Luận văn Xác định giới tính cây đu đủ (Carica papaya L.) bằng kỹ thuật PCR với các cặp primer được thiết kế dựa vào vùng DNA liên kết với gen quy định giới tính trên nhiễm sắc thể giới tính

TÓM TẮT “XÁC ĐỊNH GIỚI TÍNH CÂY ĐU ĐỦ (Carica papaya L.) BẰNG KỸ THUẬT PCR VỚI CÁC CẶP PRIMER ĐưỢC THIẾT KẾ DỰA VÀO VÙNG DNA LIÊN KẾT VỚI GEN QUY ĐỊNH GIỚI TÍNH TRÊN NHIỄM SẮC THỂ GIỚI TÍNH”. Nội dung thực hiện: * Khảo sát quy trình nhiệt để tìm ra quy trình nhiệt thích hợp cho các cặp primer T1, W11. * Thực hiện PCR trên mẫu DNA tổng số của mẫu lá đu đủ với từng cặp primer T1, W11. * Thực hiện multiplex PCR với các cặp primer T1, W11. Kết quả đạt được: Đã tìm được quy trình nhiệt ổn định cho các cặp primer T1, W11. Kết quả PCR: trên cây lưỡng tính sản phẩm PCR thu được có kích thước là 0,8 kb và 1,5 kb. Trên cây cái sản phẩm PCR thu được là 0,8 kb. Trên đực không có sản phẩm PCR. Như vậy, đã nhận biết được giới tính của cây đu đủ. MỤC LỤC CHưƠNG TRANG Trang tựa Lời cảm ơn iii Tóm tắt .iv Mục lục .v Danh sách các chữ viết tắt vii Danh sách các hình . viii Danh sách các bảng .ix PHẦN 1. MỞ ĐẦU .1 1.1. Đặt vấn đề .1 1.2. Mục đích đề tài 2 1.3. Đối tượng nghiên cứu .2 PHẦN 2. TỔNG QUAN TÀI LIỆU 3 2.1. Giới thiệu về cây đu đủ .3 2.1.1. Phân loại 3 2.1.2. Nguồn gốc, phân bố .3 2.1.3. Đặc điểm hình thái .4 2.1.4. Các giống đu đủ hiện nay 7 2.1.5. Giới tính cây đu đủ 8 2.1.6. Di truyền học giới tính cây đu đủ 8 2.1.7. Yêu cầu ngoại cảnh .10 2.1.8. Giá trị dinh dưỡng và ý nghĩa kinh tế 11 2.1.9. Tình hình sản xuất và trồng trọt 12 2.2. Kỹ thuật PCR 13 2.2.1. Lịch sử PCR .13 2.2.2. Nguyên tắc PCR 14 2.2.3. Các thành phần của phản ứng PCR .14 2.2.4. ưu điểm và nhược điểm của PCR .17 2.2.5. Nguyên tắc xác định giới tính cây đu đủ .18 2.3. Một số nghiên cứu trong nước và ngoài nước 18 PHẦN 3. VẬT LIỆU VÀ PHưƠNG PHÁP NGHIÊN CỨU .22 3.1. Địa điểm và thời gian .22 3.1.1. Địa điểm. .22 3.1.2. Thời gian 22 3.2. Vật liệu và thiết bị 22 3.2.1. Hóa chất .22 3.2.2. Thiết bị và dụng cụ 22 3.3. Phương pháp nghiên cứu 23 3.3.1. Phương pháp lấy mẫu ở trại thực nghiệm .23 3.3.2. Ly trích DNA từ lá đu đủ bằng phương pháp CTAB 23 3.3.3. Thực hiện phản ứng PCR 25 3.3.4. Điện di sản phẩm PCR 28 PHẦN 4. KẾT QUẢ VÀ THẢO LUẬN .29 4.1. Kết quả ly trích DNA .29 4.2. Kết quả PCR với cặp primer T1 .30 4.2.1. Quy trình nhiệt 1 30 4.2.2. Quy trình nhiệt 2 31 4.2.3. Quy trình nhiệt 3 31 4.2.4. Quy trình nhiệt 4 32 4.3. Kết quả PCR với cặp primer W11 33 4.4. Kết quả PCR với 2 cặp primer T1 và W11 34 PHẦN 5. KẾT LUẬN VÀ ĐỀ NGHỊ .35 5.1. Kết luận .35 5.2. Đề nghị .35 TÀI LIỆU THAM KHẢO .36 . XÁC ĐỊNH GIỚI TÍNH CÂY ĐU ĐỦ (Carica papaya L.) BẰNG KỸ THUẬT PCR VỚI CÁC CẶP PRIMER ĐưỢC THIẾT KẾ DỰA VÀO VÙNG DNA LIÊN KẾT VỚI GEN QUY ĐỊNH GIỚI TÍNH TRÊN NHIỄM SẮC THỂ GIỚI TÍNH

pdf48 trang | Chia sẻ: maiphuongtl | Lượt xem: 2119 | Lượt tải: 1download
Bạn đang xem trước 20 trang tài liệu Luận văn Xác định giới tính cây đu đủ (Carica papaya L.) bằng kỹ thuật PCR với các cặp primer được thiết kế dựa vào vùng DNA liên kết với gen quy định giới tính trên nhiễm sắc thể giới tính, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
đu đủ: Đu đủ ta: cây sinh trƣởng khỏe, lá xanh đậm, phiến lá mỏng, cuống lá dài, mảnh nhỏ và thƣờng có màu xanh. Cây cao 2 - 8 m, khá chống chịu với điều kiện bất thuận. Quả nhỏ tạo thành chùm 1 - 3 quả/cuống, trọng lƣợng trung bình 0,3 - 0,8 kg/quả. Thịt quả màu vàng, mỏng, vỏ quả mỏng dễ dập nát không nên vận chuyển nhiều. Đƣợc trồng phổ biến ở vùng trung du, miền núi phía bắc, vùng bán sơn địa đồng bằng sông Hồng. Đu đủ Mehico: là giống nhập nội trong những năm 70 của thế kỷ 20. Đây là giống có tỷ lệ cây lƣỡng tính và cây cái cao. Cây đạt chiều cao trung bình khoảng 2 - 4 m, dễ bị nhiễm bệnh; gốc cây to, khỏe và các đốt rất sít nhau. Lá xanh đậm, phiến lá dày, cuống lá to, màu xanh. Quả dài, tƣơng đối đặc ruột; vỏ quả xù xì, dày, đạt trọng lƣợng trung bình 0,8 - 1,2 kg/quả. Thịt quả màu vàng, chắc. Đu đủ Solo: còn có tên là giống Hawai. Giống này có tỷ lệ cây lƣỡng tính và cây cái cao. Là giống có năng suất cao, có thể đạt 180 tấn/ha/năm, đƣợc trồng nhiều ở các tỉnh phía Nam do yêu cầu nhiệt cao. Chiều cao trung bình của cây là 1,5 - 3,5 m, khá chống chịu với sâu và bệnh hại. Quả hình quả lê, trọng lƣợng trung bình 0,8 - 2 kg, thịt quả màu vàng có phẩm chất tốt, vỏ quả khá dày. Đu đủ Trung Quốc: là giống nhập nội từ tỉnh Quảng Đông, Quảng Tây, Trung Quốc. Cây thấp, sinh trƣởng trung bình hoặc yếu song năng suất khá cao. Lá thƣờng có màu xanh đậm, chia thùy sâu, phiến lá dày. Quả có dạng dài hoặc thuôn dài, thịt quả khá dày và màu thịt từ vàng đến đỏ sẫm. Cây có tuổi thọ ngắn, dễ bị bệnh thối nhũn cổ rễ. 8 Đu đủ Thái Lan: gồm các giống nhập trong thời gian gần đây nhƣ giống Tainung, Sunrise, Knowyou qua các công ty bán hạt giống. Giống Knowyou là giống cây tƣơng đối thấp, năng suất cao, quả to, thịt vàng, phẩm chất khá. Giống Sunrise quả tròn, cây thấp, gốc cây to, các đốt thân sít nhau, thịt quả mỏng, dễ bị nhiễm bệnh khảm. Đu đủ Đài Loan: là giống cây lai, nhập từ Đài Loan, tỷ lệ cây cái có thể đạt đến 60%, còn lại là cây lƣỡng tính. Vì vậy thƣờng có hiện tƣợng thiếu phấn làm quả phát triển không đều, cần phải thụ phấn bổ khuyết cho hoa cái. Cây cao 1,5 - 2,5 m, sinh trƣởng khỏe, ít bị nhiễm bệnh khảm, dễ mẫn cảm với bệnh đốm vòng trên lá và quả. Các giống đu đủ khác: ngoài các giống trên, trong sản xuất còn có các giống khác nhƣ: đu đủ Cuba, đu đủ Ấn Độ song số lƣợng không nhiều. 2.1.5. Giới tính cây đu đủ Cây đu đủ có ba loại giới tính: cây đực, cây cái và cây lƣỡng tính. Cây đu đủ đực: mang hoa đực, không có quả. Một số hoa ở đầu các nhánh có bầu hoa khá phát triển và có thể hình thành quả nhƣng quả nhỏ, ăn đắng và không có giá trị thƣơng phẩm. Cây đu đủ đực không có ý nghĩa về năng suất song chúng là cây cho phấn, giúp tăng năng suất và phẩm chất quả. Cây đu đủ cái: mang hoa cái. Để tạo thành quả các hoa này phải nhận đƣợc phấn từ các cây đực và cây lƣỡng tính song chúng cũng có thể phát triển đơn tính sinh. Quá trình ra hoa của cây cái ổn định ít bị ảnh hƣởng và chi phối bởi điều kiện ngoại cảnh. Cây đu đủ lƣỡng tính: mang hoa lƣỡng tính mọc thành chùm hoặc đơn độc; nếu mọc thành chùm thì ngoài hoa lƣỡng tính trên chùm còn có hoa đực. Tùy vào điều kiện dinh dƣỡng và điều kiện ngoại cảnh trong năm, cây lƣỡng tính ra các loại hoa khác nhau. Trong điều kiện nhiệt độ tăng cao dần trình tự hoa nở có thể là: từ hoa lƣỡng tính dạng cái chuyển sang hoa lƣỡng tính dạng đực và hoa đực có cuống ngắn. Ngƣợc lại từ nhiệt độ cao chuyển sang thấp, lúc đó từ hoa lƣỡng tính dạng đực và hoa đực chuyển thành hoa lƣỡng tính dạng cái. Nhƣ vậy, quá trình ra hoa của cây lƣỡng tính không ổn định, do đó khả năng đậu quả không bằng cây cái, nhƣng trọng lƣợng từng quả lại cao, phẩm chất quả lại tốt hơn quả ở cây cái (Trần Thế Tục, 1998). 