Rdb2owl: an improved method for converting relational databases into owl

Một trong những lợi thế của Semantic Web là để mô tả dữ liệu với một ý nghĩa rõ ràng và liên kết giữa các dữ liệu bằng cách sử dụng ngôn ngữ OWL (Web Ontology Language). Ngày nay hầu hết các dữ liệu được lưu trữ trong cơ sở dữ liệu quan hệ. Để tận dụng lại các dữ liệu này, cần thiết phải có phương pháp chuyển dữ liệu lưu trữ trong cơ sở dữ liệu quan hệ vào định dạng của OWL Ontology. Một số phương pháp đã được đề xuất, tuy nhiên, hầu hết các quy tắc chuyển đổi đã không được hoàn chỉnh. Bài báo này đề xuất một số quy tắc cải thiện trong việc chuyển đổi cơ sở dữ liệu quan hệ sang OWL Ontology. Ngoài ra, tất cả các bước chuyển đổi trong thuật toán RDB2OWL được thực hiện tự động mà không cần bất kỳ sự can thiệp của người dùng.

pdf13 trang | Chia sẻ: huongthu9 | Lượt xem: 623 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Rdb2owl: an improved method for converting relational databases into owl, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
TẠP CHÍ KHOA HỌC ĐẠI HỌC ĐÀ LẠT Tập 7, Số 2, 2017 129–141 129 RDB2OWL: AN IMPROVED METHOD FOR CONVERTING RELATIONAL DATABASES INTO OWL Pham Thi Thu Thuya* aThe Faculty of Information Technology, Nhatrang University, Khanhhoa, Vietnam Article history Received: January 11th, 2017 | Received in revised form: April 11th, 2017 Accepted: May 17th, 2017 Abstract One of the biggest advantages of the Semantic web is to describe data with a well-defined meaning and link between data by using the OWL (Web Ontology Language). Today most data are stored in relational databases. In order to reuse the data on the Semantic Web, there is a need for transforming the data stored in relational databases into the form of OWL Ontology. Some approaches have been proposed; however, most of their transformation rules have not been complete. This paper proposes some improved rules for transforming relational database into OWL Ontology. Most of all, all the steps in RDB2OWL are done automatically without any user intervention. Keywords: Databases; Ontology; OWL; Transformation. 1. INTRODUCTION From inception to date, the World Wide Web (WWW) has become an important tool to store and share huge sources of mankind knowledge. Most data on the WWW is currently stored in form of the relational databases (RDBs). The organization of data storage of relational databases (Andrew, 2009) offers many advantages such as: Efficient storage, an ability to execute complex queries, scalability, high security. However, RDBs are distinct, heterogeneous on schemas, terminology, and identification. Thus, Ontology was born for the purpose of providing the foundation for integrating all data sources. The conversion of data from RDB into an OWL Ontology is the solution to take advantage of and exploit the huge data available on the WWW. * Corresponding author: Email: thuthuy@ntu.edu.vn 130 TẠP CHÍ KHOA HỌC ĐẠI HỌC ĐÀ LẠT [ĐẶC SAN CÔNG NGHỆ THÔNG TIN] Currently there are several methods of transforming relational databases into a given Ontology. Guntars (2010); Lei and Jing (2011); and Edgard, Percy, Karin, José, and Marco (2013) have proposed a method for automatically building ontologies from relational databases. However, this approach ignores a number of data tables showing links. Yutao’s method (Yutao, Lihong, Fenglin, & Hongming, 2012) has not represented the table with multi-valued attributes. Mohammed’s method (Mohammed, Hicham, & Said, 2013) has added mapping rules for N-ary relationships. Mona and Esmaeil (2015) proposed some common mapping rules from RDB to OWL, especially mapping rules for triggers to OWL. However, all the four methods above have not completed the mapping for binding on the properties, namely with CHECK constraints. The method of Nguyen, Hoang, and Le (2012) has fairly completed the conversion of the full review of tables, relationships, and constraints. However, there are irrationality CHECK constraints when they use the common mapping rule for the same attributes based on the primary key values, and this rule cannot be applied to a number of databases with identical primary key values. This paper follows the methods mentioned above to improve the mapping rules and mappings CHECK constraints. 