MỞ ĐẦU
Cho đến nay có hàng trăm công trình khoa học trên thế giới đã công bố các kết quả nghiên cứu về chức năng và ảnh hưởng của một số kim loại nặng đối với sức khỏe con người. Các nguyên tố vi lượng như đồng, chì và cadimi là thành phần rất cần trong cơ thể. Nếu dư thừa hoặc thiếu hụt sẽ gây ra một số bệnh như bệnh Schizophrenia, bệnh Willson đó là do sự dư thừa lượng đồng trong cơ thể, hiện tượng tím tái người ngất xỉu đột ngột do nhiễm độc chì,
Để đánh giá mức độ nhiễm các nguyên tố này trong cơ thể, người ta thường định lượng chúng trong máu hoặc trong huyết thanh. Nhưng trong huyết thanh, hàm lượng kim loại thường rất nhỏ, vì vậy cần sử dụng các thiết bị phân tích có độ nhạy, độ chính xác cao để xác định chúng. Phù hợp với các loại mẫu này là phép đo quang phổ plasma ghép nối khối phổ (Inductively Coupled Plasma-Mass Spectrometer, ICP-MS). ICP-MS thể hiện tính ưu việt hơn các phương pháp khác như quang phổ hấp thụ nguyên tử không ngọn lửa dùng lò grafit (AAS-G), quang phổ phát xạ plasma (ICP-OES), về khả năng phân tích nhanh và phát hiện với nồng độ thấp (ppt). Dựa vào phần mềm lựa chọn đồng vị, có thể tìm nồng độ tối ưu của nguyên tố đó trong mẫu, loại trừ ảnh hưởng trong quá trình phân hủy mẫu.
Để xác định thật chính xác hàm lượng các ion kim loại đồng, chì và cadimi trong huyết thanh, việc xây dựng một quy trình phân tích hoàn thiện từ quá trình chuẩn bị, xử lý mẫu và phép phân tích là hết sức cần thiết. Chính vì vậy “ Xây dựng quy trình xác định đồng, chì, cadimi trong huyết thanh bằng phương pháp quang phổ plasma ghép nối khối phổ (ICP-MS)” là mục đích của luận văn đề ra. Đây là hướng nghiên cứu mới mang tính thực tiễn cao nhằm đưa ra quy trình phân tích chính xác hàm lượng một số kim loại trong huyết thanh. Kết quả nghiên cứu của đề tài sẽ là tài liệu hỗ trợ trong quá trình chuẩn đoán, điều trị bệnh tại một số bệnh viện như bệnh viện nhi trung ương.
Nội dung chính của luận văn gồm những phần sau:
- Nghiên cứu các điều kiện tối ưu trong quá trình xử lý mẫu huyết thanh nhằm đưa ra quy trình xử lý mẫu tối ưu nhất để định lượng các kim loại đồng, chì và cadimi trong huyết thanh.
- Nghiên cứu các điều kiện tối ưu trong quá trình phân tích các kim loại đồng, chì và cadimi trên thiết bị ICP-MS để kết quả phân tích đạt độ chính xác cao.
- Nghiên cứu các điều kiện ảnh hưởng đến quá trình phân tích các nguyên tố kim loại nói trên.
- Xây dựng quy trình phân tích một số kim loại như đồng, chì và cadimi trong mẫu huyết thanh bằng phương pháp ICP-MS.
- Áp dụng phân tích một số mẫu thực tế.
MỤC LỤC
MỞ ĐẦU 1
PHẦN I: TỔNG QUAN 3
1.1. Trạng thái tự nhiên, một vài tính chất và ứng dụng của đồng, chì và cadimi 3
1.1.1.Trạng thái thiên nhiên của các nguyên tố đồng, chì và cadimi 3
1.1.2. Một vài tính chất và ứng dụng của đồng, chì và cadimi 3
1.1.3.Vai trò sinh học của đồng, chì và cadimi 7
1.2. Các phương pháp xác định đồng, chì và cadimi 16
1.2.1. Phương pháp trắc quang 16
1.2.2. Phương pháp chuẩn độ 16
1.2.3. Phương pháp cực phổ 16
1.2.4. Phương pháp Vôn –Ampe hòa tan 17
1.2.5 Phương pháp quang phổ phát xạ nguyên tử 18
1.2.6. Phương pháp quang phổ hấp thụ nguyên tử 18
1.2.7. Phương pháp quang phổ plasma ghép nối khối phổ (ICP – MS) 20
1.3. Các phương pháp xử lý mẫu 22
1.3.1. Phương pháp vô cơ hóa 23
1.3.2. Phương pháp chiết 25
1.3.3. Phương pháp pha loãng mẫu bằng dung môi thích hợp 25
1.3.4 Phương pháp điện phân 26
1.3.5. Phương pháp phân hủy mẫu bằng lò vi sóng 26
1.4. Phương pháp xác định độ lặp lại và độ chính xác 28
1.4.1. Độ lặp lại 28
1.4.2. Độ chính xác 29
PHẦN II. THỰC NGHIỆM 31
2.1. Đối tượng nghiên cứu 31
2.2. Phương pháp nghiên cứu 31
2.2.1. Phương pháp nghiên cứu tài liệu 31
2.2.2. Phương pháp nghiên cứu xây dựng quy trình phân tích đồng, chì và cadimi trong huyết thanh trên thiết bị ICP-MS 31
2.2.3. Phương pháp xử lý số liệu 31
2.3. Hóa chất, dụng cụ, thiết bị 31
2.3.1. Hóa chất 31
2.3.2. Dụng cụ 32
2.3.3.Thiết bị phân hủy mẫu và phân tích mẫu 32
2.3.3.1. Thiết bị phân hủy mẫu 32
2.3.3.2. Thiết bị phân tích mẫu 33
2.4. Phương pháp lấy mẫu và bảo quản mẫu huyết thanh 34
PHẦN III. KẾT QUẢ VÀ THẢO LUẬN 35
3.1. Các phương pháp phân hủy mẫu 35
3.1.1.Phương pháp pha loãng bằng HNO3 36
3.1.2. Phương pháp pha loãng bằng hỗn hợp HNO3 (1%) và Triton X-100 37
3.1.3. Phương pháp phân hủy bằng lò vi sóng 39
3.1.4. So sánh các phương pháp phân hủy mẫu 40
3.2. Khảo sát các điều kiện tối ưu trong quá trình phân tích mẫu trên thiết bị ICP-MS 41
3.2.1. Chuẩn hóa số khối (Tunning) 41
3.2.2. Tối ưu tốc độ khí mang tạo sol khí 42
3.2.3. Khảo sát nguồn năng lượng (ICP) 43
3.2.4. Khảo sát thế điều khiển thấu kính điện tử - ion 44
3.2.5. Khảo sát thời gian phân tích mẫu 45
3.2.6. Khảo sát thời gian rửa sạch mẫu 46
3.3. Xây dựng đường chuẩn 47
3.4. Nghiên cứu ảnh hưởng của các nguyên tố đến quá trình xác định hàm lượng đồng, chì và cadimi trong huyết thanh 50
3.4.1. Nghiên cứu ảnh hưởng của các nguyên tố đi kèm 50
3.4.1.1. Nghiên cứu ảnh hưởng của canxi 50
3.4.1.2. Nghiên cứu ảnh hưởng của magie 51
3.4.1.3. Nghiên cứu ảnh hưởng của thủy ngân 52
3.4.1.4. Nghiên cứu ảnh hưởng của kẽm 52
3.4.1.5.Nghiên cứu ảnh hưởng của mangan 53
3.4.2. Nghiên cứu ảnh hưởng của các nguyên tố lẫn nhau 54
3.4.2.1. Nghiên cứu ảnh hưởng của đồng đến quá trình xác định cadimi và chì 54
3.4.2.2. Nghiên cứu ảnh hưởng của cadimi đến quá trình xác định đồng và chì 55
3.4.2.3 Nghiên cứu ảnh hưởng của chì đến quá trình xác định đồng và cadimi 55
3.5. Xác định độ lặp lại và độ chính xác của phương pháp 56
3.6. Xây dựng quy trình phân tích xác định đồng, chì và cadimi trong mẫu huyết thanh 57
3.7. Áp dụng các điều kiện tối ưu trong phân tích mẫu thực tế 58
PHẦN IV. KẾT LUẬN 60
TÀI LIỆU THAM KHẢO
72 trang |
Chia sẻ: banmai | Lượt xem: 2676 | Lượt tải: 2
Bạn đang xem trước 20 trang tài liệu Luận văn Xây dựng quy trình xác định đồng, chì, cadimi trong mẫu huyết thanh bằng phương pháp quang phổ plasma ghép nối khối phổ (ICP-MS), để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
ơng đối của phép phân tích.
1.4.2. Độ chính xác
Độ chính xác là đại lượng đặc trưng cho mức độ gần nhau của giá trị phân tích (thường là giá trị trung bình ) với giá trị thực hay giá trị đã được chấp nhận xt hay m.
Khi không có sai số hệ thống thì giá trị trung bình tiến tới giá trị thực nếu số phép đo rất lớn (N→¥). Vì vậy, có thể nói độ chính xác tùy thuộc vào số phép đo.
Độ chính xác được biểu diễn dưới dạng sai số tuyệt đối hoặc sai số tương đối. Trong đó sai số tuyệt đối (EA) là sự sai khác giữa giá trị đo được (xi) với giá trị thật hay giá trị đã biết trước (xt hay m)
EA = xi - m
Còn sai số tương đối (ER) là tỷ số giữa sai số tuyệt đối và giá trị thật hay giá trị đã biết trước
hay
PHẦN II. THỰC NGHIỆM
2.1. Đối tượng nghiên cứu
Mẫu huyết thanh của những người khỏe mạnh, độ tuổi từ 20-30 có nhóm máu O, đã được sàng lọc không chứa các loại virut HIV, viêm gan A (HAV), viêm gan B (HBV), viêm gan C (HCV),…
2.2. Phương pháp nghiên cứu
2.2.1. Phương pháp nghiên cứu tài liệu
Thu thập, nghiên cứu và phân tích, kế thừa các tài liệu đã có trên thế giới và Việt Nam về phương pháp phân hủy xác định đồng, chì và cadimi trong mẫu huyết thanh.