2.1.6. Di truyền học giới tính cây đu đủ Cho đến nay các nhà khoa học đã phát triển nhiều phƣơng thức xác định giới tính 9 thực vật. Đu đủ là cây hạt kín tạp tính với 3 loại giới tính đực, cái, lƣỡng tính; bộ gen đu đủ là 372 Mb, 2n = 18, thời gian thế hệ ngắn từ 9 - 15 tháng, nhiều loại hoa và một hệ thống chuyển gen đã đƣợc thiết lập cung cấp nhiều thuận lợi cho những nghiên cứu về di truyền và sự tiến hóa. Xác định giới tính ở cây đu đủ là đề tài rất đƣợc quan tâm trong suốt thời gian qua của phân tích di truyền bởi vì nó liên quan trực tiếp đến năng suất trái cây thƣơng mại. Năm 1941, để phân tích sự di truyền giới tính cây đu đủ, Storey đã tiến hành lai chéo các cá thể có giới tính khác nhau. Kết quả đƣợc trình bày trong Bảng 1.1. Bảng 1.1. Kết quả lai chéo các cá thể đu đủ có giới tính khác nhau của Storey Cặp lai cây mẹ x cây bố Tỉ lệ phân ly ở đời sau Cây cái x cây đực Cây cái : cây đực (1: 1) Cây cái x cây lƣỡng tính Cây cái : cây lƣỡng tính (1: 1) Cây lƣỡng tính x cây đực Cây đực: cây lƣỡng tính: cây cái (1: 1: 1) Cây lƣỡng tính x cây lƣỡng tính Cây lƣỡng tính: cây đực (2: 1) Từ những kết quả đã quan sát đƣợc, Storey (1953) đã đặt ra giả thiết rằng giới tính cây đu đủ đƣợc xác định bởi 1 gen đơn với 3 allel: M là đực, m là cái, Mh là lƣỡng tính nằm trên Sex1. Nhƣ vậy, cây cái là thể đồng hợp tử lặn mm, cây đực và cây lƣỡng tính phải là dạng dị hợp tử giới tính lần lƣợt là Mm, Mhm. Tất cả những thể tái tổ hợp của những allel trội nhƣ MM, MMh, MhMh đều chết khi ở giai đoạn hợp tử. Ngày nay, qua những nghiên cứu ở mức phân tử của các nhà khoa học nhƣ Urasaki, Liu đã khẳng định giả thiết của Storey là chính xác. Vì vậy, việc xác định giới tính cây đu đủ đƣợc xem xét dựa trên chromosome X, Y mặc dù sự khác hình chromosome không đƣợc tìm thấy. Nhiều động vật và hầu hết loài thực vật biệt chu nhƣ Silene latifolia đều có cặp chromosome giới tính X, Y có thể phân biệt rõ ràng. Chromosome Y của động vật hữu nhũ thì nhỏ hơn chromosome X, trái lại, S.latifolia có chromosome Y lớn hơn X. Tuy nhiên nhiều cây biệt chu nhƣ cây đu đủ, quả kiwi không có sự khác hình giữa các chromosome giới tính. Do đó, trong những loài này, những gen quy định giới tính dƣờng nhƣ nằm trên những vùng nhỏ của một chromosome giống nhƣ những chromosome bình thƣờng khác. 10 Hình 2.6. Chromosome giới tính ở thực vật. (a) Squirting cucumber (Ecballium elaterium). (b) Papaya (Carica papaya L), có chromosome giới tính X và Y đồng hình, với một vùng không tái tổ hợp ngắn trên chromosome Y (MSY). (c) White campion (Silene latifolia) có chromosome Y lớn hơn X. (d) Sorrel (Rumex acetosa) có sự đa hình chromosome với hai chromosome Y khác nhau. Theo Boris Vyskot và Roman Hobza, 2004, cây đu đủ có chromosome giới tính X, Y đồng hình với một vùng ngắn chuyên biệt tính đực trên chromosome Y và nó không bắt cặp với chromosome X. Theo Liu và cộng sự, (2004), vùng quy định giới tính cây đu đủ dài xấp xỉ 4,4 Mb, chỉ chiếm 10% chromosome Y. 2.1.7. Yêu cầu ngoại cảnh Nhiệt độ: do có nguồn gốc từ vùng nhiệt đới nên đu đủ cần nhiệt độ cao để sinh trƣởng và phát triển, đây là yếu tố hạn chế sự phân bố và phát triển đu đủ. Các vùng có nhiệt độ bình quân trong năm cao hơn 20oC, thích hợp cho việc trồng đu đủ. Nhiệt độ thích hợp nhất cho cây sinh trƣởng và phát triển là 25 – 30oC. Khi nhiệt độ cao hơn 44 oC với cƣờng độ chiếu sáng mạnh làm cây bị mất nƣớc và gây héo lá. Nhiệt độ thấp hơn 15oC, làm giảm sự ra lá, quả lớn chậm và phẩm chất quả kém. Nếu nhiệt độ quá 11 lạnh hoặc có sƣơng muối, bộ lá của cây bị tổn hại, các bó mạch bị vỡ làm chảy nhựa và dẫn đến chết nếu lạnh quá dài. Nhiệt độ -2oC là nhiệt độ gây chết đối với cây. Ánh sáng: đu đủ là cây ƣa ánh sáng, thích hợp trồng thuần, chỉ trồng xen khi cây trồng chính còn nhỏ, chƣa giao tán. Ánh sáng không đầy đủ sẽ làm các đốt của cây vƣơn dài, cuống lá nhỏ, phiến lá mỏng và rất dễ bị sâu bệnh phá hoại nhƣ rệp, bệnh khảm lá, thối cổ rễ. Cây đu đủ dễ dàng vƣợt qua ảnh hƣởng của cƣờng độ chiếu sáng cao 30.000 - 50.000 lux, khi có kèm theo sự tăng nhiệt độ không khí nếu cây đầy đủ nƣớc. Tuy nhiên, yêu cầu chiếu sáng của cây không nhƣ nhau trong các giai đoạn sinh trƣởng và phát triển. Nhìn chung, cây đu đủ yêu cầu cƣờng độ chiếu sáng không cao trong thời kì cây còn nhỏ và đặc biệt giai đoạn vƣờn ƣơm, chúng có yêu cầu ánh sáng cao trong thời kì sinh trƣởng, ra hoa và làm quả. Nƣớc: đu đủ là cây có yêu cầu nƣớc cao do diện tích lá lớn song rất dễ bị úng. Do cấu trúc của lá và lớp bảo vệ trên bộ mặt lá, đu đủ chịu hạn rất kém. Lƣợng nƣớc cây cần 1.300 – 1.500 mm trong năm, phân bố đều hoặc hàng tháng lƣợng nƣớc cung cấp đạt ở mức khoảng 100 mm. Khi đủ nƣớc và cung cấp nƣớc kịp thời cây sẽ sinh trƣởng liên tục và cho năng suất quả cao. Cây cần nhiều nƣớc trong giai đoạn vƣơn cao (sau trồng 4 - 5 tháng), giai đoạn hoa và giai đoạn nhanh lớn của quả. Mùa đông hoặc thời tiết lạnh, cây cần ít nƣớc. Đất đai: đu đủ không yêu cầu khắt khe về đất. Có thể trồng trên nhiều loại đất khác nhau song đất đó phải thoáng, tiêu và thoát nƣớc tốt, tầng canh tác dày và đủ chất dinh dƣỡng đặc biệt là lân, kali. Đất có tầng dày 7 cm, hàm lƣợng khí trong đất đạt 4% và độ pH trong khoảng 6,5 - 7 đƣợc coi là thích hợp để trồng đu đủ. Gió và bão: do bộ rễ ăn nông và là thân thảo nên đu đủ rất kém chịu gió, bão nhất là thời kì cây đang mang quả, tác hại của gió bão càng lớn khi có mƣa kèm theo. Vì vậy, nên trồng đu đủ ở những nơi kín gió hoặc có hàng cây chắn gió. Gió mạnh làm lá cây bị rách tổn hại đến sinh trƣởng và phát triển của cây và quả, gió to làm đổ cây, gây xây xát thân, làm chảy nhựa tạo điều kiện cho nấm bệnh phát triển. 