XẤP XỈ TUYẾN TÍNH CHO MỘT VÀI PHƯƠNG TRÌNH SÓNG PHI TUYẾN
TRẦN NGỌC DIỄM
Trang nhan đề
Lời cảm ơn
Mục lục
Mở đầu
Chương1: Một số không gian hàm và ký hiệu.
Chương2: Khảo sát phương trình sóng phi tuyến liên kết với điều kiện biên hỗn hợp.
Chương3: Phương trình sóng phi tuyến với toán tử Kirchoff-Carrier
Chương4: Phần kết luận.
Tài liệu tham khảo
23 trang |
Chia sẻ: maiphuongtl | Lượt xem: 1804 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Luận văn Xấp xỉ tuyến tính cho một vài phương trình sóng phi tuyến, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
[ Chuang21 8
Chltdng2
KHAO SAT PHUONGTRINH SONGPHI TDYEN
LIEN KET VOl DIED KI]tN BIEN HONH(jP
1.Mdd§u
Trangchuang2,chungtoixetb~litoangiatribienvagiatriband~usanday
UI/-uxx=f(X,t,u,ux,U,),XEO, O<t<T, (2.1)
(2.2)uAO,t)-hou(O,t)=go(t),uAl,t)+h,u(l,t)=g,(t),O<t<T,
u(x,O)=uo(x),u,(x,O)=Ut(x),XEO, (2.3)
vdiho,hi Ia cach~ngs6khongamthotnidc,s6 h:~mgphituye'nf clingla hamtho
tnidcthuQclop cl([O,l]x[0,00)XR3).
Trangchliongnay,tasethie'tl~pmQtdinhly t<Snt~iva duynha'tWi ghHye'u
cuabai toan(2.1)-(2.3)b~ngphliongphapxa'pXl tuye'ntinhke'thQpvdi phuong
phapGalerkinvaphuongphapcompactye'u.Sand6chungWi kh{wsatva'nd~khai
tri8nti~mc~nCllaWi giiUbai toan(2.1)-(2.3)theothams6be s khi s6h~ngphi
tuye'nftrong(2.1)dliQcthaybdi
f(x,t,u,ux'u,)+sg(x,t,u,ux'u,).
Ta thanhl~pcacgiathie'tsan
(HI) ho>0, hI :2:0,
(H2) UoEH2 , U, EH' ,
(H3) f ECI([0,l]x[0,oo)xR3),
(H4) gO,glEC3([0,oo)).
.X6t hams6phl,1
q>(x,t)= h 1h [gl(t)eho(X-I)go(t)e-hIX].0 + I
(2.4)
D~t
{
BOV=vx(O,t)-hov(O,t)
, O<t<T.
BIV=vA1,t)+h1v(1,t)
Khi d6,vdiphepd6ibie'n
(2.5)
w(x,t)=u(x,t)-q>(x,t),x EO, 0<t <T, (2.6)
thlwthoamanphlidngtdnh
Chll(Jng 21 9
W/t-W",,=](X,t,w,wx,W,),xEQ, O<t<T, (2.7)
voidi8uki~nbienh6nh<;fpthu~nha't
{
Bow=0
.
.. , O<t<T,
Blw=O
vadi8uki~nd~u
(2.8)
{
w(x,O)=uo(x)-<p(x,O)=wo(x), xEQ
. w,(x,O)=UI(X)-<P,(x,O)=WI(x),
(2.9)
trongd6
{
](x,
..
t,w,Wx,w,)=f(x
.
,
.
t,w +<p,wx+<Px'w,+<PJ-<PII(X,t)+<Pxx(x,t),
... ... .. (2.10)
wo(x)=uo(x)- <p(x,O),WI(x) = UI(x) -<PI(x,O) ,
thoa
] ECI(QX[0,oo)xR3), WoEH2, WI EHI. (2.11)
Nhu'v~y tUbairoanbienh6nh<;fpkh6ngthu~nha't(2.1)-(2.3)vOiph6pbie'n
d6i (2.6)se tu'angdu'angvoi bai roanbienh6nh<;fpthu~nnha't(2.7)-(2.9).Do d6,
kh6nglamma'tinht6ngquattac6th~giaSLYding
gi =0, i =0,1.
2.Su't6utaivaduynha'tI<iighHcuabaitoanbienh6nho'pthuflunha't
TrenHI rasad~mgmQtchugntltangdltangsan:
(2.12)
i
(
I
)
~
IlvllHI= V2(0)+flv'(xtdx .
0
(2.13)
Trongchu'angnay,tadjnhnghiad~ngsongtuye'ntinhtrenHI nhu'sau:
I
a(u,v)= fu'(x)v'(x)dx+hou(O)v(O)+hlu(l)v(I),\lu, v E HI
0
(2.14)
Khi d6tac6cacb6d8sau
B6d€ 2.1
Ph6pnhungHI .CO(Q)lacompactva
Ilvllco(o)~.J2l1vIIHI,\ v EHI.
B6 d82.11amQtke'tquaquellthuQcmachungminhcllan6c6th~rimtha'y
trongnhi8utaili~ulienquailde'n19thuye'tv8kh6nggianSobolev,ch~ngh~n[20].
B6 d€ 2.i Voi giathie't(HI), d~ngsongtuye'ntinhd6ixungdjnhnghiabdi (2.14)
lientl;1C,cu'ongbuctrenHI xHI , nghiala :
Chuang2)10
(i) la(u,v)I~CllluIIHlllvIIHI'Vu,v EH1,
(ii)a(u,u)~Collull~l'Vu EHI.
VOl Co =rnin{l,ho},C1=rnax{1,ho,2hd.
Ch(fngminh:Sad\mgbttd£ngthucSchwartzvab6d€ 2.1taco(i)dung.
Chungminh(ii) thld~danghentaboqua.
BiJdi 2.3
T6n t~imQtcosdHilberttn1cchu£n{Wj}ci'taL2 g6mcacvectorriengWj
(fngVOltririengAj saocho
0 <A, ~A,
2 ~ ... ~A,.~ ... , UrnA,.=co ,
I J j-too J
(2.15)
a(Wj,v)=A,j(Wf'V) ,voimQi vEHI,j=1,2,.... (2.16)
Honnfi'aday {Wj/~} clingla cosdtr\fcchua':nHilbertcua HI tu'ongling
VOltichvohtfonga(.,.).