2. DATABASE TRANSFORMATION INTO OWL ONTOLOGY 2.1. Transformation diagram Relational databases are transformed into Ontology to be represented as an OWL Ontology. The conversion process consists of two steps: • Schema mappings: This step is to extract information from the database schemas, then transforming them into concepts and properties in Ontology. Particularly, this step generates classes from the table, creates the object properties from the foreign key attributes and creates the type of data (data property) from the attribute which is not a foreign key. • Data mapping: This step extracts data from the relational database (records) then stores them as the instances of the OWL Ontology. Pham Thi Thu Thuy 131 Figure 1. Transformation diagram The type of database tables is divided into six categories. Classification method is based on the number of fields that are the key (foreign and primary key), the correlation between the primary key and foreign key. The method is described in Table 1. Table 1. Method of classifing the tables in SQL Table type Number of fields created primary key Number of fields created foreign key Correlation between the primary key and foreign key Base table >=1 0 The table has a usual foreign key >=1 >=1 Primary key does not create foreign key. Inheritance table >=1 >=1 Primary key also creates foreign key. Multi-value table 2 1 Foreign key also creates primary key Table represents the pluralistic relationship having attributes. >=2 >2 Primary key also creates foreign key. Table represents the binary relationship 2 2 Primary key also creates foreign key. For each type of table, we used the priority index to mark. Priority index of the base table is 1, the table has a foreign key is usually 2, 3 for inheritance table, multi-table value is 4, the table represents the pluralistic relationship having attributes is 5, the table represents the dualistic relationship is 6. 2.2. Algorithm for transforming RDB into OWL Ontology The algorithm for transforming RDB into OWL Ontology is presented in Figure 2. The details of the algorithm command are explained by comments in each line. 132 TẠP CHÍ KHOA HỌC ĐẠI HỌC ĐÀ LẠT [ĐẶC SAN CÔNG NGHỆ THÔNG TIN] /*DefineDatatype(string datatype): Function returns the corresponding data types in OWL, with input parameter is For class in tableClassPriority If PriorityIndex== 1 || PriorityIndex== 2 || PriorityIndex== 5 Create the corresponding class in OWL Ontology end if If PriorityIndex== 3 Create the corresponding class in OWL Ontology Adding attribute rdfs:subClassOf end if end for // Attribute description For attribute in tableAttribute // Describe Domain of the property If PriorityIndex!= 4 || PriorityIndex!= 6 && constraint != FOREIGN KEY Create the corresponding property in OWL Ontology Domain = domain[attribute] End if // Describe Range of the property If PriorityIndex!= 4 || PriorityIndex!= 6 && constraint != CHECK && constraint != FOREIGN KEY Create the corresponding data type property in OWL Ontology Range = DefineDataType(range[attribute]) End if // Describe constraint UNIQUE and PRIMARY KEY If PriorityIndex!= 4 || PriorityIndex!= 6 && constraint == PRIMARY KEY || constraint == UNIQUE && constraint != FOREIGN KEY Set the Functional for the corresponding property in OWL Ontology End if // Describe constraint NOT NULL If PriorityIndex!= 4 || PriorityIndex!