Một số phương pháp định lượng iot

Điện cực chọn lọc ion dùng trong phương pháp đo thế để định lượng iot là điện cực màng rắn, được chế tạo từ AgI/Ag2S, có cấu trúc như sau: Ag / AgCl/KI 0,1M/ màng rắn AgI + Ag2S / dung dịch phân tích / KCl/AgCl/Ag. Thế đo được phụ thuộc vào lg [I-]. Phương pháp này bị Cl- và SO32- cản trở vì vậy phải tách các ion này khỏi dung dịch trước khi đo. Trong quá trình đo iot, điện cực thường bị một màng bao phủ nên phải làm sạch màng phủ trên điện cực. Phương pháp này được dùng để xác định iot trong H2O. Có một số tác giả dùng để xác định iot trong nước tiểu, sữa nhưng kết quả kém chính xác.

doc26 trang | Chia sẻ: Dung Lona | Lượt xem: 9380 | Lượt tải: 3download
Bạn đang xem trước 20 trang tài liệu Một số phương pháp định lượng iot, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
Mở Đầu Các nguyên tố vi lượng có vai trò quan trọng đối với sức khỏe con người, chúng có trong thành phần của các enzym, điều khiển sự hoạt động của các cơ thể sống , cho nên các nguyên tố vi lượng không những duy trì sự sống mà còn đảm bảo cho sự phát triển của con người cả về thể chất lẫn trí tuệ. Iot là nguyên tố vi lượng rất cần cho sự phát triển của cơ thể như quá trình tổng hợp hocmon tuyến giáp, duy trì thân nhiệt, phát triển xương, quá trình biệt hóa và phát triển của não cũng như hệ thần kinh của bào thai. Thiếu iot sẽ gây hiện tượng tuyến giáp không đủ lượng hocmon cần thiết, dẫn đến nồng độ hocmon trong máu thấp gây tổn thương não và các cơ quan khác trong cơ thể. Hiện tượng này được gọi là rối loạn “Thiếu iot”. Theo thống kê của tổ chức y tế thế giới(WHO). Hiện tại trên toàn cầu có khoảng 1,5 tỷ người sống trong các vùng thiếu iot và có nguy cơ mắc các chứng bệnh thiếu iot, trong đó có hơn 20 triệu người mắc chứng bệnh đần độn. Việt Nam cũng nằm trong vùng thiếu iot. theo số liệu điều tra quốc gia về tình trạng thiếu Iot năm 1992 cho thấy có tới 84% dân số Việt Nam trong tình trạng thiếu iot : trong đó 16% thiếu nặng, 45% thiếu vừa và 23% thiếu nhẹ, khoảng 10% trẻ em nước ta bị bệnh bướu cổ . Môi trường (khí quyển, thủy quyển , địa quyển) và lương thực, thực phẩm là nguồn cung cấp Iot cho con người. Hàng ngày khẩu phần iot đưa vào cơ thể dưới 100mg thì sẽ xảy ra hiện tượng thiếu iot. Bướu cổ và các bệnh rối loạn do thiếu iot là những bệnh nan giải. Giải pháp để phòng chống hiện tượng rối loạn thiếu iot là trộn lẫn iot vào muối ăn cho nhân dân dùng hàng ngày. Đối với những bệnh nhân nặng dùng muối iot không đạt được kết quả mong muốn. Người ta phải điều trị bằng biện pháp tích cực hơn như tiêm hay cho uống dầu thực vật có gắn iot (Lipiodol) hoặc các viên nén có hàm lượng iot cao theo chỉ định của bác sỹ điều trị. Khi phân tích môi trường hay các nguồn nước, lương thực và thực phẩm của một vùng địa lý, người ta thấy hàm lượng của iot trong các đối tượng này có liên quan đến tỷ lệ những người mắc bệnh bướu cổ. Bệnh bướu cổ sinh ra không phải chỉ do hàm lượng iot trong các đối tượng không khí, nước uống, lương thực và thực phẩm thấp mà còn do các yếu tố vi lượng khác nữa. Chẳng hạn hàm lượng canxi trong đất, trong nước quá cao, do tập quán sinh hoạt ăn uống của các dân tộc, do cơ địa của từng người v.v.Vì thế cho nên một số nơi mặc dù hàm lượng iot trong lương thực, thực phẩm cao như : Hải Phòng , Thái Bình vẫn có tỷ lệ người mắc bệnh bướu cổ đáng kể . Để đánh giá vi lượng iot trong đất, nước, lương thực và thực phẩm cần phải nghiên cứu tìm được phương pháp phân tích có độ nhạy, độ lặp lại và độ chính xác cao, như các phương pháp phân tích quang học hiện đại(AAS,AES,) phương pháp động học xúc tác, phương pháp điện hóa hiện đại (Von -ampe hòa tan, hấp phụ,) phương pháp sắc kí lỏng hiệu năng cao (HPLC), phương pháp phóng xạ, phương pháp kích hoạt Nơtron. Song các phương pháp này đòi hỏi phải có thiết bị chuyên dụng, đắt tiền, chưa phù hợp với đa số các phòng thí nghiệm hiện có ở nước ta . Xuất phát từ những lý do trên, trong luận văn này chúng tôi đặt cho mình nhiệm vụ nghiên cứu để tìm một phương pháp phân tích iot đơn giản có thể áp dụng cho các phòng thí nghiệm cơ sở, đó là phương pháp trắc quang UV-VIS dựa trên phản ứng tạo phức màu của iot với một thuốc thử hữu cơ. Để tăng độ nhạy của phương pháp chúng tôi sẽ kết hợp với phương pháp chiết để tách và làm giàu iot đồng thời loại trừ ảnh hưởng của lượng thuốc thử dư . CHƯƠNG I Tổng Quan 1.1. Giới thiệu về nguyên tố Iot nguyên tố