M~tkhac,chungtaclingcohamWjthoamanbattoangiatribiensan:
-~Wj=A,jWj , trong0, (2.17)
(2.18)w;(O)-hoWj(O)=w;(l)+hIWj(l)=O, Wj ECOO(O) .
Chung minhb6 d€ 2.3 co th~tlm trong[20] (dinh196.2.1,p.l37, VOl
V =HI, H =L2va a(.,.)dinhnghlanhu'(2.14». ,,
Voi M >0, T >0 tad~t
Ko=Ko(M,T,f) =supl/(x,t,u,v,w)1
Kl =KI (M,T,f) =sup(I/:1+1//1+11:1+11:1+1/,~D(x,t,u,v,w),
(2.19)
(2.20)
suptrong(2.19),(2.20)dtfQc1tytrenmi€n 0 ~x ~1,0 ~t ~T, lul,lvl,lwl~JiM.
W(M,T) ={vELoo(0,T;H2):V ELoo(O,T;HI), v ELoo(0,T;L2);
IlvIILOO(O.T;H2)~ M, IlvIlLOO(O.T;Hl)~ M, IlvIILOO(O.T;L2) ~ M }.
(2.21)
Tie'pthea,taxaydlfngday{urn}trongW(M,T)b~ngquin~p.Day {urn}se
dtfQCchungminhhQit\l v€ Wi gi.Hcuabattoan(2.1)-(2.3)trongW(M,T)(voi st1
chQnllfaM vaT thichhQp).
ChQns6h~ngbandffuUoEW(M,T). Giasar~ng
urn-]E W(M,T). (2.22)
11
Ta lien ke'tb~litoan(2.1)-(2.3) vOibai taanbignphantuye'ntinhsan:
TIm UrnE W(M,T) thoa
+a(Um,v)=,vdimQi v E HI,
Um(O)= UO,um(O)= ul'
(2.23)
(2.24)
trangd6
Fm(x,t)=f(x,t,um~l(x,t),V'um-l(x,t),Um-1(x,t)).
Slf t6ntq.ieliaUrnehabdi dinh19duoiday.
(2.25)
Dillh IV2.1([15])
Giii sa (Hl)-(H3) dung.Khi d6t6ntq.icaehAngs6M >Ova T> 0 saGeha:
vOimQiUoE W(M,T) ehatrude,t6ntq.imQtdayquinq.ptuye'ntinh{urn}cW(M,T)
xaedinhbdi(2.23)-(2.25).
Chungminh:Chungminhbaag6mbabltde.
Eltde1 : DungphuongphapxffpXl Galerkind~xay dlfngWi giiii xffpXl U~k)(t
ella(2.23)-(2.25).
GQi {wj} la cosatrlfeehuffneuaHI nhutrangb6d~2.3(wj =W j /F;).
f)~t
k .
U~k\t)=LC~)(t)Wj ,
j=l .
(2.26)
trangd6 c~J(t) thoah~phuongtrlnhviphantuye'ntinhsan:
(u;:)(t),wj)+a(u~k)(t),Wj)=(Fm(t),wj)'1::;j::; k, (2.27)
(k)
(0)
- .(k)
(0)
-
um =UOk'um =Ulk' (2.28)
vOi
k- "(k) - H2UOk=L...,aj Wj ~ Uo trang,
j=l
(2.29)
k- "A(k) - tr HIUlk = L...,tJj Wj ~ Ul ong'.
j=l
(2.30)
TItgiii thie't(2.22),t6ntq.iTlk)>0 saGehabaitaan(2.27),(2.28)e6duynhfft
Wigiai u~)(t) tren[o,Tlk)].
Ca'edanhgiasaudaytrangbude2ehopheptaIffyT~k)=T, vdiffiQikvavdi
ffiQim.
.
DM.Jl.H.TlfN!!IEN. ....
THlf \/U:fv
12
BlfOc2 :Danhgiatiennghi~m.
* Trang(2.27)thayWjbdi it~)(t) taco
1 d
ll
o(k)
()11
2 1 d
( (k)() " (k)()) _ ( () o(k)())2"dt urn t +2 dta urn t ,urn t - Frnt ,urn t ,
saudo tichphantheot tadu'<;ic
I
p~k)(t)=p~)(0)+2f(Frn(t),it~)(~))d];,
. 0
(2.31)
trongdo
p~:)(t)=IIU~)(t)1I2+a(u~k)(t),u~)(t)).
* Trang(2.27)thayWjbdi- :. ~wi'khido.1
(U~nk)(t),~Wj)+a(u~)(t),~Wj)=(Frn(t),~wJ '
hay
a(u~)(t),wJ +(~u~)(t),~Wj)=a(Frn(t),wJ.
ThayWjbdi it~k)(t) trongd~ngthuctren,ke'th<;ipvdi (2.18)saudo m'ytich
phantheot, tadli<;ic
2 I
q~)(t)=a(it~)(t),it~:)(t))+II~u~)(t)11=q~k)(O)+fa(Frn(~),it~)(~))d~.
0
(2.32)
* Dgoham(2.27)theot,saudothayWjbdi u~)(t) taco "
i :tllu~)(tf+ ~ :ta(it~k)(t),it~)(t))=(F~(t),U~)(t)).
Tichphanhaive'theot
2 I
rlk) (t)=Ilu~k) (t)11 +a(it~)(t),it~)(t))=rlk) (0)+2f(F~(~),u~)(~))d~.
0
(2.33)
Tit (2.31)-(2.33)d~nde'n
s~)(t)==p~) (t)+q~)(t)+rlk)(t)=s~)(0)
I I I
+2f(Frn(~),it~:)(~))d~+2J a(Frn(~),it~)(~))d~+2 f(F~ (~),u~)(~))d~
0 0 0
(2.34)
Cactichphand ve'ph.;H(2.34)Hinltt<;itdl.t<;icdanhgiadlididay.
+ TichphanthTinha't
Tit (2.19)va(2.22)taco
13
2If(Fm('t)'U~,~)('t))d't
l
~2fIIFmllllu~)lld't~2KofJP~nk)('t)d't.
0 0 0
(2.35)
+Tfchphiinthahai
Dob6de2.2taco
2Ifa(Fm('t)'U~)('t))d't
l
~ 2C, fllFmIIHlllu~k)IIHId't.