2.2.2. Phương pháp nghiên cứu xây dựng quy trình phân tích đồng, chì và cadimi trong huyết thanh trên thiết bị ICP-MS
Phương pháp nghiên cứu xây dựng quy trình xác định đồng thời đồng, chì, cadimi trong huyết thanh bằng phương pháp ICP-MS bao gồm 2 phần chính sau: quy trình phân hủy mẫu huyết thanh và quy trình phân tích mẫu trên thiết bị ICP-MS.
2.2.3. Phương pháp xử lý số liệu
Sử dụng các thuật toán để tính toán kết quả phân tích.
2.3. Hóa chất, dụng cụ, thiết bị
2.3.1. Hóa chất
Tất cả hóa chất dùng trong nghiên cứu như HNO3, H3PO4, HCl, H2SO4, HF, Triton X-100 đều là các hóa chất siêu sạch (Merck).
Dung dịch chuẩn của các kim loại Cu, Pb, Cd đều là các hóa chất siêu sạch được mua từ hãng Merck có nồng độ gốc 1000ppm. Từ nồng độ gốc, pha chế thành các dung dịch có nồng độ nhỏ hơn. Các dung dịch chuẩn được bảo quản trong tủ lạnh. Dung dịch chuẩn được pha chế hàng ngày.
Các dung dịch chuẩn máy (Mg; Rh; Ce; Pb; U; In; Be; Co) nồng độ 10ppb được mua từ hãng Perkin Elmer, Mỹ.
Nước cất dùng cho nghiên cứu và phân tích là nước cất siêu sạch được cung cấp từ thiết bị Milipore có độ dẫn điện nhỏ hơn 18,2Ω/cm (250C). Khí Argon siêu sạch chất lượng 99,999% được mua từ hãng Messer.
Mẫu huyết thanh dùng trong thí nghiệm nghiên cứu thuộc nhóm máu O được tách li tâm trước khi mang về phòng thí nghiệm và được bảo quản đông lạnh. Huyết thanh chuẩn của hãng Bio-ral, Mỹ (Assayed Chemistry Control) dạng bột khô, được bảo quản trong lọ nhỏ màu nâu ở nhiệt độ 20C dùng để kiểm tra mẫu, tính sai số và độ lặp.
2.3.2. Dụng cụ
Dụng cụ dùng trong nghiên cứu bao gồm
Ống phá mẫu trong lò vi sóng làm bằng Teflon.
Túp nhựa của hãng Sarstedt loại 15mL và 50mL.
Các loại pipet 100mL, 1000mL và 5mL.
Vì hàm lượng các nguyên tố trong huyết thanh là vết và siêu vết nên dụng cụ dùng trong thí nghiệm phải được tráng rửa sạch bằng cách ngâm trong axit HNO3 (10%) từ 1-2 ngày. Sau đó siêu âm trong 20 phút, tráng rửa lại bằng nước cất 3 lần, rồi sấy ở nhiệt độ 800C.
Cân phân tích của hãng Adam (Anh), có độ chính xác 0,0001mg dùng để cân mẫu chuẩn.
2.3.3.Thiết bị phân hủy mẫu và phân tích mẫu
2.3.3.1. Thiết bị phân hủy mẫu
Hệ phân hủy mẫu bằng lò vi sóng Berghof, Speed wave-4 (Đức) (hình 1), có chương trình điều khiển nhiệt độ bên trong, bên ngoài lò, áp suất và thời gian gia nhiệt.
Lò vi sóng có các ống phá mẫu bằng teflon, ký hiệu là DAK-100, có thể tích 100mL. Nhiệt độ và áp suất lớn nhất có thể đạt được ở trong ống lần lượt là 2300C và 40 bar. Khối lượng mẫu lớn nhất cho vào trong ống là 500 mg. Thể tích mẫu tối thiểu trong ống là 5 ml
Hình 1: Thiết bị lò vi sóng
Hình 2: Dụng cụ phân hủy mẫu
2.3.3.2. Thiết bị phân tích mẫu
Thiết bị ICP-MS (Perkin Elmer, ELAN 9000) (hình 2) với hệ từ trường bát cực, sử dụng nguồn năng lượng cao tần cho quá trình hóa hơi và ion hóa tất cả các nguyên tử với hiệu suất cao và ổn định. ICP-MS ghép nối hệ sol hóa mẫu giúp quá trình làm giàu mẫu và tăng khả năng phát hiện rất phù hợp với phân tích vết các kim loại.
*Cấu tạo của thiết bị ICP-MS 9000 bao gồm các bộ phận sau
- Nguồn ion plasma
- Bộ quang học ion (tứ cực)
- Thiết bị đo phổ khối lượng - tứ cực
- Bộ lấy mẫu tự động Autosampler AS-93 plus, Perkin Elmer, Mỹ
- Bộ sol hóa mẫu bằng sóng siêu âm (USN, Perkin Elmer, Mỹ) trước khi đưa mẫu vào buồng plasma. Hệ này giúp cho quá trình làm giàu mẫu lên nhiều lần tăng khả năng phát hiện.
- Buồng chân không và hệ lọc khối (trường tứ cực và các thấu kính điện từ ion)
- Vùng ghép nối (Interface)
- Máy tính
Ngoài ra còn có máy lạnh tuần hoàn và hệ thống quạt hút.
Hình 3: Thiết bị ICP-MS
Hình 4: Bộ phận lấy mẫu tự động autosampler
2.4. Phương pháp lấy mẫu và bảo quản mẫu huyết thanh
Mẫu máu được lấy khoảng 250-300mL vào buổi sáng ở tĩnh mạch khuỷu tay, không chứa chất chống đông hay các chất bảo quản khác. Sau khi tiệt trùng, mẫu được chứa trong loại túi sử dụng 1 lần của hãng Terumo. Để tách huyết thanh, mẫu máu được làm đông tự nhiên trong thời gian 30 phút, sau đó li tâm trên thiết bị Mistral 6000 với tốc độ 2000 vòng/phút trong thời gian 10 phút, ở nhiệt độ 10-150C. Huyết thanh được tách ra và bảo quản ở nhiệt độ 2-80C.
PHẦN III. KẾT QUẢ VÀ THẢO LUẬN
3.1. Các phương pháp phân hủy mẫu
*Lựa chọn môi trường phân hủy mẫu huyết thanh
Mẫu huyết thanh có thành phần nền hữu cơ phức tạp, chứa lượng protein tương đối lớn vì vậy phương pháp xử lí mẫu này cho bất kỳ thiết bị phân tích nào cũng như thiết bị ICP-MS được quan tâm đầu tiên, thông thường một axit hay hỗn hợp axit có khả năng hòa tan. Trong phân tích ICP-MS thì một số axit ảnh hưởng tới phép đo phổ, vì vậy việc sử dụng loại axit cho quá trình xử lí mẫu đóng một vai trò quan trọng nhất để đảm bảo mẫu tan hoàn toàn ở dạng đồng nhất và không ảnh hưởng tới phép đo. Thực tế khảo sát với 1gam mẫu huyết thanh thêm và không thêm chuẩn với 2 mức 0,1mg và 10mg chuẩn được xử lí với 10ml axit các loại axit HNO3, HCl, H3PO4, H2SO4, hỗn hợp HNO3 và HCl, hỗn hợp HNO3 , H2SO4 và HF, thể tích định mức cuối cùng là 50 ml. Thực nghiệm cho thấy chỉ có HNO3, H3PO4 và hỗn hợp HNO3 , H2SO4 và HF hòa tan mẫu, tuy nhiên dễ dàng hơn cả là axit HNO3. Kết quả phân tích mẫu không thêm và mẫu thêm chuẩn với 2 mức khác nhau cho thấy độ thu hồi với mỗi nguyên tố là khác nhau tuy nhiên tất cả các kết quả đều nằm trong khoảng cho phép từ 80 đến 103% (kết quả bảng 2).
Bảng 2: Độ thu hồi đối với các loại axit xử lý mẫu khác nhau
STT
Tên nguyên tố
Hiệu suất thu hồi (%)
Axit
HNO3
H3PO4
HNO3&HCl
HNO3, H2SO4 & HF
Mức hàm lượng
0,1 mg
10 mg
0,1 mg
10 mg
0,1 mg
10 mg
0,1 mg
10 mg
1
Cu
97
95
83
82
81
85
83
80
2
Pb
95
88
96
95
97
94
80
82
3
Cd
93
88
91
86
94
96
94
96
Bảng 2 cho thấy phân hủy mẫu sử dụng axit HNO3 cho độ thu hồi đối với cả ba nguyên tố từ 88 đến 97 %. Thực nghiệm quan sát cho thấy đây cũng là axit tốt nhất để hòa tan mẫu. Axit H3PO4 cho độ thu hồi tốt nhưng quá trình thực nghiệm cho thấy mẫu không phân huỷ hết các chất hữu cơ; hỗn hợp axit HNO3 và HCl phân huỷ mẫu tốt nhưng cho độ thu hồi của Cu thấp; hỗn hợp HNO3, H2SO4 và HF cho độ thu hồi của Pb thấp. Vì vậy, các nghiên cứu tiếp theo đều sử dụng HNO3 cho việc phân hủy mẫu.
3.1.1.Phương pháp pha loãng bằng HNO3
Pha các dung dịch axit HNO3 có nồng độ lần lượt là: 0,1%; 0,2%; 0,4%; 0,6%; 0,8%; 1% ; 1,2%; 1,5% từ dung dịch HNO3 (1:1) và dung dịch chuẩn của các nguyên tố Cu, Pb, Cd có các nồng độ tương ứng là 50ppm; 2ppm và 0,1ppm.
