li~nb~ngmatr?n:
Ds=(~ ~)=21
gbaadonvi gdmcacdiem:
(nl, n2)E {(O,O), (I,O), (0,1), (I,I)}
rangmienz,cacdiemtrentu'ongungvdibie'nd6iz la :
{I
-1 -] -] -j
},Zj,Z2,ZjZ2
gbaoVoronoico4phgntii'tu'ongungvdibl?lQccoN=det(D)=4kenh
,a'ym~uxu6ngsedu'qcdayke'tqua:
y[nl , n2] =x[2nl ,2n2]
rangmienz,bie'nd6izsela :
Y[ZI,Z2]=:(X(ZI~'Z~)+X(zl~,-zh+X(-z1,z~)+X(-Zl;,z~)J
~gu'qcl?i, la'ym~ulen :
{
[
nj n2
]
A" .:;-
[ J - x -,- neunj,n2chany npn2 - 2 2
0 noikhac
:cobie'n d6izla:
Y(Zl , Z2)=X ( Zj2 ,z;)
ie'nd6iZsaukhila'ym~uxu6ngbdi2,rdi la'ym~utenbdi2 sela :
1
Y(Zl,Z2)=-(X(ZI,Z2)+X(-ZI,Z2)+X(ZI,-Z2)+X(-ZI,Z2»
4
(dngungvdi
{
X[nj, nJ ne'un]>n2chg-n
y[npn2J= 0 .kh'nOI ac
id!l2..Liiymdukh6ngtachdu:(/c..
ettru'onghqpla'ym~utheohlnhngudiem,daylaca'utruct?Om~uhaichieukhong
~chduqc.Giantrongtru'onghqpnaydu'qcbieudienb~ngmatr?n:
DQ :::J(
1 1
)1 -1
'\detDQ=2nenbl?lQctu'ongungselabl?lQc2kenh.
laconMnxetlamatr?nDQkhongduynha't,vi dl,lmatr?n:
81
3.Khai trii'n tinhi~udungb(ih}c
,
(
1 1
)DQ= -1 1
clingbieudi~ndu'c;Jcquatdnhla'ym~uhlnhngtidiem]
Te'b~lOVoronoichogi~illnglidiemla me)thlnhthai(hlnhvuongnghieng)vagiandao
clingV?y.Do do,co theapdvngdemahoahlnhanhbdiVIne'ugioih~nvaGmi€n
naythl(a)ph6cuatinhi~uva cacphienbanI~pI~ido t~om~usekhongd~mten
nhauva (b)miitngu'oikhongnh~yvoi de)phangiaidQcrheadu'ongcheonencothe
chQnbe)IQcbangtha'pdt botheoph§ndu'ongcheo.
Haidiemtrongte'baadonvi la :
110=(~) 111= (~)
tu'c5nglingvoibie'nd6iz trongmi€n z la I va Z;I
haicosetu'onglingla2 t?Phc;Jp:
{(nl,nz)/ nl +nzchan}
va {(nl, nz)/nl +nzIe }
La'ym~udu'oirheaca'utrucIa'ym~ungudiemsedilqcke'tqua:
y[nl,nz]=x[nl + nz,nl - nz]
Betlmcongthliclienh~trongmi€n z , d~ty' ladaynhilsail:
,
{
X[nl,n2] ne'un1+n2chan
y [nl,n2]= 0 ,.( I ?neu nl +n2e
thlbie'nd6izcuay' la :
y'(zpzJ= L y'[npn2] z;nl z~n2
(111,112)EZ2
= L x[ill' n2] z~nl z;n2
nl+n2chan
- I
[
" [ ] -111 -112 "
-"2 L... x npn2 Zl Z2 + L...
