XÍCH MARKOB
NGUYỄN THANH MẪN
Trang nhan đề
Mục lục
Chương1: Một số bổ túc toán học.
Chương2: Quá trình ngẫu nhiên.
Chương3: Martingal.
Chương4: Xích Markob.
Kết luận
Tài liệu tham khảo
21 trang |
Chia sẻ: maiphuongtl | Lượt xem: 2110 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Luận văn Xích Markob, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
. Chu'dngIII : MARTINGAL
I/Trungblobcodi~uki~ndolvdiphanho~chvadolvdiham.
1.l/MOts6khiiini~mv~d~ihiQngngi1unhH~n.
Chom<)tkhonggianXac sua't(Q,ffi,j.1)
- Hamf xacdinhtrenQ va la'ygiatri trenR gQila d(;lilu'<jngng~u
nhienne'uf dodu'<jc
-M(f) == ffdJ.1:Trungblnhcuaf
Q
- M(I /R)= 1. fIdJI :Trungblnhcuaf vdi di€u ki~nR
JI(R) R
1.2/Trungblob codi~uki~nd6ivOiphanho~ch
Binhnghia1.2.1: Chot~pkhacr6nglaQ. HQcact~pconcuaQ la
91={Rj,R2,...,Rn,...GQila m<)tphanho(;lchcuaQ ,ne'u:
(1) Ri n Rj =1>ne'u i :;t:j
( 2) u Rn=Q.n
Binh nghia1.2.3:Cho2 phanho(;lchtrenQ Ia 91va 6l',ne'u: mQiph§ntU'
cua91d€u la h<jpcuacacph§ntU'cua~ta n6i91ch((atrong67.Ky hi~u:
91c67.
Ghi chu:Ne'u91c ~ta n6i91thohdn~, ngu'<jcl(;li~min hdn91.
Binh nghia 1.2.3:Cho 2 phanho(;lchtrenQ la 91va ~. Giao cua91va
61'la hQcact~pxacdinh nht(sail:
91C8)r;? ={Ri /\ Sj /Ri E 91,Sj E r;?
Ghi chu:
+Giaocua2 phanho(;lchla 1phanho(;lch
+C6th6mar<)ngiaochon phanho(;lch
Trang19
Dinh nghia1.2.4:ChokhonggianXac su(t (0,91,/.1),f la d~ilu'9ngng~u
nhien, ky hi~ubdiM(f/91),xacdinhnhu'sail:
Vdi :OJ E Ri E 9i: M ( f 191)(0))=M(f I Ri)
+Nh~nxet:
- M ( f I 91)la h~ngtrenm6iphffntItcua91
- ffdfJ =fM(f /9i)dfJ vdiRi E91
RI Ri
- Ne'u91={a} th'iM(f/~H)=M(f)
M~nhd~1.2.5:trungblnhcodi€u ki~ntrenphanho~chcocacHnhch(t
sail:
0) M(M(f/Q9)/91))=M(f/91)ne'u91c 67
(2)M(M(f/91)=M/f)
(3)Ne'ug la h~ngtrenm6iphffntItcua91 vaf la d(;lilu'9ngng~unhien
saochom(fg)t6nt(;lithl:
+M(gl91)=g hcc
+M(gf/91)=g M(f/91)
CM: Ta chicffnchungminh0), cactru'ongh9Pkhacdaubchob(;lndQc.
Gia sIt91c67.
Do M(M(f/d7)191) va M(f/91)lag h~ngtrencacphffntIt cua 91,nenchi
cffnchungminh:
fM(M(f / QY)/9i)dfJ =fM(f /9i)dfJV Rj E 9i
Rl Rj
Ta co : fM(M(f /67)/9i)dj.l= fM(f /67)dfJ
RJ Rj
= L fM(f /67)dj.l,vdiSi E67(do91c d7)
i S;cRj
=L f fdj.l = ffdj.l = fM(f /9i)dj.l
i s;cRj Rj Rj
Trang20
1.3/Trungblobc6.di~uki~nd6ivoiham.
Blnh nghia1.3.1:
Cho g la d(;tilu9ngng~unhienco t~pgiatfi dSmdU9C:{Cl,C2,...,Ci , }
D~tRi ={m/g(m)=cJ, '\Ii
Ta co :91={Rl ,R2,...,Ri,...}la mQtphanho(;tchcuaQ va dU9CgQila phan
ho(;tchsinhrabdig,ky hi~u91g.