2.1.8. Giá trị dinh dƣỡng và ý nghĩa kinh tế Giá trị dinh dƣỡng: kết quả phân tích hoá học cho thấy trong 100g phần ăn đƣợc có chứa 85 - 88% nƣớc; 0,6% protein; 0,1% lipit; 8,3% đƣờng; 60 – 122 mg vitamin C; 0,33 mg vitamin B1; 0,04 mg vitamin B2; 0,33 mg vitaminin PP và đặc biệt 12 rất giàu vitamin A: 1.700 - 3.500 UI, cao gấp 20 lần so với dứa; quả đu đủ thuộc loại quả nghèo lân, sắt; 30 mg canxi; 0,2 mg sắt; 21 mg magiê; 12 mg lân; 183 mg kali; 4 mg natri (Trần Thế Tục và Đoàn Thế Lƣ, 2002). Ý nghĩa kinh tế: đu đủ là cây ăn quả ngắn ngày, cho thu hoạch nhanh, đạt sản lƣợng cao, chiếm ít diện tích, thích hợp với nhiều loại đất, có thể trồng xen với các cây trồng khác. Trong vƣờn quả nhƣ xoài, nhãn, vải...những năm đầu khi cây chƣa giao tán có thể trồng xen đu đủ. Quả đu đủ đƣợc sử dụng với nhiều mục đích nhƣ ăn quả chín, làm rau, chế biến, làm thức ăn chăn nuôi. Quả đu đủ chín có giá trị dinh dƣỡng cao đƣợc thị trƣờng quả tƣơi các nƣớc châu Âu, châu Mỹ, Nhật Bản rất ƣa chuộng. Quả đu đủ xanh chứa khoảng 60 - 70% các chất dinh dƣỡng so với quả chín. Chúng rất đƣợc coi trọng ở vùng ít có điều kiện sản xuất rau (Trần Thế Tục, 1998). Toàn bộ cây đu đủ trừ quả chín, đều có chứa nhựa màu trắng chứa enzyme phân hủy protein gọi là papain. Nếu trồng để thu nhựa, một cây đu đủ cho khoảng 100 - 200 g nhựa khô (tƣơng ứng 4% trọng lƣợng cây tƣơi hoặc 0,7 - 1,0% trọng lƣợng quả tƣơi) và 1 ha có thể thu 250 - 300 kg nhựa nguyên liệu. Nhựa papain khô đƣợc dùng trong công nghiệp chế biến thịt, chế biến sữa, công nghiệp làm thuốc tẩy, trong ngành y. Vì vậy, nhựa papain đã và đang đƣợc một số nƣớc trên thế giới quan tâm (Trần Thế Tục và Đoàn Thế Lƣu, 2002). 2.1.9. Tình hình sản xuất và trồng trọt Theo FAO, sản lƣợng đu đủ trên toàn thế giới khoảng trên 5 triệu tấn. Đối với một vƣờn cây đu đủ bình thƣờng, một cây có thể cho 2 - 4 trái chín/ tuần trong suốt mùa thu hoạch. Sản lƣợng quả có thể đạt 50 – 100 kg/cây/năm và thời gian cho quả kéo dài 1 – 3 năm. Bảng 1.2. Sản lƣợng trung bình đu đủ trên thế giới (*) (Trần Thế Tục, 1998) Năm 1989 - 1991 1995 1996 1997 Sản lƣợng 3,625 5,091 5,011 5,024 (đơn vị tính là 1.000 tấn) Cây đu đủ cho khoảng 50 % sản lƣợng papain vào năm đầu tiên, 30% và năm thứ hai và 20 % vào năm thứ ba. Năng suất thu hoạch trung bình 70 - 130 kg/ha. Theo 13 thống kê, năng suất papain thô/ha vào năm đầu tiên là 20 - 25 kg; năm thứ hai là 90 - 100 kg; năm thứ ba là 60 - 90 kg/ha; 30 - 40 kg/ha vào năm thứ tƣ; 20 hoặc ít hơn vào năm thứ năm. Ngƣời ta cũng ƣớc lƣợng rằng 1 kg papain thô tƣơng ứng với khoảng 5 kg nhựa tƣơi (Nguyễn Thị Thùy Dƣơng, 2005). Ở Việt Nam, diện tích trồng đu đủ của cả nƣớc khoảng 1.0000 - 1.7000 ha với sản lƣợng khoảng 200 - 350 nghìn tấn quả. Hiện nay ở nƣớc ta, do sâu bệnh, úng nƣớc và điều kiện thời tiết không thuận lợi cho việc ra hoa, kết trái nên năng suất đu đủ trung bình chỉ khoảng 20 tấn/ha. 2.2. Kỹ thuật PCR 2.2.1. Lịch sử PCR Sự phát triển của PCR đƣợc so sánh nhƣ sự phát triển của Internet. Cả hai phát triển vƣợt xa hơn dự tính ban đầu và đã tạo ra những cơ hội to lớn. Năm1971, Khorana và cộng sự đã mô tả một phƣơng pháp sử dụng hai primer DNA tổng hợp để sao chép một vùng của phân tử DNA sợi đôi. Tuy nhiên, vào lúc đó có nhiều khó khăn: gen chƣa đƣợc giải trình tự, việc tổng hợp primer oligonucleotide là việc không thể làm đƣợc nên ý tƣởng của họ nhanh chóng bị quên lãng. Nguồn gốc của PCR bắt nguồn từ nghiên cứu chiến lƣợc của tập đoàn Cetus ở California vào những năm 80 của thế kỷ 20. Điểm mới trong khái niệm của Mullis là sử dụng hai oligonucleotide có vị trí gần nhau, bổ sung cho những chuỗi DNA ngƣợc chiều với chúng để khuếch đại đặc hiệu một vùng nằm giữa chúng. Quá trình này đƣợc lặp đi lặp lại nhiều lần với mục đích là làm tăng lƣợng sản phẩm sau mỗi chu kỳ hoạt động của polymerase. Vì vậy gọi là phản ứng chuỗi. Ban đầu DNA polymerase sử dụng trong PCR là đoạn Klenow của DNA polymerase 1 đƣợc trích từ E.coli . Enzyme này đƣợc ứng dụng rộng rãi nhƣng trong PCR có hạn chế. Do ở nhiệt độ cao, enzyme này bị bất hoạt. Sau mỗi chu kỳ tổng hợp, phải gia tăng nhiệt để biến tính sợi đôi DNA nên PCR cần một DNA polymerase ổn định trong suốt giai đoạn biến tính ở khoảng 95oC. Vấn đề này đã đƣợc giải quyết khi vi khuẩn Thermophilus aquaticus đƣợc phân lập từ suối nƣớc nóng. Vi khuẩn này tồn tại và sinh sôi ở nhiệt độ rất cao, nó sản xuất DNA polymerase. Enzyme này không bị bất hoạt nhanh chóng ở nhiệt độ cao. Nó hoạt động tối ƣu ở khoảng 72oC, đảm bảo chuỗi DNA mẫu đƣợc sao chép với độ chính xác cao. Gelfand và cộng sự ở Cetus 14 phân lập và tinh sạch enzyme này, gọi là Taq polymerase. 1988, lần đầu tiên Saiki và cộng sự mô tả việc sử dụng Taq DNA polymerase trong PCR. Nhƣng chỉ khi máy luân nhiệt đầu tiên đƣợc phát triển bởi Cetus với tên gọi là “Mr Cycle” thì PCR mới trở thành một trong những công cụ đƣợc sử dụng rộng rãi nhất trong sinh học phân tử. Từ khi ra đời đến nay, kỹ thuật PCR đã tạo ra cuộc cách mạng trong nghiên cứu cấu trúc và chức năng của gen. Nó đƣợc hoàn thiện không ngừng và có đƣợc ứng dụng rộng rãi trong nhiều lĩnh vực (McPherson và Moller, 2000). 2.2.2. Nguyên tắc của PCR PCR là phƣơng pháp nhân bản DNA trong test tube bằng cách sử dụng những thành phần cơ bản của quá trình sao chép DNA trong tự nhiên. Trong tế bào sống, quá trình này rất phức tạp cần nhiều protein khác nhau để tái tạo toàn bộ genome. PCR là kỹ thuật phân tử tạo dòng in vitro rất đơn giản và hiệu quả. Dựa vào nguyên tắc nổi tiếng của Watson và Crick – nguyên tắc bổ sung (A luôn liên kết với T, G luôn liên kết với C), đặc tính quan trọng của DNA là có khả năng biến tính và hồi tính, phản ứng PCR gồm ba giai đoạn: Giai đoạn biến tính (denaturation): nâng nhiệt độ lên 94oC. Nhiệt độ này làm cho cầu nối tất cả các mạch xoắn kép của DNA đều đƣợc tách ra và sử dụng những sợi đơn này làm khuôn mẫu để tạo ra sợi bổ sung. Giai đoạn bắt cặp (annealing): hạ nhiệt độ xuống 40 – 72oC (thƣờng là 55oC). Nhiệt độ của giai đoạn này phụ thuộc vào primer. Những primer oligonucleotide đặc hiệu gắn chuyên biệt vào một vùng của sợi đơn DNA mẫu theo nguyên tắc bổ sung. Những deoxynucleotide (A, T, G, C) là những viên gạch xây những chuỗi mới. Giai đoạn kéo dài (extension): tăng nhiệt độ lên 72oC. Taq polymerase hoạt động tối ƣu ở nhiệt độ 70 – 72oC (Bùi Chí Bửu và Nguyễn Thị Lang, 1999). Taq bắt đầu thêm những deoxynucleotide vào nhóm 3’-OH của những primer theo nguyên tắc bổ sung, tạo ra những phân tử sợi đôi mới. 2.2.3. Các thành phần của phản ứng PCR Mẫu acid nucleic: có thể là: genome DNA, mRNA, cDNA, plasmid, phage. DNA từ bất kỳ nguồn gốc nào: động vật, thực vật, nấm, vi khuẩn đều đƣợc sử dụng thành công trong phản ứng PCR. Kết quả PCR tốt nhất khi DNA mẫu tinh sạch nhất. 15 Đối với những đoạn DNA lớn (>1.000 bp), để có kết quả khuếch đại tốt hơn, cần phải có DNA tổng số tinh sạch hơn. Sử dụng kit tinh sạch DNA sẽ cho kết quả tốt hơn nhƣng tốn kém. Đối với DNA nhỏ (200 – 1.000 