Luận văn Xấp xỉ tuyến tính cho một vài phương trình sóng phi tuyến

XẤP XỈ TUYẾN TÍNH CHO MỘT VÀI PHƯƠNG TRÌNH SÓNG PHI TUYẾN TRẦN NGỌC DIỄM Trang nhan đề Lời cảm ơn Mục lục Mở đầu Chương1: Một số không gian hàm và ký hiệu. Chương2: Khảo sát phương trình sóng phi tuyến liên kết với điều kiện biên hỗn hợp. Chương3: Phương trình sóng phi tuyến với toán tử Kirchoff-Carrier Chương4: Phần kết luận. Tài liệu tham khảo

pdf23 trang | Chia sẻ: maiphuongtl | Lượt xem: 1804 | Lượt tải: 0download
Bạn đang xem trước 20 trang tài liệu Luận văn Xấp xỉ tuyến tính cho một vài phương trình sóng phi tuyến, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
[ Chuang21 8 Chltdng2 KHAO SAT PHUONGTRINH SONGPHI TDYEN LIEN KET VOl DIED KI]tN BIEN HONH(jP 1.Mdd§u Trangchuang2,chungtoixetb~litoangiatribienvagiatriband~usanday UI/-uxx=f(X,t,u,ux,U,),XEO, O<t<T, (2.1) (2.2)uAO,t)-hou(O,t)=go(t),uAl,t)+h,u(l,t)=g,(t),O<t<T, u(x,O)=uo(x),u,(x,O)=Ut(x),XEO, (2.3) vdiho,hi Ia cach~ngs6khongamthotnidc,s6 h:~mgphituye'nf clingla hamtho tnidcthuQclop cl([O,l]x[0,00)XR3). Trangchliongnay,tasethie'tl~pmQtdinhly t<Snt~iva duynha'tWi ghHye'u cuabai toan(2.1)-(2.3)b~ngphliongphapxa'pXl tuye'ntinhke'thQpvdi phuong phapGalerkinvaphuongphapcompactye'u.Sand6chungWi kh{wsatva'nd~khai tri8nti~mc~nCllaWi giiUbai toan(2.1)-(2.3)theothams6be s khi s6h~ngphi tuye'nftrong(2.1)dliQcthaybdi f(x,t,u,ux'u,)+sg(x,t,u,ux'u,). Ta thanhl~pcacgiathie'tsan (HI) ho>0, hI :2:0, (H2) UoEH2 , U, EH' , (H3) f ECI([0,l]x[0,oo)xR3), (H4) gO,glEC3([0,oo)). .X6t hams6phl,1 q>(x,t)= h 1h [gl(t)eho(X-I)go(t)e-hIX].0 + I (2.4) D~t { BOV=vx(O,t)-hov(O,t) , O<t<T. BIV=vA1,t)+h1v(1,t) Khi d6,vdiphepd6ibie'n (2.5) w(x,t)=u(x,t)-q>(x,t),x EO, 0<t <T, (2.6) thlwthoamanphlidngtdnh Chll(Jng 21 9 W/t-W",,=](X,t,w,wx,W,),xEQ, O<t<T, (2.7) voidi8uki~nbienh6nh<;fpthu~nha't { Bow=0 . .. , O<t<T, Blw=O vadi8uki~nd~u (2.8) { w(x,O)=uo(x)-<p(x,O)=wo(x), xEQ . w,(x,O)=UI(X)-<P,(x,O)=WI(x), (2.9) trongd6 { ](x, .. t,w,Wx,w,)=f(x . , . t,w +<p,wx+<Px'w,+<PJ-<PII(X,t)+<Pxx(x,t), ... ... .. (2.10) wo(x)=uo(x)- <p(x,O),WI(x) = UI(x) -<PI(x,O) , thoa ] ECI(QX[0,oo)xR3), WoEH2, WI EHI. (2.11) Nhu'v~y tUbairoanbienh6nh<;fpkh6ngthu~nha't(2.1)-(2.3)vOiph6pbie'n d6i (2.6)se tu'angdu'angvoi bai roanbienh6nh<;fpthu~nnha't(2.7)-(2.9).Do d6, kh6nglamma'tinht6ngquattac6th~giaSLYding gi =0, i =0,1. 2.Su't6utaivaduynha'tI<iighHcuabaitoanbienh6nho'pthuflunha't TrenHI rasad~mgmQtchugntltangdltangsan: (2.12) i ( I ) ~ IlvllHI= V2(0)+flv'(xtdx . 0 (2.13) Trongchu'angnay,tadjnhnghiad~ngsongtuye'ntinhtrenHI nhu'sau: I a(u,v)= fu'(x)v'(x)dx+hou(O)v(O)+hlu(l)v(I),\lu, v E HI 0 (2.14) Khi d6tac6cacb6d8sau B6d€ 2.1 Ph6pnhungHI .CO(Q)lacompactva Ilvllco(o)~.J2l1vIIHI,\ v EHI. B6 d82.11amQtke'tquaquellthuQcmachungminhcllan6c6th~rimtha'y trongnhi8utaili~ulienquailde'n19thuye'tv8kh6nggianSobolev,ch~ngh~n[20]. B6 d€ 2.i Voi giathie't(HI), d~ngsongtuye'ntinhd6ixungdjnhnghiabdi (2.14) lientl;1C,cu'ongbuctrenHI xHI , nghiala : Chuang2)10 (i) la(u,v)I~CllluIIHlllvIIHI'Vu,v EH1, (ii)a(u,u)~Collull~l'Vu EHI. VOl Co =rnin{l,ho},C1=rnax{1,ho,2hd. Ch(fngminh:Sad\mgbttd£ngthucSchwartzvab6d€ 2.1taco(i)dung. Chungminh(ii) thld~danghentaboqua. BiJdi 2.3 T6n t~imQtcosdHilberttn1cchu£n{Wj}ci'taL2 g6mcacvectorriengWj (fngVOltririengAj saocho 0 <A, ~A, 2 ~ ... ~A,.