I
=-(X(Zl' Z2)+X(-Zl ,-Z2))2
m~tkhactacothevie't:
Y'(ZpZ2)= L
x[""n,](-1)""'z;' z~,]
(*)
[ ] -IIJ. -112-" [
' '
] -..;-~ -1IJ.+112X npn2 Zl Z2 - L... Y npn2 Zl Z2
nl +n2chan
trongd6 n;,n~la2 s6nguyenthoa
D(:}(::)
nghlala n] =n1+n2
, ,
n2=n] - n2
82
3.Khai triln tin hi?u dung bQ h,Jc
',2.1Tru'O'nghQ'ptach du'Q'c:
-1t 1t f]
x
HL
LH
ngang LL LL LH HL HH.~~mdqc
(a) (b)
Hinh 3-10
Bt) lctachdu<;1chai chi~u,voi phep Iffy mb xu6ngtachdU<;1cbdi 2. (a) Phan
di theochi~ungangr6i theochi~udc.(b)Phan chiaph6 trongmi~ntiin so'.
Tadungca'utruccascade,vi dVsauset<:\ora4 IQcclingkichthu'dc,phatuye'ntinhva
tn!cgiao,trongdo2lQcdo'ixungva2lQcphando'ixung(xemtrong[1])
H"(z,,z,) =[O,R,V(Z"Z,)]So
D la matr?nlamtr€ codu'ongcheola 1,Z;I,Z;I,Z;IZ;I
Ri vaSola cacmatr?ntvado'ixung(persymmetric),nghlalaRithGa
R=JRiJ (3.5.2)
phuongtr'inh(3.5.2)cungvdiyelldu Ri lamatr?nUnitasechophepthie'tke'cacIQc
cophatuye'ntinhva trvcgiao(trongtru'onghQp1 chi€u kh6ngtheco IQCvila pha
tuye'nti hvilatrvcgiao).
VdiK thOatvado'ixungvaUnita,Ri cod<:\ng:
trongdo
I
(
1
J (
1 1
J (
R2i
J (
1 1
) (
1
JRi ="2 J 1 - 1 R2i+1 1 - 1 J
R2i,R2i+lla matr?nquayca'p2 x2va
s =
(
Ro
J (
1 1
J (
1
)0 RJ 1 - 1 J
2Thie'tke'IQckhongtach du'Q'c,tru'O'nghQ'pngii diim :
Trangphftnay,tases\i'dvngca'utruccascadedet<:\oracacbQIQc,cophatuye'ntinh
ho~ctnfcgiao.Tu'dngtv nhu'tru'onghQp 1 chi€u, ne'uIQc thGadi€u ki~nkh6i phvc
loanhaGthlmatr?ndaphaco thedu'QCthuaso'hoatheoca'utruccascadesau:
J
(
1 0
J (
1 0
J
Hp(ZJ,Z2)=OR2i 0 -I RJi 0 ;-1 Rol=k-I Z2 z,
dElQcophatuye'ntinh,Rjiphaila matr?ndo'ixung,deIQCla trtfcgiaotaphaicoRji
lamatr?ll U nita.
(3.5.3)
84
3.Khai triln tin hifU dung b(J 19C
XettntonghQptn!cgiao,tasetlmlQcphongtheotru'onghQp1chiSucilaOaubechies.
TasetlmlQcconghi~mzerode'nb~ccaDnha't~i(-1,-1)
Trudche't,xet(3.5.3)d tru'onghQpdongiannha'tk=2,matr~nHpcod~ng:
H/zpzJ =rl
[
R2i
(
1 ~I
J
Rli
(
1 ~I
J]
Ro
i=k-I 0 Zl 0 Zi
=R" (~ z~}" (~ z~,)Ro
Rijlacacmatr~nUnitanenlamatr~nquay,cod~ng:
(
cosaz -Sinaz
J(
1 0
J(
cosal -Sinal)H (ZI,zZ)= . .p smaz casaz 0 ZJ-I smaJ casaJ
(1 ~]Yc~sao -sinaoI
10 ~~ SlOOp cosOp)
=
l(c~saz -~:-Isillaz )
(c~sa]
smaz Zzcosaz lsmal
(
cosao smao
)smao casaD
(
~..
casazcasa] - Zz smazsma]
- sinazcasal +Z;Icosazsina]
(
c~sao - sinao
)smao casaD
-ZI-I sinal
)
-I
z] cas a]
-] .