0 0
(2.36)
Tli (2.19),(2.20)va (2.22)tatlmdl1<;1C
IlFmll~1=IIVFml12+F;(O,t),
F;(O,t) ~K;,
I
IIVFml12 = fU.:+f:Vum-t+f~u~um-l +f:Vum-t)2dx
0
I
~ fOf:12+If:12+lf~J +If:12)(1+IVum-112+1~Um-112+lvum-tI2)dx
0
~ 4K~(1+lIum-lll~2+IIUm-III~I)
~ 4KN1+2M2).
V~y
IIVFml12~4K~(1+2M2). ,
Vadodo
IlFmll~14K~(1+2M2)+K;. ,,
(2.37)
Tli (2.32),(2.36),(2.37)taco
I 2C
(
I I
2IJa(Fm,u~))d't~ ~ 2K1.J1+2M2+Ko)J"q~:)('t)d't.
0 ~Co 0
(2.38)
+Tfchphiinthaba
Ta co
2IJ(F~'U~k))d't
l
~2JIIF~lIllu~)lld't.
0 . 0
(2.39)
Tli (2.20)va(2.22)tathudl1<;1C
1
.IIF~112=fUr'+f:Um-l+f~uVUm-l+f:urn-J2dx
0
~4K~(1+Ilurn-11l2+IIVUrn-tIl2+Ilum-,1I2)
~4K~(1+3M2) .
Dodotli (2.39)tasuyfa
[ Chuang2114
t
I
/
2If(F,~,u~nk))dr~4KJ.J1+3M2 f)r,~k)(r)d-r:.
0 0
Tli (2.34),(2.35),(2.38),(2.40)tathudu'<;fc
/
s~)(t) ~ S~k)(0) +K f~s~)(-r:)d-r:,
0
trangd6
-. ..2CJ ( .J .. 2 ) . I 2 - ( )K-2Ko+-JC; 2KJ 1+2M +Ko +4Ktv1+4M -K M,T,f .
Tie'ptheotadanhgias6h:;mgS~nk)(0).Taco
S~)(0)=lIu~)(0)112+2a(Ulk'Ulk)+/IUtkI12+1Ii1uokI12+a(uOk,uOk)'
Trang (2.27),thayWjbdi u~nk)(t), sandoH(yt =0 ta du'<;fC
Ilu~)(O)f -(i1UOk'U~)(O))=(f(x,O,uo,VuO,Ut),u~I~)(O)).
Tli daySHYfa
Ilu~:)(o)/f ~ IIi1uOkll+Ilf(x,O,uo,Vuo,Ut)ll.
(2.40)
(2.41)
(2.42)
(2.43)
(2.44)
Ta SHYtli (2.29),(2.30),(2.43),(2.44)dng t6nt~imQts6M >0 dQcl~pvdik
vamsaocho
S~)(O)~M2/4, vOimQikvarn.
Ta lu'uy, vdigi:ithie't(H3)'SHYfa tli (2.19),(2.20)f~ng
lirnTK;(M,T,f)=0, i =O,I.
T~O+
Ke'th0saocho
TK(M,T,f):$M.
va
k,.=2(1+~1+-k-J TK,(M,T,f) <1.
Cu6i clingtaSHYfa tli (2.41),(2.45)f~ng
M2 /
s~)(t)~4+ K f~s~)(-r:)d-r:,0~t ~Tlk).0
M~Hkhac,ham
set)=(M12+K t12)2
(2.45)
(2.46)
(2.47)
(2.48)
(2.49)
(2.50)
[ Cha(Jng2115
la Wi gi:Hcvcd'.lic1laphuongtrlnhtichphanVolterraphituye'nsandaytren[O,T]
vOinhankh6nggiam~ (xem[12]).
M2 t
set)=-+ KJ.Js(t)d-r;,o~t ~T,4 0
(2.51)
vadodotu (2.49)-(2.51)tanh~nduQC
s~nk)(t)~s(t)~M2,'\ItE[O,Tlk)].
Tu daytaco Tn~k)=T, vdimQimvakvataSHYratudayding
(2.52)
U~)EW(M,T). (2.53)
Budc 3 : QuagiOih'.ln
Tu (2.53),t6nt'.limQtdaycon {U~f)}cua {U~k)}va t6nt'.liUrnsaGcho
u~j)~ UrntrongL"'(O,T;H2) ye'u*,
U~JJ~ Urntrong Loo(0,T; HI} ye'u* ,
U~:f) ~ Urn trongLoo(O,T;L2}ye'u* ,
(2,54)
thoa
UrnEW(M,T) . (2.55)
Tu (255) quagioi h'.lntrong(2.27),(2.28)taco thSkiSmtrad6 dangding Urn
thoaman(2.23),(2.24)trongLOO(O,T)ye'u*.
Binh 192.1chungminhhoanta'tD
Dink IV2.2([15])
Gia sl1'(H1)-(H3)dung.Khi dot6nt'.liM >0,T>o saGchobaitmln(2.1)~(2.3)
coduynha'tmQtWigiaiye'uUEW(M,T).
M?t khac,dayquin'.lptuye"ntinh{Urn}xac dinhbdi (2.22)-(2.24)hQitl}m'.lnh
v€ Wi giai ye"u U trong kh6ng gian
WI(T) ={uELoo(O,T;HI):U ELoo(O,T;L2)}. (2.56)
Honnuataclingcodanhgiasais6
lIurn- uIIL"'(O,T;HI)+Ilurn- UIlL"'(O,T;L2)~ Ck;, vdimQim, (2.57)
trongdo0<kT<1xacdinhbdi(2.48)vaC lah~ngs6chIphl}thuQcT,UO,Ul,vakr.
Chungminh:
atSut6ntaiWigiaiU:
[ . . . ChU'dng5Zl16
Tntoe he'tta 1U'LI9r~ngWI(T) 1akh6nggianBanachd6i voi chuffn(xem[11])
Ilullw,(T)= IluIlL<O(O.T;H')+lIuIIL<O(O,T;L2)'
Ta sechungmintdng {urn}1adayCauchytrongWI(T) .
f)~t Vrn=Urn+\- Urn .Khid6Vmthoamanbai tmlnbie'nphansan:
.
{
, 'Iv eH',
vrn(O)- vrn(O)- 0.
(2.58)
U(y v::::;urn trong(2.58)vasad\mggiathie't(H3),taSHYtli dint 192.1,san
khitichphantheet tac6
I
Ilv,n!l2+a(Vrn,Vrn)=2f(Frn+1-Frn,vrn)d't
0
(2.59)
t
. c:; 2(1+.fi)KI fOlv rn~11I+Ilvrn-lllH')llvrnIld't°
sa d\mgb6d~2.2(ii)va(2.59)tathudttQc
Ilv,nII2+collvrnll~l c:;2(1+.fi)KITllvrn-lllw,(T)llv,nllw,{T)' '\It E[O,T].