~ ... , UrnA,.=co , I J j-too J (2.15) a(Wj,v)=A,j(Wf'V) ,voimQi vEHI,j=1,2,.... (2.16) Honnfi'aday {Wj/~} clingla cosdtr\fcchua':nHilbertcua HI tu'ongling VOltichvohtfonga(.,.). M~tkhac,chungtaclingcohamWjthoamanbattoangiatribiensan: -~Wj=A,jWj , trong0, (2.17) (2.18)w;(O)-hoWj(O)=w;(l)+hIWj(l)=O, Wj ECOO(O) . Chung minhb6 d€ 2.3 co th~tlm trong[20] (dinh196.2.1,p.l37, VOl V =HI, H =L2va a(.,.)dinhnghlanhu'(2.14». ,, Voi M >0, T >0 tad~t Ko=Ko(M,T,f) =supl/(x,t,u,v,w)1 Kl =KI (M,T,f) =sup(I/:1+1//1+11:1+11:1+1/,~D(x,t,u,v,w), (2.19) (2.20) suptrong(2.19),(2.20)dtfQc1tytrenmi€n 0 ~x ~1,0 ~t ~T, lul,lvl,lwl~JiM. W(M,T) ={vELoo(0,T;H2):V ELoo(O,T;HI), v ELoo(0,T;L2); IlvIILOO(O.T;H2)~ M, IlvIlLOO(O.T;Hl)~ M, IlvIILOO(O.T;L2) ~ M }. (2.21) Tie'pthea,taxaydlfngday{urn}trongW(M,T)b~ngquin~p.Day {urn}se dtfQCchungminhhQit\l v€ Wi gi.Hcuabattoan(2.1)-(2.3)trongW(M,T)(voi st1 chQnllfaM vaT thichhQp). ChQns6h~ngbandffuUoEW(M,T). Giasar~ng urn-]E W(M,T). (2.22) 11 Ta lien ke'tb~litoan(2.1)-(2.3) vOibai taanbignphantuye'ntinhsan: TIm UrnE W(M,T) thoa +a(Um,v)=,vdimQi v E HI, Um(O)= UO,um(O)= ul' (2.23) (2.24) trangd6 Fm(x,t)=f(x,t,um~l(x,t),V'um-l(x,t),Um-1(x,t)). Slf t6ntq.ieliaUrnehabdi dinh19duoiday. (2.25) Dillh IV2.1([15]) Giii sa (Hl)-(H3) dung.Khi d6t6ntq.icaehAngs6M >Ova T> 0 saGeha: vOimQiUoE W(M,T) ehatrude,t6ntq.imQtdayquinq.ptuye'ntinh{urn}cW(M,T) xaedinhbdi(2.23)-(2.25). Chungminh:Chungminhbaag6mbabltde. Eltde1 : DungphuongphapxffpXl Galerkind~xay dlfngWi giiii xffpXl U~k)(t ella(2.23)-(2.25). GQi {wj} la cosatrlfeehuffneuaHI nhutrangb6d~2.3(wj =W j /F;). f)~t k . U~k\t)=LC~)(t)Wj , j=l . (2.26) trangd6 c~J(t) thoah~phuongtrlnhviphantuye'ntinhsan: (u;:)(t),wj)+a(u~k)(t),Wj)=(Fm(t),wj)'1::;j::; k, (2.27) (k) (0) - .(k) (0) - um =UOk'um =Ulk' (2.28) vOi k- "(k) - H2UOk=L...,aj Wj ~ Uo trang, j=l (2.29) k- "A(k) - tr HIUlk = L...,tJj Wj ~ Ul ong'. j=l (2.30) TItgiii thie't(2.22),t6ntq.iTlk)>0 saGehabaitaan(2.27),(2.28)e6duynhfft Wigiai u~)(t) tren[o,Tlk)]. Ca'edanhgiasaudaytrangbude2ehopheptaIffyT~k)=T, vdiffiQikvavdi ffiQim. . DM.Jl.H.TlfN!!IEN. .... THlf \/U:fv 12 BlfOc2 :Danhgiatiennghi~m. * Trang(2.27)thayWjbdi it~)(t) taco 1 d ll o(k) ()11 2 1 d ( (k)() " (k)()) _ ( () o(k)())2"dt urn t +2 dta urn t ,urn t - Frnt ,urn t , saudo tichphantheot tadu'<;ic I p~k)(t)=p~)(0)+2f(Frn(t),it~)(~))d];, . 0 (2.31) trongdo p~:)(t)=IIU~)(t)1I2+a(u~k)(t),u~)(t)). * Trang(2.27)thayWjbdi- :. ~wi'khido.1 (U~nk)(t),~Wj)+a(u~)(t),~Wj)=(Frn(t),~wJ ' hay a(u~)(t),wJ +(~u~)(t),~Wj)=a(Frn(t),wJ. ThayWjbdi it~k)(t) trongd~ngthuctren,ke'th<;ipvdi (2.18)saudo m'ytich phantheot, tadli<;ic 2 I q~)(t)=a(it~)(t),it~:)(t))+II~u~)(t)11=q~k)(O)+fa(Frn(~),it~)(~))d~. 0 (2.32) * Dgoham(2.27)theot,saudothayWjbdi u~)(t) taco " i :tllu~)(tf+ ~ :ta(it~k)(t),it~)(t))=(F~(t),U~)(t)). Tichphanhaive'theot 2 I rlk) (t)=Ilu~k) (t)11 +a(it~)(t),it~)(t))=rlk) (0)+2f(F~(~),u~)(~))d~. 