Iot 1.1.1.Trạng thái tự nhiên của nguyên tố Iot [ 1,1’] Iot là tên Hy Lạp Iodes, nghĩa là “tím”, sau này hiệp hội quốc tế về hóa lý thuyết và ứng dụng gọi là Iodine, là nguyên tố hóa học, ký hiệu là I, nguyên tử số là 53 . Iot là nguyên tố vi lượng rất cần cho sự sống của các sinh vật . Iot là nguyên tố ít hoạt động nhất, có độ âm điện thấp nhất trong các halogen. Giống như các nguyên tố nhóm VIIA (họ halogen ), iot tự do thường ở dạng phân tử có công thức I2. Iot có thể thu được ở dạng tinh khiết bằng cách đun nóng hỗn hợp KI với CuSO4. Iot có thể điều chế từ nguồn tảo bẹ, rong biển và một số loài cây khác, do chúng có khả năng hấp thụ và tích tụ iot trong cơ thể. Để điều chế iot từ nguồn nguyên liệu này, người ta lấy rong biển khô, đốt thành tro rồi hòa tan tro vào nước. sau đó lọc lấy dung dịch, cô dung dịch đến khi muối kết tinh lắng xuống (muối kết tinh là các muối clorua, sunpat ). Gạn lấy phần nước trong (có muối của iot ). Dùng khí clo hay MnO2 và H2SO4 để oxi hóa I- trong dung dịch thành I2 .Cho I2 thăng hoa ta sẽ thu được iot. Nguồn nguyên liệu chính để điều chế I2 là nước giếng khoan dầu mỏ . Hơi iot gây khó chịu cho mắt và màng nhày, khi tiếp xúc với thời gian kéo dài ≥ 8 giờ trong bầu không khí có nồng độ I2 1mg/m3. Khi thao tác nếu để dây iot vào da có thể gây bỏng . 1.1.2 Một số tính chất vật lý và hóa học của Iot [1] Iot tinh khiết có màu tím xẫm. Iot có tính thăng hoa, hơi Iot có màu tím, mùi khó chịu và gặp lạnh sẽ kết tinh lại (không qua thể lỏng ) Bảng 1.1. Trình bày một số đặc điểm và các hằng số vật lý của Iot Bảng 1.1. Đặc điểm và các hằng số vật lý của Iot Tinh thể Iot Cấu tạo trực giao Tính chất vật lý Trạng thái Rắn Điểm nóng chảy 113,7 K (236,660F) Điểm sôi 184,3 K (363,70F) Thể tích phân tử 1.10- 6m3/mol Nhiệt bay hơi (I2) 41,57 kJ/mol Nhiệt nóng chảy (I2) 15,52 kJ/mol Độ âm điện 2,66 (thang Pauling) Nhiệt dung riêng 54,41J/ kgK (ở 250C) Độ dẫn điện 1,3107 W/mk Độ dẫn nhiệt 449W/mk (3000K) I2 không có Từ tính Năng lượng ion hoá 1. 1008,4 kJ/mol 2. 1845,9 kJ/mol 3. 3180 kJ/mol Các đồng vị ổn định nhất của iot ISO Thời gian bán rã DM DE (Mev) DP 127 I ~ 100% Rất ổn định 129 I Tổng hợp 1,57.107 năm b - 0,194 Xe 131 I Tổng hợp 8,0207 ngày b - 0,194 131Xe 128 I Tổng hợp 25 phút Iot cũng giống như Cl2, Br2 nó có thể tạo nhiều hợp chất với các nguyên tố hóa học, nhưng nó ít hoạt động hơn so với các nguyên tố khác trong nhóm VIIA và iot có tính chất hơi giống với kim loại . Iot tan trong các dung môi hữu cơ: nếu dung môi hữu cơ là các hợp chất không chứa oxi như CHCl3, CCl4, CS2, C6H6, etxăng ... tạo thành dung dịch màu tím; nếu dung môi hữu cơ trong phân tử có chứa oxi như rượu, ête, xêton ... tạo thành dung dịch màu nâu . Iot hòa tan ít trong nước( ở 25oC độ tan của I2 trong nước là 0,34 g I2/l) tạo ra dung dịch màu vàng. Iot tan nhiều trong dung dịch nước có chứa I- vì có phản ứng I2 +I- = I3-, dung dịch I3- có màu nâu và có tính chất của một hỗn hợp gồm I2 và I- Iot có phản ứng với dung dịch tinh bột loãng tạo dung dịch màu xanh, màu xanh sẽ biến mất khi đun nóng dung dịch, nhưng để nguội màu xanh sẽ xuất hiện trở lại. dung dịch tinh bột loãng được dùng làm chỉ thị để nhận biết và chuẩn độ iot Hợp chất của iot thường gặp là các muối natri và kali: NaI, KI, NaIO3, KIO3,... 1.1.3. Vai trò của Iot đối với sinh hóa người [1,2] Đối với con người iot là nguyên tố vi lượng cực kỳ quan trọng. trong cơ thể người, iot chỉ chiếm 4.10-5% trọng lượng cơ thể (15-23mg), nhưng nó đóng vai trò quan trọng cho sự phát triển của cơ thể cả về thể chất lẫn trí tuệ. trên 75% iot trong cơ thể tập trung ở tuyến giáp, phần còn lại được phân bố trong các mô tuyến vú, dịch tiêu hóa, thận, nước bọt. Iot tồn tại ở dạng I- hoặc gắn với protein vận chuyển lưu thông trong cơ thể . Chức năng quan trọng nhất của iot là tham gia tạo hocmon T3 (triiotothyronin) và T4(thyroxin). Hocmon tuyến giáp đóng vai trò quan trọng trong việc điều hòa phát triển cơ thể, hoạt động của hocmon tuyến giáp rất cần cho sự phát triển bình thường của não, làm tăng quá trình biệt hóa của tế bào não và tham gia vào chức năng của não bộ . Chính vì vậy các hocmon tuyến giáp T3 và T4 rất cần cho sự phát triển chức năng của não và hệ thống thần kinh. Không đủ iot để tạo hocmon tuyến giáp sẽ gây ra rối loạn nội tiết, các rối loạn này được biểu hiện thành các chứng bệnh đần độn, thiểu năng tuyến giáp và bệnh bướu cổ [3,4,5,6] Bệnh đần