~
Blnh nghia1.3.2: Cho g la d(;tilu9ngng~unhienco t~pgiatridSmdU9C.
Trungblnhcuaf voi di€u ki~ng la:
M(f/g)=M(f/91g)
Blnh nghial.3.3: Chocacd(;tilu9ngng~unhienfo,fl,...,fn.fn+l.Trungblnh
cuafn+lvoidi€u ki~nfo,fl,...,fnla:
M(fn+/fO I\f11\...l\fn)=M(fn-l/9{fo (8)9{fi...(8)9{fn)
Blnh Nghia 1.3.4:Daycac d(;tilu9ng ng~unhien {fn}gQila dQcl~pnSu:
P(fn+l E A / fa 1\...1\fJ =P(fn+lE A),VA,'\Ii
Nh~nxet:
NSu day{fn}dQcl~pthl : M(fn+l / fa 1\...1\fn) =M(fn+l)'V n
Blnh Nghia 1.3.6:NSu P(fn EA) khongphl,lthuQcn, VA ta noi day {in}
cophanph6id€u.
2.1CacthuQcHnhcuaMartingal.
Blnh nghia2.1:ChokhonggianXac sua't(Q,91,~L)va khonggiancac
tr(;tngthaiS la t~pdSmdlt9ccacs6thl,l'c,cho{in}la daycacd(;tilu9ng
ng~unhienva {91n}ladaytangcuaphanho(;tchcuaQ l~p(fn,91n)gQila
Martingal,nSu:
(l)M(lfnl LOO,Vn
(2) fnla h~ngtrencacph~ntitcua91n
(3)M(fn+lI 91n)=fn,Vn.
Trang21
Ghi chl1:
-Di€u ki~n (3) co nghlala trungblnhcuafn+lvdi di€u ki~ntrenthl m6i
gia tricuafnchinhb~ngtn.
- NSu di€u ki~n(3)thaybdi :M(fn+l,I iRn)~fn , Vn
Ta noi (fn,iRn)latrenMartingal.
- NSu di€u ki~n(3) thaybdi : M(fn+lliRn~fn, Vn
Ta noi (fn,iRn)ladu'diMartingal.
- Cho daycacd(;lilu'<jngng~unhien{filL d~t:91n=91/0/\.../\ 91/0 .C~p
(fn,iRn)laMartingalkhivachikhi :
M(fn+llfo /\.../\fn)=fn,Vn
Ta kyhi~uddngianla {fn}
- Cho (fn,iRn)laMartingal, d~t ,iR*nla tru'ongbore1 sinh bdi phan
ho(;lch,iRn
Ta co : (fn"iR*n) la mQtquatrlnhng~unhien.
Ta xet vai vi dl.lv€ Martingal
Vi dl).l:Cho {Yn}la daycacd(;lilu'<jngng~unhiendQcl~pvdi t~pgia tri
de-ill du'<jc.
D~t: Sn=YO+ Yo + ...+Yn
Ta co :M(sn+11So /\.. ./\sn)=M(sn+Yn+/sO /\.../\sn)
=M(Yn+llYo /\.. ./\Yn) +Sn
=M(Yn+l)+Sn
Do do {sn}la martingalkhi va chikhi :M(Yn+l)=0 ,Vn
Ne-uYns6 ti€n dat cu'<jcthudu'<jcua ngu'oidat cu'<jcsail van bai thli n.
Sn:T6ngs6ti€n codu'<jcsailvanbai thlin.
{Sn}la Martingalkhi va chi khi s6ti€n trungblnhthudu'<jcsailm6ivan
baiphaib~ngO.
Trang22
- NSu{sn}laMartingalthltac6:
M(Sn+llSO/\../\Sn)=Sn,Vn.
C6 nghlala t6ngs6ti~nmongd<;5ic6du'<;5cd m6i thaidiemvdi di~uki~n
bitt du'<;5ct6ngs6 ti~nc6 du'<;5cd acthaidiemtru'dcd6 chinhla t6ngs6
ti~nthudu'<;5cd thaidiemngaytru'dcd6.Ta n6i trochdikhongthuathi~t.
- NSu {Sn}la trenMartingalthl tan6itrochdic6 l<;5ichonhat6chilc.