0 (2.33) Tit (2.31)-(2.33)d~nde'n s~)(t)==p~) (t)+q~)(t)+rlk)(t)=s~)(0) I I I +2f(Frn(~),it~:)(~))d~+2J a(Frn(~),it~)(~))d~+2 f(F~ (~),u~)(~))d~ 0 0 0 (2.34) Cactichphand ve'ph.;H(2.34)Hinltt<;itdl.t<;icdanhgiadlididay. + TichphanthTinha't Tit (2.19)va(2.22)taco 13 2If(Fm('t)'U~,~)('t))d't l ~2fIIFmllllu~)lld't~2KofJP~nk)('t)d't. 0 0 0 (2.35) +Tfchphiinthahai Dob6de2.2taco 2Ifa(Fm('t)'U~)('t))d't l ~ 2C, fllFmIIHlllu~k)IIHId't. 0 0 (2.36) Tli (2.19),(2.20)va (2.22)tatlmdl1<;1C IlFmll~1=IIVFml12+F;(O,t), F;(O,t) ~K;, I IIVFml12 = fU.:+f:Vum-t+f~u~um-l +f:Vum-t)2dx 0 I ~ fOf:12+If:12+lf~J +If:12)(1+IVum-112+1~Um-112+lvum-tI2)dx 0 ~ 4K~(1+lIum-lll~2+IIUm-III~I) ~ 4KN1+2M2). V~y IIVFml12~4K~(1+2M2). , Vadodo IlFmll~14K~(1+2M2)+K;. ,, (2.37) Tli (2.32),(2.36),(2.37)taco I 2C ( I I 2IJa(Fm,u~))d't~ ~ 2K1.J1+2M2+Ko)J"q~:)('t)d't. 0 ~Co 0 (2.38) +Tfchphiinthaba Ta co 2IJ(F~'U~k))d't l ~2JIIF~lIllu~)lld't. 0 . 0 (2.39) Tli (2.20)va(2.22)tathudl1<;1C 1 .IIF~112=fUr'+f:Um-l+f~uVUm-l+f:urn-J2dx 0 ~4K~(1+Ilurn-11l2+IIVUrn-tIl2+Ilum-,1I2) ~4K~(1+3M2) . Dodotli (2.39)tasuyfa [ Chuang2114 t I / 2If(F,~,u~nk))dr~4KJ.J1+3M2 f)r,~k)(r)d-r:. 0 0 Tli (2.34),(2.35),(2.38),(2.40)tathudu'<;fc / s~)(t) ~ S~k)(0) +K f~s~)(-r:)d-r:, 0 trangd6 -. ..2CJ ( .J .. 2 ) . I 2 - ( )K-2Ko+-JC; 2KJ 1+2M +Ko +4Ktv1+4M -K M,T,f . Tie'ptheotadanhgias6h:;mgS~nk)(0).Taco S~)(0)=lIu~)(0)112+2a(Ulk'Ulk)+/IUtkI12+1Ii1uokI12+a(uOk,uOk)' Trang (2.27),thayWjbdi u~nk)(t), sandoH(yt =0 ta du'<;fC Ilu~)(O)f -(i1UOk'U~)(O))=(f(x,O,uo,VuO,Ut),u~I~)(O)). Tli daySHYfa Ilu~:)(o)/f ~ IIi1uOkll+Ilf(x,O,uo,Vuo,Ut)ll. (2.40) (2.41) (2.42) (2.43) (2.44) Ta SHYtli (2.29),(2.30),(2.43),(2.44)dng t6nt~imQts6M >0 dQcl~pvdik vamsaocho S~)(O)~M2/4, vOimQikvarn. Ta lu'uy, vdigi:ithie't(H3)'SHYfa tli (2.19),(2.20)f~ng lirnTK;(M,T,f)=0, i =O,I. T~O+ Ke'th0saocho TK(M,T,f):$M. va k,.=2(1+~1+-k-J TK,(M,T,f) <1. Cu6i clingtaSHYfa tli (2.41),(2.45)f~ng M2 / s~)(t)~4+ K f~s~)(-r:)d-r:,0~t ~Tlk).0 M~Hkhac,ham set)=(M12+K t12)2 (2.45) (2.46) (2.47) (2.48) (2.49) (2.50) [ Cha(Jng2115 la Wi gi:Hcvcd'.lic1laphuongtrlnhtichphanVolterraphituye'nsandaytren[O,T] vOinhankh6nggiam~ (xem[12]). M2 t set)=-+ KJ.Js(t)d-r;,o~t ~T,4 0 (2.51) vadodotu (2.49)-(2.51)tanh~nduQC s~nk)(t)~s(t)~M2,'\ItE[O,Tlk)]. Tu daytaco Tn~k)=T, vdimQimvakvataSHYratudayding (2.52) U~)EW(M,T). (2.53) Budc 3 : QuagiOih'.ln Tu (2.53),t6nt'.limQtdaycon {U~f)}cua {U~k)}va t6nt'.liUrnsaGcho u~j)~ UrntrongL"'(O,T;H2) ye'u*, U~JJ~ Urntrong Loo(0,T; HI} ye'u* , U~:f) ~ Urn trongLoo(O,T;L2}ye'u* , (2,54) thoa UrnEW(M,T) . (2.55) Tu (255) quagioi h'.lntrong(2.27),(2.28)taco thSkiSmtrad6 dangding Urn thoaman(2.23),(2.24)trongLOO(O,T)ye'u*. Binh 192.1chungminhhoanta'tD Dink IV2.2([15]) Gia sl1'(H1)-(H3)dung.Khi dot6nt'.liM >0,T>o saGchobaitmln(2.1)~(2.3) coduynha'tmQtWigiaiye'uUEW(M,T). M?t khac,dayquin'.lptuye"ntinh{Urn}xac dinhbdi (2.22)-(2.24)hQitl}m'.lnh v€ Wi giai ye"u U trong kh6ng gian WI(T) ={uELoo(O,T;HI):U ELoo(O,T;L2)}. (2.56) Honnuataclingcodanhgiasais6 lIurn- uIIL"'(O,T;HI)+Ilurn- UIlL"'(O,T;L2)~ Ck;, vdimQim, (2.57) trongdo0<kT<1xacdinhbdi(2.48)vaC lah~ngs6chIphl}thuQcT,UO,Ul,vakr. Chungminh: atSut6ntaiWigiaiU: [ . . . ChU'dng5Zl16 Tntoe he'tta 1U'LI9r~ngWI(T) 1akh6nggianBanachd6i voi chuffn(xem[11]) Ilullw,(T)= IluIlL<O(O.T;H')+lIuIIL<O(O,T;L2)' Ta sechungmintdng {urn}1adayCauchytrongWI(T) . f)~t Vrn=Urn+\- Urn .Khid6Vmthoamanbai tmlnbie'nphansan: . { , 'Iv eH', vrn(O)- vrn(O)- 0. (2.58) U(y v::::;urn trong(2.58)vasad\mggiathie't(H3),taSHYtli dint 192.1,san khitichphantheet tac6 I Ilv,n!l2+a(Vrn,Vrn)=2f(Frn+1-Frn,vrn)d't 0 (2.59) t . c:; 2(1+.fi)KI fOlv