Tli (2.60)dfinde'n
Ilvrnllw\(T)c:;kTllvrn-lllw,(T)'voi mQi m .
(2;60)
(2.61)
Vi v~y
IIUrn+p- urnllw,(T)c:;lIuI - uollw,(T)1~~' voimQim,p .T
(2.62)
Ke'thQp(2.48)va (2.62)tac6{urn}la dayCauchytrong'WI(T),dod6t6nt~i
UEWI(T) saocho
Urn-+U trongWI(T) m~nh. (2.63)
B~ngeachapd\mgmQtl91u~ntu'Cfngt\tmachungtadasad\mgtrongdint19
(2.1),tac6th~1a'yramQtdaycan{urnAcua{urn}saccho
Urnj-+U trongL"'(0,T;H2) ye'u",
Urnj-+u trongL"'(O,T;HI) ye'u",
(2.64)
(2.65)
~ it trongL"'(O,T;L2) ye'u",
uEW(M,T).
(2.66)
(2.67)
Ap dl;mgdint19Riesz-Fischer,tli (2.63),t6nt~idayconclla {Urnj-I}vfink9
hi~u1a{Urnrl}saceho:
[ Chlt{jng2117
Um-I ~ U} h.h (x,t) EQT ' (2.68)
(2.69)VUm-1~ Vu h.h (x,t) EQT '}
itm-I ~it} h.h (x,t)EQT . (2.70)
Dof lient1,lC,apd~mgdinh19hQi19bich~nLebesgue,tIT(2.68)-(2.70)taco
Fm~ f(x,t,u,ux,Ut}trongL2(QT)m~nh. (2.71)
}
Mi;itkhacVI
II
F
II{
,
) 5:Ko,voimQij,m} L'" O,T;L-
(2.72)
nentacoth~trichduQctIT{Fmj}mQtdayconvlingQiEl {Fmj}saocho
Fmj~ F trongL""'(O,T;L2) ye'lh. (2.73)
Sosanh(2.71)va(2.73)suyra
F(x,t)=f(x,t,u,ux'ut),h.h(x,t)EQT . (2.74)
V~y
Fmj~ f(x,t,u,Ux'u,) trongL""'(0,T;L2)ye'u*. (2.75)
Qua giOih~n(2.23),(2.24),b~ngs~l'ke'thQpvoi (2.64),(2.66),(2.75),ta thu
du'Qcu thoabai toanbie'nphansail :
(u,v)+a(u,v)=(J(x,t,u,ux'ut),v) , voi mQiv EH1,
u(O)= 110,it(O)= 111,
trbngL""'(O,T)ye'u* .
bl Su'daynha'tWigi:H
Gia saulvau21ahaiWi giaiye'ucllabaitoan(2.1)-(2.3),thoaUiEW(M,T),
i=I,2.
Di;itu = Ul - U2,khidoula loi giaicuabaitoanbie'nphansail:
{
(ii.v)+a(u.v)~(F, - F" v).'Iv EH' .
u(O)=it(O)=0,
(2.76)
trongdo
F;(x,t)=f(x,t,u;>VUi'itJ, i =1,2.
La'yv=ittrong(2.76),sailkhitichphantheot taco
Chu;;ng2118
r
lIum(t)1I2+a(u(t),u(t))=2f(FI -F2,u)d1:°
(2.77)r
~ 2Kl J(llu( 1:)11+ IIVu(1:)11+lIu{1:)11)lIu(1:)lId1:.
o
D?t
z(t)=lIu(t)1I2+a(u(t),u(t)). (2.78)
Khi d6,tasuytu(2.77)ding
Z(t)QK,(2+~go) .fzW<.
(2.79)
Sad~mgb6dc3Gronwalltasuyra
z(t)=0, hayul =U2 .
Danhgiasais6(2.57)duQcSHYtu(2.62),(2.63)b~ngcachchop ~ 00.
V~ytadachungminhxongdinh1y2.20
3.Khai triin tiemdin cllalotgiai
Trongphfinnay,tagiasar~ng(ho,hi)va (uo,Ell) IfinIttQthoamancacgia
thie't(HI) ,(H2).Taduavaogiathie'tsau:
(Hs)f, g EC1(nX[0,00)xR3).
Chungtaxetbairoannhi6usailday,trongd6 &Iathallis6be:
u/t -uxx =Fe(x,t,u,ux,ur)'x En, O<t\<T,
u.JO,t) - hou(O,t)=Ux(I,t) +hIu(I,t)= 0,
U(X,O)=Uo(X),Ur(X,O)=Ul(x),
Fe(x,t,u,Ux,UJ=I(x,t,u,Ux,Ur)+sg(X,t,u,Ux,Ur)'
Trudche'ttachuyr~ngne'uj,g thoa(Hs), khid6cacdanhgialiennghit$m
cua day xa"p xi Galerkin {u~)}trongchungminhdinh Iy 2.1 tttongungvOif =F li ,
vdi lei<1,thoaman
(Pe)
u~)EW(M,T), (2.80)
trongd6 cac h~ngs6 M, T dQcI~pvdi &. Th~tv~y,trongqua trlnh chungminh,
chungtachQncach~ngs6duongM vaT trong(2.43)-(2.45),(2.47),(2.48)matrong
d6cacd:;tiluQngII/(x,O,uo'Vuo,ul)11va Ki(M,T,f), i =0,1sedttQcthaybdi
11/(x,O,uo'Vuo,uJ +IIg(x,O,uo'Vuo,uJI va Ki(M,T,f)+ K;(M,T,g)
rheathutv .