-ZI cosaz smal
-I' .
-ZI smaz smal
-I -I .
)
-zz ZI smaz casal
+Z;IZ;I cosaz casal
H00(ZI' Z2) =casa2casal casaD- Z~Isina2sinal sinao
-1 . . -1 -I . .
- ZI casa2 sma] smao - Z2Zl sma2 casal smao
HO] (ZpZ2) =-casa2casalsinao+Z~Isinazsinalsinao
-I' -] -I .
- ZI casa2 smal casaD- Z2ZI sma2 casal casaD
HIO(ZpZ2) =sina2casalcasaD+Z~Icasa2sina] casaD
-I' . . -] -I .
- Z] sma2sma] smao +Z2Z] casa2 casal smao
Hli (zp Z2)=-sin a2casal sinao - z~]casa2 sina] sinao
-].. -] -]
- z] sma2sma] casaD+Z2Z] casa2 casal casaD
85
3.Khuitriln tinhi~udungbQltlc
lQcchabangthc1pquala :
Ho(zj,zz) =Hoo(zjzZ,Zjz~j)-z;jHoj (ZjZZ,Zjz~j)
-j . .
=casazcasal casaD-Zj Zzsmazsmaj casaD
-j -j' -z . .
-ZI Zz casazsmajcasaO-zj smazcasajsmao
-I . -z. . .
-Zj casazcasajsmao+zj zzsmazsmajsmao
-z -j' -3 .
-Zj Zz casazsmajcasaO-zj smazcasajcasao
V~y,hocod?ng:
[
... . .
-smaz smajcasaD smazsma]smao
hJnj,nz]= casazcasajcasao -casazs~najs~ao -sinazc~sajsinao
-casal smajsmao -casalsmajcasaD
[
tgaj
=sinazcosajcosao-catgaz catgaztgao
catgazlgajtgao
- sina, COga, cosa" J
- tgajtgao
tgao
catgaztgaj I]
D~t Uo=tgao,
UI=tgaI,
U2= catga2,
. ,
c =-smazcasalcasaD
thllQcbangthc1pcod?ng;
ho[n,.n,]~ {-a,
aj
aoaz
-uDal
ao
IJ
(3.5.4)
aoajaz ajaz
lamtu'ongtv lQcquabangcaDla :
Hj (Zj, zz) =HJO(ZjZZ,Zjz~])+zj-IHll (ZjZZ'Zjz~j)
. -j'
=smaz casal casaD+Zj Zzcasal smal casaD
-z -1' . . -z .
- Zj Zz smazsmaj smao +Zj casal casal smao
-1 . . -z ..