rn~11I+Ilvrn-lllH')llvrnIld't° sa d\mgb6d~2.2(ii)va(2.59)tathudttQc Ilv,nII2+collvrnll~l c:;2(1+.fi)KITllvrn-lllw,(T)llv,nllw,{T)' '\It E[O,T]. Tli (2.60)dfinde'n Ilvrnllw\(T)c:;kTllvrn-lllw,(T)'voi mQi m . (2;60) (2.61) Vi v~y IIUrn+p- urnllw,(T)c:;lIuI - uollw,(T)1~~' voimQim,p .T (2.62) Ke'thQp(2.48)va (2.62)tac6{urn}la dayCauchytrong'WI(T),dod6t6nt~i UEWI(T) saocho Urn-+U trongWI(T) m~nh. (2.63) B~ngeachapd\mgmQtl91u~ntu'Cfngt\tmachungtadasad\mgtrongdint19 (2.1),tac6th~1a'yramQtdaycan{urnAcua{urn}saccho Urnj-+U trongL"'(0,T;H2) ye'u", Urnj-+u trongL"'(O,T;HI) ye'u", (2.64) (2.65) ~ it trongL"'(O,T;L2) ye'u", uEW(M,T). (2.66) (2.67) Ap dl;mgdint19Riesz-Fischer,tli (2.63),t6nt~idayconclla {Urnj-I}vfink9 hi~u1a{Urnrl}saceho: [ Chlt{jng2117 Um-I ~ U} h.h (x,t) EQT ' (2.68) (2.69)VUm-1~ Vu h.h (x,t) EQT '} itm-I ~it} h.h (x,t)EQT . (2.70) Dof lient1,lC,apd~mgdinh19hQi19bich~nLebesgue,tIT(2.68)-(2.70)taco Fm~ f(x,t,u,ux,Ut}trongL2(QT)m~nh. (2.71) } Mi;itkhacVI II F II{ , ) 5:Ko,voimQij,m} L'" O,T;L- (2.72) nentacoth~trichduQctIT{Fmj}mQtdayconvlingQiEl {Fmj}saocho Fmj~ F trongL""'(O,T;L2) ye'lh. (2.73) Sosanh(2.71)va(2.73)suyra F(x,t)=f(x,t,u,ux'ut),h.h(x,t)EQT . (2.74) V~y Fmj~ f(x,t,u,Ux'u,) trongL""'(0,T;L2)ye'u*. (2.75) Qua giOih~n(2.23),(2.24),b~ngs~l'ke'thQpvoi (2.64),(2.66),(2.75),ta thu du'Qcu thoabai toanbie'nphansail : (u,v)+a(u,v)=(J(x,t,u,ux'ut),v) , voi mQiv EH1, u(O)= 110,it(O)= 111, trbngL""'(O,T)ye'u* . bl Su'daynha'tWigi:H Gia saulvau21ahaiWi giaiye'ucllabaitoan(2.1)-(2.3),thoaUiEW(M,T), i=I,2. Di;itu = Ul - U2,khidoula loi giaicuabaitoanbie'nphansail: { (ii.v)+a(u.v)~(F, - F" v).'Iv EH' . u(O)=it(O)=0, (2.76) trongdo F;(x,t)=f(x,t,u;>VUi'itJ, i =1,2. La'yv=ittrong(2.76),sailkhitichphantheot taco Chu;;ng2118 r lIum(t)1I2+a(u(t),u(t))=2f(FI -F2,u)d1:° (2.77)r ~ 2Kl J(llu( 1:)11+ IIVu(1:)11+lIu{1:)11)lIu(1:)lId1:. o D?t z(t)=lIu(t)1I2+a(u(t),u(t)). (2.78) Khi d6,tasuytu(2.77)ding Z(t)QK,(2+~go) .fzW<. (2.79) Sad~mgb6dc3Gronwalltasuyra z(t)=0, hayul =U2 . Danhgiasais6(2.57)duQcSHYtu(2.62),(2.63)b~ngcachchop ~ 00. V~ytadachungminhxongdinh1y2.20 3.Khai triin tiemdin cllalotgiai Trongphfinnay,tagiasar~ng(ho,hi)va (uo,Ell) IfinIttQthoamancacgia thie't(HI) ,(H2).Taduavaogiathie'tsau: (Hs)f, g EC1(nX[0,00)xR3). Chungtaxetbairoannhi6usailday,trongd6 &Iathallis6be: u/t -uxx =Fe(x,t,u,ux,ur)'x En, O<t\<T, u.JO,t) - hou(O,t)=Ux(I,t) +hIu(I,t)= 0, U(X,O)=Uo(X),Ur(X,O)=Ul(x), Fe(x,t,u,Ux,UJ=I(x,t,u,Ux,Ur)+sg(X,t,u,Ux,Ur)' Trudche'ttachuyr~ngne'uj,g thoa(Hs), khid6cacdanhgialiennghit$m cua day xa"p xi Galerkin {u~)}trongchungminhdinh Iy 2.1 tttongungvOif =F li , vdi lei<1,thoaman (Pe) u~)EW(M,T), (2.80) trongd6 cac h~ngs6 M, T dQcI~pvdi &. Th~tv~y,trongqua trlnh chungminh, chungtachQncach~ngs6duongM vaT trong(2.43)-(2.45),(2.47),(2.48)matrong d6cacd:;tiluQngII/(x,O,uo'Vuo,ul)11va Ki(M,T,f), i =0,1sedttQcthaybdi 11/(x,O,uo'Vuo,uJ +IIg(x,O,uo'Vuo,uJI va Ki(M,T,f)+ K;(M,T,g) rheathutv . Chuang2119 VI v~y, giaih,~mu{;trongcackhonggianhamthichhQpcuaday {U~k)}khi k~ +00,saild6 m~ +00,laWigiiiiyehcuabattoan(PE)thoaman UE E W(M,T) . (2.81) Khi d6,theocachtu'angt\1'yai chungminhdinh192.2,tac6 th~chungminh dttQcdinggiGih:;mcliahQ{UE}trongcackhonggianhamthichhQpkhi 8~ a la Wi giiiiye'uduynhfftUocliabattoan(Po)(ungVOl8=a) thoaman