Lấy 1mL mẫu huyết thanh 50mL dung dịch chuấn vào các ống nghiệm. Tiến hành định mức đến vạch 10mL lần lượt bằng các dung dịch HNO3 với các nồng độ 0,1%; 0,2%; 0,4%; 0,6%; 0,8%; 1%; 1,2% và 1,5% đối với tất cả các ống.
Mối tương quan giữa nồng độ HNO3 với hàm lượng trung bình của các kim loại đồng, chì và cadimi được trình bày ở trong bảng 3
Bảng 3: Ảnh hưởng của môi trường HNO3 đến quá trình xác định hàm lượng đồng, chì và cadimi trong mẫu huyết thanh
Hàm lượng các kim loại (ppb)
Nồng độ HNO3 (%)
0,1
0,2
0,4
0,6
0,8
1
1,2
1,5
Cu
Mẫu trắng
26,65
27,35
30,45
27,75
38,6
26,75
28,55
27,25
Mẫu HT
619,67
621
627
625,3
638
660
657,4
652,66
Mẫu HT + chuẩn (2500ppp)
2547,33
2566,7
2836,75
2740,05
2686,7
2910
2650,65
2565,84
Cd
Mẫu trắng
0,0235
0,026
0,0195
0,021
0,011
0,028
0,016
0,0135
Mẫu HT
0,025
0,03
0,026
0,03
0,028
0,046
0,034
0,031
Mẫu HT + chuẩn (5ppb)
4,29
4,3
4,22
4,3
4,3315
4,853
4,3
4,001
Pb
Mẫu trắng
0,067
0,0408
0,0555
0,054
0,0525
0,02
0,0508
0,0495
Mẫu HT
0,0763
0,19
0,3
0,3
0,3137
0,309
0,3358
0,3287
Mẫu HT + chuẩn (100ppb)
85,2463
84,69
84,8
83,6
84,5337
90,819
83,9358
83,3917
(Mẫu HT: mẫu huyết thanh)
Đồ thị biểu diễn sự phụ thuộc của nồng độ các kim loại vào nồng độ HNO3 trong phương pháp pha loãng bằng HNO3 (hình 5).
(5a) (5b) ( 5c)
Hình 5: Ảnh hưởng của HNO3 đến quá trình xác định hàm lượng đồng (5a), chì (5b) và cadimi (5c) trong phương pháp pha loãng bằng HNO3
Từ kết quả phân tích hàm lượng đồng, chì và cadimi trong các mẫu (hình 5) ta thấy trong phương pháp pha loãng bằng HNO3 ở các nồng độ khác nhau, thì với nồng độ HNO3 1% thu được hàm lượng của các nguyên tố là cao nhất và độ thu hồi của các nguyên tố là tốt nhất. Như vậy sử dụng HNO3 với nồng độ 1% là tối ưu trong phương pháp phân hủy thường mẫu huyết thanh.
3.1.2. Phương pháp pha loãng bằng hỗn hợp HNO3 (1%) và Triton X-100
Tương tự, lấy 1mL mẫu huyết thanh và 50mL dung dịch chuẩn vào các ống nghiệm, rồi định mức đến vạch 10mL bằng HNO3 1% và Triton X-100 có nồng độ lần lượt là 0,05%; 0,075%; 0,1%; 0,15%; 0,2% đối với tất cả các ống.
Mối tương quan giữa nồng độ Triton X-100 và hàm lượng của đồng, chì, cadimi trong huyết thanh được trình bày ở trong bảng 4.
Bảng 4: Ảnh hưởng của Triton X-100 đến quá trình xác định hàm lượng đồng, chì và cadimi trong huyết thanh
Hàm lượng các kim loại (ppb)
Nồng độ Triton X-100 (%)
0,05
0,075
0,1
0,15
0,2
Cu
Mẫu trắng
13,3
17,68
23,5
27,1
27,4
Mẫu huyết thanh
1175
1185
1285
1230
1192,7
Mẫu huyết thanh + chuẩn (2500ppb)
3195
3350
3740
3425
3246,7
Cd
Mẫu trắng
0,0771
0,0803
0,0874
0,0874
0,105
Mẫu huyết thanh
0,0868
0,0906
0,1349
0,1243
0,1411
Mẫu huyết thanh + chuẩn (5ppb)
4,4418
4,1281
4,7079
4,1693
4,1321
Pb
Mẫu trắng
0,596
0,631
0,647
0,685
0,705
Mẫu huyết thanh
0,6953
0,7816
0,8375
0,7749
0,7924
Mẫu huyết thanh + chuẩn (100ppb)
83,7903
84,7116
92,3175
80,9299
82,0624
Hình 6 là đồ thị biểu diễn sự phụ thuộc của nồng độ các kim loại vào nồng độ Triton X-100 trong phương pháp pha loãng bằng hỗn hợp HNO3 và Triton X-100
6a 6b 6c
Hình 6: Ảnh hưởng của nồng độ Triton X-100 đến quá trình xác định hàm lượng đồng (6a), chì (6b) và cadimi (6c) trong phương pháp pha loãng mẫu huyết thanh bằng hỗn hợp HNO3 và Triton X-100
Kết quả phân tích hàm lượng đồng, chì và cadimi trong các mẫu ta thấy trong phương pháp pha loãng bằng hỗn hợp HNO3 1% và Triton X-100 thì sử dụng hỗn hợp HNO3 1% và Triton X-100 với nồng độ 0,1% là tối ưu vì các nguyên tố Cu, Pb và Cd đều được phát hiện ở nồng độ cao nhất.
3.1.3. Phương pháp phân hủy bằng lò vi sóng
Các dung dịch HNO3 có nồng độ 0,1%; 0,5%, 1%; 1,5% và 2% được lựa chọn để khảo sát ảnh hưởng của nồng độ HNO3 trong phương pháp phân hủy mẫu huyết thanh bằng lò vi sóng với chương trình có sẵn trong thiết bị (bảng 5). 1 mL mẫu huyết thanh được pha loãng đến 10mL lần lượt bằng các dung dịch HNO3 nồng độ từ 0,1% đến 2%. Sau đó, cho vào các ống phá Teflon để tiến hành phân hủy mẫu huyết thanh bằng lò vi sóng.
Bảng 5: Chương trình phá mẫu huyết thanh trong lò vi sóng
Các bước
Nhiệt độ (0C)
Áp suất (Bar)
Thời gian (Phút)
1
160
50
5
2
190
50
10
3
50
0
10
4
50
0
10
5
50
0
10
Hàm lượng đồng, chì và cadimi xác định được trong phương pháp lò vi sóng ứng với từng nồng độ HNO3 dùng để phân hủy mẫu được trình bày ở bảng 6.
Bảng 6: Ảnh hưởng của HNO3 đến kết quả phân tích hàm lượng đồng, cadimi và chì trong phương pháp phân hủy mẫu huyết thanh bằng lò vi sóng.
Nồng độ các kim loại (ppb)
Nồng độ HNO3 (%)
0,1
0,5
1
1,5
2
Cu
Mẫu trắng
16
17,21
17,75
20,75
22,95
Mẫu huyết thanh
1003,75
1355,66
1356,2
1095
1075
Mẫu huyết thanh + chuẩn (2500ppb)
3435,5
3747,41
3788,45
3350
3555
Cd
Mẫu trắng
0,0562
0,0768
0,0797
0,0824
0,0976
Mẫu huyết thanh
0,07
0,124
0,1535
0,1179
0,1321
Mẫu huyết thanh + chuẩn (5ppb)
4,0435
3,784
4,4685
4,5014
43,1647
Pb
Mẫu trắng
0,689
0,776
0,824
0,859
0,901
Mẫu huyết thanh
0,8146
0,9239
1,1292
1,0704
1,0135
Mẫu huyết thanh + chuẩn (100ppb)
79,3146
73,3739
90,5292
78,4104
78,6435
Sự phụ thuộc của nồng độ các kim loại vào nồng độ HNO3 trong phương pháp phân hủy bằng lò vi sóng được biểu diễn trong hình 7
7a 7b 7c
Hình 7: Ảnh hưởng của HNO3 đến quá trình xác định hàm lượng đồng (7a), chì (7b) và cadimi (7c) trong phương pháp phân hủy mẫu bằng lò vi sóng
Từ kết quả phân tích hàm lượng đồng, chì và cadimi trong các mẫu ta thấy trong phương pháp phân hủy mẫu huyết thanh bằng lò vi sóng, với nồng độ HNO3 1% thu được hàm lượng của các nguyên tố là cao nhất. Như vậy sử dụng HNO3 với nồng độ 1% là tối ưu trong phương pháp phân hủy bằng lò vi sóng mẫu huyết thanh.
3.1.4. So sánh các phương pháp phân hủy mẫu
So sánh các phương pháp phân hủy mẫu để xác định hàm lượng các nguyên tố đồng, chì và cadimi trong mẫu huyết thanh cho thấy phương pháp phân hủy mẫu bằng lò vi sóng là tối ưu nhất cho xác định đồng thời cả ba nguyên tố Cu, Pb và Cd (bảng 7, hình 8).
Bảng 7: Hàm lượng các nguyên tố đồng, chì, cadimi trong huyết thanh ứng với từng phương pháp phân hủy mẫu được khảo sát.