-Zj smaz casal smao - Zj Zzcasal smaj smao
-z -j.. -3
- Zj Zz smaz smaj casaD+Zj casal casal casaD
V~y,hIcod?ng; ,
h, [n, . n,]=[~ 1
={-l
- catgaztgaj
tgao
tgajtgao
catgaztgajtgao
- catgaztgao
tgaj - cotga, }
(3.5.5)
- aoaz
ao
aoajaz
- aoaz
-a, }ajao aj
tacotheviet l?i nhu'sau:
H ( ) [
-I -z -] -z -3
]0 Zj,ZZ =c a1zj Zz -aoajzl Zz -az +aoazzj +aozj +ZI
Lamtu'ongtv nhu'lQCOaubechies trong tru'ongh<;$p1 chi€u, ta tim lQc co zero t?i z =
86
/ra;triln tinhifU dungbe?[fie
1,-1)Mn b~ck-I .Trang tru'onghQpk =2,taco
Ho(-l,-l)=0 (1)
~o(-1,-1)=0 (2)]
:° (-1,-1)=0(3)2
H ( ) ( 1 -] -2 -30 7],Z2 =C - +aDz] -aOa2z] -a2z]
-] -2 -] -] -2 -] )- aOa2z] Z2 + aOa]a2z] Z2 +aOa]z] Z2 - a]z] Z2
8H
(0 -2 -3 -2
T=c-a]z] Z2+2aoa]z] Z2 -aOa2z]]
2
-3 3 -4 -2 -] 2 -3 -] )- aDz] - z] - aOa]a2z] Z2 - a]a2z] Z2
8H
~ )
0 -] -2 -] -2 -2 -2
-=ca]z] -aOa]z] -aOa]a2z] Z2 -2a]a2z] Z2
&2
'ongtrlnhtrentu'ongdu'ongvdi :
iii
{
, a]+aoa]-a2 -aoa2+ao-I+aoa]a2-a]a2=0
a~+2:oa] - aoa2+2:0 - 3+aoa]a2- 2a]a2-=0
a] aoa] + aoa]a2 a]a2 - 0
{
aJI +ao+aoa2-a2)- a2-aoa2+ao-1 =0 (4)
hay,a](1+2ao+aoa2- 2a2)+2ao-aoa2-3: 0 (5)-a](I+ao-aoa2+a2) - 0 (6)
I)taco:
al=0guyra
{
a] =2- ao
2ao-aoa2-3 =0
1+ao- aoaz+az=0 guyra
ao+1
a2=-
~-,~
!hayvao(5)ta QuQc:
2ao- aoa2- 3 - ag+6ao- 3
a] = = 2
1+2ao+aoa2- 2a2 3ao- 2ao- 3
thayvaophu'ongtrlnh(4) tadu'Qc:
2 '
)(
( ) ao+1
)
2
)(
( ) ao+1
)(-ao +6ao- 3 1+ao+ ao-1 ao-1 +(3ao- 2ao- 3 ao-1 - ao+1 ao-1 =0
(
-4a
J
(-ag +6ao-3)(2ao +2)+(3ag-2ao -3) ~ =0
ao-1
(-ag+6ao-3)(ag-1)-2ao(3ag-2ao-3)=0
hay
{
ao=J3
a2=2-J3 ho~c {
ao=-J3
a2 =2+J3
87
'.Khai triin tin hi~udung bQ lflC
a4 - 2a2 - 3 = 00 0
(a~+I)(a~- 3)=0
ao =IFJ
ao =+FJ
a--Tj0 - -V.:J
roml<;tita du'Qccac nghit$m:
(nl)ao=+J3, a] =0, a2=2-J3,tgao=+J3,tga]=0, catga2=2-J3
(n2) ao =-J3, a] =0, a2 =2+J3, tgao =-J3, tga] =0, catga2 =2+J3
(n3) ao = +J3, a] = -J3, a2 = 2 + J3, tgao = +J3, tga] = ~J3, catga2 = 2 + J3
(n4) ao =-J3, a] =+J3, a2 =2-J3, tgao =~J3, tga] =+J3, catga2 =2~J3
rdi
rdi
II (n!) ta co
ta co : a2=2+FJ
a2 =2-FJ
a] =-FJ
a] = +FJta co :
I+FJ. -+-
casal =II , sma2- - 2..[2
I
casaD =I- ,
2
ke'thQpvdi dieu kit$n G(+l,+l) = ..[2 , ta co
. I+FJ
c = -SIll a2 cas a] casaD = - 412
"I . I-FJ
tu(n2)taca casaD =I- , casal =II , sma2 =I~
2 2-v2
I . I-J]
casal =I"2 ' sma2=I 2..[2
I . I-FJ
casal=I"2 ' sma2=I 2..[2
I+FJ
SUYfa c=--
812
Thaycacgia tri vaG(3.5.4)va(3.5.5)tadu'QCcacI9Cho,hI-
88
I-FJ
suyfa
c = 412
I
tli(n3)taco casaD=I- ,
2
I-FJ
suyfa c=-
812
tit(n4)taco
1
casaD=I- ,
2