- NSu {Sn}la du'diMartingalthl ta n6i tro chdi c6 l<;5icho ngu'aid~t
cu'<;5c.
- Vi d1,12: Cho cha'tdi~mchuyendQngtrendu'angth~ng, sailm6ibu'dc
dung l~i t~icac di~mc6 tQadQ nguyen.saum6i bu'dccha'tdi~m
chuy~ndQngdSnvi tri k = 2,-1,0,1,2,...vdi xac sua'tPk,trongd6 Pk
:;t:0 vdihfi'uh~nk va LPk =1
k
D~t:Yn:Vi tri cha'tdi~md bu'dcthil n so vdi vi tri cuacha'tdi~md bu'dc
ngaytru'dc.
Tac6 :M(Yn) =Lk.Pk
k
Xn=Yo+Yl +"'+Yn:La vi tri cha'tdiemsailn bu'dcsovdi vi triband~u.
jet)=LPktk hamsinh.
k
Ta tha'y:f(l)=1,f'(l) =M(Yn),limf(t)=limf(t)=00
t--70 t--7oo
- NSu phanph6i {Pn}du'<;5ccho saocho:f'(1)=0thl t = 1 la nghi~mduy
nha'tcuaphu'dngtrlnhf(t)=1khi d6{Xli}la Martingal.
Th~tv~y: {Xli}la Martingal.
Q M(Yn)=0
Q f'(1) =0
- NSu phanph6i { Pk}dlt0 ho~cf'(1)<0 thlc6
them1nghi~mt=r <1khi d6rxnla Martingal.
Th~tv~y: {rxn}la Martingal.
Q M(rxn+llxn =k)=l
Q M(l+yn+llxn=k )=l
Trang23
l M(ryn+llxn=k)=l.
:Li.rl = 1
f ( r) = 1
Trongvi dV1ngu'oitamu6nHmrah~th6ngquyt~cchdib~lisaochoco
IQinha'trongtru'onghQp{So}la Martingalsaildaytasexetcacdinhly
chungminhr~ngh~th6ngquyt~cdola vonghla,tag9icacdinhly nay
lacacdinhly h~th6ng.
3/DinhIy h~thffngnha-t.
B6 d~3.1:cho91nla dayphanho~chtangva {fn}ladaycacd~illfQng
ng~unhien.£)~t91*nla tru'ongBorel sinhbdi91n
Voi Rn=91n,taco :
(1) Neu (fn,91n)la Martingalthl :
f fn+ldJl = f J:dJl
Rn Rn
(2) Neu (fn,91n)la tren- Martingal
ffn+ldJl ::;ffndJl
Rn Rn
(3)Ne'u(fn,91n)la dlfoi- Martingalthl:
ffn+ldJl ~ fJ:dJl
Rn Rn
CM:
(1):voi Rn E 91*n thl Rn Ia hQpde'mdu'<jcac phgntlt cua 91n.
Do do tachi cgnchungminhvoi Rn E 91n.
, 1
Taco: J:= (R).ffn+ldJl (do (fn,91n)Jl n Rn
=>ffn+ldJl=ffndJl ( fnla h~ngtren 91n)
Rn Rn
laMartingal).
(2),(3)tlfdngt\f
Trang24
Nh~nxet:
- Neu(fn,91n)la - Martingalthl:
M(fn+l)=M(fn) ,'\!n
- Neu (fn,91n)la tren- Martingalthl:
M(fn+l) ~ M(fn) ,'\!n
- Ne'u(fn,91n)la du'oi- Martingalthl:
M(fn+l) ;:::M(fn) ,'\!n
Dinh ly 3.2: Cho (fn,~Hn)la du'oi- Martingal va enla dC;liu'<;1ng~u
nhien Iffy2 gicitri 0 &1 do du'<;1cd6i voi 91n*la tru'ongBorel sinhboi
91n.f)~t:
1\
fn = fa +eo(f1 - fa)+e1(/z- jJ+...+en(fn - fn-J
Taco: (L9\" }a dUmMartingalva:M(J, ) S M (fJ
CM : Ta chungminh:
M(f:+ll~n)~Jn
Ta co: M(i+l ~n) =M(Jn+eJfn+l- fJI ~n )
1\
=M( fn I~n )+M(en(fn Ifn+l - fn)l~n)
1\ 1\
=fn +enM(fn+l - fn liRn)(dofn,en la h~ngtren91n)
"'
=f+ eJM(jn+l I~J- fJ(do fn lah~ngtrencua~n)
!\
~f(do(fn,~n) la du'oiMartingal)
Ta chUngminh M(f" - f"):2: 0 bangquyn~ptheon.