độn xảy ra trong quá trình phát triển của bào thai, thiếu iot gây ra hiện tượng sẩy thai liên tiếp, thai chết lưu hoặc đứa trẻ sinh ra bị đần độn do não bị tổn thương vĩnh viễn, thần kinh, trí tuệ và thể chất chậm phát triển, có thể gây ra câm, điếc, lùn, khả năng tư duy học tập kém v.v... Thiểu năng tuyến giáp do cơ thể không nhận đủ hocmon tuyến giáp do lượng hocmon tuyến giáp trong máu thấp, sinh ra bệnh với những biểu hiện chậm chạp, lờ đờ, buồn ngủ, da khô và táo bón . Bệnh bướu cổ là hiện tượng tuyến giáp to hơn bình thường, lượng hocmon tuyến giáp trong máu thấp, sinh ra nhiều hocmon kích thích tuyến giáp làm cho tuyến giáp phình to thành bướu . Theo khuyến nghị của tổ chức y tế mỗi ngày người trưởng thành cần 150mg iot, phụ nữ có thai 175mg, phụ nữ cho con bú 200mg. Liều lượng lên tới 1000 mg iot/ ngày có thể coi là an toàn. Iot có trong thực phẩm tồn tại ở nhiều dạng khác nhau như: I-, dạng iot vô cơ tự do, dạng hữu cơ ... Iot được dùng làm thuốc khử trùng, dung dịch iot trong cồn có nồng độ 3% dùng để khử trùng vết thương . Các đồng vị của iot được sử dụng nhiều trong hóa hữu cơ, nghành y. Đồng vị 128I dùng trong y tế để tạo ảnh và xét nghiệm hoạt động của tuyến giáp, đồng vị 131I được dùng để điều trị ung thư tuyến giáp. 1.1.4. Tình trạng thiếu Iot trên thế giới và ở việt nam Trong môi trường iot phân bố không đồng đều. hàm lượng gần đúng của iot trong các thành phần môi trường được trình bày trong bảng 1.2. Bảng 1.2. Sự phân bố hàm lượng iot trong môi trường đất nước và không khí [7] Môi trường Nồng độ(ppm) %I Không khí 0,002 2.10-8 - 2.10-7 Nước sông 0,001 10- 7 Nước biển 0,01 10 -6 – 10 -5 Than bùn 3,4 3,4.10 -4 Đất 1,8 1,8 . 10-4 Khoáng 0,3 3.10-5 Những khu vực đất liền càng xa đại dương càng có nguy cơ thiếu hụt iot lớn. sự thiếu hụt iot nghiêm trọng xảy ra trên miền núi cao, cũng có khi xảy ra ở vùng hay bị lũ lụt hoặc đồng bằng có các sông lớn. Vòng tuần hoàn của iot trong môi trường có thể mô tả như sau: iot dễ bị rửa trôi từ đất đi vào các nguồn nước rồi ra biển. Từ nước biển iot theo nước bốc hơi đi vào không khí. Một phần iot được trở lại đất, nước theo mưa, lượng iot được bổ sung theo mưa không đủ, vì vậy đất và nước ở nhiều vùng luôn thiếu iot, đặc biệt là các vùng núi cao. Các sản phẩm nông nghiệp như lương thực, thực phẩm, các gia súc chăn nuôi ... ở các vùng này cũng mang dấu ấn thiếu iot. Con người sinh sống bằng các loại sản phẩm đó cũng chịu hậu quả thiếu iot, mắc chứng bệnh chung là bướu cổ. *Trên thế giới, theo đánh giá của WHO và UNICEF có khoảng 29% dân số thế giới (1570 triệu người) có nguy cơ thiếu iot, trong đó ít nhất có 655 triệu người bị tổn thương não; 11,2 triệu người bị đần độn [8,9] Hiện nay có 110 nước có vấn đề thiếu iot ở các vùng Mỹ La tinh , Châu Âu, vùng Andit và Himalaya nơi mà iot bị sói mòn bởi mưa và băng . Tại Trung Quốc năm 1978 có làng tới 80% người dân mắc bệnh bướu cổ, 11% bị đần độn. Tại vùng núi Jawa (indonexia) lượng iot trung bình thấp, có tới 70% người bị mắc bệnh bướu cổ (1972). * ở Việt Nam sự thiếu hụt iot ở mức trầm trọng. Năm 1993, UNICEF và bệnh viện nội tiết trung ương tiến hành khảo sát tại một số điểm ngẫu nhiên trên toàn quốc bằng cách khám bướu cổ và xác định lượng iot niệu, kết quả cho thấy 94% dân số bị thiếu iot [10]. Cũng theo số liệu của UNICEF [11] năm 1993 về tỷ lệ bướu cổ và lượng iot niệu đã được thống kê trên bản đồ. Tỷ lệ bướu cổ (%) A Iot niệu () B = Dựa theo kết quả khảo sát cho thấy, các tỉnh Lao Cai, Sơn La, Cao Bằng, Yên Bái, Nghệ An là những tỉnh có số người mắc bệnh bướu cổ cao. Đánh giá mức độ thiếu iot theo iot niệu được trình bày trong bảng 1.3. Bảng 1.3. Phân loại mức độ rối loạn thiếu Iot Iot niệu (mg / dl) Mức độ rối loạn thiếu iot < 2 Nặng 2 – 4,9 Trung bình 5 – 9,9 nhẹ > 10 Đủ 1.2- Các phương pháp tách và làm giàu (sắc ký-chiết). 1.2.1. Các phương pháp sắc ký Nguyên tắc của phương pháp sắc ký [12] là quá trình tách liên tục từng phần hỗn hợp các chất do sự phân bố không đồng đều của chúng giữa pha tĩnh và pha động khi cho pha động đi xuyên qua pha tĩnh . Chất lượng và hiệu quả tách được biểu diễn bằng phương trình Van-Demter, chiều cao đĩa lý thuyết của một cột H phụ thuộc vào tốc độ pha động. Trong đó A - hệ số khuyếch tán xoáy của các phân tử chất B – hệ số khuyếch tán phân tử C – tốc độ trao đổi giữa 2 pha U – tốc độ tuyến tính của pha động Chiều cao H càng nhỏ thì hiệu quả tách càng lớn. Tổng số đĩa lý thuyết của một cột tách n được tính bằng chiều dài l của cột (cố định ) chia cho chiều cao đĩa lý thuyết H. Phương pháp sắc ký được phân chia như sau: - Theo cơ chế tách (hấp phụ, phân bố, trao đổi ion) - Theo sự phân loại các pha trong sắc ký (lỏng – lỏng, lỏng – khí, lỏng – rắn). - Theo công cụ sử dụng để tiến hành (sắc ký bản mỏng, sắc ký khí, sắc ký lỏng hiệu năng cao). 