UoEW(M,T) . (2.82) Hannuatac6dinh19sail: DinkIv 2.3[15] Giii StY(HI), (Hz)va (Hs)dung.Khi d6t5ntqicachangs6M >a vaT> a saorho,VOlmQi8,181<1,battoan(PE)c6duynhfftmOtWi giiii ye'uU{;EW(M,T)thoa manmOtu'aclu'Qngti~mc~n IIUE-UOIIWI(T) ::;Cl81, (2.83) trongd6CIa mOthangs6chIph\!thuQcvaoho'hI' T, Ko(M,T,g), K, (M,T,J) , va UoEW(M,T) la Wigiiiiye'uduynhfftcuabatto<ln(Po)ungVOl8=a. Chungminh: B~tU=uE- uo'Khi d6Uthoamanbattoanbie'nphansail: (u,v)+a(u,v)=(l,v)+8(g,v),vvEHI, u(a)=u(a) =a, l(x,t) =f(X,t,UE'V'UE'UE)-f(x,t,uo'V'uo,uo)' g =g(X,t,UE,V'UE,UJ. Trong(2.84),Iffyv=U,sailkhitichphantheot tadttQc , , (2.84) Ilu(t)112+a(U(t).U(t))S ZKJ (M.T,f)(Z+ ~;0)I(llull'+a(u.u))dH I +fllullzd't+8zK;(M,T,g)T. 0 (2.85) Dod6 1114(1)112+a(U(I),U(I))«; (2K, (M, T,f{ 2+~~O ) +1) J(llu112+a(u,u))dt+ +8zK;(M,T,g)T. (2.86) Bangcachapd\!ngb6d~Gronwall,tti'(2.86)tathudu'Qc Ilu(t)1I2+a(u(t),u(t)) :::;E2K~(M,T,g)TeXP((2K[(M,T,f{2+~~O)+I}). Vt E[O,T]. Ke'thQpVOlb6 d€ 2.2taco lIue-uollwi(T)=llullwi(T):::;cjEI,l I<1.. Chuang2120 (2.87) (2.88) V~ydinh192.3du'Qchungminh.0 MQtke'tquamachungtai tlmdu'Qctie'ptheosailla v€ khattri~nti~mc~n cilalot giaiye'uuede'nctp2theoE,VOllEIdlinho. Chungtaidu'athemgiathie'tsail (H6)f EC2(n x[0,00)xR3),g ECI(n x[0,00)x R3). GQi UoEW(M,T) la Wi giai ye'ucuabatroan (Po)nhu'trongdinh192.3.GQi ul EW(M,T) (voiM, Tthich hQp)la Wi giai ye'uduynhtt cuabai roan {. LU' =_F,(X.~uPVup",), x en, 0 <t <T, (p[) Bjul- 0, l - 0,1, UI(X,O)=u[(x,o)=o, trongdo 82 .82L=--- 8t2 8x2 FI (X,t;UI ,'lu[ ,UI) =uJu (x,t,uo''luo,uo)+'luJu, (x,t,uo''\luo'uo)+ +uJ,,(x,t,uo'luo,uo)+g(x,t,uo''luo,uo), vaBjdinhnghIanhu'(2.5). Gia sti'ueEW(M,T)la Wigiaiye'uduynhttcilabairoan(Pe).Bi;lt v=ue- Uo- SUI =ue - h, khidov thoamanbatroansail Lv=f[v +h]- f[h]+E(g[V+h]- g[hD+a(s,x,t),x En, 0 <t <T, Bjv=0, i =0,1, v(x,O)=v(x,O)=O. trongdo.. a(s,x,t)=f[uo+EUI]-f[uol- E(uJuluo]+'luJuJuo] +uJ" ruG])+ +E(g[Uo + SUI] - g[UoD C1 day,d~lamgQncachvie't,tasti'd\mgk9hi~u (2.89) (2.90) (2.91) 21 J[U] =J(x,t,u,Ux,Ut) (2.92) Chung ta stl'dl,mgkhai triSnTaylor de'ncffp2 rho J[uo +SUI]va de'ncffp1 rho g[Uo+SUI] t<:ti(x,t,uo'VUo,ito). Sail do do tinh bi ch~n cua cac ham upVupup i =0,1,trongkhonggianham £,"o(O,T;HI), tathudu'c;Ic la(s,x,t)1 :::;Ks2, h.h (x,t) E QT' (2.93) voi K =9M2K2(M,T,J)+3.J2MKI(M,T,g), K2(M,T,f) = sup(lJ:~[u]l+IJ:;ux[u]1+IJ;~[u]1+IJ:~x[u]1 + IJ:~[u]1+IJ:;u [u]1), (2.94) (2.95) trongdoSupIffy tren 0:::;x:::;1,0::;t:::;T, lul,IVul,lul:::;M.J2. Bay giOtadinhnghladayham{vm}nhu'sail Vo=0, Lvm=J[Vm-l+h]- J[h]+ s(g[Vm-I+h]- g[h])+a(s,x,t), x EQ, o <t <T, (2.96) Bjvm=O,i=O,I, vm(x,O)=vm(x,O)=0,m~1. Voi m=1,tacobaitoan . { LvI; ,*:x,t), x E . Q, 0< t <T, BjVl =0, l=O,1, VI(x,O)=VI(x,O)=0 , \, (2.97) Tichvahu'onghaive'(2.97)voi VI' sail doIffytichphantheot,ke'thc;Ip(2.93) taco IIvll12+ a(vI' VI) :::;2Ks2TllvIIILOO(O,T,L2) Vi v~y Ilv,llw,(T),; 2(1 +.J~J\'Te2 . (2,98) Ta sechungminht6nt<:timQth~ngs6cr dQcI~pmva S saorho Ilv.llw\(T):5(I+'/~JCT.2, 1'11m. (2.99) Tichvahu'onghaive'(2.96)voi Vm ' sailkhi Iffytichphantheot taco: Chuang2122 IIvml12+a(Vm,Vm) I ~2f(llj[vm-l +h]-j[h]II+llg[Vm-l +h]-g[h]I/)llvmIIL"'(O,T;L2)d1:+2KTf:21IvmIIL"'(O,T;L2).0 (2.100) Bi;H Ym=llvmllw,(T)' (2.101) Tli (2.100),(2.1O1)suyra Ym~ crym-(+8 , (2.102) trongdo " ~ 2(1+.J~)I +F2)T(Kt(M.T,f) +Kt(M.T.g)), O~2(1+j-JRTE" (2.103) Vdi giatrithichhQpciiaT,giil sadng crthoa cr<1. (2.104) BaygiOtadn b6d~dltdiday,manocoth~duQcchungminhra-td~dang. Bdd~2.4 GEl saday{ym}thoa 0 ~Ym~crym-l+8, m=1,2,..., Yo =0, trongdo 0 <cr<1 va 8 ~0 la cach~ngs6chotrudc.Khi do (2.105), , < 8 ,.. _ 12Ym -_1 ' Vdl mQl m - , ,....