Vdi n=0tac6 fo =J 0 =>M(fo- ;, ) =0
GiaSIT:M( f, - f") :2:O.
1\ 1\
Taco : In+l=In +en(1:+1- 1:)
1\ 1\
=>In+1- I n+1=In+1- 1- en(In+1- In)
=(1-eJ.(ln+1- IJ+ 1:- In
~ M(IM1- L)= !(fMl-L}fl
~f(1-en).(In- 1:)df.l= f( In+1 - In)df.l~0
Q {w/en(W)=O}
Ohi chil :
-Neu(fn,91n)la trenMartingalthl(In,9\n)la trenMartingalva
M(Jn) ~M(tJ
-Neu(fn,91n)laMartingalthl (In,9\n)la trenMartingalva
M(J. ) =M(JJ
-Neufnla Sntrongvi dv 1thl fn+1- fn=Yo:la s6 ti~nthudu'<jcsan
khichdivanthlln+1
-Neu en+1=1thld vanthlln+l co thalligiachdi
-Neu en+1=0thld vanthlln +1khongco thalligiachdi
-Neu (fn,91n)la Martingal thl: M(Jn)=M(tJ: tilcla bit ky h~
th6ngcacquyt~cchdinaGclingcos5ti~nmongd<jinhu'thalligia vaG
tit cacacvanbai.
4/DinhIf h{)i t1;1Martingal :
Dinh nghia4.1:Cho (fn)la d(;lilu'<jngng~unhienxacdinhtrenkhong
giancacday(Q,~,J.l)va var,sla2s6saGchor <r .tanoir~ngtrenquy
d(;lo0) co1du'angditenquado(;ln[r,s]tUthaidi~mn-kdenn,ntu:
(1) fn-k(ro):::;r
(2) r < fn-k+m(ro)< S ,vdi 0< m<k
fn
(3) fn ~ S
S
r
Fn-k
B6 d~4.2:Neu (fn,inn)va (gn,inn)la du'diMartingalthl sup(fn,gn),inn)
la du'diMartingal .
CM:
Taco:
Mfj suP(ln,gJ I)~M(sup(1In I,IgnO)
= I I In I dJ! + II gn I dJ! <00
IM<:lgnl Ifnl<lgnl
Do day fnva gn la h~ngtreninnliensup(fn, gn) la h~ngtreninn
Taco: M(sup(ln,gJ I9iJ ~M(ln I9iJ ~In
M(sup(ln,gn)I9iJ ~M(gnI9iJ ~gn
=>M(sup(ln,gn)19in)~suP(ln,gJ
Ohi chli :
- Neu (fn,inn)va (fn,gn)la trenMartingal thl (in f (fn,gn),inn)la tren
Martingal
B6 d~4.3:(B6 d~du'ongdi nen)
I
Cho (fn,inn)la du'diMartingal .
OQib(ro)la s6du'angdi leutrenro qua[r,s]tli'thaidiem0 d€n n.Ta co :
M(b):::;M~ In - r I) :::;Me!In I)+r
s-r s-r
CM:Tru'octieDtachungminh chotru'angh<jpfn~Ova r=O.
1\
Bi;lt :1: =10+eo(h - 10)+... +en-1 (1: - 1:-1)
Voiemxacdinhnhu'sau:
. N€u fm(co)=Othlem(co)=1khi fn+t(co)<svoi 1:S;t:s;k
. em(co)=0 trongcaetru'angh<jpkhac
fn
s
r=O
fo
1\
Voi eachxay dlfngh~th6ng(en) nhu'tieDthl r5 rang In chi de>
tangtren caedltangdi leDtli'thaidiem0 de'nn.
1\
Do d6 :In ?:.b.s
1\
-=>b:::;1:
s
=> M(b)S; M(J") S;M(fJ
s s
Voi fnba'tky va do~n[r,s]ba'tky
X6t (fn-rt =sup(fn-r,O).