= 6 && isNullAttribute[attribute] == NO && constraint != FOREIGN KEY Set the constraint of minCardinality equal 1 for the corresponding property in OWL Ontology End if // Describe CHECK constraint If PriorityIndex!= 4 || PriorityIndex!= 6 && constraint == CHECK && constraint != FOREIGN KEY string checkClause :: conditional clause of CHECK constraint Consider checkClause to determine the type of CHECK constraint // CHECK (attribute IN (value1, value2, )) If it is CHECK (attribute IN (value1, value2, )) Assign the constraint owl:oneOf and owl:DataRange on the range of the corresponding property in OWL Ontology. end if // CHECK (attribute = value) If it is CHECK (attribute = value) Assign the constraint owl:hasValue as the same value as the corresponding value on corresponding property in OWL Ontology. end if if DefineDatatype(range[attribute]) == integer // CHECK (attribute > 0) If it is CHECK (attribute > 0) Describe the range by xsd;positiveInteger for the corresponding property in OWL Ontology. end if // CHECK (attribute > 0) If it is CHECK (attribute >= 0) Describe the range by xsd;nonNegativeInteger for the corresponding property in OWL Ontology. End if // CHECK (attribute < 0) If it is CHECK (attribute < 0) Describe the range by xsd;negativeInteger for the corresponding property in OWL Ontology. end if // CHECK (attribute <= 0) If it is CHECK (attribute <= 0) Describe the range by xsd;nonPositiveInteger for the corresponding property in OWL Ontology. end if else Describe range for the property by the corresponding data type in SQL. Range = DefineDatatype(range[attribute]) end if end if // Describe constraint FOREIGN KEY If PriorityIndex!= 4 || PriorityIndex!= 6 && constraint != FOREIGN KEY Create the corresponding object property in OWL Ontology and set the minCardinality constraint equal 1 for this property Domain = domain[attribute] Range = range[attribute] End if Figure 2. The algorithm for transforming RDB into OWL Ontology Pham Thi Thu Thuy 133 //Describe the Functional for key attribute in the inheritance table If the considering attribute appears in tablePkeyInheritance Set the Functional for the corresponding property in OWL Ontology Range = DefineDatatype(range[attribute]) End if // Describe the attribute of multi-value table If PriorityIndex== 4 && constraint != FOREIGN KEY Create the data type property for muti-value attribute. Domain if the corresponding class in the main table Set owl:someValuesFrom constraint for range of this property End if // Describe the attribute of binary relationship table If PriorityIndex== 6 Create the corresponding object property in OWL Ontology Set Domain and range as invert of eacch other end if end for // Crreate instances For class in tableClassPriority For attribute in tableAttribute If domain[attribute] == class Create query to extract data end if end for Query for extracting data If PriorityIndex!= 4 && PriorityIndex!= 6 Create intances with its’ name is: _ Assign the value for the data type property of each instance. end if If PriorityIndex== 4 Assign the multi-value property for the instance of the class corresponding to the main table end if end for Save Ontology.owl file in the internal memory Figure 2. The algorithm for transforming RDB into OWL Ontology (cont.) 3. EXPERIMENTAL RESULTS AND CONCLUSIONS 3.1. Experimental results To simulate the conversion algorithm from RDB to OWL Ontology, we use the university sample database, namely Nhatrang University. The software used are Microsoft Visual Studio 2012 and Microsoft SQL Server 2012. Table 2. Describing information for the university sample database Attribute name Domain Range Constraint Reference table NULL acceptance Conditional clause Priority Khoa. MaKhoa Khoa varchar PRIMARY KEY NONE NO NONE 1 Khoa. SoLuongGV Khoa int CHECK NONE YES ([SoLuongGV] >(0)) 1 Khoa. TenKhoa Khoa nvarchar