Chuang2119
VI v~y, giaih,~mu{;trongcackhonggianhamthichhQpcuaday {U~k)}khi
k~ +00,saild6 m~ +00,laWigiiiiyehcuabattoan(PE)thoaman
UE E W(M,T) . (2.81)
Khi d6,theocachtu'angt\1'yai chungminhdinh192.2,tac6 th~chungminh
dttQcdinggiGih:;mcliahQ{UE}trongcackhonggianhamthichhQpkhi 8~ a la Wi
giiiiye'uduynhfftUocliabattoan(Po)(ungVOl8=a) thoaman
UoEW(M,T) . (2.82)
Hannuatac6dinh19sail:
DinkIv 2.3[15]
Giii StY(HI), (Hz)va (Hs)dung.Khi d6t5ntqicachangs6M >a vaT> a
saorho,VOlmQi8,181<1,battoan(PE)c6duynhfftmOtWi giiii ye'uU{;EW(M,T)thoa
manmOtu'aclu'Qngti~mc~n
IIUE-UOIIWI(T) ::;Cl81, (2.83)
trongd6CIa mOthangs6chIph\!thuQcvaoho'hI' T, Ko(M,T,g), K, (M,T,J) , va
UoEW(M,T) la Wigiiiiye'uduynhfftcuabatto<ln(Po)ungVOl8=a.
Chungminh:
B~tU=uE- uo'Khi d6Uthoamanbattoanbie'nphansail:
(u,v)+a(u,v)=(l,v)+8(g,v),vvEHI,
u(a)=u(a) =a,
l(x,t) =f(X,t,UE'V'UE'UE)-f(x,t,uo'V'uo,uo)'
g =g(X,t,UE,V'UE,UJ.
Trong(2.84),Iffyv=U,sailkhitichphantheot tadttQc
,
,
(2.84)
Ilu(t)112+a(U(t).U(t))S ZKJ (M.T,f)(Z+ ~;0)I(llull'+a(u.u))dH
I
+fllullzd't+8zK;(M,T,g)T.
0
(2.85)
Dod6
1114(1)112+a(U(I),U(I))«; (2K, (M, T,f{ 2+~~O ) +1) J(llu112+a(u,u))dt+
+8zK;(M,T,g)T.
(2.86)
Bangcachapd\!ngb6d~Gronwall,tti'(2.86)tathudu'Qc
Ilu(t)1I2+a(u(t),u(t))
:::;E2K~(M,T,g)TeXP((2K[(M,T,f{2+~~O)+I}). Vt E[O,T].
Ke'thQpVOlb6 d€ 2.2taco
lIue-uollwi(T)=llullwi(T):::;cjEI,l I<1..
Chuang2120
(2.87)
(2.88)
V~ydinh192.3du'Qchungminh.0
MQtke'tquamachungtai tlmdu'Qctie'ptheosailla v€ khattri~nti~mc~n
cilalot giaiye'uuede'nctp2theoE,VOllEIdlinho.
Chungtaidu'athemgiathie'tsail
(H6)f EC2(n x[0,00)xR3),g ECI(n x[0,00)x R3).
GQi UoEW(M,T) la Wi giai ye'ucuabatroan (Po)nhu'trongdinh192.3.GQi
ul EW(M,T) (voiM, Tthich hQp)la Wi giai ye'uduynhtt cuabai roan
{.
LU' =_F,(X.~uPVup",), x en, 0 <t <T,
(p[) Bjul- 0, l - 0,1,
UI(X,O)=u[(x,o)=o,
trongdo
82 .82L=---
8t2 8x2
FI (X,t;UI ,'lu[ ,UI) =uJu (x,t,uo''luo,uo)+'luJu, (x,t,uo''\luo'uo)+
+uJ,,(x,t,uo'luo,uo)+g(x,t,uo''luo,uo),
vaBjdinhnghIanhu'(2.5).
Gia sti'ueEW(M,T)la Wigiaiye'uduynhttcilabairoan(Pe).Bi;lt
v=ue- Uo- SUI =ue - h,
khidov thoamanbatroansail
Lv=f[v +h]- f[h]+E(g[V+h]- g[hD+a(s,x,t),x En, 0 <t <T,
Bjv=0, i =0,1,
v(x,O)=v(x,O)=O.
trongdo..
a(s,x,t)=f[uo+EUI]-f[uol- E(uJuluo]+'luJuJuo] +uJ" ruG])+
+E(g[Uo + SUI] - g[UoD
C1 day,d~lamgQncachvie't,tasti'd\mgk9hi~u
(2.89)
(2.90)
(2.91)
21
J[U] =J(x,t,u,Ux,Ut) (2.92)
Chung ta stl'dl,mgkhai triSnTaylor de'ncffp2 rho J[uo +SUI]va de'ncffp1
rho g[Uo+SUI] t<:ti(x,t,uo'VUo,ito). Sail do do tinh bi ch~n cua cac ham
upVupup i =0,1,trongkhonggianham £,"o(O,T;HI), tathudu'c;Ic
la(s,x,t)1 :::;Ks2, h.h (x,t) E QT' (2.93)
voi
K =9M2K2(M,T,J)+3.J2MKI(M,T,g),
K2(M,T,f) = sup(lJ:~[u]l+IJ:;ux[u]1+IJ;~[u]1+IJ:~x[u]1
+ IJ:~[u]1+IJ:;u [u]1),
(2.94)
(2.95)
trongdoSupIffy tren 0:::;x:::;1,0::;t:::;T, lul,IVul,lul:::;M.J2.
Bay giOtadinhnghladayham{vm}nhu'sail
Vo=0,
Lvm=J[Vm-l+h]- J[h]+ s(g[Vm-I+h]- g[h])+a(s,x,t),
x EQ, o <t <T, (2.96)
Bjvm=O,i=O,I,
vm(x,O)=vm(x,O)=0,m~1.
Voi m=1,tacobaitoan
.
{
LvI; ,*:x,t), x E
.
Q, 0< t <T,
BjVl =0, l=O,1,
VI(x,O)=VI(x,O)=0 ,
\, (2.97)
Tichvahu'onghaive'(2.97)voi VI' sail doIffytichphantheot,ke'thc;Ip(2.93)
taco
IIvll12+ a(vI' VI) :::;2Ks2TllvIIILOO(O,T,L2)
Vi v~y
Ilv,llw,(T),; 2(1 +.J~J\'Te2 .
(2,98)
Ta sechungminht6nt<:timQth~ngs6cr dQcI~pmva S saorho
Ilv.llw\(T):5(I+'/~JCT.2, 1'11m.
(2.99)
Tichvahu'onghaive'(2.96)voi Vm ' sailkhi Iffytichphantheot taco:
Chuang2122
IIvml12+a(Vm,Vm)
I
~2f(llj[vm-l +h]-j[h]II+llg[Vm-l +h]-g[h]I/)llvmIIL"'(O,T;L2)d1:+2KTf:21IvmIIL"'(O,T;L2).0
(2.100)
Bi;H
Ym=llvmllw,(T)' (2.101)
Tli (2.100),(2.1O1)suyra
Ym~ crym-(+8 , (2.102)
trongdo
" ~ 2(1+.J~)I +F2)T(Kt(M.T,f) +Kt(M.T.g)),
O~2(1+j-JRTE"
(2.103)
Vdi giatrithichhQpciiaT,giil sadng crthoa
cr<1. (2.104)
BaygiOtadn b6d~dltdiday,manocoth~duQcchungminhra-td~dang.