1.2.1.1. Sắc ký bản mỏng Quá trình tách hợp chất bằng sắc ký bản mỏng xảy ra khi cho pha động di chuyển qua pha tĩnh. Chất hấp phụ trong pha tĩnh ở sắc ký bản mỏng được rải thành một lớp mỏng trên tấm kính hoặc tấm kim loại. Các cấu tử được dịch chuyển trên lớp mỏng theo hướng pha động với tốc độ khác nhau. Kết quả thu được một sắc đồ trên lớp mỏng [12]. Các đại lượng đặc trưng cho sắc ký lớp mỏng là: * Hệ số di chuyển Rf: là tỉ số của khoảng cách từ tuyến xuất phát tới tâm vệt sắc kí (I) và khoảng cách từ tuyến xuất phát tới tuyến dung môi (Io) O ≤ R ≤ 1 Giá trị Rf đặc trưng cho sự tương tác giữa hoạt chất – dung môi – chấp hấp thụ. Để đánh giá khả năng tách các vệt trên sắc đồ ta dùng 2 đại lượng sau: + DRf là hiệu giá trị Rf của 2 cấu tử lân cận nhau. + K là hệ số tách được tính bằng tỉ số hệ số phân bố của 2 cấu tử A (KA) và B (KB) *Chất hấp phụ (pha tĩnh) được sử dụng trong sắc kí bản mỏng gồm silicagen, oxit nhôm, xenlulô, tinh bột, nhựa trao đổi ion. * Dung môi (pha động) dùng để chạy sắc ký bản mỏng, thường là dung môi hữu cơ hay hỗn hợp dung môi hữu cơ, chẳng hạn như heptan; CHCl3 hoặc hỗn hợp heptan – clorofom, propanol – CHCl3 – benzylamin [13, 14]. ở nước ta sắc ký bản mỏng được áp dụng nhiều trong phân tích môi trường, nhưng chưa có công trình nào áp dụng cho việc tách iot [13] Trên thế giới, phương pháp sắc ký lớp mỏng đã được áp dụng trong nhiều lĩnh vực nghiên cứu, và cũng được sử dụng trong phân tích iot [13] 1.2.1.2. Sắc ký khí Là quá trình tách các chất trong cột tách ở trạng thái khí, chất mang mẫu là chất khí. Vì vậy chỉ có thể tách được hỗn hợp các khí, nếu là hỗn hợp chất lỏng hay chất rắn thì phải hoá khí đã. Thường chỉ tách được các chất rắn dễ hoá khí (ở ≤ 2500C) [12]. Trong sắc ký khí, pha tĩnh là chất rắn, còn pha động là một chất khí hay hỗn hợp khí. Chất khí này mang khí cần phân tích vào cột để thực hiện quá trình tách, nó chuyển động liên tục trong suốt quá trình tách với tốc độ xác định. Pha tĩnh đóng vai trò chính trong việc tạo nên tương tác cần thiết để tách các cấu tử khỏi nhau. Sự thay đổi pha tĩnh và các thông số làm việc sẽ ảnh hưởng đến tương tác giữa khí mang, chất mang rắn và cấu tử cần tách. Khí mang dùng trong sắc ký thường là N2, H2, He để phân tích lượng vết, khí mang phải tinh khiết ( 99,99%). Vật liệu làm cột trong sắc ký khí có thể làm bằng kim loại hay thuỷ tinh. Phương pháp sắc ký khí là một trong những phương pháp hiện nay được sử dụng nhiều trong phân tích môi trường, nó có thời gian phân tích nhanh, độ nhạy cao, hiệu quả tốt. Bonner và các cộng sự đã dùng muội grafit có diện tích bề mặt riêng 100m2/g làm chất nhồi cột. Dùng cột này phát hiện được các khí độc có chứa lưu huỳnh như: SO2, H2S, (CH3)2S với hàm lượng chỉ mấy chục ppb. Phương pháp sắc ký khí cũng được dùng để xác định thành phần dầu mỏ và các sản phẩm của chúng. Ngoài ra cũng được dùng để phân tích lương thực, thực phẩm, các loại dược phẩm.v.v... 1.2.1.3. Sắc ký lỏng hiệu năng cao (HPLC) Phương pháp này dùng các chất nhồi cột nhỏ mịn, cột cũng có kích cỡ nhỏ nên để thực hiện quá trình tách, phải dùng áp xuất cao để đẩy chất lỏng qua cột. Chính những điều kiện đó làm cho phương pháp này có nhiều ưu điểm hơn so với sắc ký lỏng cổ điển đó là tốc độ nhanh, độ tách tốt, độ nhạy cao (ví dụ dùng detector UV – VIS thì độ nhạy đạt 10-9g, dùng detector huỳnh quang, điện hoá đạt 10-12g) cột tách dùng được nhiều lần, mẫu thu lại dễ vì không bị phá huỷ [12, 15]. HPLC được sử dụng rất rộng rãi để phân tích nhiều đối tượng khác nhau. HPLC có khả năng tách được cả các hợp chất. + Các hợp chất cao phân tử, ion thuộc các đối tượng sinh học, y học + Các hợp chất không bền + Các hợp chất dễ nổ, kém bền nhiệt.v.v Phương pháp HPLC là một trong những phương pháp tách, xác định iot và các nguyên tố halogen tốt nhất trong các phương pháp phân tích hiện đại, đạt độ nhạy, độ chính xác cao, có thể xác định nhiều chất trong cùng một mẫu. 1.2.2. Phương pháp chiết Hàm lượng iot trong đất, nước, lương thực, thực phẩm nói chung rất thấp