Các phương pháp phân hủy mẫu
Nồng độ các nguyên tố (ppb)
Cu
Cd
Pb
Phương pháp pha loãng bằng HNO3 1%
633,25
0,0183
0,289
Phương pháp pha loãng bằng HNO3 1% và Triton X-100 0,1%
1261,5
0,0475
0,1905
Phân hủy bằng lò vi sóng với HNO3 1%
1447,250
0,0738
0,3052
Hình 8: Ảnh hưởng của các phương pháp phân hủy mẫu đến quá trình xác định hàm lượng các kim loại đồng, chì và cadimi trong mẫu huyết thanh
(PP1: Phương pháp pha loãng bằng HNO3 1%; PP2: Phương pháp pha loãng bằng hỗn hợp HNO3 1% và Triton X-100 0,1% ; PP3: Phương pháp phân hủy bằng lò vi sóng với HNO3 1%)
3.2. Khảo sát các điều kiện tối ưu trong quá trình phân tích mẫu trên thiết bị ICP-MS
Mẫu huyết thanh có thành phần nền tương đối phức tạp, quá trình phân tích đòi hỏi mẫu phải phân hủy tới dạng dung dịch đồng nhất mà không làm mất các đồng vị cần phân tích. Các yếu tố nền có khả năng ảnh hưởng tới việc phân tích. Để có được phương pháp phân tích chính xác, đề tài tập trung nghiên cứu xác định các điều kiện tối ưu trên thiết bị ICP-MS như chuẩn hóa số khối, tốc độ khí mang tạo sol khí, nguồn năng lượng ICP, thế điều khiển thấu kính điện tử - ion, thời gian phân tích mẫu và thời gian rửa sạch mẫu[2,4].
3.2.1. Chuẩn hóa số khối (Tunning)
Bước đầu tiên khi phân tích trên thiết bị ICP-MS đó là chuẩn hoá số khối (Tunning). Mỗi đồng vị có một số khối nhất định tuy nhiên không thể chuẩn hoá toàn bộ các nguyên tố mà việc chuẩn hoá phải thực hiện theo từng khoảng từ số khối nhỏ tới số khối lớn. Các nguyên tố dùng cho chuẩn hoá số khối gồm có: He (3,016); Mg (23,985); Rh (102,905); Ce (139,905), Pb (207,977); U (238,05). Các nguyên tố này có số khối từ nhỏ tới lớn bao phủ được toàn bộ các nguyên tố khác. Sau khi chuẩn hóa số khối ta tiến hành tối ưu các điều kiện phân tích. Hình 9 là hình ảnh chuẩn hoá số khối của các nguyên tố Ce, Pb, Rh, Mg và U
Hình 9: Phổ chuẩn hóa số khối của các nguyên tố Ce, Pb, Rh, Mg và U
3.2.2. Tối ưu tốc độ khí mang tạo sol khí
Tốc độ khí mang có ảnh hưởng rất lớn tới hiệu suất tạo sol khí, nếu tốc độ khí nhỏ hiệu quả tạo sol sẽ kém, tuy nhiên nếu tốc độ khí quá lớn sẽ kéo theo một lượng đáng kể oxy, điều này là không mong muốn trong plasma. Khi có mặt oxy sẽ tạo ra một lượng oxit cản trở tới phổ, oxit của nguyên tố này có số khối trùng với số khối của nguyên tố khác. Việc khống chế tốc độ khí mang dựa vào tỉ số CeO/Ce, tốc độ khí mang hợp lí nhất sẽ cho tín hiệu cao nhất nhưng tỉ số CeO/Ce nhỏ hơn 0,03.
Kết quả khảo sát được thể hiện trên bảng 8 và hình 10, cho thấy khi tốc độ khí mang tăng từ 0,3 tới 1,2 lít/phút với khoảng thay đổi 0,01 lít/phút thì tín hiệu của Ce (hạt/giây-cps) tăng dần nhưng tín hiệu của CeO cũng tăng dần. Khi tốc độ khí đạt giá trị 0,50 lít/phút thì tín hiệu Ce không tăng nữa mà giảm khi tốc độ khí tăng. Tuy nhiên, tín hiệu CeO vẫn tăng và tăng nhanh và điều này làm cho tỉ số CeO/Ce tăng nhanh vượt quá tỉ lệ cho phép. Như vậy, tốc độ khí mang phù hợp để có được độ nhạy lớn nhất mà không ảnh hưởng tới việc tạo oxit là: 0,50 lít/phút.
Bảng 8: Kết quả khảo sát tốc độ khí sol hóa mẫu theo tín hiệu Ce
Tốc độ khí (L/phút)
Ce (cps)
CeO (cps)
CeO/Ce
0,3
12532
56
0,004
0,325
15345
90
0,006
0,35
60540
546
0,009
0,375
100264
1203
0,012
0,4
161897
2240
0,014
0,425
243593
3854
0,016
0,45
300240
6005
0,02
0,475
340589
8174
0,024
0,5
364268
10564
0,029
0,525
378920
13262
0,035
0,55
392678
16492
0,042
0,575
364250
19305
0,053
0,6
302481
90744
0,3
0,625
260240
117108
0,45
0,65
202800
141960
0,7
Hình 10: Tỉ lệ cường độ tín hiệu theo tốc độ khí mang
3.2.3. Khảo sát nguồn năng lượng (ICP)
Năng lượng là yếu tố quyết định trong quá trình nguyên tử hoá hay ion hoá mẫu. Nguồn năng lượng ICP có ưu việt hơn hẳn so với các thiết bị khác. Nhiệt độ trong tâm Plasma có thể đạt từ 6000 oC đến 10000 oC cao hơn hẳn AAS (3000oC). Trong máy ICP-MS, nguồn năng lượng phụ thuộc vào công suất của máy phát cao tần. Khảo sát công suất của máy phát cao tần RF từ 700 đến 1200 W với thay đổi 25 W một lần cho thấy công suất của máy phát cao tần RF tối ưu là 1000W (Cường độ tín hiệu của Rh cao nhất). Kết quả ở bảng 9 và hình 11 cho thấy khi công suất máy phát cao tần tăng thì tín hiệu Rh tăng nhưng đến một ngưỡng mà công suất tiếp tục tăng thì quá trình ion hóa sẽ tạo ra ion +2 và tín hiệu của ion +1 sẽ giảm. Vì vậy, mức công suất 1000W là tối ưu nhất.
Bảng 9: Kết quả khảo sát công suất máy cao tần
Công suất máy phát cao tần (W)
Rh (cps)
725
205628
750
215699
775
222548
800
236589
825
245970
850
253694
875
265400
900
289777
925
320568
950
355698
975
372478
1000
380804
1025
375475
1050
352190
1075
335481
1100
302569
1125
286947
1150
253311
1175
230098
Hình 11: Tín hiệu của Rh theo công suất của máy phát cao tần
3.2.4. Khảo sát thế điều khiển thấu kính điện tử - ion
Hệ thấu kính điện tử - ion có tác dụng chọn và hội tụ chùm ion. Ngoài ra, nó còn có tác dụng hạn chế không cho các photon, các điện tử và phần tử trung hoà đi vào buồng phân giải phổ và tác động vào detector. Hoạt động của hệ thấu kính được điều khiển bởi thế đặt vào. Qua khảo sát thế điều khiển tối ưu là 7,2 volt – Cường độ tín hiệu của Rh cao nhất.
Hình 12: Tín hiệu Rh phụ thuộc thế thấu kính điện tử -ion
3.2.5. Khảo sát thời gian phân tích mẫu
Trong phân tích ICP-MS do sử dụng khí Ar tinh khiết, máy phát cao tần có công suất lớn, vì vậy chi phí vận hành cao. Do vậy nếu thời gian phân tích mẫu càng giảm thì sẽ càng giảm được chi phí phân tích.
Mẫu trước hết được bơm bằng bơm nhu động vào hệ sol hóa mẫu rồi vào tâm ngọn lửa plasma sau đó qua hệ thấu kính ion và bộ tách khối rồi được ghi nhận trên nhân quang điện. Thời gian mẫu đi từ ngoài vào đến khi thu nhận được tín hiệu là thời gian phân tích. Bảng 10 và hình 12, 13 là kết quả khảo sát theo thời gian phân tích mẫu trên thiết bị ICP-MS ELAN 9000 của Perkin Elmer. Mẫu khảo sát được thay đổi 5 giây/lần với 2 khoảng nồng độ Uran 0,1ppb và 1ppm.
Bảng 10: Kết quả khảo sát thời gian phân tích mẫu
Thời gian (giây)
Tín hiệu U 238 (cps)
1ppm
0.1ppb
5
206
214
10
215
208
15
208
212
20
36405
37450
25
356895
354580
30
3456895597
353954
35
3505606592
354216
40
3504658501
354057
45
3505089494
353988
50
3504897622
354100
Hình 13: Kết quả khảo sát thời gian phân tích với nồng độ cao 1ppm
Hình 12: Kết quả khảo sát thời gian phân tích với nồng độ nhỏ 0.1ppb
Vậy thời gian phân tích tối ưu cho tất cả các mẫu là 35- 40 giây.
3.2.6. Khảo sát thời gian rửa sạch mẫu
Kết thúc một giai đoạn đo một mẫu, thiết bi tiến hành rửa sạch các bộ phận chứa mẫu, bộ phận đưa mẫu vào thiết bị. Do vậy nếu giảm bớt thời gian này sẽ đỡ tiêu tốn khí và năng lượng. Thời gian rửa sạch mẫu được khảo sát đối với mẫu hàm lượng cao để áp dụng cho tất cả các mẫu. Hàm lượng mẫu khảo sát rửa sạch với U là 1ppm. Kết quả khảo sát thay đổi 5 giây/lần thu được như trong bảng 11 và hình 14.
Bảng11: Kết quả khảo sát thời gian rửa sạch mẫu
Thời gian (giây)
Tín hiệu U 238 1ppm (cps)
5
3504262554
10
3503984002
15
3504215947
20
26854620
25
85260
30
12540
35
1054
40
208
45
210
50
215
Hình 14: Kết quả khảo sát thời gian rửa sạch mẫu với nồng độ cao 1 ppm
Như vậy, thời gian rửa sạch mẫu cho mẫu có hàm lượng cao như 238U có nồng độ 1ppm là 40- 45 giây. Để đảm bảo kết quả phân tích thì thời gian rửa sạch mẫu được lựa chọn là 45 giây. Trường hợp mẫu phân tích trước có hàm lượng cao hơn 1ppm thì cần xem xét kết quả của mẫu tiếp theo.