-cr (2.106) Ta suyradng, tli (2.101)-(2.104)va(2.106)r~ng Ilv.llwdTi"(1+~~JcT,', (2.107) trongdo - 1 CT =2KT-1-cr (2.108) M~tkhac,dayqui n~ptuye'ntinh {vm}dinhnghlabdi (2.96)hQit\1m~nh trongW1(1)v~Wi giili v cuabai toan(2.90).VI v~yquagidi h~n(2.107)khi m~ootato 23 Ilu, - u,- sulllw",,:S;(1+~~JCTS'. V?y, tacodinhIy du'oiday. (2.109) Dinh IV2.4 [15] Gia sa (HI), (H2)va (H6)dung. Khi d6 t6n t~icae h~ngs6 M >0, T >0 saGcho,voi mQi E,181<l,bai toan (Pe) c6 duy nha'tmQt loi giai ye'u duy nha't ueEW(M,T)thoa u'oclttQngti~mc?n de'nca'phai nhlt (2.109),cac ham Uo' UI la c3.cloig aiye'ucuacaebaitoan(po)va(Pt)I~n1u'<;Jt. . 4.Choyv~b?litoanvoidi~ukienbienh6nhopkhongthuftnnha't(2.1)-(2.3) Trangph~nnay,chungWi rUtra ke'tquacuabai toangia tri bienkh6ng thll§nha't(2.1)-(2.3)lingvOitntongh<;Jpgl :;t:0,g2:;t:0va thoagia thie't(H4)' Tli phepbie'nd6i(2.4),(2.6)vahtuy(2.11),tad~nbai roan(2.1)-(2.3)t6ngquatve, vi~cgiaibaitoanbienh6nh<;Jpthu~nha't(2.7)-(2.9). Gia sLY(Ht)- (H4) thoaman.Taxayd~tngdayham{wm}bdi: ChQns6h~ngd~utieRWoEW(M,T). Giasa wm,..tEW(M,T), talienke'tbairoan(2.7)-(2.9)voibaitoan: TIm wmEW(M,T) thoamanbai ta<lnbie'nphantuye'nHnh: { (Wm,v): ~(Wm.'v)=?:,v;, \:IvEH1, Wm(0) - wo' W m(0)- w" (2.110) trongd6 Wo(X)=u'o(x)-<p(x,O), Wt(x)=u((x)-<p,(x,O), Fm(x,t) =l(x,t,wm-1'V'wm-"Wm-t)' l(x,t,w, V'w,w) = f(x,t,w +<p,V'w+V'<p,W+<j))-<pl/+<Pxx' Theodinh1y(2.1)vOi wo'wpl thaychoUo'Upf I~n1u'<;Jt,thl t6nt~ihai hAngs6M>O, T>O saoehoday{wm}xacdinhbdi(2.110),voiWoEW(M,T) cho tru'oe.M~tkhae,theodinhIy 2.2thlday {wm}hQiW m~nhtrongWI(T)ve,Wi giai duynha'tWEW(M,T) euabaitoan(2.7)-(2.9). (2.111) Khi d6tae6dinhIy sail: Dinh IV2.5 Gi~sa(HJ - (H4) dung.Khi d6t6nt~icaeh~ngs6 M >0, T >0 saGeho: Chlt(Jng2124 (i) Voi mQi UoEW(M,T) cho tru'dc,t6n t:;timQt day qui n:;tptuye'nHnh {urn}c W(M,T) xacdinhbdi : U =w +<p m?:1rn rn' , Wmxacdinhtu(2.110),(2.111)ungvdigiatriband~uwo=Uo + <p. (ii) B~litoan(2.1)-(2.3)t6ntqi duynha'tmQtWi giai ~e'uUE W(M,T). (iii) urn~ U trongWI(T) mqnh. Honnaataclingcodaubgia Ilurn- ullwl(T)::;;Ck; , vdi mQi m (2.112) trongdok lah~ngs6du'ongthoamanT kT ~ 2(1+h)( 1+.J~}K.( M, T,J) <1 , (vdiM >0, T> 0 thichhQp),C la h~ngs6chituythuQcvaoT,Wo,WIva kT . B6i voibaitoankhaitri€nti<$mc~ncuaWigiaitheothams6be 8,taxetbai toannhi~usanday: u -u =F (x,t,u,u ,U),xEQ, O<t<T,II xx s x, (pJ ux(O,t)-hou(O,t)=go(t),ux(1,t)+h1u(1,t)=gl(t), u(x,O)=Uo(x),u,(x,O)=UI(x), . \ F (x,t,u,u,u .)=f (x,t,u,u,u )+8g(X,t,u,~,u) .s x, x , x , (2.113) Giathie't(HJ, (HJ, (HJ va(HJ ladung. Theodinh1)12.5,baitoan(po)ungvoi8=0 vabaitoan(ps)l~nlu'Qtcoduy nha'tWi giaiuova USEW(M,T), trongdoM, rta cach~ngs6du'ongthichhQpdQc l~pvoithams6be 8. Khi d6 u=Us - UolaWigiaiye'ucuabaitoan t o"~ - u~ =I[ u,]- I[ u,]+Bg[u,], XEQ, 0<t<T , Bou=B\u =0, u(O)=u,(O)=0 . (2.114) Chungminhtu'ongtl1trongdinh1)12.3tacodaubgia Ilullw,(T)=Ilus - uollw,(T)::;;ej81, 181< 1 , (2.115) trongdoCIah~ngs6chituythuQcvaoho,hi' T, Ko(M,T,g), K1(M,T,f). Ch£lang2il25 Khi dotacodinhly Dillh LV2.6 Ghi sa (HI), (H2),(H4)va (Hs) dung.Khi do tan t(;1icaeh~ngs6 va M >0, T >0 saocho, vOimQi&,lEIdube , bai loan(Pg)co duynha'tmQtWi gliB ye'u UcEW(M,1) thoa 11'ocl11'<;1ngtic%mc~nsau IIUE -UOIIWI(T) :::;CIEI, . (2.116) vOiC la ri1Qth~ngs6nh11'danoid tIeD. . . B6i VOlehaitri~ntic%mc~nde'nca'phal,tacodinhly saudaymachungminh cophgndi8uchinhchutIt sovOichunglninhcuadinh1y2.4,vi v~ytaboqua. Dillh Ii 2.7 Gia sa (HI), (H2), (H4)va(H6)dung.Khi do tan t(;1icae h~ngs6 M >0, T >0 saocho,voimQi&, lEI<1, bai loan (PE) tan t(;1iduynha'tmQtWi giai ye'uduynha'tuE E W(M,T) thoa11'oc111'<;1ngtic%mc~nde'nca'phainh11'sau Ilu,-u, -8u,llwdT}';(1+ .J~JCT82, (2.117) trongdo UO,UIEW(M,T) Ign111'<;1tchinhIa cac10igiai ye'ucuacacbai loan (po) (ung VOl E =0) vabai loan (PI),ung VOl E= 1, go(t) =gl(t)=0,uo(x)=UI(X)=0, FE= uJu [uo]+VuJu [uo]+itJul uo]+g[uo],CTIa h~ngs6chiph\!thuQcvaoT,M,. . . K((M,T,f),K2(M,T,f),K,(M,T,g).. \ 4.Xet mottrtt(fm~hdpenth~coa'. g chobAitoaDbienkhong'thnfifinha't Trangphgncu6icuach11'dng2naychungWixemxetmQtvi d\!v8khaitri~n tic%mc~nVOltr11'ongh<;1p . f =0, g = g(it)=it3. (2.118) BgutieD,chungt6ixettr1iongh<;1pt6ngquatValgthoamangiathie'tsau. gECN(R). (2.119) GQi uE. Ia101giaicuabailoan .. j LUE= Eg(itE) . ' 0 . " . < . x < " 1,0.( t <T, (p ) B,u =g, (t), i=O,1,. E IE. I :. u&(O)=uo' u&(O)=UI' . VOl M:>0, T >0 thichh<;1pta tim UO,UIEW(M,T) 19nl11'<;1tla Wigiaicua cacbailoansau 26 [ £UO . = . 0, ° <:X . <I, 0 <t <T (po) B,uo~g,(t), i =0,1, uo(O)=Uo' uo(O)=Ut' [ LUt =-g . ( . u . o! . .~ O<x<l, O<t<T (PI) Biut - 0, l.,- 0,1, Ut (0) =ut(0) =O. Voi 2 S',,'ps'"N , gQi up E W(M,T) Ia Wi giai bai loan Lu =F =F (x,t,u,u,...,u ),O<x<I, . O<t<T,p p pOI p-I (pp) i Bjup=0 , i =0,1, . u (0)=u (0)=0,p p trongdo Fz =g'(uo)ul' p-I .<XI.<xz .r:t.p-z . L ( ) ) L U Uz ...u zF =g'(u)u + g k (U. . I. p-, P C:. 3. p 0 p-t 0 a !a !...a ! k=Z <XI+<XZ+...+<Xp_Z=kt Z p-z p-Z Lir:t.j=p-l j=1 (2.120) f)ijt N v=u&-h=u&-uo-LCPUp' p=! (2.121) Khi dovIa Wigiaibailoan { ..LV=-c[g(~: Ii) . - . g . (Ii)] +a(c,x,t), B.v- 0 , l - 1,2,I v(x,o)=v(x,O)=0, 0 <x <I, 0 <t <\T, (2.122) trongdo N a(e,x,t)=c[g(li)- geLiD)]- LcP Fp' p=z (2.123) f)?t Kk(T,g)=suplg(k)(UO(x,t»)I,k =1,2,...,N, O$x$l O$t$T (2.123) KN(M,T,g)= sup Ig(N)(v)1 'vj$J2(N+t)M Khi do, taco b6 d€ sailday Bddi 2.5 Giasa(HI), (Hz),(H4)va(2.119)dung,khidot6nt~ih~ngs6K sao cho (2.124) IIa(c,x,t)IIL"'(O.T;L2)s'"KlclN+1 (2.125) 27 6.day K chiph\l thuQcvaoN, M, T va cachangs6 Kk(T,g), k=1,2"",N-1, KN(M,T,g) . Chungminh Tntongh<;1pN =1chungminhd~dang,taboquachungminhchitie't.CJ day tachixet trl1ongh<;1pN ~2, N B~HU =LgPUP ,Bang eachkhai tri~nTaylor cho g(uo+U) quanhdi~m p=l Uo de'nca'pN , Taco ( ' ) ( , ) .. N-l (k)( , ) (N)( ,.' g h - g Uo =g(uo+U)- g(uo)=~g Uo Uk + g Uo+8U) .Nft k! N! U (2.126) 0<8<1 ( N J k 'k . i, k!. al 2. a2 . N.aN U = Lg Ui = L. a!a La !(guJ (guJ ...(g UN) i=1 al+a2+...+aN=k I 2 N ai nguyen;;,0 (2.127) Tli'(2.126),(2,127)taco N-[ N(N-l) g(Ji) - g(uo)=LC[p,g]gP+ LC[N -l,p,g]gP + RN(g,g) p=l p=N (2,128) trongdo P . C[p,g] =Lg(k)(uo)L k=l al+a2+...+ap=k P Liai=p i=l N-l 7a- [ ,. ]-~ (k)( ; ).~~CN -l,p,g - L..Jg UoL..J ,a, k=l' lal=k I](a)=p . al. a2 . ap u1 U2 ,.,up a1!a21,..ap! (2.129) ", (2.130) 7a RN(g,g) =g(N)(UO+8U) L ~gl](a)a. lal=N trong(2.130),tadffsitd\mgcackyhi~udachis6san: a =(al,a2,.."aN) EZ:, la!