bp), chỉ cần sử dụng những phƣơng pháp ly trích DNA thông thƣờng, không cần tinh sạch mà vẫn khuếch đại thành công . Trong phản ứng PCR, số lƣợng mẫu sử dụng thƣờng ít hơn 1 nanogram đối với mẫu tạo dòng và có thể lên đến 1 microgram đối với genome DNA. Cần phải sử dụng lƣợng DNA mẫu thích hợp. Tùy vào mục đích ứng dụng và nguồn gốc mẫu mà lƣợng DNA mẫu sử dụng trong PCR khác nhau, ví dụ: 1 g DNA genome ngƣời, 10 ng DNA genome nấm, 1 ng DNA genome E. coli (McPherson và Moller, 2000). Buffer PCR: hầu hết các nhà sản xuất cung cấp buffer PCR 10X cùng với Taq DNA polymerase. Thành phần buffer PCR cơ bản giống nhau, có thể có hoặc không có MgCl tùy hãng sản xuất. Tris-HCl là dung dịch ion lƣỡng cực, pH của Tris-HCl thay đổi theo nhiệt độ. Vì vậy trong suốt quá trình PCR, pH sẽ thay đổi trong khoảng 6,8 - 8,3. Taq DNA polymerase hoạt động chính xác hơn ở giá trị pH thấp, điều này xảy ra khi phản ứng PCR ở nhiệt độ cao. KCl có thể hỗ trợ cho quá trình gắn primer vào khuôn mẫu. Tuy nhiên ở nồng độ cao, nó sẽ làm ổn định những vị trí primer gắn sai, từ đó tạo ra những sản phẩm không mong muốn (McPherson và Moller, 2000). MgCl2: là một trong những thành phần quan trọng nhất trong phản ứng PCR. Nồng độ của nó có thể ảnh hƣởng đến tính chuyên biệt và hiệu quả của phản ứng. Thông thƣờng, nồng độ cuối của MgCl2 trong phản ứng là 1,5 mM. Hoạt động của Taq phụ thuộc vào sự hiện diện của MgCl2. Taq hoạt động hiệu quả nhất khi nồng độ MgCl2 tự do là 1,2 - 1,3 mM. Nồng độ MgCl2 tự do bị ảnh hƣởng bởi nồng độ dNTP’s, ngƣời ta thấy có sự liên quan cân bằng giữa MgCl2 và dNTP’s. Ví dụ: nếu nồng độ cuối của mỗi dNTP trong phản ứng là 0,2 mM thì nồng độ cuối của tất cả dNTP là 0,8 mM. Vậy nồng độ của MgCl2 tự do là 1,5 - 0,8 = 0,7 mM, không tối ƣu cho hoạt động. Nếu nồng độ cuối của mỗi dNTP là 0,05 mM, tƣơng tự nồng độ của MgCl2 tự do là 1,5 - 0,2 = 1,3 mM tạo điều kiện tốt cho Taq hoạt động (McPherson và Moller, 2000). Nồng độ MgCl2 cũng ảnh hƣởng đến tính chính xác của Taq. Nồng độ MgCl2 vƣợt quá giới hạn, tỉ lệ sai sót của Taq nhiều hơn. Lƣợng dƣ thừa MgCl2 làm cho hiện tƣợng annealing giả tại những vị trí không đúng của dây đơn xảy ra thêm ổn định hơn, 16 cho ra những sản phẩm không mong muốn. Nồng độ MgCl2 thấp làm cho lƣợng sản phẩm thu đƣợc ít (Bùi Chí Bửu và Nguyễn Thị Lang, 1999). Những deoxynucleotide (dNTP’s): quan trọng là phải giữ cho nồng độ của tất cả dNTP bằng nhau. Trái lại, ảnh hƣởng đến tính chính xác của phản ứng do xuất hiện sự gắn kết nhầm các dNTP ở giai đoạn kéo dài. Thông thƣờng, nồng độ cuối của mỗi dNTP nên là 50 – 200 M. Nếu nồng độ này cao hơn, tính chính xác bị ảnh hƣởng do làm cho Taq gắn kết sai các dNTP. Nếu nồng độ này thấp hơn, ảnh hƣởng đến hiệu quả của PCR. Ngƣời ta khuyến cáo nên sử dụng mỗi dNTP ở nồng độ 200 M (McPherson và Moller, 2000). Primer oligonucleotide: lƣợng primer sử dụng trong PCR dựa trên thử nghiệm. Một trong những nhân tố quan trọng của PCR là tỉ lệ giữa primer và mẫu. Nếu tỉ lệ này quá cao, hiện tƣợng primer - dimer và việc primer gắn nhầm vào trình tự không phải đích sẽ xuất hiện. Nếu tỉ lệ này nhỏ, lƣợng sản phẩm PCR thu đƣợc thấp. Thông thƣờng, hai primer F và R nên sử dụng ở nồng độ bằng nhau, trong khoảng 0,1 - 1 M/primer, tƣơng đƣơng 5 - 50 pmol/primer trong phản ứng có thể tích 50 l (McPherson và Moller, 2000). Taq DNA polymerase: là một protein có trong lƣợng phân tử 94 KDa, có hai hoạt động xúc tác: có hoạt động tổng hợp DNA theo hƣớng 5’ - 3’ của một DNA polymerase và có hoạt động phân giải theo hƣớng 5’ - 3’ của một exonuclease. Nó không có hoạt động phân giải theo hƣớng 3’ - 5’ của một exonuclease nghĩa là thiếu chức năng “tự đọc và sửa” (“proofreading”). Nhƣ vậy, nó không thể sửa chữa sai sót trong quá trình tổng hợp DNA. Kết quả là DNA đƣợc tổng hợp không phải lúc nào cũng là bản sao chính xác của phân tử mẫu ban đầu. Thông thƣờng, lƣợng Taq DNA polymerase sử dụng trong phản ứng PCR là 0,5 - 2,5 unit trong phản ứng 25 - 50 l (Sambrook và Russell, 2001). Trong hầu hết các protocol, ngƣời ta khuyến cáo nồng độ Taq DNA polymerase nên sử dụng là 0,5 unit trong phản ứng 25 l. Nếu lƣợng Taq DNA polymerase quá dƣ thừa, sẽ thấy hiện tƣợng tổng hợp DNA do phản ứng giả của primer trên dây đơn (Bùi Chí Bửu và Nguyễn Thị Lang,1999). Taq DNA polymerase là enzyme đƣợc sử dụng phổ biến trong PCR và nó có thể khuếch đạt khá hiệu quả những sản phẩm lên đến 2 - 4 kb. 17 2.2.4. Ƣu điểm và nhƣợc điểm của PCR Ƣu điểm Thời gian thực hiện cực nhanh: chỉ cần mất 3 giờ để khuếch đại một trình tự quan tâm, so với phƣơng pháp tạo dòng của kỹ thuật tái tổ hợp DNA phải mất cả tuần hoặc lâu hơn. Đơn giản và ít tốn kém: do thực hiện trong ống nghiệm plastic nhỏ hoặc eppendorf, chỉ sử dụng những lƣợng nhỏ tối thiểu hóa chất. Trong khi đó, phƣơng pháp tạo dòng điển hình cần các vật liệu đắt tiền nhƣ màng nucleotide triphosphate mang dấu phóng xạ và việc thực hiện cần các thao tác khéo léo đặc biệt. Độ tinh sạch của mẫu không cần cao: PCR có thể thực hiện với những mẫu nucleic acid thô. Ví dụ: mẫu máu hay các dấu vết trong phân tích pháp y. Nhƣợc điểm Giới hạn đầu tiên của phƣơng pháp này là cần phải có DNA mồi đặc trƣng cho DNA cần khuếch đại, do đó phải biết trình tự nucleotide hoặc ít nhất một phần của đoạn cần khuếch đại. Kỹ thuật PCR cho kết quả tốt đối với những trình tự có độ dài dƣới 1,5 kb (Hồ Huỳnh Thùy Dƣơng, 1998). Với những đoạn có độ dài lớn, cần phải xác định điều kiện tối ƣu cho phản ứng qua thực nghiệm. Đối với PCR, sự ngoại nhiễm là vấn đề lớn. Nguồn ngoại nhiễm lớn nhất thƣờng là các sản phẩm khuếch đại của những lần thao tác trƣớc. Ngƣời ta chứng minh đƣợc rằng việc mở nắp các ống nghiệm sau mỗi lần khuếch đại trong phòng thí nghiệm sẽ khiến các phân tử đã đƣợc khuếch đại thoát ra khỏi ống nghiệm bay lơ lửng trong không khí và bám vào tƣờng, cửa, thiết bị, dụng cụ rồi nhiễm vào các phản ứng tiến hành tiếp theo. Sự sao chép bởi Taq polymerase cho tỷ lệ sai khá cao, cứ 1.0000 nucleotide thì enzyme gắn sai 1 nucleotide. Đặc tính này không nghiêm trọng nếu chỉ cần xem xét kích thƣớc hay sự có mặt của một sản phẩm khuếch đại. Nhƣng có ý nghĩa lớn nếu cần xác định chính xác trình tự nucleotide của DNA. Không thể loại bỏ hoàn toàn các sai sót này mà chỉ có thể giảm bớt; ví dụ nhƣ đảm bảo sự cân bằng nồng độ các nucleotide 18 trong phản ứng, xác định trình tự của nhiều sản phẩm khuếch đại từ nhiều thao tác riêng biệt, so sánh trƣớc khi đi đến trình tự chính thức (Hồ Huỳnh Thùy Dƣơng, 1998). 