Bdd~2.4 GEl saday{ym}thoa
0 ~Ym~crym-l+8, m=1,2,...,
Yo =0,
trongdo 0 <cr<1 va 8 ~0 la cach~ngs6chotrudc.Khi do
(2.105),
,
< 8 ,.. _ 12Ym -_1 ' Vdl mQl m - , ,....-cr (2.106)
Ta suyradng, tli (2.101)-(2.104)va(2.106)r~ng
Ilv.llwdTi"(1+~~JcT,',
(2.107)
trongdo
- 1
CT =2KT-1-cr (2.108)
M~tkhac,dayqui n~ptuye'ntinh {vm}dinhnghlabdi (2.96)hQit\1m~nh
trongW1(1)v~Wi giili v cuabai toan(2.90).VI v~yquagidi h~n(2.107)khi
m~ootato
23
Ilu, - u,- sulllw",,:S;(1+~~JCTS'.
V?y, tacodinhIy du'oiday.
(2.109)
Dinh IV2.4 [15]
Gia sa (HI), (H2)va (H6)dung. Khi d6 t6n t~icae h~ngs6 M >0, T >0
saGcho,voi mQi E,181<l,bai toan (Pe) c6 duy nha'tmQt loi giai ye'u duy nha't
ueEW(M,T)thoa u'oclttQngti~mc?n de'nca'phai nhlt (2.109),cac ham Uo' UI la
c3.cloig aiye'ucuacaebaitoan(po)va(Pt)I~n1u'<;Jt.
. 4.Choyv~b?litoanvoidi~ukienbienh6nhopkhongthuftnnha't(2.1)-(2.3)
Trangph~nnay,chungWi rUtra ke'tquacuabai toangia tri bienkh6ng
thll§nha't(2.1)-(2.3)lingvOitntongh<;Jpgl :;t:0,g2:;t:0va thoagia thie't(H4)' Tli
phepbie'nd6i(2.4),(2.6)vahtuy(2.11),tad~nbai roan(2.1)-(2.3)t6ngquatve,
vi~cgiaibaitoanbienh6nh<;Jpthu~nha't(2.7)-(2.9).
Gia sLY(Ht)- (H4) thoaman.Taxayd~tngdayham{wm}bdi:
ChQns6h~ngd~utieRWoEW(M,T).
Giasa wm,..tEW(M,T), talienke'tbairoan(2.7)-(2.9)voibaitoan:
TIm wmEW(M,T) thoamanbai ta<lnbie'nphantuye'nHnh:
{
(Wm,v): ~(Wm.'v)=?:,v;, \:IvEH1,
Wm(0) - wo' W m(0)- w"
(2.110)
trongd6
Wo(X)=u'o(x)-<p(x,O),
Wt(x)=u((x)-<p,(x,O),
Fm(x,t) =l(x,t,wm-1'V'wm-"Wm-t)'
l(x,t,w, V'w,w) = f(x,t,w +<p,V'w+V'<p,W+<j))-<pl/+<Pxx'
Theodinh1y(2.1)vOi wo'wpl thaychoUo'Upf I~n1u'<;Jt,thl t6nt~ihai
hAngs6M>O, T>O saoehoday{wm}xacdinhbdi(2.110),voiWoEW(M,T) cho
tru'oe.M~tkhae,theodinhIy 2.2thlday {wm}hQiW m~nhtrongWI(T)ve,Wi giai
duynha'tWEW(M,T) euabaitoan(2.7)-(2.9).
(2.111)
Khi d6tae6dinhIy sail:
Dinh IV2.5
Gi~sa(HJ - (H4) dung.Khi d6t6nt~icaeh~ngs6 M >0, T >0 saGeho:
Chlt(Jng2124
(i) Voi mQi UoEW(M,T) cho tru'dc,t6n t:;timQt day qui n:;tptuye'nHnh
{urn}c W(M,T) xacdinhbdi :
U =w +<p m?:1rn rn' ,
Wmxacdinhtu(2.110),(2.111)ungvdigiatriband~uwo=Uo + <p.
(ii) B~litoan(2.1)-(2.3)t6ntqi duynha'tmQtWi giai ~e'uUE W(M,T).
(iii) urn~ U trongWI(T) mqnh.
Honnaataclingcodaubgia
Ilurn- ullwl(T)::;;Ck; , vdi mQi m (2.112)
trongdok lah~ngs6du'ongthoamanT
kT ~ 2(1+h)( 1+.J~}K.( M, T,J) <1 ,
(vdiM >0, T> 0 thichhQp),C la h~ngs6chituythuQcvaoT,Wo,WIva kT .
B6i voibaitoankhaitri€nti<$mc~ncuaWigiaitheothams6be 8,taxetbai
toannhi~usanday:
u -u =F (x,t,u,u ,U),xEQ, O<t<T,II xx s x,
(pJ ux(O,t)-hou(O,t)=go(t),ux(1,t)+h1u(1,t)=gl(t),
u(x,O)=Uo(x),u,(x,O)=UI(x), .
\
F (x,t,u,u,u .)=f (x,t,u,u,u )+8g(X,t,u,~,u) .s x, x , x ,
(2.113)
Giathie't(HJ, (HJ, (HJ va(HJ ladung.
Theodinh1)12.5,baitoan(po)ungvoi8=0 vabaitoan(ps)l~nlu'Qtcoduy
nha'tWi giaiuova USEW(M,T), trongdoM, rta cach~ngs6du'ongthichhQpdQc
l~pvoithams6be 8.
Khi d6 u=Us - UolaWigiaiye'ucuabaitoan
t
o"~ - u~ =I[ u,]- I[ u,]+Bg[u,], XEQ, 0<t<T ,
Bou=B\u =0,
u(O)=u,(O)=0 .
(2.114)
Chungminhtu'ongtl1trongdinh1)12.3tacodaubgia
Ilullw,(T)=Ilus - uollw,(T)::;;ej81, 181< 1 , (2.115)
trongdoCIah~ngs6chituythuQcvaoho,hi' T, Ko(M,T,g), K1(M,T,f).