Trang28
Dofnladu'aLMartingal.=>(fn-rt la du'aiMartingal
Hdn nuab(co)la s6du'ongdi leu trenco qua[r,s]cuafnclingchinhla s6
du'ongdi leucua(fn-rttrenco qua[O,s-r]
Dodo:
M(b)~ (in -r~r ~ M~ in -rs I) ~Mj in I+rs
s-r s-r s- rs s s
Dinh Iy 4.4:
Ne'u(fn,91n)la du'aiMartingal vaM(lfnl)<k<oo,Vnthl :
P ( hm fn(OJ)t6n t(;lihUll h';ln ) =1
n~<X)
CM: Gia sll'tnli l(;lico t~pE vai /-l(E)=m>0saDcho : Ne'uroEE thl
limineco)=00ho~climineco)khongt6nt(;li.
-Ne'uroEE thllimfn(co)=oo:
Theodinhly Fatou,Taco:
Iliminf I in Idj.1~liminf II in Idj.1
E n n E
~ liminf II in Idj.1
n Q
=liminf M~ in I)<k <(X)
n
Ma:lim inf(OJ)=(X) vdi OJ E E
n
=>Ilim inf Iin Idj.1= (X) (do j.1(E)>0
E n
=>Voly.
-Ne'uCO E E thllimfJw )khongt6nt~i
n
Dodovaim6iCO E E, co2 s6hi1utyr(co)var(co)saDcho:
Co vo h(;lnn : fn(co)<r(co)
Co vo h(;lnn : fn(co)> s(co)
=>co vo h(;lndu'ongdi leutrenco qua do(;ln[r(co), r(co)]
Do t~ps6hi1uty la de-mdu'<;1c,lien co th€ daubs6cacdo(;ln[r(co), r(co)]
thanhcacdo(;lnqk=[rk,sk]de'mdu'<;1c.
E>~t : Ak ={roleovahC;ln:fn(ro)~rk(ro)va eova hC;ln : fn(ro)~Sk(ro)}
Ne'uro E Ak thl eo va hC;lndu'angdi len roquadoC;ln[rk,Sk]
Taco:~p(Ak):~"p(YAk) =p(E) =m>0
::::>eok 0saoeho:J.1(Ako»O,vai Ako ={ro/eovahC;ln:fn(ro)<r va
eoeova hC;ln: fn(ro)>s} .
E>~t,bn(ro)la s6du'angdi len trenroqua[r,s]titthaidi€m 0 de'nn
b(ro)- la s6du'angdi lentrenroqua[r,s]trongtoanbQquatrinh
Taeo:M(b)=fbdJ1~ fbdJ1=oo
Q Aka
TheoBE>3-4taeo:
M(bJ~ M~In O+r~k+r =cs-r s-r
Ma bnla daytanghQitl,lv€ b
Do do theodinhly hQitl,lddndic$uTa eo:
M(bn)~ M(b)=00va ly
H~ qua 4.5:Ne'u(fn,91n)Ia trenMartingal khongam thilim fnt6nt(;li
hil'u hC;lnhee .
E>~ebic$tNe'u(fn,91n)la Martingal khongamthilim fnt6ntC;lihil'uhC;ln
hee.
CM : VI (fn,91n)la trenMartingal khongam
::::>(-fn,91n)la du'aLMartingal
Ta eo :M( II-fill ) =M(fn)::; M(fo)
~ lim(- fJt6n t~ihUllh~nheen
~ lim(fn)t6nt~ihUllh~nheen
Vi dt}.1:
Xet ehuy€n dQngng~unhieneuaI ehfftdi€m trendlfangth~ngnhu'trong
VD2 eua mve2.
Trang30
Giasaphu'dngtrlnhf(t)=1eonghi~mt=r <1
Taeo: (rX,,)laMartingalkhongam.
=>LimrXu t6nt(;lilien tvehee
Ma Xnla'ygiatri nguyen,n€u eo2 khan[mgsail:
(1)Vdiheeco :tlmdu'QeN(co)saoeho:n >N(co)=>Xn=XN
(2)lim xn(co)=00hee
Neueo(1):
Ta eo(1)=n(xn=Xn+l=... =Xn+k)
k
Ma p(xn =xn+l=...=Xk+n)=POk
=>P((1»=0.