2.2.5. Nguyên tắc xác định giới tính cây đu đủ bằng phƣơng pháp PCR Qua nghiên cứu “phát triển marker phân tử để dự đoán giới tính” của Somri, Magdalita đã sử dụng các cặp primer T1 và W11 để dự đoán giới tính cây đu đủ. Các primer T1 và W11 đƣợc thiết kế dựa vào vùng DNA liên kết với gen quy định giới tính trên nhiễm sắc thể giới tính. Những primer này có tính chuyên biệt cao do có số lƣợng lớn nucleotide (20 mer), cơ hội để những primer này gắn vào một trình tự DNA không phải trình tự DNA đích là rất thấp. Do đó phƣơng pháp này có độ chính xác rất cao; nghiên cứu với 3 giống khác nhau gồm Sinta, Cavite Special, Cariflora thì kết quả chính xác 100%. Cặp primer T1-F, T1-R tạo ra sản phẩm PCR khoảng 1,3 kb ở cây cái và cây lƣỡng tính. Trong khi cặp primer W11-F, W11-R tạo ra sản phẩm PCR có kích thƣớc khoảng 0,8 kb ở cây lƣỡng tính. Trên cây đực không có bất kỳ vị trí gắn nào cho những primer đƣợc sử dụng, kết quả là không có sản phẩm PCR. Vì vậy, cây lƣỡng tính đƣợc phân biệt vì nó có 2 band riêng biệt (khoảng 1,3 kb và 0,8 kb), cây cái có 1 band (khoảng 1,3 kb), cây đực không có band nào. 2.3. Một số nghiên cứu trong nƣớc và ngoài nƣớc Từ năm 1938, các nhà khoa học trên thế giới đã tiến hành rất nhiều nghiên cứu để tìm ra phƣơng thức xác định giới tính cây đu đủ. Năm 1971, Datta nghiên cứu tế bào với hy vọng tìm đƣợc cặp chromosome khác hình hoặc chromosome không có cặp mà có thể giúp phân biệt đƣợc các giới tính khác nhau nhƣng không thành công. Năm 1976, Jindal và Sigh đã thực hiện phƣơng pháp Colorometric Test. Phƣơng pháp này kiểm tra thành phần phenol tổng số trong cây, tùy theo giới tính của cây mà lƣợng phenol tổng số trong cây khác nhau. Kết quả, phân biệt đƣợc cây cái với độ chính xác 86%, cây đực với độ chính xác 77%.Tuy nhiên, phƣơng pháp này không thể phát hiện đƣợc cây lƣỡng tính. Năm 1988, Paller đã sử dụng phƣơng pháp Paper Chromatography. Paller kết luận acid trascinamic biểu hiện vƣợt trội trên lá non cây lƣỡng tính, nhƣng cây cái và cây đực không thể phân biệt đƣợc. Năm 1988, Sriprasertsak và cộng sự đã khai thác isozymes để tìm ra marker di truyền liên kết với giới tính. Phƣơng pháp này chỉ giúp 19 phân biệt đƣợc cây đực với cây cái nhƣng cây cái không thể phân biệt đƣợc với cây lƣỡng tính. Năm 1998, để tìm ra những marker phân tử cho việc dự đoán giới tính cây đu đủ, Somri đã tiến hành hai phƣơng pháp RAPD và DAF. Ông nhận thấy phƣơng pháp DAF có nhiều thuận lợi đáng kể hơn phƣơng pháp RAPD. DAF tạo ra nhiều band hơn RAPD; cụ thể với 69 primer 10 mer thì RAPD tạo 0 – 7 band/phản ứng, trong khi đó DAF thu đƣợc 31 – 52 band/phản ứng với chỉ 5 primer. Nhƣ vậy, DAF giúp xác định đƣợc những primer chuyên biệt hơn và đã đƣợc sử dụng để tìm ra những marker liên kết với allel giới tính. Kết quả: có 16 primer cho những band chuyên biệt trên cây đực và 11 primer cho những band chuyên biệt trên cây lƣỡng tính. Hình 2.7. Kết quả khuếch đại DAF trên DNA đu đủ với 5 primer, chạy trên gel PAGE. Năm 1999, Parasnis đã đƣa ra phƣơng pháp xác định giới tính hàng loạt cây đu đủ con dựa vào PCR gọi là SSDA. Trong 80 primer ngẫu nhiên, chỉ có 1 primer OPF2 (GAGGATCCCT) khuếch đại sản phẩm chuyên biệt trên cây đực có kích thƣớc 0,8 kb ở tất cả 12 giống đu đủ trong nghiên cứu này. Để khẳng định sự hiện diện của band chuyên biệt tính đực, Parasnis đã sử dụng phƣơng pháp lai Southern, kết quả hoàn toàn phù hợp với PCR. Tuy nhiên, phƣơng pháp này không giúp xác định đƣợc cây lƣỡng tính. 20 Hình 2.8. Kết quả PCR trên 10 giống đu đủ, sử dụng 1 cặp primer chuyên biệt trên cây đực cho band 0,83 kb và 1 primer cho band 0,6 kb trên cả cây đực và cây cái. Năm 2000, bằng cách sử dụng kỹ thuật RAPD, với primer IBRC-RP07 (5’-TTGGCACGGG-3’) trong 25 primer, Urasaki đã tìm ra PSDM (papaya sex determination marker), đây là một đoạn marker có kích thƣớc 450 bp, nằm trên vùng chromosome chuyên biệt của tất cả các cây đực và cây lƣỡng tính, cây cái không có PSDM. Urasaki tiến hành convert SCAR marker từ PSDM. Dựa vào SCAR marker, Urasaki và cộng sự đã thiết kế 2 primer SDP-1 (5’-GCACGATTTAGATTAGATGT- 3’) và SDP-2 (5’-CCTATCGAACGGGTCCAGTG-3’) chỉ khuyếch đại trên những cây đực và cây lƣỡng tính cho sản phẩm có kích thƣớc 225 bp. Hình 2.9. Kết quả PCR với cặp primer SDP-1 và SDP-2 trên cây đực, cây cái, cây lƣỡng tính. 2002, Deputy và cộng sự đã tìm ra những marker liên kết chặt với gen quy định giới tính cây đu đủ Sex1 trên một số giống: Sunrise, Kapoho, Pitsanulok (Thái), Honey 21 Dew (Ấn Độ), Khaek Yellow, Khaek Nuan, Khaek Dum, N94-93 (Úc), Mardi (Malaysia) đó là SCAR W11, SCAR T1, SCAR T12. Trong đó, SCAR T1 tạo ra sản phẩm trên tất cả cây đu đủ không phân biệt giới tính; SCAR T12 và SCAR W11 khuếch đại trên cây đực và cây lƣỡng tính, chỉ rất hiếm trên cây cái ở một vài giống Mardi và Honey Dew. 22 PHẦN 3. VẬT LIỆU VÀ PHƢƠNG PHÁP NGHIÊN CỨU 3.1. Địa điểm và thời gian 3.1.1. Địa điểm: Trung Tâm phân tích thí nghiệm Hóa-Sinh trƣờng Đại Học Nông Lâm thành phố Hồ Chí Minh. 3.1.2. Thời gian: đề tài đƣợc tiến hành từ 15/02/2006 đến 10/08/2006. 3.2. Vật liệu và thiết bị 3.2.1. Hóa chất Mẫu thí nghiệm: mẫu lá lấy từ những cây đu đủ trồng ở trại thực nghiệm. Hoá chất dùng để tách chiết DNA từ lá đu đủ Dung dịch N2 lỏng. Dung dịch ly trích: 2% CTAB, 1,4M NaCl, 20mM EDTA, 100mM Tris-HCl, pH 8,0, 0, 2% -mercaptoethanol (thêm vào trƣớc khi sử dụng). Phenol-chloroform-isoamyl alcohol (25:24:1). Chloroform-isoamyl alcohol (24:1). Dung dịch rửa DNA: 70% ethanol lạnh. Dung dịch TE: 10mM Tris-HCl, 1mM EDTA, pH 8,0. Hoá chất dùng trong điện di Dung dịch TAE 50X: Tris HCl 242g/l, Glacial acetic acid 57, 1ml/l, EDTA 0,5M, pH = 8, 100ml/l. Dung dịch nạp mẫu: Bromophenol blue 0, 25%, Glycerol 40%. Ethidium bromide 10mg/ml và agarose. Hoá chất dùng trong phản ứng PCR Primer 1 (T1-F): 3’TGCTCTTGATATGCTCTCTG5’. Primer 2 (T1-R): 3’TACCTTCGCTCACCTCTGCA5’. Primer 3 (W11-F): 3’CTGATGCGTGTGTGGCTCTA5’. Primer 4 (W11-R): 3’CTGATGCGTGATCATCTACT5’. Taq polymerase 5U/µl, Buffer 10X, MgCl2 25mM, dNTP’s 10mM. 3.2.2. Thiết bị và dụng cụ Dụng cụ và thiết bị dùng trong ly trích Eppendorf 1,5 ml, Micropipette loại P1000, P100, đầu tube loại 1000 μl, 100 μl. 23 Máy li tâm (Sigma, Hettich), lò viba (Electrolux). Tủ mát ( nhiệt độ 2 - 8oC), tủ lạnh -20oC và -80oC (Reetech, Brandt, Sanyo). Cối, chày sứ, kéo, cân phân tích, bồn ủ nhiệt (Water bath) (Memmert). Dụng cụ và thiết bị dùng trong điện di Ống đong, khay đổ gel điện di. Bộ nguồn và bồn điện di (Biorad). Máy đọc gel (Biorad). Dụng cụ và thiết bị dùng trong PCR Eppendorf loại 0,3 ml, Micropipette loại P100, P10, đầu tube loại 100 μl, 10 μl. Máy PCR (Biorad). 