Ch£lang2il25
Khi dotacodinhly
Dillh LV2.6
Ghi sa (HI), (H2),(H4)va (Hs) dung.Khi do tan t(;1icaeh~ngs6 va
M >0, T >0 saocho, vOimQi&,lEIdube , bai loan(Pg)co duynha'tmQtWi gliB
ye'u UcEW(M,1) thoa 11'ocl11'<;1ngtic%mc~nsau
IIUE -UOIIWI(T) :::;CIEI, . (2.116)
vOiC la ri1Qth~ngs6nh11'danoid tIeD.
. . B6i VOlehaitri~ntic%mc~nde'nca'phal,tacodinhly saudaymachungminh
cophgndi8uchinhchutIt sovOichunglninhcuadinh1y2.4,vi v~ytaboqua.
Dillh Ii 2.7
Gia sa (HI), (H2), (H4)va(H6)dung.Khi do tan t(;1icae h~ngs6
M >0, T >0 saocho,voimQi&, lEI<1, bai loan (PE) tan t(;1iduynha'tmQtWi giai
ye'uduynha'tuE E W(M,T) thoa11'oc111'<;1ngtic%mc~nde'nca'phainh11'sau
Ilu,-u, -8u,llwdT}';(1+ .J~JCT82,
(2.117)
trongdo UO,UIEW(M,T) Ign111'<;1tchinhIa cac10igiai ye'ucuacacbai loan (po)
(ung VOl E =0) vabai loan (PI),ung VOl E= 1, go(t) =gl(t)=0,uo(x)=UI(X)=0,
FE= uJu [uo]+VuJu [uo]+itJul uo]+g[uo],CTIa h~ngs6chiph\!thuQcvaoT,M,. . .
K((M,T,f),K2(M,T,f),K,(M,T,g)..
\
4.Xet mottrtt(fm~hdpenth~coa'. g chobAitoaDbienkhong'thnfifinha't
Trangphgncu6icuach11'dng2naychungWixemxetmQtvi d\!v8khaitri~n
tic%mc~nVOltr11'ongh<;1p .
f =0, g = g(it)=it3. (2.118)
BgutieD,chungt6ixettr1iongh<;1pt6ngquatValgthoamangiathie'tsau.
gECN(R). (2.119)
GQi uE. Ia101giaicuabailoan
..
j
LUE= Eg(itE)
.
' 0
.
"
.
<
.
x <
"
1,0.( t <T,
(p ) B,u =g, (t), i=O,1,. E IE. I
:. u&(O)=uo' u&(O)=UI' .
VOl M:>0, T >0 thichh<;1pta tim UO,UIEW(M,T) 19nl11'<;1tla Wigiaicua
cacbailoansau
26
[
£UO
.
=
.
0, ° <:X
.
<I, 0 <t <T
(po) B,uo~g,(t), i =0,1,
uo(O)=Uo' uo(O)=Ut'
[
LUt =-g
.
(
.
u
.
o!
.
.~ O<x<l, O<t<T
(PI) Biut - 0, l.,- 0,1,
Ut (0) =ut(0) =O.
Voi 2 S',,'ps'"N , gQi up E W(M,T) Ia Wi giai bai loan
Lu =F =F (x,t,u,u,...,u ),O<x<I, . O<t<T,p p pOI p-I
(pp) i Bjup=0 , i =0,1, .
u (0)=u (0)=0,p p
trongdo
Fz =g'(uo)ul'
p-I .<XI.<xz .r:t.p-z
.
L ( ) ) L U Uz ...u zF =g'(u)u + g k (U. . I. p-, P C:. 3. p 0 p-t 0 a !a !...a !
k=Z <XI+<XZ+...+<Xp_Z=kt Z p-z
p-Z
Lir:t.j=p-l
j=1
(2.120)
f)ijt
N
v=u&-h=u&-uo-LCPUp'
p=!
(2.121)
Khi dovIa Wigiaibailoan
{
..LV=-c[g(~: Ii)
.
-
.
g
.
(Ii)] +a(c,x,t),
B.v- 0 , l - 1,2,I
v(x,o)=v(x,O)=0,
0 <x <I, 0 <t <\T,
(2.122)
trongdo
N
a(e,x,t)=c[g(li)- geLiD)]- LcP Fp'
p=z
(2.123)
f)?t
Kk(T,g)=suplg(k)(UO(x,t»)I,k =1,2,...,N,
O$x$l
O$t$T
(2.123)
KN(M,T,g)= sup Ig(N)(v)1
'vj$J2(N+t)M
Khi do, taco b6 d€ sailday
Bddi 2.5 Giasa(HI), (Hz),(H4)va(2.119)dung,khidot6nt~ih~ngs6K sao
cho
(2.124)
IIa(c,x,t)IIL"'(O.T;L2)s'"KlclN+1 (2.125)
27
6.day K chiph\l thuQcvaoN, M, T va cachangs6 Kk(T,g), k=1,2"",N-1,
KN(M,T,g) .
Chungminh
Tntongh<;1pN =1chungminhd~dang,taboquachungminhchitie't.CJ day
tachixet trl1ongh<;1pN ~2,
N
B~HU =LgPUP ,Bang eachkhai tri~nTaylor cho g(uo+U) quanhdi~m
p=l
Uo de'nca'pN ,
Taco
(
'
) (
,
)
.. N-l (k)(
,
) (N)(
,.'
g h - g Uo =g(uo+U)- g(uo)=~g Uo Uk + g Uo+8U) .Nft k! N! U (2.126)
0<8<1
(
N
J
k
'k . i, k!. al 2. a2 . N.aN
U = Lg Ui = L. a!a La !(guJ (guJ ...(g UN)
i=1 al+a2+...+aN=k I 2 N
ai nguyen;;,0
(2.127)
Tli'(2.126),(2,127)taco
N-[ N(N-l)
g(Ji) - g(uo)=LC[p,g]gP+ LC[N -l,p,g]gP + RN(g,g)
p=l p=N
(2,128)
trongdo
P
. C[p,g] =Lg(k)(uo)L
k=l al+a2+...+ap=k
P
Liai=p
i=l
N-l 7a-
[
,.
]-~ (k)(
;
).~~CN -l,p,g - L..Jg UoL..J ,a,
k=l' lal=k
I](a)=p
. al. a2 . ap
u1 U2 ,.,up
a1!a21,..ap!