cỡ ppb – ppm, vì vậy người ta thường dùng phương pháp chiết để làm giàu, tăng độ nhạy, độ chọn lọc và độ chính xác của phép xác định. Nguyên tắc của phương pháp chiết dựa trên sự tách chất bằng các dung môi hữu cơ, do độ tan của chất trong các dung môi khác nhau. Nếu hoà tan chất A vào 2 dung môi không trộn lẫn (thường là nước – nc và dung môi hữu cơ - hc), khi cân bằng nồng độ chất A trong 2 dung môi sẽ tuân theo định luật phân bố Nerst: “ở một áp xuất và nhiệt độ nhất định, nếu chất tan A không phân li hoặc liên hợp trong 2 dung môi thì tỷ số nồng độ chất tan trong 2 dung môi là một hằng số (gọi là hằng số phân bố Do) Trong đó [A] nc, [A] hc là nồng độ cân bằng của chất A trong pha nước và pha hữu cơ. Do càng lớn thì chất chuyển vào pha hữu cơ càng nhiều. Một cách chính xác. aAhc, aAnc là hoạt độ của chất A trong tướng hữu cơ và tướng nước. Ngoài hằng số phân bố D0, người ta còn dùng khái niệm độ chiết R. Độ chiết R được xác định bằng tỉ số giữa khối lượng G’ của chất chiết A so với khối lượng ban đầu G của nó. Trong đó: ; Vnc và Vhc là thể tích pha nước và pha hữu cơ (ml) Người ta chia chất chiết A ra làm các loại sau: * Chất chiết A không điện ly, khi đó sự phân bố A vào 2 tướng. Anc Ahc ở trạng thái cân bằng, hằng số phân bố và độ chiết được tính theo các công thức đơn giản trên. * Chất chiết A là chất điện li Khi chất chiết A là chất điện ly ví dụ A là một axit yếu, quá trình phân bố trở nên phức tạp và phương trình cân bằng giữa 2 pha: HAnc HAhc H+ + A- (hằng số phân ly của axit) Hệ số phân bố trong trường hợp này là tỷ số nồng độ tất cả các dạng trong pha hữu cơ và tất cả các dạng trong pha nước. Nếu [H+ ] >> ka thì Ka/[H+] = 0 khi đó D = D0 Tương tự như vậy khi A là một bazơ yếu ta cũng tính được D và R của dung dịch kiềm. * Chiết chất lưỡng tính Hằng số phân bố và độ chiết của chất điện ly lưỡng tính phụ thuộc vào pH khá phức tạp vì chất điện li lưỡng tính sẽ tồn tại ở nhiều dạng trong cả 2 pha. Khi ở trạng thái cân bằng, khối lượng G của chất điện ly lưỡng tính A là G = S [Ayx ] hc. Vhc + S [Ayx ] nc. Vnc Hằng số phân bố D sẽ được tính theo độ phân li và tồn tại cụ thể từng chất giữa 2 pha. * Chiết tập hợp liên hợp ion Việc chiết liên hợp ion chỉ xảy ra ở pH xác định và tập hợp ion chỉ có khả năng thực hiện ở pH mà tại đó các thành phần (tức axit hay bazơ) đồng thời tồn tại. Để đảm bảo chiết tốt, chất bị chiết phải bị solvat hoá yếu bởi các phân tử H2O và tan tốt trong dung môi chiết. Chất bị chiết là liên hợp ion thì nó bị chiết càng tốt nếu những cation và anion trong thành phần càng kị nước. Những liên hợp ion tạo bởi một cation và một anion và đặc biệt là ion một điện tích luôn bị chiết tốt hơn những liên hợp ion có thành phần khác. Bằng tính toán người ta thấy có thể chiết các ion vô cơ một cách thuận lợi bằng cách cho nó liên kết với các phối tử hữu cơ để tạo thành những tập hợp ion mà trên mỗi đơn vị điện tích có khoảng 10 – 15 nguyên tử cabon. Người ta chia chiết liên hợp ion thành mấy loại sau: Nguyên tố có màu Phối tử Anion vô cơ không màu (1) 2+ N Co SCN- N 2 Nguyên tố không màu Phối tử Anion hữu cơ có màu (2) _ N O I I Er 4 + Nguyên tố Thuốc thử hữu cơ có gốc SO3- Cation hữu cơ (3) Co 2 _ _ + ờ ờ ờ ờ ờ ở ộ ỳ ỳ ỳ ỳ ỷ ự Anion phức của Kim loại Cation hữu cơ (4) + + _ SbCl6 Phản ứng tạo liên hợp ion là cơ sở của các phương pháp trắc quang, chiết trắc quang, huỳnh quang xác định nhiều kim loại. Nói chung các liên hợp ion thường có hệ số hấp thụ mol tương đối lớn nên rất nhạy vì vậy cho phép xác định lượng rất nhỏ các chất. 1.3. Một số phương pháp định lượng iot 1.3.1. Phương pháp chuẩn độ [16] Nguyên tắc chung của phương pháp này là chuyển tất cả các dạng của iot có trong mẫu phân tích về dạng I-, sau đó dùng iodat IO-3 để oxi hoá I- về dạng I2, chuẩn độ lượng I2 giải phóng bằng dung dịch chuẩn Na2S2O3 với chỉ thị hồ tinh bột. 5KI + KIO3 + 3H2SO4 = 3I2 + 3K2SO4 + 3H2O I2 + 2Na2S2O3 = 2NaI + Na2S4O6 Phương pháp này có độ nhạy thấp, chỉ dùng để phân tích iot với hàm lượng lớn 5 – 50mg. Ưu điểm của phương pháp này là dễ thao tác, không cần máy móc đắt tiền, nhanh. Zhao Guiging và cộng sự [17] đã lắp hệ thống chuẩn độ tự động; ghép nối với máy tính, tìm cách chuẩn độ Cl-, Br -, I- trong nước đạt độ nhạy và độ lặp lại cao. 13.2. Phương pháp đo phổ hấp thụ phân tử (Phương pháp UV-VIS) Nguyên tắc của phương pháp này là chuyển các dạng iot có trong mẫu phân tích về dạng I-, sau đó dùng