=>(1)khongthSxftyra
=>eo(2),tue: limxn(co)=00 hee
Vi dV2: ehof la hamddndi~ut6nt(;litren[0,1]
D~tiRnla phanho(;lehdo(;ln[0,1], nhu'sau:
[0,2-n],[2-n,2.2-n],...,[(2n-1) .2-n,1]
fnladayhamxaedinhnhltsail:
XE[j.2-n,Q+1).2-n],d~t:
fn(x)= f( (j+1).2-D) - f(j.2-D)
2-D
Ta tha'y: lim fn = f' , n€u lim fn t6n t(;liTa d~tha'yr~ng (fn, iRn)la
Martingal khongam.
=>limfn t6n t(;lihUll h(;lnhee
=>f't6n t(;lihUll h(;lnhee
V~y ham f ddn di~utangthl d(;loham f' ehi khong t6n t(;li tren t~pd9 do
o.
Trang31
5/Dinhly h~th6ngthO'2:
5.1/Thaidi~mdungng~unhien:
Cho(Q,~,J.1)lakhonggianeaeday
(Qn,~n,J.1n)khonggianeaedayeoehi€u dain+1.
Dinh Nghla 5.1.1:Thai di6mng~unhienla d~ilu<jngng~unhien t(O)
thoa:
(1) t(O)l~ygia tri la s6nguyenkhongamho~e+00
(2){0)/t(0)=n}E ~n,Vn
Nh~nxet:
-Chodayd~iht<jngng~unhien(fn)vathaidiemng~unhient(O),d~t:
ft(O)=fn(O), ne'ut(O) =n
ft(0) khong xae dinh ,ne'ut(0)=00
OC!
Ta eo : {wi/t(w)<c}=U{wlt(QJ)=n!\/n(w)<c}
n=1
=>ft(0) dodu<jedO'ivdi ~
Dinh nghla 5.1.2:Thai diem ng~unhien t(O) gQi la thai diem dung, ne'u
t(0) huu h(;lnhee.
Nh~nxet:
-N6u t(OJ)Iii thai diSm dungthl: .u(O{w/t(w)2': n})=0
D inhnghla5.13:Cho(fn)laquatrlnhng~unhien, ne'u:
fn(0) lah~ngsO'vdinkhaIOnhee
Tanoifnlaquatrlnhng~unhiendung
Dinh nghla5.1.4:Chofnla quatrlnhng~unhien va t(O)la thaidiem
1\
ng~unhien,d~t:fn(m)=fmin(n,t(OJ)/m)
Ta noi: (in) laquatrlnhbidungeua(in>dthaidiemng~unhient(O).
5/DjnhIy h~th6ngthu2:
5.1/Thaidi~mdungngfiunhien:
Cho(Q,~,J.1)lakh6nggianeaeday
(Qn,~n,J.1n)kh6nggianeaedayeoehiSudain+1.
Djnh Nghia 5.1.1:Thai di~mng~unhienla d<;lihi<;fngng~unhien t(ro)
thoa:
(1) t(ro)la'ygiatri la s6nguyenkh6ngamho~e+00
(2){ro/t(ro)=n}E ~n,Vn
Nh~nxet:
-Cho dayd<;lilu'<;fng~unhien(fn)va thaidi~mng~unhient(ro),d~t:
ft(ro)=fn(ro), ne'ut(ro)=n
ft(ro)kh6ng xae dinh ,ne'ut(ro)=00
00
Ta eo: {wift(w)<c}=U{wlt(aJ)=nAfn(w)<c
n=1
=>ft(ro)do du'<;fed6i vdi ~
Djnhnghia5.1.2:Thaidi~mng~unhient(ro)gQila thaidiemdung,ne'u
t(ro)hUll h<;lnhee.
Nh~nxet:
-Ntu l(oo)Iii thai diSm di'lngthi: Jl(E! {OJ/ t(OJ)2 n})=0
D jnhnghia5.13:Cho(fn)laquatrlnhng~unhien, ne'u:fn(ro)lah~ngs6
vdinkhaIOnhee.tanoifnlaquatrlnhng~unhiendung.
Dlnh nghia5.1.4:Chofnla quatrlnhng~unhien va t(ro)la thaidi~m
1\
ng~unhien, d~t: fn(OJ) =fmill(n,t(OJ)/OJ)
Ta noi: (in) laquatrlnhbidungeua(f,J dthaidi~mng~unhient(ro).