*Kết luận: Kết quả khảo sát các điều kiện phân tích tối ưu trên thiết bị ICP-MS được trình bày trong bảng 12.
Bảng 12: Các điều kiện phân tích tối ưu trên thiết bị ICP-MS
Yếu tô
Giá trị lựa chọn
Yếu tố
Giá trị lựa chọn
Tốc độ khí cho bộ sol hoá mẫu
0,5 l/phút
Tốc độ khí mang Ar
15-20 l/phút
Công suất máy phát cao tần
1000 W
Tốc độ bơm mẫu
2- 3 ml/phút
Thời gian lấy tín hiệu
40 giây
Thế điều khiển thấu kính điện tử - ion
7,2 V
Thời gian rửa sạch mẫu
45 giây
Sử dụng bộ hóa hơi mẫu bằng sóng siêu âm USN
3.3. Xây dựng đường chuẩn
ICP-MS sử dụng kỹ thuật sol hóa mẫu bằng sóng siêu âm là hệ thiết bị phân tích đồng thời các nguyên tố với hàm lượng siêu vết, có khoảng tuyến tính của các nguyên tố rất rộng (105 lần), do đó việc xây dựng đường chuẩn tuỳ thuộc vào nồng độ các chất trong mẫu phân tích. Trong khi các nguyên tố trong huyết thanh có hàm lượng rất khác nhau nên mỗi nguyên tố có khoảng nồng độ cần khảo sát cũng khác nhau. Để khảo sát khoảng tuyến tính và xây dựng đường chuẩn, các mẫu được pha có nồng độ như sau:
* Dung dịch làm việc: là hỗn hợp được pha từ dung dịch gốc. Lấy 10 ml dung dịch chuẩn 1000ppm của Cu; 4 ml dung dịch chuẩn của Cd 100ppm và 1,6 ml dung dịch chuẩn 100ppm của Pb cho vào bình định mức 100 ml và định mức tới vạch định mức bằng axit HNO3 1%. Dung dịch này được bảo quản lạnh và sử dụng trong tuần.
* Dung dịch xây dựng đường chuẩn: Lần lượt lấy 0; 12,5; 25; 100; 250; 500; 1000 µL dung dịch làm việc cho vào các bình định mức 10 ml, ta được khoảng nồng độ khảo sát của các nguyên tô đồng, chì và cadimi trong bảng 13.
Tiến hành khảo sát khoảng tuyến tính và lập đường chuẩn của các nguyên tố đồng, chì và cadimi thu được kết quả trong bảng 13
Bảng 13: Khoảng nồng độ khảo sát và kết quả khảo sát khoảng tuyến tính các nguyên tố đồng, chì và cadimi
Cu
Pb
Cd
Nồng độ (ppb)
Cường độ (cps)
Nồng độ (ppb)
Cường độ (cps)
Nồng độ (ppb)
Cường độ (cps)
0
170000
0
66400
0
3120
6,25
889000
0,1
73400
0,005
3640
12,5
1590000
0,2
99400
0,01
3450
50
5250000
0,8
288000
0,04
5130
125
14700000
2
654000
0,1
7010
250
26000000
4
1320000
0,2
12500
500
51700000
8
2420000
0,4
25000
Các kết quả thu được cho thấy các nguyên tố tuyến tính trong khoảng khảo sát. Đường chuẩn của các nguyên tố đồng, chì và cadimi được xây dựng như trong hình 15.
15a 15b 15c
Hình 15: Đường chuẩn của các nguyên tố đồng (15a), chì (15b) và cadimi (15c)
Kết quả khảo sát khoảng tuyến tính và đường chuẩn của các nguyên tố đồng, chì, cadimi được trình bày trong bảng 14
Bảng 14: Khoảng tuyến tính và đường chuẩn của các nguyên tố đồng, chì và cadimi
Tên nguyên tố
Khoảng tuyến tính (ppb)
Phương trình hồi quy
(x: ppb)
Giá trị hệ số tương quan R2
Cu
6,25-500
Y = 102921x + 452437
0,999
Pb
0-8
Y = 299132x + 57759
0,9987
Cd
0,005-0,4
Y = 53753x + 2752,3
0,991
Nhận thấy hệ số tự do a trong phương trình hồi quy của các nguyên tố đồng, chì và cadimi, giá trị Ptính đều lớn hơn 0,05, có nghĩa là ở độ tin cậy 95% sự khác nhau giữa giá trị a và 0 không có ý nghĩa thống kê, hay nói cách khác phương pháp không mắc sai số hệ thống. Các giá trị R2 @ 1 cho thấy phương trình hồi quy thu được biểu diễn chính xác mối tương quan giữa cường độ vạch phổ (cps) và nồng độ các kim loại đồng, chì và cadimi. Do đó có thể sử dụng các phương trình trên để xác định nồng độ của các nguyên tố đồng, chì và cadimi trong huyết thanh.
3.4. Nghiên cứu ảnh hưởng của các nguyên tố đến quá trình xác định hàm lượng đồng, chì và cadimi trong huyết thanh
3.4.1. Nghiên cứu ảnh hưởng của các nguyên tố đi kèm
Trong mẫu huyết thanh ngoài các kim loại đồng, chì, cadimi còn có nhiều các nguyên tố khác như canxi, magie, thủy ngân, kẽm, magan,…. Các nguyên tố này có thể ảnh hưởng hoặc không ảnh hưởng tới phép xác định đồng, chì và cadimi, trên cơ sở lựa chọn các điều kiện tối ưu trong quá trình phá mẫu và môi trường phân hủy mẫu.
3.4.1.1. Nghiên cứu ảnh hưởng của canxi
Cho vào 1mL mẫu huyết thanh các nồng độ khác nhau của canxi (bảng15) để nghiên cứu ảnh hưởng của canxi đến quá trình xác định đồng, chì và cadimi. Tiến hành định mức đến vạch 10mL bằng HNO3 1%, lắc đều rồi phân hủy bằng lò vi sóng.
Mối tương quan giữa hàm lượng canxi thêm vào và lượng các ion kim loại đồng, chì, cadimi trong mẫu biến đổi được trình bày ở bảng 15
Bảng 15: Mối quan hệ giữa nồng độ canxi thêm và hàm lượng đồng, chì, cadimi trong mẫu huyết thanh
Tỉ lệ
Nồng độ Ca thêm (ppb) ×103
0
8
40
60
80
Ca/Cd×105
0
8
40
60
80
Ca/Cu
0
4,299
21,495
32,242
42,99
Ca/Pb×104
0
5,71
28,57
42,86
57,1
Sự thay đổi nồng độ của cadimi, đồng, chì khi tăng nồng độ Canxi thêm vào được biểu diễn trong hình 16
Hình 16: Ảnh hưởng của canxi đến quá trình xác định đồng, chì và cadimi
Từ bảng 15 cho thấy tỉ lệ Ca/Cd từ 8×105 - 80×105; Ca/Cu từ 4,299 - 42,99 và Ca/Pb từ 5,71×104 – 5,71×105 thì sự thay đổi nồng độ Cd, Cu, Pb không đáng kể. Chứng tỏ trong khoảng nồng độ khảo sát canxi ảnh hưởng không đáng kể đến quá trình xác định các nguyên tố này.
3.4.1.2. Nghiên cứu ảnh hưởng của magie
Sự thay đổi tỉ lệ giữa lượng magie thêm vào và lượng Cu, Pb và Cd có trong mẫu huyết thanh được trình bày ở bảng 16
Bảng 16: Tỉ lệ giữa lượng magie thêm so với lượng đồng, chì và cadimi trong mẫu huyết thanh
Tỉ lệ
Nồng độ Mg thêm (ppb) ×103
0
4
8
16
40
Mg/Cd×105
0
2
4
8
20
Mg/Cu
0
2,07
4,15
8,29
20,7
Mg/Pb×104
0
2,857
5,71
11,43
28,57
Hình 17 biểu diễn sự thay đổi nồng độ của cadimi, đồng, chì khi tăng nồng độ Magie thêm.
Hình 17: Ảnh hưởng của hàm lượng magie thêm vào đến quá trình xác định hàm lượng đồng, chì và cadimi
Kết quả nghiên cứu cho thấy khi tỉ lệ Mg/Cd từ 2×105 - 20×105; Mg/Cu từ 2,07 - 20,7 và Mg/Pb từ 2,857×104 - 28,57×104 thì nồng độ Cd, Cu, Pb thay đổi không đáng kể. Chứng tỏ magie ảnh hưởng không đáng kể đến quá trình xác định đồng, chì và cadimi trong khoảng nồng độ magie được khảo sát.
3.4.1.3. Nghiên cứu ảnh hưởng của thủy ngân
Ảnh hưởng của thủy ngân đến quá trình xác định đông, chì và cadimi cũng được nghiên cứu và khảo sát (bảng 17). Kết quả nghiên cứu cho thấy tỉ lệ Hg/Cd từ 20 - 400, Hg/Cu từ 1,4×10-4 - 27,98×10-4 và Hg/Pb từ 1,43 - 28,57 thì nồng độ Cu, Cd, Pb thay đổi không đáng kể. Chứng tỏ quá trình xác định đồng, chì và cadimi trong huyết thanh không bị ảnh hưởng bởi thủy ngân.