ATTRIBUTE NONE NO NONE 1 MonHoc. MaMonHoc MonHoc varchar PRIMARY KEY NONE NO NONE 1 MonHoc. SoTC MonHoc int CHECK NONE YES ([SoTC]>=(0)) 1 MonHoc. TenMonHoc MonHoc nvarchar ATTRIBUTE NONE NO NONE 1 134 TẠP CHÍ KHOA HỌC ĐẠI HỌC ĐÀ LẠT [ĐẶC SAN CÔNG NGHỆ THÔNG TIN] Table 2. Describing information for the university sample database (cont.) Attribute name Domain Range Constraint Reference table NULL acceptance Conditional clause Priority NghienCuu. MaDeTai NghienCuu varchar PRIMARY KEY NONE NO NONE 1 NghienCuu. TenDeTai NghienCuu ntext ATTRIBUTE NONE NO NONE 1 NhanVien. DiaChi NhanVien nvarchar ATTRIBUTE NONE NO NONE 1 NhanVien. Email NhanVien varchar UNIQUE NONE YES NONE 1 NhanVien. HoNhanVien NhanVien nvarchar ATTRIBUTE NONE NO NONE 1 NhanVien. MaNhanVien NhanVien varchar PRIMARY KEY NONE NO NONE 1 NhanVien. TenNhanVien NhanVien nvarchar ATTRIBUTE NONE NO NONE 1 BoMon. MaBoMon BoMon varchar PRIMARY KEY NONE NO NONE 2 BoMon. MaKhoa BoMon Khoa FOREIGN KEY Khoa YES NONE 2 BoMon. TenBoMon BoMon nvarchar ATTRIBUTE NONE NO NONE 2 GiangDay. HocKy GiangDay int CHECK NONE YES ([HocKy]=(1) OR [HocKy]=(2) OR [HocKy]=(3)) 2 GiangDay. MaGiangDay GiangDay varchar PRIMARY KEY NONE NO NONE 2 GiangDay. MaGiangVien GiangDay GiangVien FOREIGN KEY GiangVien YES NONE 2 GiangDay. MaMonHoc GiangDay MonHoc FOREIGN KEY MonHoc YES NONE 2 GiangDay. NamHoc GiangDay varchar ATTRIBUTE NONE NO NONE 2 SinhVien. GioiTinh SinhVien nvarchar ATTRIBUTE NONE NO NONE 2 SinhVien. HoSinhVien SinhVien nvarchar ATTRIBUTE NONE NO NONE 2 SinhVien. MaKhoa SinhVien Khoa FOREIGN KEY Khoa YES NONE 2 SinhVien. MaSinhVien SinhVien varchar PRIMARY KEY NONE NO NONE 2 SinhVien. TenSinhVien SinhVien nvarchar ATTRIBUTE NONE NO NONE 2 GiangVien. MaBoMon GiangVien BoMon FOREIGN KEY BoMon YES NONE 3 Pham Thi Thu Thuy 135 Table 2. Describing information for the university sample database (cont.) Attribute name Domain Range Constraint Reference table NULL acceptance Conditional clause Priority GiangVien. MaGiangVien GiangVien NhanVien FOREIGN KEY NhanVien NO NONE 3 DienThoai. MaNhanVien DienThoai NhanVien FOREIGN KEY NhanVien NO NONE 4 DienThoai. SoDienThoai DienThoai varchar PRIMARY KEY NONE NO NONE 4 KetQua. DiemTongKet KetQua float CHECK NONE YES ([DiemTongKet] >=(0)) 5 KetQua. MaGiangDay KetQua GiangDay FOREIGN KEY GiangDay NO NONE 5 KetQua. MaSinhVien KetQua SinhVien FOREIGN KEY SinhVien NO NONE 5 TacGia. MaDeTai TacGia NghienCuu FOREIGN KEY NghienCuu NO NONE 6 TacGia. MaGiangVien TacGia GiangVien FOREIGN KEY GiangVien NO NONE 6 Figure 3. University sample database BoMon MaBoMon TenBoMon MaKhoa DienThoai MaNhanVien SoDienThoai GiangDay MaGiangDay MaGiangVien MaMonHoc HocKy NamHoc GiangVien MaGiangVien MaBoMon KetQua MaSinhVien MaGiangDay DiemTongKet Khoa MaKhoa TenKhoa SoLuongGV MonHoc MaMonHoc TenMonHoc SoTC NghienCuu MaDeTai TenDeTai NhanVien MaNhanVien HoNhanVien TenNhanVien DiaChi Email SinhVien MaSinhVien HoSinhVien TenSinhVien GioiTinh MaKhoa TacGia MaDeTai MaGiangVien 136 TẠP CHÍ KHOA HỌC ĐẠI HỌC ĐÀ LẠT [ĐẶC SAN CÔNG NGHỆ THÔNG TIN] RDB2OWL program allows converting relational databases into a given Ontology. The conversion can be applied to any relational database. OWL file created can be opened by using the Ontology editor. During the implementation process, there are five files that are created, including: _Attributes.xml, _ClassPriority.xml,_PkeyInheritance.xml, _MTRDB.xml, Ontology.owl. The content of those files is the results after converting Nhatrang University database. The content of those files is very long, so in this section, we present only a small section of the conversion results when transforming BoMon table into.owl file (Figure 4). <!DOCTYPE rdf:RDF [ ]> <rdf:RDF xmlns="" xml:base="" xmlns:rdfs="" xmlns:owl="" xmlns:xsd="" xmlns:rdf=""> 1 1 Hệ thống thông tin INS Figure 4. The contents of into.owl