NaNO2 oxi hoá I- thành I2, chiết I2 sinh ra bằng CCl4, toluen, sau đó đo độ hấp thụ quang của dung dịch ở lmax = 657nm. Bằng phương pháp chiết này đã làm tăng độ nhạy lên đến 10-6 mol/l. [18] Bulinski R và cộng sự [19] đã dùng N- N’ di (b- Hidroxipropyl) – o – phenylene diamin xác định iot trong sữa và trong khí, phương pháp này có độ nhạy cỡ ppm và hàng chục ppb. Salinao F và cộng sự [20] đã dùng 2– oximiodimedone và dithiosemicacbazon làm thuốc thử để xác định IO-3 và BrO3-; đo ở bước sóng 400nm, phương pháp xác định được 0,24 – 5mgIO3- / ml và 0,16 – 3,6mg BrO-3 / ml. Cục bảo vệ môi trường và hiệp hội bảo vệ sức khoẻ Hoa Kỳ [21] đã xác định I- bằng cách dùng KHSO5 oxi hoá chọn lọc thành I2, I2 sinh ra cho phản ứng với 4, 4’,4’’ = metyliclynetris (N-N-dimetylanilin) (thường gọi là thuốc thử Leueo Crystal Violet- không màu) tạo thành hợp chất màu tím đậm. Phương pháp này đã được dùng làm phương pháp tiêu chuẩn để xác định iot. Phức hấp thụ cực đại ở l = 592nm và không tuân theo định luật Bia là 50 - 600 mg/l I Để xác định vi lượng iot người ta thường dùng phương pháp trắc quang động học xúc tác dựa trên phản ứng oxi hoá khử giữa Ce (IV) và As (III) trong môi trường axit. [21] H2SO4 2Ce (IV) + As (III) 2Ce (III) + As (V) (màu da cam) (không màu) (không màu) (không màu) Hàm lượng iot trong mẫu được xác định bằng sự giảm độ hấp thụ quang (l = 370nm) DA của dung dịch trước và sau phản ứng với thời gian cố định, khi có mặt chất xúc tác là iot, DA tỷ lệ với nồng độ của iot trong dung dịch. Người ta cũng dựa vào phản ứng giữa clopromazin với H2O2[22]. Khi có mặt iot tạo ra sản phẩm trung gian có màu đỏ, bền trong môi trường axit và hấp thụ cực đại tại l = 525nm. Tốc độ phản ứng tỷ lệ với nồng độ I- trong dung dịch. Phương pháp này có ưu điểm là xác định được riêng rẽ các dạng I-,IO-3 và được sử dụng rộng rãi để phân tích iot trong mẫu nước. Phương pháp này ít được sử dụng để phân tích iot trong các đối tượng lương thực và thực phẩm bởi vì trong các đối tượng này rất phức tạp, làm phản hiệu ứng xúc tác của iot. 1.3.3. Phương pháp quang phổ phát xạ nguyên tử plasma (ICP – AES) và phổ khối plasma (ICP – MS). Với phương pháp ICP – AES, mẫu sau khi chuyển thành dung dịch, được bơm trực tiếp vào nguồn kích thích plasma (ICP) có nhiệt độ khoảng 60000C, ở nhiệt độ đó mẫu bị nguyên tử hoá hoàn toàn và bị kích thích rồi phát ra bức xạ có bước sóng xác định. Đo cường độ bức xạ (Ipx) tại bước sóng đặc trưng cho nguyên tố cần xác định (là iot), từ đó suy ra hàm lượng của iot có trong mẫu. Với phương pháp ICP – MS, mẫu cũng được bơm trực tiếp vào nguồn plasma ICP, ở đó nguyên tử đã bị ion hoá, các dòng ion được đưa vào hệ phân tích khối lượng để tách các ion dựa vào tỷ số (m, z là khối lượng và điện tích ion). Dòng ion sau khi tách được đưa vào detector để chuyển thành tín hiệu định lượng. Tác giả[23] đã dùng phương pháp ICP – MS để định lượng iot trong nước tiểu với khoảng tuyến tính 0,1 - 10mg I-/dl. Phương pháp ICP – MS cũng như phương pháp kích hoạt nơtron (NAA) được xem là phương pháp “chuẩn vàng” để định lượng vết và siêu vết iot 1.3.4. Phương pháp điện hoá 1.3.4.1. Phương pháp điện cực chọn lọc ion [24] Điện cực chọn lọc ion dùng trong phương pháp đo thế để định lượng iot là điện cực màng rắn, được chế tạo từ AgI/Ag2S, có cấu trúc như sau: Ag / AgCl/KI 0,1M/ màng rắn AgI + Ag2S / dung dịch phân tích / KCl/AgCl/Ag. Thế đo được phụ thuộc vào lg [I-]. Phương pháp này bị Cl- và SO32- cản trở vì vậy phải tách các ion này khỏi dung dịch trước khi đo. Trong quá trình đo iot, điện cực thường bị một màng bao phủ nên phải làm sạch màng phủ trên điện cực. Phương pháp này được dùng để xác định iot trong H2O. Có một số tác giả dùng để xác định iot trong nước tiểu, sữa nhưng kết quả kém chính xác. 1.3.4.2. Phương pháp cực phổ dòng một chiều (DC) Trong phương pháp này, người ta chuyển iot trong mẫu thành IO-3 sau đó ghi cực phổ DC của ion IO3- trong nền NaCl hay KCl. IO3- bị khử trên cực giọt thuỷ ngân theo phản ứng. IO3- + 6H+ + 6e = I- + 3H2O Quá trình phản ứng điện hoá có sự tham gia của 6e nên phương pháp này có độ chính xác khá cao. Phương pháp này cho phép xác định những nồng độ iot cỡ 10-6 M. 1.3.4.3. Phương pháp cực phổ dòng xoay chiều (AC) Phương pháp này dựa vào tính thuận nghịch của quá trình oxi hoá I- thành I2. 2 I- + 2e I2 Chiều cao pic tỷ lệ với nồng độ I-. Dùng phương pháp đường chuẩn và phương pháp thêm để định lượng I-. 