Bảng 17: Tỉ lệ giữa lượng thủy ngân thêm vào với hàm lượng đồng, chì và cadimi trong mẫu huyết thanh
Tỉ lệ
Nồng độ Hg thêm (ppb)
0
0,2
0,8
2
4
Hg/Cd
0
20
80
200
400
Hg/Cu×10-4
0
1,4
5,6
14
27,98
Hg/Pb
0
1,43
5,71
14,3
28,57
Hình 18: Ảnh hưởng của lượng thủy ngân thêm vào đến quá trình xác định hàm lượng đồng, chì, cadimi
3.4.1.4. Nghiên cứu ảnh hưởng của kẽm
Tương tự như vậy, khi thêm kẽm vào trong dung dịch nghiên cứu, tỉ lệ Zn/Cd từ 4,8×104 - 40×104, Zn/Cu từ 0,52 – 4,36 và Zn/Pb từ 7,38×103 - 61,54×103 thì nồng độ Cu, Cd, Pb thay đổi không đáng kể. Chứng tỏ kẽm cũng ảnh hưởng không đáng kể đến quá trình xác định đồng, chì và cadimi (bảng 18 và hình 19)
Bảng 18: Sự thay đổi tỉ lệ nồng độ kẽm thêm vào so với lượng đồng, chì, cadimi trong mẫu
Tỉ lệ
Nồng độ Zn thêm (ppb)
0
960
1600
3200
8000
Zn/Cd×104
0
4,8
8
16
40
Zn/Cu
0
0,52
0,87
1,74
4,36
Zn/Pb×103
0
7,38
12,3
24,6
61,54
Hình 19: Ảnh hưởng của nồng độ kẽm thêm vào hàm lượng đồng, chì, cadimi
3.4.1.5.Nghiên cứu ảnh hưởng của mangan
Tương tự như các nghiên cứu trên, khi nghiên cứu sự ảnh hưởng của mangan đến quá trình xác định đồng, chì và cadimi, kết quả của nghiên cứu cũng cho thấy hàm lượng Cu, Pb, Cd hầu như không thay đổi khi tăng hàm lượng mangan thêm vào.(hình 20).
Hình 20: Ảnh hưởng của nồng độ mangan thêm vào đến hàm lượng đồng, chì, cadimi
Như vậy, ảnh hưởng của các nguyên tố canxi, magie, kẽm, thủy ngân, mangan đối với khoảng nồng độ lớn gấp nghìn lần cũng không ảnh hưởng đến quá trình xác định các nguyên tố đồng, chì và cadimi trong huyết thanh.
3.4.2. Nghiên cứu ảnh hưởng của các nguyên tố lẫn nhau
Ảnh hưởng của các nguyên tố cùng xác định với nhau cũng được nghiên cứu. Tiến hành khảo sát ảnh hưởng lẫn nhau giữa các nguyên tố Cu, Pb và Cd trên cơ sở lựa chọn phương pháp tối ưu để phá mẫu huyết thanh bằng lò vi sóng với HNO3 1%.
3.4.2.1. Nghiên cứu ảnh hưởng của đồng đến quá trình xác định cadimi và chì
Khi nghiên cứu ảnh hưởng của đồng đến quá trình phân hủy hủy mẫu xác định chì và cadimi, tiến hành cho vào 1mL mẫu huyết thanh các nồng độ khác nhau của đồng (bảng 19) trước khi phân hủy mẫu bằng lò vi sóng dùng HNO3 1%.
Lượng đồng thêm vào và mối tương quan với lượng chì và cadimi trong mẫu huyết thanh được trình bày ở bảng 19
Bảng 19: Mối tương quan giữa lượng đồng thêm vào và lượng chì và cadimi trong mẫu
Nồng độ Cu thêm (ppb)
Tỉ lệ Cu/Cd×104
Tỉ lệ Cu/Pb×104
0
0
0
960
6,4
0,96
1600
10,67
1,6
3200
21,33
3,2
8000
53,33
8
Sự biến thiên nồng độ của cadimi và chì khi tăng nồng độ đồng thêm vào được biểu diễn trong hình 21
Hình 21: Ảnh hưởng của nồng độ đồng thêm vào đến quá trình xác định hàm lượng chì và cadimi
Khi thêm đồng ở tỉ lệ Cu/Cd từ 6,4×104 - 53,33×104 và Cu/Pb từ 0,96×104 - 8×104 thì nồng độ Cd, Pb thay đổi không đáng kể. Chứng tỏ đồng ảnh hưởng không đáng kể đến quá trình xác định cadimi và chì.
3.4.2.2. Nghiên cứu ảnh hưởng của cadimi đến quá trình xác định đồng và chì
Tiến hành tương tự nghiêm cứu trên, nồng độ cadimi thêm vào ảnh hưởng đến quá trình xác định đồng và chì tương ứng được biểu diễn trong hình 22
Hình 22: Ảnh hưởng của nồng độ cadimi thêm vào đến quá trình xác định hàm lượng đồng và chì
Bảng 20 là tỉ lệ giữa lượng cadimi thêm vào và lượng đồng, chì có trong mẫu huyết thanh.
Bảng 20: Tỉ lệ giữa lượng cadimi thêm và lượng đồng và chì trong mẫu
Nồng độ Cd thêm (ppb)
Tỉ lệ Cd/Cu×10-3
Tỉ lệ Cd/Pb×102
0
0
0
10
8,7
0,67
50
43,5
3,33
100
87
6,67
500
435
33,33
Khi thêm cadimi ở tỉ lệ Cd/Cu từ 8,7×10-3 đến 435×10-3 và Cd/Pb từ 0,67×102 đến 33,33×102 lần nồng độ Cu, Pb thay đổi không đáng kể. Chứng tỏ cadimi ảnh hưởng không đáng kể đến quá trình xác định hai kim loại này.
3.4.2.3 Nghiên cứu ảnh hưởng của chì đến quá trình xác định đồng và cadimi
Tương tự các nghiên cứu trên, bảng 21 là hàm lượng chì thêm vào trong quá trình xác định đồng và cadimi. Kết quả nghiên cứu cho thấy ở tỉ lệ Pb/Cu từ 8,53×10-3 – 4,26×10-1 và Pb/Cd từ 2,9×102 – 1,451×104, không ảnh hưởng đến quá trình xác định đồng và cadimi.
Bảng 21: Sự thay đổi tỉ lệ giữa lượng đồng và cadimi so với lượng chì thêm vào
Nồng độ Pb thêm (ppb)
Tỉ lệ Pb/Cu×10-3
Tỉ lệ Pb/Cd×102
0
0
0
10
8,53
2,9
50
42,6
1,45
100
85,2
29
500
426
145,1
Hình 23 biểu diễn sự biến thiên nồng độ của đồng và cadimi khi tăng lượng chì thêm vào.
Hình 23: Ảnh hưởng của nồng độ chì thêm vào đến quá trình xác định hàm lượng đồng và cadimi
Như vậy, ảnh hưởng lẫn nhau giữa các nguyên tố đồng, chì, cadimi trong vùng nồng độ khảo sát là không đáng kể đến việc xác định nồng độ của chúng trong huyết thanh.
3.5. Xác định độ lặp lại và độ chính xác của phương pháp
Một phương pháp phân tích chính xác và tin cậy cần phải đảm bảo độ lặp lại,- độ lệch chuẩn và độ thu hồi tốt. Các kim loại đồng, chì và cadimi trong huyết thanh có hàm lượng rất nhỏ, có thành phần nền phức tạp nên việc phân tích chúng cần phải yêu cầu các thông số trên để kết quả đo hàm lượng của chúng được chính xác và đáng tin cậy.
Để xác định độ lệch chuẩn, độ thu hồi, mẫu chuẩn thấp nhất của đường chuẩn được phân tích lặp 6 lần trên thiết bị ICP-MS sử dụng kỹ thuật sol hóa mẫu bằng sóng siêu âm, các kết quả phân tích được tính trung bình. Độ lệch chuẩn và độ lệch chuẩn tương đối tính được như trong bảng 22.
Bảng 22: Độ lệch chuẩn, độ lệch chuẩn tương đối của các nguyên tố đồng, chì và cadimi
Tên nguyên tố
L1 (cps)
L2 (cps)
L3 (cps)
L4 (cps)
L5 (cps)
L6 (cps)
TB (cps)
Độ lệch chuẩn STDEV
Độ lệch chuẩn tương đối
Cu
170000
175000
168000
169000
172000
171000
170833
2483
1,5
Pb
73400
77200
78100
70100
71200
79200
74867
3821
5,1
Cd
3640
3220
3900
3850
3670
3300
3597
280
7,8
Kết quả cho thấy các giá trị độ lệch chuẩn tương đối đối với cả ba nguyên tố đều nhỏ hơn 15% (trong khi với hàm lượng vết cỡ µg/L cho phép độ lệch chuẩn tương đối dưới 30%) cho thấy các lần phân tích rất lặp lại và độ lặp lại của phương pháp nằm trong giới hạn cho phép khi xây dựng phương pháp phân tích với hàm lượng vết.
3.6. Xây dựng quy trình phân tích xác định đồng, chì và cadimi trong mẫu huyết thanh
*Lấy mẫu và bảo quản mẫu
Mẫu máu được lấy khoảng 250-300 mL, không cho chất chống đông hay các chấy bảo quản khác vào, tách li tâm với tốc độ 2000 vòng/phút trong thời gian 10 phút để tách lấy huyết thanh. Huyết thanh được bảo quản ở nhiệt độ 2-80C.
*Xử lí mẫu
Mẫu sau khi được lấy ra khỏi tủ lạnh để dã đông tự nhiên đến nhiệt độ phòng.
Dùng micropipet hút 1mL mẫu huyết thanh vào bình định mức loại 10mL. Dùng dung dịch HNO3 1% để định mức đến 10mL. Lắc đều hỗn hợp mẫu. Cho mẫu vào các ống Teflon, phá mẫu bằng lò vi sóng với chế độ phân hủy mẫu huyết thanh trong lò vi sóng như sau: nhiệt độ 1900C, áp suất 50 bar, thời gian 45 phút.
Mẫu sau khi được phân hủy hoàn toàn, để nguội, định mức đến 10mL bằng HNO3 1%, rồi chuyển sang ống đo, đưa vào thiết bị ICP-MS để xác định đồng thời hàm lượng đồng, chì và cadimi với các điều kiện như sau: tốc độ khí cho bộ sol hóa mẫu là 0,5l/phút; tốc độ khí mang Ar 15-20 phút, tốc độ bơm mẫu 2-3 mL/phút, thế điều khiển thấu tính điện tử – ion là 7,2V, sử dụng bộ hóa hơi mẫu bằng sóng siêu âm, máy phát cao tần có công suất 1000W, thời gian đo cho mỗi mẫu là 40 giây, thời gian rửa sạch mẫu là 45 giây.