=a1+a2+..,+aN' a!=a[!a2!...aN!, 11(a)=a1+2a2+...+NaN, (2.131) - - ( ) RN -a - al a2 aNV-Vi'V2"",VN E ,V -VI VI ",VN' V~ytli'(2.120),(2,123),(2.128)-(2.131)a(g,x,t) dl1<;1cvie'tl~inhl1san ( ~N~ Ja(g,x,t)=g ~C[N -l,p,g]gP +RN(g,g), (2,132) 28 Do cacham ui'i =1,2,...,Nbi ch~ntrongkhonggianhamL"'(O,T;HI), ta suyfa tli (2.123),(2.124),(2.130)ding Ila(s,.,.)IIL"'(OoT;L2)::;KlsIN+' trongdo - 2 . N-I (MN)k . (MNt - K =(N -2N)L k! Kk(T,g)+ N! KN(M,T,g) k=1 B6 de2.5daduQCchungminhxong.. Titp thea,taxetdayham{vm}djnhnghlabdi v =0,0 (2.133) Lvm=s[g(vm~I+Ji)-g(Ji)]+a(s,x,t),xEQ, O<t<T, By =0, i=O,l,, m vm(x,O)=Vm(x,O)=o ,m ~1. Vdi m=1,taco LvI =a(s,x,t), xED, O<t<T, B;v,=O,i=O,l, VI(x,O)= v(x,O)=0. Nhanhaivtcua(2.135)vdi VI'tasuyfatU (2.125)ding IIvI1I2+a(vi'VI)::;2KlsIN+ITllvIIIL"'(ooT;L2). Tli (2.136)taco Ilv,II,. (OT'"')+11'\11,"(oT"')S 2(1+-J~ }\:lgIN"T 0 \ Ta sechungminhdingt6nt'.limoth~ngs6CT, dQcl~prrt\vas saorho Il v I"'( . 1)+I.lv ll.",( .2 ) ::;CTlsIN+IT, Isl::;l, \1m (2.138)m LOoT, H m L O,T,L Nhanhaivt cua(2.134)vdivm' saukhirichphanrheat tathudu'Qc (2.134) (2.135) (2.136) (2.137) I IlvmJ +a(vm,v,J::;sfllg(vm+Ji)-g(Ji)/ldrllv,nIIL"'(OoT;L2) 0 (2.139) +2KlsIN+ITllv mIIL"'(ooT;L2). D~t1m=IIvJWI(T) =IlvJL"'(OoT;HI) +IlvJL"'(OoT;L2). Tli (2.139)suyfa 1m ::;cr1m-1+-0 , (2.140) trongdo 29 a~ 2(1+ ;--)1 +J2)TKI (M,T,g) , 1;~ 2(1+.j~JKTIEIN", (2.141) Voi giatricilaT >0thichhcjp,giasli'r~ngcrthoa cr<1. (2.142) Ap dl,lngb6d~2.4,tac6 - < 8 ".' .- 12Y - ~ , Val mOl m - , ,....m I-a . . (2.143) hay Ilvm!lwI(r)~crlslN+I, (2.144) trongd6 - ( 1 J - 1 Cr =2 1+ JC: KT~. C I-a0 D:lY ql1in~p tuye'ntinh{vm}dinhnghiabai(2.134)hQitl,lm~nhv~Wi giaiv Gilabai toan(2.122)trongWI(T). Vi V?yquagiOih~n(2.144)khi m~ 00 tadu'cjc (2.145) N uE -L: sPup l1 = IIvllw,(r) ::;;CrlslN+I p=o WI(T) (2.146) Khi d6tac6 Dinh IV2.8 . Gia sli'(HJ, (HJ, (HJ dungva gEcN(R). Khi d6t~nt~icach~ngs6 M >O,T >O.saochoVOlmQis,!sl<1,battoan(PE)c6duynha'tmQtWi giaiye'u uEEW(M,T) thoamQtu'oclu'cjngti~mc?nde'nca'pN +1nhu'(2.146),trongd6cac ham up' p =O,1,2,...,N19nlu'cjtla cacWigiaicilacacbattoan(pp),p =O,1,2,...,N. Trongdo~nsanclingtaxetg Cl,lthenhu(2:118),khid6 g ECoo(R). Ta cling hill yding g(k)=0, Vk~4, dod6phgndutrongkhattrienTaylorcilag xua'thi~n trong(2.132)la RN(s,g)=O,N~4. Dod6 a(s,x,t) trong(2.132)vie'tl~i N(N-I) ( 3 - }a(E,x,t) =E~i?l(uo) ~~~E't](a)=p Dod6ta c6danhgia lIa(s,.,.)too(o,r:L2)::;;(N3 - 2N2)(N2+3N+3)M3IsIN+I. (2.147) (2.148) (2.149) "Chuang2130 Cacbi€u thucFp trongb~liroan(pp) Fo=0, FI =g(uo)' F2=g'(uo)ul' F ,( ', ),1',, ( , ) ,2 3 =g Uo U2+2g Uo UI' F =g'(u)u +g"(u")uu +1-g"'(u)U3.4 03 0123! 01' 3 Fp =g'(uo)up-I+Lg(k)(Uo)L k=2 p-2 l>;=k ;=1 p-2 I>Xj=p-1 ;=1 Ual Ua2 ,ap-2 I 2 ...U p-2 a)a2!...a ! ' 4 ~p ~N.p-2 Cu6icungtacoke'tqua " , Dinh"JV 2.9 , Gia SlYcacgiathie'tcuadinhly2.8du'qcthoamanva(2.118)la dung,Khi do t6rit~icach~ngsO'duongM va T saochobili roan(p&)co duynha'tWi giaiye'u U&EW(M,T) thoau'ocluqngti~mc~n N u& - LSPUp ll ~ <$'(N,T)lsIN+1, p=o wItT) trongdo " <$'(N,T)=2 ( 1+ F;1 \N3 -2N2)(N2 +3N+3)T~, \c) I-a0 cr=24{1+J2)(1 +~~}M"

Các file đính kèm theo tài liệu này:

  • pdf6_3.pdf
  • pdf0.pdf
  • pdf1.pdf
  • pdf2.pdf
  • pdf3_2.pdf
  • pdf4.pdf
  • pdf5.pdf
  • pdf7.pdf
  • pdf8.pdf
  • pdf9.pdf
Tài liệu liên quan