1.3.4.4. Phương pháp Von – ampe hoà tan [25] Trong phương pháp này, I- được tích luỹ trên bề mặt điện cực giọt thuỷ ngân tĩnh ở dạng Hg2I2 bằng một thế điện phân trong một thời gian nhất định. Sau đó Hg2I2 tích luỹ được hoà tan bằng quét thế catot. Quá trình hoà tan điện hoá sẽ tạo pic ở thế – 0,33v (với điện cực so sánh là điện cực calomen). Chiều cao của dòng pic hoà tan Hg2I2 tỷ lệ với nồng độ I- trong dung dịch. Phương pháp này xác định được I- trong khoảng 0,13 – 10,2mg I-/l . Anion S2- cản trở phép xác định, loại trừ S2- bằng cách axit dung dịch để S2- tạo thành H2S, rồi sục không khí để đuổi hết H2S, sau đó chỉnh pH dung dịch về 8 rồi mới tiến hành phân tích. Phương pháp Von -ampe hoà tan có thể xác định lượng nhỏ iot, cho kết quả nhanh, chính xác, độ lặp lại cao. Song phương pháp này không được dùng để phân tích các mẫu lương thực và thực phẩm vì ảnh hưởng của nền quá lớn, kết quả phân tích không chính xác. Chủ yếu là dùng để phân tích I- trong nước. 1.3.5. Phương pháp kích hoạt nơtron (NAA) [26] Trong phương pháp này, người ta thường dùng đồng vị phóng xạ của iot 128I có thời gian bán huỷ ngắn (25 phút) để phân tích iot. Nguyên tắc của phương pháp này là dùng một chùm nơtron kích hoạt vào mẫu phân tích và đo bức xạ gama được giải phóng bởi 128I. Giới hạn phát hiện của phương pháp này khoảng 91 ppb. Mặc dù phương pháp kích hoạt nơtron có độ nhạy cao, nhưng ảnh hưởng của các nguyên tố đi kèm là rất lớn như 56Mn, 27Mg, 24Na, 28Al và 43K. Các nguyên tố phóng xạ này cũng phát ra mức năng lượng như 128I. Để loại trừ ảnh hưởng của các nguyên tố phóng xạ trên, người ta thường nghiên cứu sử dụng các nguồn kích hoạt và thời gian kích hoạt khác nhau. 1.4. Một số kỹ thuật vô cơ hoá mẫu để xác định iot. 1.4.1. Kỹ thuật vô cơ hoá ướt. Nguyên tắc chung của kỹ thuật này là dùng các axit mạnh, các axit có tính oxi hoá mạnh, hỗn hợp các axit hoặc hỗn hợp axit đặc và một chất oxi hoá để phân huỷ mẫu. Để xác định iot trong thực phẩm, tác giả Takashi [27] đã sử dụng hỗn hợp HNO3 13M + HClO4 9M + H2SO4 18M đun ở nhiệt độ 2300C để vô cơ hoá mẫu. Sau đó iot được xác định dựa trên hiệu ứng xúc tác của phản ứng giữa Clopromazin với H2O2 trong môi trường H2SO4 Phương pháp vô cơ hoá ướt không phù hợp cho phân tích hàng loạt mẫu vì thời gian xử lý kéo dài, phải sử dụng một lượng lớn axit nên có nguy cơ bị nhiễm bẩn. 1.4.2. Kỹ thuật vô cơ hoá bằng lò vi sóng [29] Cơ chế của sự phân huỷ mẫu bằng lò vi sóng là sử dụng năng lượng vi sóng để đun nóng dung môi và mẫu được đựng trong bình kín. Phân huỷ mẫu bằng lò vi sóng, lượng axit dùng ít hơn, thời gian phân huỷ ngắn hơn, đảm bảo chất phân tích không bị mất và không bị nhiễm bẩn do môi trường bên ngoài. 1.4.3. Kỹ thuật vô cơ hoá khô [28] Kỹ thuật vô cơ hoá khô là kỹ thuật nung mẫu trong lò nung nhiệt độ 4500 – 7500 (tuỳ thuộc vào bản chất và liên kết từng loại mẫu mà chọn nhiệt độ thích hợp). Khi nung các chất hữu cơ có trong mẫu sẽ bị đốt cháy thành CO2 và hơi H2O. Sau khi nung, cặn hoà tan còn lại được xử lý tiếp bằng dung dịch axit hay muối phù hợp để chuyển hết chất phân tích trong cặn hoà tan vào dung dịch, sau đó xác định chất phân tích theo phương pháp đã chọn. - Kỹ thuật vô cơ hoá khô gồm 2 loại: * Vô cơ hoá khô không dùng tác nhân vô cơ hoá mẫu. Là quá trình xử lý sơ bộ mẫu bằng cách nung mẫu ở một nhiệt độ thích hợp trong một thời gian nhất định để phá vỡ cấu trúc dạng ban đầu của mẫu phân tích, đốt cháy các chất hữu cơ để chuyển nó sang một hợp chất khác đơn giản, dễ tan bằng các dung môi thích hợp (dung dịch axit, kiềm) để đưa hoàn toàn chất cần phân tích vào dung dịch, sau đó xác định chất phân tích theo phương pháp đã chọn. Phương pháp này không dùng được đối với những chất dễ bay hơi khi nung, làm mất một lượng chất phân tích, kết quả sẽ sai. * Vô cơ hoá khô có dùng tác nhân vô cơ hoá mẫu Đó là quá trình xử lý mẫu nhờ tác dụng của nhiệt (500 – 7000C) và có thêm các tác nhân vô cơ để giảm nhiệt độ nung, hạn chế sự mất mát của một số nguyên tố. Để xác định iot trong các mẫu sinh học, người ta thường dùng phương pháp vô cơ hoá khô bằng cách nung mẫu ở nhiệt độ ~ 6000C với các tác nhân vô cơ hoá như: KOH, K2CO3, Na2CO3 + ZnO4, Na2CO3 + KNO3 , KClO3 + Glycin + Na2CO3 Sau khi nung, hoà tan mẫu bằng dung dịch axit, lọc lấy dung dịch để định lượng iot. Chú ý khi lọc dung dịch không dùng giấy lọc Whatman vì giấy lọc này có thể hấp phụ iot. 1.5. Kết