Tiến hành xây dựng đường chuẩn của các nguyên tố đồng, chì và cadimi.
*Tính toán kết quả phân tích hàm lượng các kim loại đồng, chì và cadimi trong huyết thanh.
3.7. Áp dụng các điều kiện tối ưu trong phân tích mẫu thực tế
Theo quy trình lấy mẫu như đã đề cập (ở phần 2.4), đề tài đã tiến hành thu mẫu máu của người dân thuộc xã Nam Thượng, huyện Kim Bôi, tỉnh Hòa Bình ngày 14/07/09. Đây là địa bàn cư chú của người dân tộc Mường. Điều kiện kinh tế khó khăn, người dân thường bị thiếu ăn, chế độ dinh dưỡng kém, dẫn đến một số bệnh như thiếu máu, bệnh huyết sắc tố, run rẩy chân tay,…tương đối phổ biến ở trong cộng đồng. Ngoài ra, dân cư vùng này còn có dấu hiệu của bệnh di truyền do hậu quả của việc kết hôn gần.
Hình 24: Một số hình ảnh lấy mẫu ở xã Nam Thượng – Kim Bôi – Hòa Bình
Kết quả xác định hàm lượng đồng, chì, cadimi trong huyết thanh của người dân xã Nam Thượng – Kim Bôi – Hòa Bình được trình bày trong bảng 23.
Bảng 23: Hàm lượng đồng, chì và cadimi trong mẫu huyết thanh của người dân ở xã Nam Thượng – Kim Bôi – Hòa Bình.
Kí hiệu mẫu
Họ và tên
Giới tính
Tuổi
Nồng độ các kim loại (mg/L)
Cu
Cd
Pb
1
Bùi Châu Loan
Nữ
24
1670
0,018
0,11
2
Bùi Thi Duyên
Nữ
29
1920
0,022
0,30
3
Quách Thị Nhân
Nữ
30
1560
0,012
0,37
4
Bùi Thị Viên
Nữ
24
1500
0,025
0,12
5
Bùi Ngọc Lý
Nữ
30
1510
0,043
0,25
6
Bùi Thị Nguyên
Nữ
22
1870
0,015
0,21
7
Lương Thị Thảo
Nữ
17
1550
0,024
0,30
8
Quách Thị Lành
Nữ
14
1390
0,035
0,26
9
Phạm Thị Hà
Nữ
32
1800
0,02
0,41
10a
Bùi Văn Kiên
Nam
43
1520
0,037
0,26
10b
Bùi Văn Kiên
Nam
43
1515
0,034
0,27
11
Bùi Văn Nam
Nam
18
1470
0,02
0,29
12
Bùi Văn Vượng
Nam
33
1370
0,018
0,28
13
Bùi Văn Còn
Nam
41
1980
0,014
0,45
14
Bùi Văn Cam
Nam
50
1570
0,01
0,12
15
Bùi Thị Hiền
Nữ
31
1580
0,017
0,33
16
Bùi Thị Sửu
Nữ
18
1640
0,02
0.05
17
Nguyễn Duy Trung
Nam
18
1050
0,011
0,27
18
Bùi Văn Việt
Nam
19
1690
0,04
0,22
19
Bùi Huy Hùng
Nam
30
1330
0,013
0,10
20a
Bùi Thị Dậu
Nữ
15
1110
0,03
0,17
20b
Bùi Thị Dậu
Nữ
15
1113
0,022
0,15
21
Bùi Văn Thành
Nam
15
1330
0,038
0,3
22
Bùi Trung Hiếu
Nam
17
1190
0,022
0,7
23
Bùi Văn Chiến
Nam
16
1240
0,011
0,15
24
Bùi Văn Chính
Nam
17
1140
0,04
0,24
25
Bùi Thị Ngạnh
Nữ
47
1410
0,03
0,34
26
Bùi Thị Vân
Nữ
48
1160
0,01
0,32
27
Bùi Văn Tường
Nam
18
1390
0,015
0,19
28
Bùi Văn An
Nam
20
1200
0,02
0,25
29a
Quách Công Trường
Nam
35
1230
0,02
0,38
29b
Quách Công Trường
Nam
35
1235
0,025
0,32
(Trong đó các mẫu 10a và 10b, 20a và 20b, 29a và 29b là các mẫu lặp)
Kết quả phân tích 29 mẫu huyết thanh xác định hàm lượng đồng, chì và cadimi của người dân xã Nam Thượng–huyện Kim Bôi–Tỉnh Hòa Bình thu được tóm tắt trong bảng 24
Bảng 24: Một số tổng kết về hàm lượng đồng, chì và cadimi trong mẫu thực tế
Các đại lượng
Tên nguyên tố
Cu
Cd
Pb
Nồng độ trung bình (ppb)
1461
0,022
0,27
Nồng độ cao nhất (ppb)
1980
0,043
0,45
Nồng độ thấp nhất (ppb)
1050
0,01
0,05
Từ bảng 23 và bảng 24, có thể rút ra một số nhân xét sau:
- Huyết thanh của người dân trên địa bàn nghiên cứu, hàm lượng đồng và cadimi trong huyết thanh tương đối đều. So sánh với khoảng nồng độ đồng và cadimi trong huyết thanh người bình thường do WHO đưa ra lần lượt là (794 - 2023 mg/l); (0,01- 0,05 mg/l) thấy hàm lượng đồng và cadimi nằm trong khoảng cho phép.
- Hàm lượng chì trong huyết thanh của người dân xã Nam Thượng tương đối cao. Trong đó, có 13 mẫu trên tổng số 29 mẫu (chiếm 45% tổng số mẫu) có hàm lượng vượt quá giới hạn cho phép do WHO đặt ra đối với chì là 0,014-0,25 mg/l.
Như vậy có thể rút ra kết luận người dân xã Nam Thượng chưa có dấu hiệu bị ô nhiễm đồng và cadimi, nhưng đã có dấu hiệu ô nhiễm chì.
PHẦN IV. KẾT LUẬN
Trên cơ sở nghiên cứu các điều kiện tối ưu trong quá trình lấy mẫu, bảo quản, xử lý mẫu và các điều kiện tối ưu trong phân tích trên thiết bị có thể rút ra một số kết luận như sau
1. Đã nghiên cứu khảo sát các phương pháp xử lý mẫu huyết thanh khác nhau , trong đó phương pháp xử lý mẫu huyết thanh được lựa chọn là phương pháp phá mẫu bằng lò vi sóng dùng HNO3 với nồng độ 1%, chương trình phân hủy mẫu có sẵn trong thiết bị (nhiệt độ 1900C, áp suất 50 bar, thời gian 45 phút).
2. Đã khảo sát các điều kiện tối ưu cho quá trình xác định các nguyên tố đồng, chì, cadimi trên thiết bị ICP-MS như tìm được tốc độ khí cho bộ sol hoá mẫu 0,5 l/phút, công suất máy phát cao tần 1000 W, thời gian lấy tín hiệu là 40 giây, thời gian rửa sạch mẫu là 45 giây, tốc độ khí mang Ar 15-20 l/phút, tốc độ bơm mẫu 2- 3 ml/phút, thế điều khiển thấu kính điện tử - ion 7,2V tương ứng với cường độ tín hiệu của Rh cao nhất.
3. Đã xây dựng đường chuẩn của 3 nguyên tố trên thiết bị ICP-MS dựa trên các điều kiện tối ưu đã khảo sát. Các đường chuẩn được xây dựng có khoảng tuyến tính trong khoảng giới hạn của phép đo. Khoảng tuyến tính của đồng từ 6,25 -500ppb; của chì từ 0 - 8ppb và cadimi từ 0,005 - 0,4ppb.
4. Trên cơ sở lựa chọn phương pháp xử lý mẫu huyết thanh tối ưu, đề tài đã khảo sát ảnh hưởng của các nguyên tố đi kèm gồm: canxi, magie, thủy ngân, kẽm, mangan . Kết quả cho thấy ở khoảng nồng độ được lựa chọn để khảo sát (Ca từ 8×103 - 80×103 ppb; Mg từ 4×103 - 40×103 ppb; Hg từ 0,2 - 4 ppb; Zn từ 0,96×103 - 8×103 ppb; Mn từ 4 - 200 ppb) không có sự ảnh hưởng đáng kể của các nguyên tố này đến việc xác định hàm lượng đồng, chì, cadimi trong huyết thanh. Đồng thời giữa các nguyên tố đồng, chì, cadimi cũng không có sự ảnh hưởng đáng kể nào đến nhau trong khoảng nồng độ được khảo sát (Cu từ 0,96×103 - 8×103 ppb; Cd từ 10 - 500 ppb; Pb từ 10 - 500 ppb ).
5. Đã xây dựng được 01 quy trình phân tích xác định đồng thời các nguyên tố đồng, chì và cadimi trong mẫu huyết thanh phù hợp với phép đo ICP-MS cho kết quả có độ chính xác cao.
6. Đã áp dụng các điều kiện và phương pháp nghiên cứu vào phân tích 29 mẫu huyết thanh. Kết quả cho độ chính xác và tính lặp lại cao.
TÀI LIỆU THAM KHẢO
Tiếng Việt
1. Lê Lan Anh và các cộng sự (2000), Nghiên cứu xác định hàm lượng thủy ngân và chì trong tóc, nước tiểu và máu phạc vụ chuẩn đoán lâm sàng bằng phương pháp phân tích hiện đại, Tạp chí phân tích Hóa-Lý-Sinh học, Tập 5 (2), Trang 16-19.