3.3. Phƣơng pháp nghiên cứu 3.3.1. Phƣơng pháp lấy mẫu ở trại thực nghiệm Lấy mẫu ở giai đoạn: giai đoạn cây con (khoảng 2 tháng sau khi nẩy mầm). Trên vƣờn đu đủ ở trại thực nghiệm, ở giai đoạn cây con, lấy mẫu lá theo hình ziczắc sao cho việc lấy mẫu đảm bảo đƣợc tính chất ngẫu nhiên. Ở giai đoạn cây đã ra hoa và quả, chọn những cây đã biết chắc chắn giới tính của chúng. Cách lấy mẫu: dùng kéo cắt lấy một phần lá non ở gần ngọn (cách đỉnh 3 – 4 lá), cho mỗi mẫu vào bao nylon riêng có ghi nhãn cẩn thận. Sau đó, đem mẫu về phòng thí nghiệm và trữ trong tủ lạnh ở nhiệt độ -20 oC. 3.3.2. Ly trích DNA từ lá đu đủ bằng phƣơng pháp CTAB Chuẩn bị dụng cụ ly trích: Cối, chày rửa sạch rồi hấp khử trùng ở 121oC, 15 phút, sau đó sấy khô. Eppendorf 1,5 ml và đầu tube các loại hấp khử trùng sấy khô. Quy trình ly trích 1 Thực hiện theo quy trình của Kurt Weising và ctv (1995), nhƣng có những thay đổi để thu đƣợc kết quả tốt hơn. 1. Nghiền khoảng 1 - 3 g mẫu lá tƣơi trong dung dịch N2 lỏng bằng cối chày đã đƣợc khử trùng. Mẫu lá nếu đƣợc giữ lạnh thì không đƣợc để mẫu bị rã hoặc biến màu, tốt nhất nên sử dụng mẫu lá tƣơi. Cắt nhỏ mẫu, tách bỏ gân lá cho dễ nghiền. 24 2. Chuyển mẫu nghiền vào eppendorf 1,5 ml, nên lấy lƣợng mẫu đến vạch 0,3 - 0,5 ml trên eppendorf. Cho 700 µl dung dịch ly trích đã đƣợc làm nóng ở 60oC vào ống eppendorf đó. Trộn hòa tan cho đồng đều. 3. Ủ các eppendorf này trong bồn ủ 60oC, 1 - 2 giờ. Trộn hòa phản ứng đồng đều 15 phút/lần. 4. Thêm vào 700 µl phenol-chloroform-isoamyl alcohol, lắc nhẹ nhàng cho đến khi dung dịch đồng nhất một màu trắng sữa. Ly tâm 13.000 vòng/phút, 15 phút, 25oC. 5. Chuyển dịch bên trên vào eppendorf mới (khoảng 600 µl). Thêm 600 µl chloroform- isoamyl alcohol, lắc nhẹ nhàng. Ly tâm 13.000 vòng/phút, 15 phút, 25oC. 6. Chuyển dịch bên trên vào eppendorf mới (khoảng 500 µl). Thêm vào 300 µl isopropanol lạnh, lắc nhẹ cho đến khi xuất hiện dịch huyền phù. Ủ ở -20oC , 1 giờ hoặc qua đêm. 7. Ly tâm 13.000 vòng/phút, 15 phút, 4oC. Bỏ dịch bên trên, thu kết tủa. Rửa tủa bằng ethanol 70% lạnh ( thêm khoảng 500 µl ethanol 70% lạnh). 8. Ly tâm 13.000 vòng/phút, 15 phút, 4oC. Bỏ dịch bên trên, làm khô kết tủa tự nhiên cho tới hoàn toàn. 9. Hòa tan kết tủa với 50 µl TE hoặc bằng nƣớc cất vô trùng. Trữ dung dịch DNA trong điều kiện 4oC cho việc sử dụng thƣờng xuyên, hoặc trữ lâu dài ở -20oC. Điện di để kiểm tra kết quả. Quy trình ly trích 2 Thực hiện theo quy trình của Kurt Weising và ctv (1995), nhƣng có một vài thay đổi. 1. Nghiền khoảng 1 - 3 g mẫu lá tƣơi trong dung dịch N2 lỏng bằng cối chày đã đƣợc khử trùng. Nghiền thật kỹ cho đến khi mẫu lá mịn và có màu xanh nhạt. Mẫu lá nếu đƣợc giữ lạnh thì không đƣợc để mẫu bị rã hoặc biến màu, tốt nhất nên sử dụng mẫu lá tƣơi. Cắt nhỏ mẫu, tách bỏ gân lá cho dễ nghiền. 2. Chuyển mẫu nghiền vào eppendorf 1,5 ml, nên lấy lƣợng mẫu đến vạch 0,3 - 0,5 ml trên eppendorf. Cho 700 µl dung dịch ly trích đã đƣợc làm nóng ở 60oC vào ống eppendof đó. Trộn hòa tan cho đồng đều. 25 3. Ủ các eppendorf này trong bồn ủ ở 60oC, qua đêm. Trộn hòa phản ứng vài lần, 15 phút/lần. 4. Thêm vào 700 µl chloroform-isoamyl alcohol, lắc nhẹ nhàng cho đến khi dung dịch đồng nhất một màu trắng sữa. Ly tâm 10.000 vòng/phút, 10 phút, 25oC. 5. Chuyển dịch bên trên vào eppendorf mới (khoảng 600 µl). Thêm 600 µl chloroform- isoamyl alcohol, lắc nhẹ nhàng. Ly tâm 10.000 vòng/phút, 10 phút, 25oC. 6. Chuyển dịch bên trên vào eppendorf mới (khoảng 500 µl). Thêm vào 300 µl isopropanol lạnh, lắc nhẹ cho đến khi xuất hiện dịch huyền phù. Ủ ở -20oC, 1 giờ hoặc qua đêm. 7. Ly tâm 5.000 vòng/phút, 10 phút, 4oC. Bỏ dịch bên trên, thu kết tủa. Rửa tủa bằng ethanol 70% lạnh ( thêm khoảng 500 µl ethanol 70% lạnh). 8. Ly tâm 10.000 vòng/phút, 10 phút, 4oC. Bỏ dịch bên trên, làm khô kết tủa tự nhiên cho tới hoàn toàn. 9. Hòa tan kết tủa với 50 µl TE hoặc bằng nƣớc cất vô trùng. Trữ dung dịch DNA trong điều kiện 4oC cho việc sử dụng thƣờng xuyên, hoặc trữ lâu dài ở -20oC. Điện di để kiểm tra kết quả. 3.3.3. Thực hiện phản ứng PCR Quy trình nhiệt của phản ứng PCR Thử nghiệm các quy trình nhiệt để tìm ra quy trình nhiệt thích hợp nhất cho phản ứng PCR. Quy trình nhiệt 1: Tách(denaturation) đoạn DNA: 95oC, 5 phút. Tách đoạn DNA: 95oC, 1phút Bắt cặp (annealing): 48oC, 45 giây Lập lại 30 chu kỳ Kéo dài (polymerization): 72oC, 1 phút 72 oC, 7 phút.Giữ bảo quản ở 4oC. 26 Quy trình nhiệt 2: Tách (denaturation) đoạn DNA: 95oC, 5 phút. Tách đoạn DNA: 95oC, 1phút Bắt cặp (annealing): 58oC, 45 giây Lập lại 30 chu kỳ Kéo dài (polymerization): 72oC, 1 phút 72 oC, 7 phút. Giữ bảo quản ở 4oC. Quy trình nhiệt 3 Tách(denaturation) đoạn DNA: 95oC, 5 phút. Tách đoạn DNA: 95oC, 1phút. Bắt cặp (annealing): 54oC, 45 giây. Lập lại 30 chu kỳ Kéo dài (polymerization): 72oC, 1 phút. 72 oC, 7 phút. Giữ bảo quản ở 4oC. Quy trình nhiệt 4 Tách (denaturation) đoạn DNA: 95oC, 5 phút. Tách đoạn DNA: 95oC, 1phút Bắt cặp (annealing): 50oC, 45 giây Lập lại 30 chu kỳ Kéo dài (polymerization): 72oC, 1 phút 72 oC, 7 phút. Giữ bảo quản ở 4oC. Bố trí thí nghiệm phản ứng PCR Thực hiện PCR theo trình tự sau: Bƣớc 1: thực hiện PCR với cặp primer T1. Thiết kế phản ứng PCR 27 Bảng 3.1. Thành phần phản ứng PCR với cặp primer T1 Thành phần Nồng độ cuối 1 phản ứng DNA 1 µl Buffer PCR 10X 1X 2,5 µl MgCl2 (50mM) 1,5 mM 0,75 µl dNTP’s Mix (10 mM/each) 0,2 mM 0,5 µl T1-F (10mM) 0,4 mM 1 µl T1-R (10 mM) 0,4 mM 1 µl Taq DNA polymerase (5U/µl) 1U 0,2 µl Nƣớc cất vô trùng 18,05 µl Tổng cộng 25 µl Bƣớc 2: thực hiện PCR với cặp primer W11. Thiết kế phản ứng PCR Bảng 3.2. Thành phần phản ứng PCR với cặp primer W11 Thành phần Nồng độ cuối 1 phản ứng DNA 1 µl Buffer PCR 10X 1X 2,5 µl MgCl2 (50mM) 1,5 mM 0,75 µl dNTP’s Mix (10 mM/dNTP) 0,2 mM/dNTP 0,5 µl W11-F (10mM) 0,4 mM 1 µl T1-R (10 mM) 0,4 mM 1 µl Taq DNA polymerase (5U/µl) 1U 0,2 µl Nƣớc cất vô trùng 18,05 µl Tổng cộng 25 µl 28 Bƣớc 3: sau khi đã tối ƣu hóa đƣợc phản ứng PCR với các cặp primer T1,W11, tiến hành PCR với 2 cặp primer này. Thiết kế phản ứng multiplex PCR: Bảng 3.3. Thành phần phản ứng multiplex PCR Thành phần Nồng độ cuối 1 phản ứng DNA 1 µl Buffer PCR 10X 1X 2,5 µl MgCl2 (50mM) 1,5 mM 0,75 µl dNTP’s Mix (10 mM/each) 0,2 mM 0,5 µl Cặp T1(10mM) 0,4 mM/primer 1 µl Cặp W11(10 mM) 0,4 mM/primer 1 µl Taq DNA polymerase (5U/µl) 1U 0,2 µl Nƣớc cất vô trùng 18,05 µl Tổng cộng 25 