Trang34
Nh~nxet:
in(m)=
{
fn (00) , n~ut(oo):::n
ft (m),neu t(m)<n
Do done'utern)la thaidiSmdungthl J n laquatrinhng~unhiendung.
5.2/Bioh ly h~th6ogthO'2:
~
B6 d~5.2.1:Neu (fn,91n)la Martingalva tern)la thaidiSmng~unhien
saocho:fJ;dfl t6nt(;liTaco:
Q
fitdfl = f indfl + fttdfl
(2 {t,;n) {t>n)
n n
CM Ta co: fitdfl =L fitdfl + fitdfl =L fikdfl +fitdfl
(2 k=O(t=k\ {t>n} k=O{t=k\ t>n
n
=L findfl + fitdfl (do(t=k)E 91nva (fn, 91n)la
k=O{t=k} t>n
Martingal )
=fi"dfl + fitdfl
{t,;n\ It>,,}
Bioh ly 5.2.2:Neu(fn,91n)laMartingalvatern)la thaidiSmdungthoa:
(1) M(lftl)<oo
(2) li~ findfl =0
(t2n\
Thl :M[ft]=M[fo]
Ghi chu:
- Neu (fn,91n)la tren- Martingal thl:M[ftJ ~M[fo]
Neu(fn,91n)ladu'di- Martingal thl:M[ft] ~M[fo]
CM:
Taco:
fi"dfl = findfl + fitd;.,=f fndfl- ffndfl + fJ;dfl
(2 (t,;n\ (t>,,\ OJ {t:>n} {t>n}
Trang35
Ma lim ffndJ.l=0 (giathie't)
n~oo{t>n}
hm fJ;dJ.l =0 (dot(OJ)Hi thaidi€m dung)
t>n
=> fftdJ.l =ffodJ.l
Q Q
H~qua:5.2.3:Cho(fn,91n)la Martinga1xacdjnhtrenkhonggianQ co
dQdohfi'uh~nvat(0) 1athaidiemng~unhien.NSu:
Ifni~k, Vn thl M[ft]=M[fo]
CM:
Do Ifni~k va Q codQhfi'uh~n
~M(lftl) <(fJ
Taco:
I findJ1l::; f IinIdJ1::; fkdJ1-+O,khi-+00 (VIt(O)la thaidiemdung)
{c>nj {c>nj {c>nj
Do do theo Dinh ly 5.2.2,tadu'Qcke'tqua
Nh~nxet:
-NSufn1at6ngsoKti€ncodu'Qcsanvanchdithancuangu'aid~tcu'Qcthl
M[ft]=M[fo]co nghla la dil chQnh~th6ngthai diem dung nao cling
khonglamthayd6i t6ngs6ti€n mongdQithudu'Qcne'utrochdi1avo h~i
1a(Martingal)
M~nhd~5.2.4:Cho (fn,91n)la Martingalva t(O) la thaidiemng~u
1\
nhienva in (m)=fimin(n,C(aJ));(m)
1\
Khi do:(in' 91n) laMartingal.
CM:
1\ n 1\
Taco :1in I::;L 1J; 1=>1in I khiitich
;=0
1\
D€ tha'yf n la h~ngtn~n91n
Trang36
Vdi eoERE91nTa eo :
[
/\
J
I /\
M I n+1linn (m)= JL(R)I I n+1dJL
=Jl(R) (
ff:+ldJl + ff:+ldJl
]Rn(tn
= peR)( ffndJL+ ff..
n+1dJL
)Rn(t:5,n) R (. n I>n)
=
(lR)( f!ndJl + ffndJl ]
( do Rn(t>n) E 91n)
Jl Rn(tn)
1
(
f\ f\
J=R ffndJl + ffndJlJl( ) Rn(tn)
I /\ /\ /\ "-
=JL(R) I J:dJL =In(doInhangtreninJ
H~qua5.2.5:Cho(fn,91n)HiMartingalIffygiatri Ia 86nguyen,teo)Ia
/\
thai diem ng~unhien .£)~t: In(m)=Imin(n,I(W)/m)
/\ /\
Ne'u In bieh~ntrenvadu'dithl In Iaquatrlnhdung.
CM:
/\
-Ne'ufn~0 thl(In ,91n)IaMartingalkhongam.