2. Cục địa chất và khoáng sản, Bộ công nghiệp (1994), Phương pháp quang phổ plasma ICP-AES tách và xác định riêng biệt các nguyên tố đất hiếm trong mẫu địa hóa,TCN.01-0 PTHL/94.
3. Cơ sở lý thuyết và khả năng ứng dụng các phương pháp phân tích tích công cụ, Hội thảo Shimazu-Schmith, Hà Nội 1972.
4. Nguyễn Xuân Chiến (2007), Nghiên cứu xây dựng qui trình xác định vết các nguyên tố đất hiếm trong một số đối tượng bằng ICP-MS, Báo cáo Đề tài Khoa học Công nghệ cấp bộ năm 2005-2006.
5. Vũ Đăng Độ (1993), Hóa sinh vô cơ, Đại học tổng hợp – Khoa Hóa – Bộ môn Hóa vô cơ, Hà Nội.
6. Trần Chương Huyến, Từ Vọng Nghi, Phạm Luận (1990), Một số phương pháp phân tích điện hóa hiện đại, Đại học tổng hợp Hà Nội.
7. Phạm Luận (2006), Phương pháp phân tích phổ nguyên tử, NXB Đại học quốc gia Hà Nội.
8. Phạm Luận (2000), Các phương pháp và kỹ thuật chuẩn bị mẫu phân tích, Khoa hóa học – Bộ môn hóa phân tích – Trường ĐH KHTN – ĐH quốc gia Hà Nội.
9. Lê Đức Liêm (2001), Chì và tác hại của Chì, Tạp chí Công nghiệp Số 6, Trang 27-29.
10. Lê Đức Ngọc (2007), Xử lý số liệu và kế hoạch hóa thực nghiệm, Khoa Hóa học – Trường Đại học Khoa học tự nhiên – Đại học quốc gia Hà Nội.
11. Hoàng Nhâm (2000), Hóa học vô cơ, tập 3, NXB Giáo dục.
12. Lương Thúy Quỳnh, Luận án phó tiến sĩ khoa học (1996), Nghiên cứu hàm lượng đồng – kẽm huyết thanh người có tuổi ở Việt Nam, Trường ĐH Dược Hà Nội – Bộ y tế.
13. Tạ Thị Thảo (2005), Thống kê trong hóa phân tích, Bộ môn Hóa phân tích - Khoa Hóa học – Trường Đại học Khoa học tự nhiên – Đại học quốc gia Hà Nội.
14. Trịnh Thị Thanh (2001), Độc học môi trường và sức khỏe con người, Trường ĐH quốc gia Hà Nội.
15. Nguyễn Đức Vận (1999), Hóa học vô cơ, tập 2: Các kim loại điển hình, NXB khoa học và kỹ thuật.
16. Ứng dụng các phương pháp phân tích công cụ hiện đại trong nghiên cứu địa chất học và vệ sing môi trường, Hội thảo Shimazu-Schmith, Hà Nội 1994.
Tiếng Anh
17. A. Mathee, Y. E. R. von Schirnding, J. Levin, A. Ismail, R. Huntley and A. Cantrell (2002), A survey of blood lead levels among young Johannesburg school children, Environmental Research 90, 181- 184.
18. Alan Newman (1996), Elements of ICP-MS, Analytical Chemistry 68, 46A-51A.
19. Brian Gulson, Karen Mizon, Michael Korsch and Alan Taylor (2006), Changes in the lead isotopic composition of blood, diet and air in Australia over a decade: Globalization and implications for future isotopic studies, Environmental Research 100, 130-138.
20. Blood lead and its effect Cd, Cu, Zn, Fe and hemoglobin levels of children, Science of the total Environment, Vol 277 (13), page 161-168.
21. E. Bárány, I.A. Bergdahl, L.-E. Bratteby, T. Lundh, G. Samuelson, S. Skerfving and A. Oskarsson (2005), Iron status influences trace element levels in human blood and serum, Environmental Research 98, 215-223.
22. Ebba Bárány, Ingvar A. Bergdahl, Lars-Eric Bratteby, Thomas Lundh, Gösta Samuelson, Staffan Skerfving and Agneta Oskarsson (2002), Trace Elements in Blood and Serum of Swedish Adolescents: Relation to Gender, Age, Residential Area, and Socioeconomic Status, Environmental Research 89, 72-84.
23. Geoffrey T (1994), ICP-MS or ICP-AES and AAS? a coparation, Varian.
24. Graham Hams, Dr. Stephen. E. Anderson (1997), Rapid and Simple determition of trace element in clinical sample by ICP-MS, Part 1: Whoo blood: As, Cd, Mn, Pb and Se, ICP-MS-15, 1-7.
25. Graham Hams, Dr. Stephen. E. Anderson (1997), Rapid and Simple determition of trace element in clinical sample by ICP-MS, Part 2: Serum: Al, Cu, Se and Zn, ICP-MS-16, 1-5.
26. Halina B. Röllin, Angela Mathee, Jonathan Levin, Penny Theodorou, Halina Tassell and Ina Naik (2006), Examining the association between blood manganese and lead levels in schoolchildren in four selected regions of South Africa, Environmental Research 103, 160-167.
27. Jack Caravanos, Arlene L. Weiss, Marc J. Blaise and Rudolph J. Jaeger (2006), A survey of spatially distributed exterior dust lead loadings in New York City, Environmental Research 100, 165-172
28. John D.Cremin, Jr. and Donald R.Smith (2002), In vitro vs in vivo Pb effects on brain protein kinase C activity, Environmental Research 90, 191-199. 29.Jody Butler Walker, Jan Houseman, Laura Seddon, Ed McMullen, Karen Tofflemire, Carole Mills, André Corriveau, Jean-Philippe Weber, Alain LeBlanc, Mike Walker, Shawn G. Donaldson and Jay Van Oostdam (2006), Maternal and umbilical cord blood levels of mercury, lead, cadmium, and essential trace elements in Arctic Canada, Environmental Research 100, 295-318.
30. Jean-Pierre Goullé, Loic Mahieu, Julien Castermant, Nicolas Neveu, Lauren Bonneau, Gilbert Lainé, Daniel Bouige, Christian Lacroix (2005), Metal and metalloid multil – elementary ICP-MS validation in whole blood, plasma, urine and hair Reference values, Forensic Science International 153, 39-44.
31. L.S. Friedman, O.M. Lukyanova, Y.I. Kundiev, Z.A. Shkiryak-Nizhnyk, N.V. Chislovska, A. Mucha, A.V. Zvinchuk, I. Oliynyk and D. Hryhorczuk (2005), Predictors of elevated blood lead levels among 3-year-old Ukrainian children: A nested case-control study, Environmental Research 99, 235-242.
32. Lawrence M. Schell, Melinda Denham, Alice D. Stark, Julia Ravenscroft, Patrick Parsons and Elaine Schulte (2004), Relationship between blood lead concentration and dietary intakes of infants from 3 to 12 months of age, Environmental Research 96, 264-273.
33. Maria I. Hernández-Serrato, Teresa Imelda Fortoul, Rosalba Rojas-Martínez, Laura R. Mendoza-Alvarado, Lourdes Canales-Treviño, Tommaso Bochichio-Riccardelli, Maria Rosa Ávila-Costa and Gustavo Olaiz-Fernánde (2006), Lead blood concentrations and renal function evaluation: Study in an exposed Mexican population, Environmental Research 100, 227-231.
34. M. Vahter, M. Berglund, A. Åkesson and C. Lidén (2002), Metals and Women's Health, Environmental Research 88, 145-155.
35. Michael R (1994), Determination of trace leval of rare earth elements in basals by ICP-MS, Varian.
36. N.-G. Ilbäck, U. Lindh, R. Minqin, G. Friman and F. Watt (2006), Iron and copper accumulation in the brain of coxsackievirus-infected mice exposed to cadmium, Environmental Research 102, 308-313.
37. Nguyen Van Nhien, Nguyen Cong Khan, Tomoki Yabutani, Nguyen Xuan Ninh, Afework Kassu, Bui Thi Mai Huong, Tran Thanh Do, Junko Motonaka and Fusao Ota (2005), Serum Levels of Trace Elements and Iron-Deficiency Anemia in Adult Vietnamese, Asia Pac J Clin Nutr 2008, 17 (1), 48-55.
38. Pearce Nicholas J.G., Westgate John A., Perkin William T., Preece Shari J., (2004), The application of ICP-MS methods to tephrochronological problems, Aplied geochemisry, Vol. 19, No. 3, 289-322.
39. Robert A, Jacob PD (1994), Trace elements. In: Text book of clinical Chemistry, Edited by Norbert W.Tietz, Philadenphia, 965-985.
40. Shunqin Wang and Jinliang Zhang (2006), Blood lead levels in children China, Environmental Research 101, 412-418.
41. Shu-Hao Chang, Bi-Hua Cheng, Su-Long Lee, Hung-Yi Chuang, Chun-Yuh Yang, Fung-Chang Sung and Trong-Neng Wu (2006), Low blood lead concentration in association with infertility in women, Environmental Research 101, 380-386.
42. Scott Clark, JoAnn Grote, Jonathan Wilson, Paul Succop, Mei Chen, Warren Galke and Pat McLaine (2004), Occurrence and determinants of increases in blood lead levels in children shortly after lead hazard control activities, Environmental Research 96, 196-205.
43. Waelin I. Mortada, Mohamed A. Sobh, Mohamed M. El-Defrawy and Sami E. Farahat (2002), Reference Intervals of Cadmium, Lead, and Mercury in Blood, Urine, Hair, and Nails among Residents in Mansoura City, Nile Delta, Egypt, Environmental Research 90, 104-110.
44. Yulin Ren, Zhuoyong Zhang, Yuqiu Ren, Wei Li, Mengcai Wang, Gang Xu (1997), Diagnosic of lung cancer based on metal contents in serum and hair using multivariate statistical methods, Talanta 44, 1823-1831
Các file đính kèm theo tài liệu này:
- LV.doc