µl 3.3.4. Điện di sản phẩm PCR Đổ gel 1% Cho 0,125 g agarose vào 12,5 ml dung dịch 0,5X TAE. Đun sôi hỗn hợp trên trong lò viba 2 phút. Để nguội dung dịch agarose đến 50 - 55oC, đổ vào khuôn (có gắn lƣợc). Chờ đến khi agarose đông đặc hoàn toàn (sau 30 phút), gỡ lƣợc ra đặt miếng gel bể điện di theo đúng chiều điện di, rồi cho dung dịch đệm 0,5X TAE vào ngập miếng gel. Điện di Hút 4 µl dung dịch sản phẩm PCR + 2 µl dung dịch nạp mẫu điện di, trộn đều rồi bơm vào giếng trên gel. Đập nắp buồng điện di, cắm điện cực. Điện di ở 100V, 250mA, 30 phút. Nhuộm gel với ethidium bromide 0,05%, 15 phút. Chụp hình và ghi nhận kết quả điện di trên máy tính với phần mềm Quatity-one. 29 PHẦN 4. KẾT QUẢ VÀ THẢO LUẬN 4.1. Kết quả ly trích DNA Để chuẩn bị mẫu DNA tốt cho phản ứng PCR, chúng tôi thực hiện vài thay đổi từ quy trình ban đầu của Kurt Weising và ctv (1995). Kết quả ly trích nhƣ sau: Quy trình ly trích 1 Hình 4.1. DNA tổng số ly trích từ lá đu đủ theo quy trình ly trích 1. Quy trình ly trích 2 Hình 4.2. DNA tổng số ly trích từ lá đu đủ theo quy trình ly trích 2. 1 2 3 4 5 6 7 8 9 10 11 12 DNA tổng số Phần tạp DNA tổng số Phần tạp 30 Do thực hiện phản ứng PCR trên nhiễm sắc thể giới tính nên chất lƣợng DNA là một trong ba yếu tố quan trọng, quyết định kết quả PCR. Vì vậy, trong quá trình ly trích, chúng tôi đã cố gắng hoàn thiện tốt các bƣớc trong quy trình. Hình 4.1 cho thấy quy trình ly trích 1 tƣơng đối ổn định. Lƣợng DNA thu đƣợc nhiều. Chất lƣợng DNA thu đƣợc khá tốt, không bị gãy (không bị smear) nhƣng còn nhiều tạp, cần phải xử lý RNase trƣớc khi chạy PCR. Ly trích theo quy trình 2, thu đƣợc DNA tổng số có chất lƣợng rất tốt, không bị gãy (không bị smear), kéo sợi, chỉ còn ít tạp, do chƣa đƣợc xử lý với RNase. Lƣợng DNA thu đƣợc ở các mẫu khác nhau, do lƣợng mẫu sử dụng không bằng nhau. Đối với thực vật, quy trình ly trích trên của Kurt Weising và ctv,1995, đƣợc đánh giá là phƣơng pháp giúp thu đƣợc DNA tổng số có chất lƣợng tốt. Chúng tôi nhận thấy bƣớc nghiền mẫu rất quan trọng. Cần phải nghiền mẫu thật mịn, từ màu xanh đậm chuyển sang màu xanh nhạt. Để thu đƣợc lƣợng DNA nhiều hơn, có thể tăng thời gian ủ mẫu với dung dịch ly trích vài giờ hoặc qua đêm tùy theo đối tƣợng mẫu. Các thao tác làm nhẹ nhàng sẽ tránh làm gãy DNA. 4.2. Kết quả PCR với cặp primer T1 Trong nghiên cứu này, quy trình nhiệt là một trong ba yếu tố quan trọng, quyết định kết quả PCR. Vì vậy, chúng tôi đã khảo sát phản ứng PCR lần lƣợt với các quy trình nhiệt ở mục 3.3.3. 4.2.1. Quy trình nhiệt 1 Hình 4.3. Sản phẩm PCR với cặp primer T1 theo quy trình nhiệt 1. Sản phẩm PCR không đặc hiệu và phần tạp Sản phẩm PCR của các mẫu 1 – 4 khi thực hiện PCR với cặp primer T1 theo quy trình nhiệt 1(95 oC/ 5 phút, lặp lại 30 chu kỳ : 95 oC /1 phút, 48oC /45 giây, 72 oC/1 phút,72oC/7 phút, 4oC), điện di trên gel agarose 1%,ở 100V, 250 mA, 30 phút. 1 2 3 4 Kích thƣớc dự đoán 0,8 kb 31 Thực hiện PCR các mẫu 1, 2, 3, 4 với quy trình nhiệt 1, ngoài sản phẩm mong muốn có kích thƣớc dự đoán là 0,8 kp, còn có các sản phẩm không đặc hiệu khác. Chứng tỏ, primer đã bắt cặp không đặc hiệu. Trong sản phẩm PCR thu đƣợc vẫn còn tạp và các thành phần dƣ của phản ứng PCR. Nhƣ vậy, đối với cặp primer T1, nhiệt độ Ta = 48 oC là thấp, chƣa tối ƣu cho cặp primer T1 hoạt động. 4.2.2. Quy trình nhiệt 2 Khi thực hiện PCR các mẫu 1, 2, 3, 4 theo quy trình nhiệt 2, không thu đƣợc sản phẩm PCR. Có thể do nhiệt độ Ta = 58 oC quá cao, dẫn đến primer không thể bắt cặp với DNA mẫu. Tiếp tục, tiến hành PCR với các quy trình nhiệt tiếp theo. 4.2.3. Quy trình nhiệt 3 Hình 4.4. Sản phẩm PCR với cặp primer T1 theo quy trình nhiệt 3. Với quy trình nhiệt 3, ở các mẫu 2 và 4 thu đƣợc sản phẩm PCR nhƣng ít và còn tạp. Các mẫu 1 và 3, không thu đƣợc sản phẩm PCR. Nhƣ vậy, nhiệt độ Ta= 54 o C có thể vẫn còn cao, chƣa thích hợp cho primer T1 hoạt động. Kích thƣớc dự đoán 0,8 kb Phần tạp 1 2 3 4 Sản phẩm PCR thu đƣợc khi thực hiện PCR các mẫu 1 – 4 với cặp primer T1 theo quy trình nhiệt 1(95oC/ 5 phút, lặp lại 30 chu kỳ : 95oC /1 phút, 54 oC /45 giây, 72oC/1 phút,72oC/7 phút, 4oC), điện di trên gel agarose 1%, ở 100V, 250 mA, 30 phút. 32 4.2.4. Quy trình nhiệt 4 Hình 4.5. Sản phẩm PCR với quy trình nhiệt 4. Sản phẩm PCR thu đƣợc từ quy trình nhiệt 4 của các mẫu 1 – 9 là 1 band mong muốn (0,8 kp), không có sản phẩm không mong muốn, ít tạp, lƣợng sản phẩm nhiều. Mẫu 10 là mẫu cây đực vì không thu đƣợc sản phẩm PCR . Nhƣ vậy, thực hiện PCR theo quy trình nhiệt 4 cho kết quả tốt nhất. Khác với kết quả nghiên cứu của Magdalita (2002), với cặp primer T1, chúng tôi thu đƣợc sản phẩm khuếch đại có kích thƣớc 0,8 kb. Trong khi đó, khi thực hiện PCR với cặp primer T1, Magdalita thu đƣợc sản phẩm có kích thƣớc 1,3 kb. Qua nghiên cứu của Parasnis (2000) và Deputy (2002) cùng những kết quả thu đƣợc khi thực hiện phản ứng PCR, chúng tôi cho rằng giống là yếu tố quan trọng nhất, ảnh hƣởng đến kết quả PCR. Do hạn chế về thời gian, chúng tôi chỉ thực hiện phản ứng PCR trên giống đu đủ Thái. 0,8 kb 1 2 3 4 5 6 L 7 8 9 10 N L: ladder (1 kb). N: đối chứng âm (không có DNA). 1 - 6 và 7 - 10 là sản phẩm PCR khuếch đại bởi cặp primer T1 khi thực hiện PCR các mẫu 1 – 10. Điện di sản phẩm PCR trên gel agarose 1,5%,ở 50V, 250mA, 60 phút. 33 4.3. Kết quả PCR với cặp primer W11 Nhiệt độ Tm của các cặp primer W11 là 56,9 o C và 50,5oC. Nhiệt độ Tm của các cặp primer T1 là 58,5oC và 50,5oC. Do nhiệt độ Tm của cặp primer W11 tƣơng đƣơng với cặp T1, chúng tôi tiến hành PCR với cặp primer W11 theo quy trình nhiệt 4. Hình 4.6. Sản phẩm PCR với cặp primer W11 theo quy trình nhiệt 4. Khi thực hiện PCR các mẫu 2, 3, 4 thu đƣợc sản phẩm PCR tốt, không có tạp, chỉ có 1 band mong muốn. Tuy nhiên, lƣợng sản phẩm không nhiều (band mờ), có thể là do lƣợng DNA mẫu ít. Với mẫu 10, không thu đƣợc sản phẩm PCR. Qua kết quả ở Hình 4.5 và Hình 4.6, chúng tôi đã xác định đƣợc giới tính các cây đã lấy mẫu. Các mẫu 2, 3, 4 là cây lƣỡng tính. Các mẫu 1, 5, 6, 8, 9 là cây cái. Mẫu 10 là cây đực. Với cặp primer W11, chúng tôi cũng thu đƣợc kết quả khác Magdalita. Chúng tôi thu đƣợc sản phẩm PCR có kích thƣớc khoảng 1,5 kb, còn sản phẩm PCR mà Magdalita thu đƣợc có kích thƣớc khoảng 0,8 kb. Trên thế giới, các nhà khoa học nhƣ Deputy, (2002), Magdalita, (2002) và Liu, (2004) đã sử dụng các cặp primer T1 1,5 kb L 2 3 4 N 10 L: ladder (2 kb). N: đối chứng âm (không có DNA). 