luận phần tổng quan Iot là một nguyên tố vi lượng quan trọng trong dinh dưỡng người và động vật nói chung. Trong cơ thể người iot được phân bố ở nhiều tổ chức khác nhau như máu, sữa, nước bọt, nước tiểu, tóc Thiếu iot sẽ gây rối loạn cơ thể, biểu hiện qua một số chứng bệnh như bướu cổ, đần độn, thần kinh Mỗi ngày mỗi người cần 200mg iot Nguồn cung cấp iot cho người là nước sinh hoạt, lương thực, thực phẩm. Để đánh giá vi lượng iot trong nước, đất, lương thực thực phẩm. Cần phải phân tích thường xuyên. Phương pháp phân tích không những có độ chính xác, độ nhạy cao mà còn phải phù hợp với cơ sở vật chất hiện có trong nhiều phòng thí nghiệm. Với lý do trên chúng tôi chọn phương pháp tạo phức màu của iot với thuốc thử Fucsin bazơ rồi đo bằng các máy đo màu thông thường mà hầu hết các phòng thí nghiệm ở cơ sở đều có. Theo chúng tôi nghĩ hướng giải quyết này có thực tế hơn mặc dù độ nhạy của phương pháp này có kém hơn so với các phương pháp phân tích hiện đại như AAS, AES, điện hoá, kích hoạt nơtron, động học xúc tác.. Tài liệu tham khảo 1. Hoàng Nhâm, hoá học vô cơ tập 2, NXB giáo dục (1994) 1'. N.I. Bloc, hoá học phân tích định tính (Tiếng Nga ) NXB hoá học quốc gia Matxcơva (1952) (H.M.блок, качественный химический анализ, госхимздат ,1952) 2. Nguyễn Xuân Ninh, Vitamin và chất khoáng từ vai trò sinh học đến phòng và điều trị bệnh, NXB y học, (1999) 3. Đặng Trần Duệ, Bệnh học nội khoa, NXB y học tr274 (1973) 4. Lê Mỹ, chiến lược phòng chống bệnh bướu cổ ở Việt Nam, TC hoạt động khoa học số 1, trang 5 (1993). 5. Kevin M. Sullivan; Robin Houston, Jonathan Gorstein and Jenny Cervinskas, Monotoring Universal Salt Iodinaton programes (1995). 6. M.G. Venkatesh Mannar and John T. Dunn; Salt Iodination for the Elimination of iodine Deficiency (1995). 7.в.и. ксензенкс, д .с. данась, химия и технология ърома ,нода и их соединеыий; москва, изд .химия стр 54 (1979). 8. “World Heald Organization (WHO)”, MDIS Working paper 1. WHO, UNICEF, ICCIDD, July 1993: Global Prevalence of iodine Deficiency Disorder. 9. B.S. Hetzei, CS Pandy. The conquest of Iodine Deficiency. Disorders Oxford University Press. Delhi 1994 10. Thông tin về các rối loạn thiếu iot, chương trình y tế quốc gia phòng chống các rối loạn do thiếu iot, Bộ y tế (1995) 11. Đề án: Mục tiêu phòng chống các rối loạn thiếu iot, Bộy tế, chương trình y tế quốc gia 1996 – 2000. 12. Đào Hữu Vinh, Nguyễn Xuân Dũng, Trần Mỹ Linh, Phạm Hùng Việt. Các phương pháp sắc ký NXB KH&KT (1985) 13. Robat LGrob: хроматографический анализ окржаюшией среды (В.г. ъерезкина dịch), Mockba, NXB hoá học 1979 14 . Savicev j.j.,Nasilfeva Z.G, Golovin J.J., заводская лабораторя 29, 1433(1963) 15. J. Churacek, D. Jandera; Uvod do Vif’sorcou’cinne’ kapalinova kolonova’ chromatographie, praha(1984). 16. Phương pháp xác định hàm lượng iotua, TCVN 4570 – 88 (1998) 17. Zhao Guiging, Lui Jintang, Chem. Abstract; 16178u, Vol 109 (1987) 18. Koh Tomozo; Ono Massanozi, Makine Jchiro, Analyst 113( 6) – 945-8 (1998). 19. Bulinski Romuald, Marzec zligliew,Koktyz natalia. Chem.Abstract 5012 cs,109 (1998) 20. Salinas F., Ymezez chanchen J.C., lemar Gallego J.M; Miaochem, J, 37 (2), 145 – 8 (1988) 21. E B Sandell, I.M, Kothoff; Micro determination of iodine by a catalyti method ;milcrochim. Acta 1,9 -25(1939). 22. T. Tomiyasu, H. Sakamoto, N. Yonehara, kinetic and mechanistic shedy of chlorpromazine – hydrogen peoxide reaction for the catalytic spectrophotometric determination of iodide, Analytica chemica Acta, 320, 217 – 227 (1996). 23. V. Poluzzi, B. Cavalchi, A. Alberrini et al, Analytical Abstract vol, 59 (I), p. 1 F20 (1997) 24. Nguyễn Văn Hợp, Nguyễn Hải Phong, đề tài NCKH cấp bộ B – 940608 trường Đại học Huế , (1995) 25. Lenores. Clesceri, Aznold E. Greenbeng, Andrew D. Eaton. Standard Methodo for Examination of water and Wastewater 16th- Edition, Iodine (4500 – I) (1985) 26. Mitsuru Ebihara, Naomi Saito. Instrumantal and Radio chemical Neutron Activation Analysis of trace Iodine in Geological samples anal. Sciences, April, Vol 8 (1992) 27. Takashi Tomiyasu, Misa Nonaka, Hayao Sakumoto; kinetic Determination of Total Iodine in Urine and Foodstuff Using a Mixed Acidas Pretreatment Agent; Anal Sciences, Febuany Vol 20, 391- 3 (2004). 28. Phạm Luận, cơ sở các kỹ thuật xử lý mẫu phân tích, giáo trình ĐHKHCN khoa Hoá (2000)

Các file đính kèm theo tài liệu này:

  • doc2501.doc
Tài liệu liên quan