file Pham Thi Thu Thuy 137 3.2. Comparing results with other studies We evaluated our proposed converting method by matching a relational database with an OWL file to determine the true matches and compared our results with other methods. To assess the quality of the matching system, we used precision and recall (Wikipedia, 2016). Given the set of expected matching pairs, R (produced by a human), the set of alignment pairs, T (produced by the matching system for the proposed methods), the precision is computed as in the following equation: R T precision(R,T) T   (1) Recall specifies the share of real correspondences: R T recall(R,T) R   (2) Although precision and recall are the most widely used measures, when comparing matching systems, one may prefer to have only a single measure. For this reason, F-measure (Wikipedia, 2016), is introduced to aggregate the precision and recall. (3) To obtain practical evidence, we applied our transformation to two sample databases produced by Microsoft, particularly Microsoft (2011) and Microsoft (2013). We compared the precision, recall, and F-measure values between our proposed method and the results of other studies, such as Edgard et al. (2013); Nguyen et al. (2012); Mona and Esmaeil (2015); and Yutao et al. (2012). The matching system is also implemented by using Visual Studio (C#). The compared results are shown in the following Figure 5 and Figure 6. precision* recall F measure 2* precision+recall   138 TẠP CHÍ KHOA HỌC ĐẠI HỌC ĐÀ LẠT [ĐẶC SAN CÔNG NGHỆ THÔNG TIN] Figure 5. Matching comparison between our method and others’ on Northwind database Figure 6. Matching comparison between our method and others’ on Pub Database Figure 5 and Figure 6 show that our matching quality is the highest when compared to those of other studies. Nguyen (2012) is ranked second, followed by Edgard et al. (2013); Mona and Esmaeil (2015); and Yutao et al. (2012). The main reason is that our method (RDB2OWL) and Nguyen et al. (2012) transform all the CHECK constraints whereas the other three methods ignore this condition. Moreover, our method maintains the relationships between the foreign key and primary key among relations whereas other compared methods do not. There are some small differences between Figure 5 and Figure 6 due to, the differences of Northwind and Pubs databases. Northwind database has 13 relations in comparison with 11 relations in Pubs database. Among those relations, there are relationships between foreign keys and primary keys. In this experiment, the total number of the relationships in the Northwind database is higher than that of Pubs database. Therefore, for those methods which do not maintain the foreign key and primary key Pham Thi Thu Thuy 139 relationship, their matching results in the Northwind database are lower than those in the Pubs database. 3.3. Conclusions Compared with other methods of conversion of reference, our method was more complete in mapping of CHECK constraint (CHECK form (attribute> 0), CHECK (attribute> = 0), CHECK (attribute <0), CHECK (attribute <= 0)) and the way to name the class. First, the CHECK constraint (CHECK form (attribute> 0), CHECK (attribute> = 0), CHECK (attribute <0), CHECK (attribute <= 0)) in relational databases can apply under data type property about numbers (integers, real numbers) whereas, Nguyen et al. (2012) mapping rule is only used for integer data type. Therefore, when mapping this kind of constraint, we will review the data type of the property. If the type attribute is integer, then the mapping follows the rules specified by Nguyen et al. (2012), otherwise the attribute type in the Ontology is the corresponding data type in SQL. Second, about the way to name instances for the class. In most of the related works, naming for instances will get by the value of the primary