2, 3, 4, 10 là sản phẩm PCR khuếch đại bởi cặp primer W11 theo quy trình nhiệt 4 (95oC/ 5 phút, lặp lại 30 chu kỳ : 95oC /1 phút, 50oC /45 giây, 72oC/1 phút,72oC/7 phút, 4oC) có kích thƣớc khoảng1,5 kb, điện di trên gel agarose 1,5%, ở 50V, 250 mA, 60 phút. 34 0,8 kb 1,5 kb và W11 để xác định giới tính cây đu đủ. Họ nghiên cứu trên nhiều giống đu đủ với số lƣợng mẫu lớn, lập lại thí nghiệm 3 – 5 lần, kết quả thu đƣợc rất chính xác (94% - 100%). Chứng tỏ, T1 và W11 là các cặp primer đặc hiệu cho giới tính cây đu đủ. Do đó, theo chúng tôi, vùng DNA liên kết với gen quy định giới tính trên nhiễm sắc giới tính của các giống đu đủ khác nhau có một vài khác biệt. 4.4. Kết quả PCR với 2 cặp primer T1 và W11 Bảng 4.7. Sản phẩm PCR với 2 cặp primer theo quy trình nhiệt 4. Khi chạy multiplex PCR với 6 mẫu, chỉ thu đƣợc một band 0,8 kp ở các mẫu 2, 4, 6 (Hình 4.7). Đối chiếu với các kết quả thu đƣợc ở Hình 4.5 và Hình 4.6, chúng tôi cho rằng phản ứng multiplex PCR chƣa thành công là do các thành phần trong phản ứng chƣa tối ƣu cho phản ứng multiplex PCR xảy ra. Đặc biệt, tỉ lệ các primer trong phản ứng multiplex PCR là rất quan trọng. Cần phải tiến hành khảo sát nồng độ các primer để tìm ra tỉ lệ primer thích hợp trong phản ứng. Để tối ƣu phản ứng, có thể thực hiện khảo sát thêm các thành phần quan trọng khác trong phản ứng nhƣ MgCl2 , dNTP’s, Taq DNA polymerase. L: ladder (2 kb). N: đối chứng âm (không có DNA). H là sản phẩm PCR khi thực hiện PCR mẫu 4 với cặp primer W11. F là sản phẩm PCR khi thực hiện PCR mẫu 4 với cặp primer T1. 1 – 6 là sản phẩm PCR thu đƣợc khi thực hiện multiplex PCR các mẫu 1 -6 với 2 cặp primer T1 và W11. 1 2 3 4 5 6 L H F 10 N 35 PHẦN 5. KẾT LUẬN VÀ ĐỀ NGHỊ 5.1. Kết luận Phƣơng pháp ly trích Thực hiện phản ứng PCR trên chromosome giới tính nên chất lƣợng DNA là rất quan trọng. Qua kết quả ly trích rút ra kết luận: quy trình ly trích 2 ở mục 3.3.4 là quy trình đơn giản, giúp thu đƣợc DNA có chất lƣợng tốt. Qua thực nghiệm, chúng tôi nhận thấy, với mẫu DNA ly trích theo quy trình 2, không cần phải tinh sạch, chỉ cần pha loãng DNA, vẫn có thể thực hiện thành công phản ứng PCR. Kỹ thuật PCR Dựa vào kết quả chạy PCR có thể xác định đƣợc giới tính cây đu đủ với mức độ chính xác rất cao. Bƣớc đầu đã tìm đƣợc quy trình nhiệt tƣơng đối ổn định cho 2 cặp primer T1 và W11. Tuy nhiên, do giới hạn thời gian, chúng tôi chƣa tối ƣu đƣợc các thành phần của phản ứng multiplex PCR với các cặp primer T1 và W11. Từ những kết quả thu đƣợc, chúng tôi cho rằng các yếu tố quan trọng ảnh hƣởng kết quả PCR trong nghiên cứu này gồm giống, chất lƣợng DNA, quy trình nhiệt. 5.2. Đề nghị Vì đây là nghiên cứu cơ bản để tạo điều kiện thuận lợi cho những nghiên cứu tiếp theo nhƣ nuôi cấy mô đu đủ, chuyển gen cây đu đủ, lai tạo giống, với những kết quả đã đạt đƣợc, chúng tôi có một vài đề nghị sau: - Tiếp tục hoàn thiện phƣơng pháp xác định giới tính cây đu đủ bằng kỹ thuật PCR với các cặp primer T1 và W11. - Tiến hành xác định giới tính trên những giống đu đủ trồng ở nƣớc ta. - Tiến tới giải trình tự sản phẩm PCR. 36 TÀI LIỆU THAM KHẢO TÀI LIỆU TIẾNG VIỆT 1. Bùi Chí Bửu và Nguyễn Thị Lang, 1999. Di truyền phân tử - Những nguyên tắc cơ bản trong chọn giống cây trồng. Nhà xuất bản Nông nghiệp. 2. Bùi Chí Bửu, Nguyễn Thị Lang, 2004. Di truyền học phân tử. Nhà xuất bản nông nghiệp. 3. Bùi Trang Việt, 2005. Sinh học tế bào. Nhà xuất bản đại học quốc gia TP Hồ Chí Minh. 434 trang. 4. Dƣơng Tấn Lợi, 2002. Kỹ thuật trồng cây ăn quả (ca cao, đu đủ). 61 trang. 5. Hồ Huỳnh Thùy Dƣơng, 1998. Sinh học phân tử (Khái niệm- Phương pháp- Ứng dụng). Tái bản lần thứ nhất. Nhà xuất bản Giáo dục, TP. HCM. 301 trang. 6. Nguyễn Đức Lƣợng, 2002. Công nghệ gen. Nhà xuất bản đại học quốc gia TP Hồ Chí Minh. 7. Nguyễn Thành Hối, Dƣơng Minh và Võ Thanh Hoàng, Khoa Trồng trọt, Đại học Cần Thơ, 1996. Cây đu đủ. Nhà xuất bản Nông Nghiệp, Hà Nội. 20 trang. 8. Nguyễn Thị Lang, 2002. Phương pháp cơ bản trong nghiên cứu công nghệ sinh học. Nhà xuất bản nông nghiệp TP. Hồ Chí Minh. 9. Nguyễn Văn Uyển, 1995. Những phương pháp công nghệ sinh học thực vật, Tập 1. Nhà xuất bản nông nghiệp. 10. Nhiều tác giả, 2002. Phương pháp nhân giống cây ăn quả. Nhà xuất bản dân tộc Hà Nội. 11. Phạm Thành Hổ, 2003. Di truyền học. Nhà xuất bản giáo dục. 613 trang. 12. Trần Thế Tục - Đoàn Thế Lƣ, 2002. Cây đu đủ và kỹ thuật trồng. Nhà xuất bản lao động - xã hội Hà Nội. 52 trang. 13. Trần Thế Tục, 1999. Kỹ thuật trồng xoài, na, đu đủ, hồng xiêm. Nhà xuất bản nông nghiệp Hà Nội. TÀI LIỆU TIẾNG NƢỚC NGOÀI 14. Brown T. A., 1995. Gene cloning, an introduction. Chapman & Hall. 334 pages. 37 15. Detuty J. C., et al. Molecular marker for sex determination in papaya, 2002. Theor Appl Genet 106. p 107 – 111. 16. Henry R. J, 1997. Practical applications of plant molecular biology. Chapman & Hall. 258 pages. 17. Kurt Weising, Hilde Nybom, Kirsten Wolff, Wieland Meyer, 1995. DNA fingerprinting in plants and fungi. CRC Press. 322 pages. 18. Magdalita P. M and Mercado C. P., 2002. Sex determination in papaya by PCR. PCARRD, Los Banos, Laguna, Philippines. 19. Magdalita P. M., Drew R. A., Adkins S. W. and Godwin I. D.,1997. Morphological, molecular and cytological analyses of Carica papaya x C. cauliflora interspecific hybrids. Theoretical and applied Genetics 95. p 224 – 229. 20. McPherson M. J. and Moller S. G., 2000. PCR. BIOS. 276 pages. 21. Paranis A. S., Gupta V. S., Tamhanhar S. A., Ranjekar P. K., 1999. Microsatellite (GATA)n reveal sex specific differences in papaya. Theor Appl Genet 99. p 1047 – 1052. 22. Paranis A. S., Gupta V. S., Tamhanhar S. A., Ranjekar P. K., 2000. A highly reliable sex diagnotic PCR assay for mass screening of papaya. Molecular Breeding 6. p 337 -344. 23. Sambrook and Russell, 2001. Molecular cloning, a laboratory manual. Volume 2. Third edition. CSHL Press. p 8.1 - 8.24. 24. Somri S., Jobin M.,Drew R. A., Lawson W. and Graham M. W.,1998. Developing molecular marker for sex prediction in papaya. Acta Horticulture. p 24 – 29. 25. Sondur S. N., Manshardt R. M. and Stiles J. I., 1996. A genetic linkage map of papaya based on radomly amplified polymorphic DNA markers. Theor Appl Genet 99. p 547 – 553. 26. Zhiyong Liu, et al, 2004. A primitive Y chromosome in papaya marks incipient sex chromosome evolution. Nature 427. p 348 – 352. TÀI LIỆU TỪ INTERNET 27. www.hawaiiag.owww.elsevier.com/locate/scihorti 28. www.nature.com/nature 38 29. 30. www.sciencedirect.com/sciencerg/harc

Các file đính kèm theo tài liệu này:

  • pdfHOANG THI DUNG - 02126162.pdf
Tài liệu liên quan