Dodo:
hm t6nt(;tilien t\lehee
/\
Ma In Iffygiatringuyen.
f\
=?in Ia h~ngb~tdftutunkhaIOnhee
1\
=?fn Iaquatrlnhdung
/\
-Ne'uIn ~e
Trang37
/\
=:.>In -C~0
/\
Ta apd\lngk€t quatrencho in -c
" /\
- Neuin ~d
/\
=:.>- in ~ - d
/\
=:.>d- in ~ 0
/\
Taapd\lngk€t quatrenchod-in
Vi d\l : Cho(fn)la quatrlnhng~unhiend9Cl~pva cophanph5i
d~u, la'ygiatri-1,0,1.Va M(fn)=0
D~t:Sn =Yo+ Yl +...+Yn
GQit(ro)la thaidi€m ng~unhien masn(ro)=Mho~csn(ro)=-Nvdi
M,N :la 2s5nguyendu'dngc5dinhnaodo
X6t quatrlnh:
M , n€u sn(ro)=M
S n (w) = Smin(n,t(w))(w) -N, n€u sn(ro)=-N
Sn,n€u- N< Sn(ro)<M
/\
=:.> s bi chann . .
/\
=:.> Sn laquatrlnhdung
N€u Ynla s5ti~nthudu'<,jcsailvanthiln
/\
S n (aJ)=Mkhi ngu'oit6chilclamphasanngu'oid~tcu'Qc
/\.
S n (w)=- N khi ngu'oit6chilcphasan
/\ .
Sn laquatrlnhdung
=:.> p( quatrlnhdung)=1
=:.>P(Ngu'oit6chilclamphasanngu'oid~tcu'<,jc)
+P(Ngu'oit6chilcbi phasan)=l
Trang38
Vdi P=P(Ngu'oit6chuclamphasanngu'oid~tcu'<jc)
q =p(Ngu'oit6chucbi phasan)
Ma :0=M(So)=M(S+)
=P.M+q.(-N)=P.M+(l-P).(-N)
N M
=>p=M+N,q= M+N
6/Lu(itsalon:
Blnb ly 6.1:Cho(Yn) la daycacd(;lilu'<jngngfiunhiendQcl~pcophan
s
ph6id~uvdiM(Yn)=ahuuh(;ln.D~t:Sn=Yo+Yl+...+Yn va s*n=-E...Ta
n
co:P{limSn=a)=l~~oo
CM:
Ta chungminhtrongtru'ongh<jpYnIffyhliuh(;lnvdigia trjXac sufft
khacO.
Ta co : P(Yn=j)=Pj>0 vdihliuh(;lnj va L~.=1
. J
D~t lfJ(t)=L Pj"tJ
J
Ta co :ljJ(l) =1,lfJ'(I)=a=M(yJ
l
D~t:f(k,n)= [lfJ(t)]nvdit>Osexacdinhsan
Ta sechungminhding:f(Sn,n)laMartingal
Taco:
tk+J tk .
M(Sn+l,n+1)lsn=k)=~[lfJ(t)]n+l'~ = [tp(t)Y+1'Z;Pj"tJ
tk
=[lfJ(t)]n=f(k,n) =f(sn,n)
Trang39
=>f(sn,n)laMartingalkhongam.
Theadinhly hQih,IMartingal,taco:
[
.
]
n
tS" tS"
f(Sn,n) = [cp(t)l= cp(t) hQih,Ihfi'uh(;lnhee
tb
Vdi 8>0, di;it:b=a+8vag(t)= qJ~)
Ta co :g(l)=a , g'(1)=b-a>0.
=>g(to)> 1khi tokhag§n 1
N€u S' >b th'n- 1:
S'
to" tb
cp(to)~ cp(to)=g(to)>1
[
.
]
n
( S"
=>f(sn,n) = ;((0) >[g(to)Y~ cokhi n ~ co
[
S'
]
n
Ma f(s.,n)= ~&:') h9i tIi hiluh~nhee
*
=>P(sn(ro));:::b)=0
=>S*n(OJ) ~b =a +E hee
=>lim supSon(OJ~a +E hee )
Tllong tll voi E >0,d~tb =a- E , tadll<Je:
=>liminf S*n(OJ)~a - Eheen
=>a - E ~lim inf S*n(OJ)~ lim sup S*n(OJ)~ a +E heen
=>P(lim S*n=a) ==1n
,V >0E:
Trang 40