key. However, in a number of databases, the data type of the primary key is automatic number. That means the key values are the ascending integer. Therefore, when mapping this value there occurs the same name, so we cannot identify the class of this instance. So, when naming the instance of the class, we put the name of the class before primary key values to avoid having the same (by identical primary key values) because OWL Ontology requires that the name of the class in the Ontology is unique. Finally, the transformation program into OWL Ontology is done automatically and the OWL file result complies with the format and syntax of the W3C and can be used directly by the application program without any supplements. 140 TẠP CHÍ KHOA HỌC ĐẠI HỌC ĐÀ LẠT [ĐẶC SAN CÔNG NGHỆ THÔNG TIN] REFERENCES Andrew, J. O. (2009). Databases: A beginner's guide. New York, USA: The McGraw- Hill Companies. Edgard, M., Percy, S., Karin, B., José, V., & Marco, A. C. (2013). RDB2RDF: A relational to RDF plug-in for Eclipse. Software: Practice Expert, 43(4), 435-447. Guntars, B. (2010). Mapping between relational databases and OWL ontologies: An example. Computer Science and Information Technologies, 756(3), 99-117. Lei, Z., & Jing, L. (2011). Automatic generation of Ontology based on database. Journal of Computational Information Systems, 7(4), 1148-1154. Microsoft. (2011). Northwind database. Retrieved from codeplex.com/ Microsoft. (2013). Pubs sample database. Retrieved from en-us/library/aa238305%28v=sql.80%29.aspx/ Mohammed, R. C. L., Hicham, B., & Said, O. E. A. (2013). Transformation rules for building OWL Ontologies from relational databases. Paper presented at The Second International Conference on Advanced Information Technologies and Applications, UAE. Mona, D., & Esmaeil, K. (2015). An approach for transforming of relational databases to OWL Ontology. International Journal of Web & Semantic Technology, 6(1), 19- 28. Nguyen, L. H. H., Hoang, H. H., & Le, M. T. (2012). Convert relational model to semantic model based on Ontology. Hue University Journal of Science, 73(4), 115-124. Noreddine, G., Khaoula, A., & Mohamed, B. (2012). Mapping relational database into OWL structure with data semantic preservation. OALib Journal, 10(1), 42-47. Yutao, R., Lihong, J., Fenglin, B., & Hongming, C. (2012). Rules and implementation for generating Ontology from relational database. Paper presented at The Second International Conference on Cloud and Green Computing, USA. Wikipedia. (2016). Precision and recall. Retrieved from Precision_and_recall/ Pham Thi Thu Thuy 141 RDB2OWL: MỘT PHƯƠNG PHÁP CẢI TIẾN TRONG VIỆC CHUYỂN ĐỔI CƠ SỞ DỮ LIỆU QUAN HỆ SANG OWL Phạm Thị Thu Thúya* aKhoa Công nghệ Thông tin, Trường Đại học Nha Trang, Khánh Hoà, Việt Nam *Tác giả liên hệ: Email: thuthuy@ntu.edu.vn Lịch sử bài báo Nhận ngày 11 tháng 01 năm 2017 | Chỉnh sửa ngày 11 tháng 04 năm 2017 Chấp nhận đăng ngày 17 tháng 05 năm 2017 Tóm tắt Một trong những lợi thế của Semantic Web là để mô tả dữ liệu với một ý nghĩa rõ ràng và liên kết giữa các dữ liệu bằng cách sử dụng ngôn ngữ OWL (Web Ontology Language). Ngày nay hầu hết các dữ liệu được lưu trữ trong cơ sở dữ liệu quan hệ. Để tận dụng lại các dữ liệu này, cần thiết phải có phương pháp chuyển dữ liệu lưu trữ trong cơ sở dữ liệu quan hệ vào định dạng của OWL Ontology. Một số phương pháp đã được đề xuất, tuy nhiên, hầu hết các quy tắc chuyển đổi đã không được hoàn chỉnh. Bài báo này đề xuất một số quy tắc cải thiện trong việc chuyển đổi cơ sở dữ liệu quan hệ sang OWL Ontology. Ngoài ra, tất cả các bước chuyển đổi trong thuật toán RDB2OWL được thực hiện tự động mà không cần bất kỳ sự can thiệp của người dùng. Từ khóa: Biến đổi; Cơ sở dữ liệu; Ontology; OWL.

Các file đính kèm theo tài liệu này:

  • pdfrdb2owl_an_improved_method_for_converting_relational_databas.pdf