(2.129)
",
(2.130)
7a
RN(g,g) =g(N)(UO+8U) L ~gl](a)a.
lal=N
trong(2.130),tadffsitd\mgcackyhi~udachis6san:
a =(al,a2,.."aN) EZ:,
la!=a1+a2+..,+aN' a!=a[!a2!...aN!,
11(a)=a1+2a2+...+NaN,
(2.131)
- - ( ) RN -a - al a2 aNV-Vi'V2"",VN E ,V -VI VI ",VN'
V~ytli'(2.120),(2,123),(2.128)-(2.131)a(g,x,t) dl1<;1cvie'tl~inhl1san
(
~N~
Ja(g,x,t)=g ~C[N -l,p,g]gP +RN(g,g), (2,132)
28
Do cacham ui'i =1,2,...,Nbi ch~ntrongkhonggianhamL"'(O,T;HI), ta
suyfa tli (2.123),(2.124),(2.130)ding
Ila(s,.,.)IIL"'(OoT;L2)::;KlsIN+'
trongdo
- 2 . N-I (MN)k . (MNt -
K =(N -2N)L k! Kk(T,g)+ N! KN(M,T,g)
k=1
B6 de2.5daduQCchungminhxong..
Titp thea,taxetdayham{vm}djnhnghlabdi
v =0,0
(2.133)
Lvm=s[g(vm~I+Ji)-g(Ji)]+a(s,x,t),xEQ, O<t<T,
By =0, i=O,l,, m
vm(x,O)=Vm(x,O)=o ,m ~1.
Vdi m=1,taco
LvI =a(s,x,t), xED, O<t<T,
B;v,=O,i=O,l,
VI(x,O)= v(x,O)=0.
Nhanhaivtcua(2.135)vdi VI'tasuyfatU (2.125)ding
IIvI1I2+a(vi'VI)::;2KlsIN+ITllvIIIL"'(ooT;L2).
Tli (2.136)taco
Ilv,II,. (OT'"')+11'\11,"(oT"')S 2(1+-J~ }\:lgIN"T
0 \
Ta sechungminhdingt6nt'.limoth~ngs6CT, dQcl~prrt\vas saorho
Il
v I"'( . 1)+I.lv ll.",( .2 ) ::;CTlsIN+IT, Isl::;l, \1m (2.138)m LOoT, H m L O,T,L
Nhanhaivt cua(2.134)vdivm' saukhirichphanrheat tathudu'Qc
(2.134)
(2.135)
(2.136)
(2.137)
I
IlvmJ +a(vm,v,J::;sfllg(vm+Ji)-g(Ji)/ldrllv,nIIL"'(OoT;L2)
0 (2.139)
+2KlsIN+ITllv mIIL"'(ooT;L2).
D~t1m=IIvJWI(T) =IlvJL"'(OoT;HI) +IlvJL"'(OoT;L2).
Tli (2.139)suyfa
1m ::;cr1m-1+-0 , (2.140)
trongdo
29
a~ 2(1+ ;--)1 +J2)TKI (M,T,g) ,
1;~ 2(1+.j~JKTIEIN",
(2.141)
Voi giatricilaT >0thichhcjp,giasli'r~ngcrthoa
cr<1. (2.142)
Ap dl,lngb6d~2.4,tac6
- < 8 ".' .- 12Y - ~ , Val mOl m - , ,....m I-a . . (2.143)
hay Ilvm!lwI(r)~crlslN+I, (2.144)
trongd6
-
(
1
J
- 1
Cr =2 1+
JC:
KT~.
C I-a0
D:lY ql1in~p tuye'ntinh{vm}dinhnghiabai(2.134)hQitl,lm~nhv~Wi giaiv
Gilabai toan(2.122)trongWI(T). Vi V?yquagiOih~n(2.144)khi m~ 00 tadu'cjc
(2.145)
N
uE -L: sPup
l1
= IIvllw,(r) ::;;CrlslN+I
p=o WI(T)
(2.146)
Khi d6tac6
Dinh IV2.8
. Gia sli'(HJ, (HJ, (HJ dungva gEcN(R). Khi d6t~nt~icach~ngs6
M >O,T >O.saochoVOlmQis,!sl<1,battoan(PE)c6duynha'tmQtWi giaiye'u
uEEW(M,T) thoamQtu'oclu'cjngti~mc?nde'nca'pN +1nhu'(2.146),trongd6cac
ham up' p =O,1,2,...,N19nlu'cjtla cacWigiaicilacacbattoan(pp),p =O,1,2,...,N.
Trongdo~nsanclingtaxetg Cl,lthenhu(2:118),khid6 g ECoo(R). Ta cling
hill yding g(k)=0, Vk~4, dod6phgndutrongkhattrienTaylorcilag xua'thi~n
trong(2.132)la
RN(s,g)=O,N~4.
Dod6 a(s,x,t) trong(2.132)vie'tl~i
N(N-I)
(
3 -
}a(E,x,t) =E~i?l(uo) ~~~E't](a)=p
Dod6ta c6danhgia
lIa(s,.,.)too(o,r:L2)::;;(N3 - 2N2)(N2+3N+3)M3IsIN+I.
(2.147)
(2.148)
(2.149)
"Chuang2130
Cacbi€u thucFp trongb~liroan(pp)
Fo=0,
FI =g(uo)'
F2=g'(uo)ul'
F ,(
',
),1',, (
,
)
,2
3 =g Uo U2+2g Uo UI'
F =g'(u)u +g"(u")uu +1-g"'(u)U3.4 03 0123! 01'
3
Fp =g'(uo)up-I+Lg(k)(Uo)L
k=2 p-2
l>;=k
;=1
p-2
I>Xj=p-1
;=1
Ual Ua2 ,ap-2
I 2 ...U p-2
a)a2!...a ! ' 4 ~p ~N.p-2
Cu6icungtacoke'tqua
" ,
Dinh"JV 2.9 ,
Gia SlYcacgiathie'tcuadinhly2.8du'qcthoamanva(2.118)la dung,Khi do
t6rit~icach~ngsO'duongM va T saochobili roan(p&)co duynha'tWi giaiye'u
U&EW(M,T) thoau'ocluqngti~mc~n
N
u& - LSPUp
ll
~ <$'(N,T)lsIN+1,
p=o wItT)
trongdo
" <$'(N,T)=2
(
1+
F;1 \N3 -2N2)(N2 +3N+3)T~, \c) I-a0
cr=24{1+J2)(1 +~~}M"