Một trong những lợi thế của Semantic Web là để mô tả dữ liệu với một ý nghĩa rõ ràng và
liên kết giữa các dữ liệu bằng cách sử dụng ngôn ngữ OWL (Web Ontology Language). Ngày
nay hầu hết các dữ liệu được lưu trữ trong cơ sở dữ liệu quan hệ. Để tận dụng lại các dữ liệu
này, cần thiết phải có phương pháp chuyển dữ liệu lưu trữ trong cơ sở dữ liệu quan hệ vào
định dạng của OWL Ontology. Một số phương pháp đã được đề xuất, tuy nhiên, hầu hết các
quy tắc chuyển đổi đã không được hoàn chỉnh. Bài báo này đề xuất một số quy tắc cải thiện
trong việc chuyển đổi cơ sở dữ liệu quan hệ sang OWL Ontology. Ngoài ra, tất cả các bước
chuyển đổi trong thuật toán RDB2OWL được thực hiện tự động mà không cần bất kỳ sự can
thiệp của người dùng.
13 trang |
Chia sẻ: huongthu9 | Lượt xem: 656 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Rdb2owl: an improved method for converting relational databases into owl, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
TẠP CHÍ KHOA HỌC ĐẠI HỌC ĐÀ LẠT Tập 7, Số 2, 2017 129–141 129
RDB2OWL: AN IMPROVED METHOD FOR CONVERTING
RELATIONAL DATABASES INTO OWL
Pham Thi Thu Thuya*
aThe Faculty of Information Technology, Nhatrang University, Khanhhoa, Vietnam
Article history
Received: January 11th, 2017 | Received in revised form: April 11th, 2017
Accepted: May 17th, 2017
Abstract
One of the biggest advantages of the Semantic web is to describe data with a well-defined
meaning and link between data by using the OWL (Web Ontology Language). Today most
data are stored in relational databases. In order to reuse the data on the Semantic Web, there
is a need for transforming the data stored in relational databases into the form of OWL
Ontology. Some approaches have been proposed; however, most of their transformation
rules have not been complete. This paper proposes some improved rules for transforming
relational database into OWL Ontology. Most of all, all the steps in RDB2OWL are done
automatically without any user intervention.
Keywords: Databases; Ontology; OWL; Transformation.
1. INTRODUCTION
From inception to date, the World Wide Web (WWW) has become an important
tool to store and share huge sources of mankind knowledge. Most data on the WWW is
currently stored in form of the relational databases (RDBs). The organization of data
storage of relational databases (Andrew, 2009) offers many advantages such as: Efficient
storage, an ability to execute complex queries, scalability, high security. However, RDBs
are distinct, heterogeneous on schemas, terminology, and identification. Thus, Ontology
was born for the purpose of providing the foundation for integrating all data sources. The
conversion of data from RDB into an OWL Ontology is the solution to take advantage of
and exploit the huge data available on the WWW.
* Corresponding author: Email: thuthuy@ntu.edu.vn
130 TẠP CHÍ KHOA HỌC ĐẠI HỌC ĐÀ LẠT [ĐẶC SAN CÔNG NGHỆ THÔNG TIN]
Currently there are several methods of transforming relational databases into a
given Ontology. Guntars (2010); Lei and Jing (2011); and Edgard, Percy, Karin, José,
and Marco (2013) have proposed a method for automatically building ontologies from
relational databases. However, this approach ignores a number of data tables showing
links. Yutao’s method (Yutao, Lihong, Fenglin, & Hongming, 2012) has not represented
the table with multi-valued attributes. Mohammed’s method (Mohammed, Hicham, &
Said, 2013) has added mapping rules for N-ary relationships. Mona and Esmaeil (2015)
proposed some common mapping rules from RDB to OWL, especially mapping rules for
triggers to OWL. However, all the four methods above have not completed the mapping
for binding on the properties, namely with CHECK constraints. The method of Nguyen,
Hoang, and Le (2012) has fairly completed the conversion of the full review of tables,
relationships, and constraints. However, there are irrationality CHECK constraints when
they use the common mapping rule for the same attributes based on the primary key
values, and this rule cannot be applied to a number of databases with identical primary
key values. This paper follows the methods mentioned above to improve the mapping
rules and mappings CHECK constraints.
2. DATABASE TRANSFORMATION INTO OWL ONTOLOGY
2.1. Transformation diagram
Relational databases are transformed into Ontology to be represented as an OWL
Ontology. The conversion process consists of two steps:
• Schema mappings: This step is to extract information from the database schemas,
then transforming them into concepts and properties in Ontology. Particularly,
this step generates classes from the table, creates the object properties from the
foreign key attributes and creates the type of data (data property) from the attribute
which is not a foreign key.
• Data mapping: This step extracts data from the relational database (records) then
stores them as the instances of the OWL Ontology.
Pham Thi Thu Thuy 131
Figure 1. Transformation diagram
The type of database tables is divided into six categories. Classification method is
based on the number of fields that are the key (foreign and primary key), the correlation
between the primary key and foreign key. The method is described in Table 1.
Table 1. Method of classifing the tables in SQL
Table type
Number of
fields
created
primary key
Number of
fields created
foreign key
Correlation between the
primary key and foreign key
Base table >=1 0
The table has a usual foreign key >=1 >=1
Primary key does not create
foreign key.
Inheritance table >=1 >=1
Primary key also creates
foreign key.
Multi-value table 2 1
Foreign key also creates
primary key
Table represents the pluralistic
relationship having attributes.
>=2 >2
Primary key also creates
foreign key.
Table represents the binary
relationship
2 2
Primary key also creates
foreign key.
For each type of table, we used the priority index to mark. Priority index of the
base table is 1, the table has a foreign key is usually 2, 3 for inheritance table, multi-table
value is 4, the table represents the pluralistic relationship having attributes is 5, the table
represents the dualistic relationship is 6.
2.2. Algorithm for transforming RDB into OWL Ontology
The algorithm for transforming RDB into OWL Ontology is presented in Figure
2. The details of the algorithm command are explained by comments in each line.
132 TẠP CHÍ KHOA HỌC ĐẠI HỌC ĐÀ LẠT [ĐẶC SAN CÔNG NGHỆ THÔNG TIN]
/*DefineDatatype(string datatype): Function returns the corresponding data types in OWL, with input parameter is
For class in tableClassPriority
If PriorityIndex== 1 || PriorityIndex== 2 || PriorityIndex== 5
Create the corresponding class in OWL Ontology
end if
If PriorityIndex== 3
Create the corresponding class in OWL Ontology
Adding attribute rdfs:subClassOf
end if end for
// Attribute description
For attribute in tableAttribute
// Describe Domain of the property
If PriorityIndex!= 4 || PriorityIndex!= 6 && constraint != FOREIGN KEY
Create the corresponding property in OWL Ontology
Domain = domain[attribute]
End if
// Describe Range of the property
If PriorityIndex!= 4 || PriorityIndex!= 6 && constraint != CHECK && constraint != FOREIGN KEY
Create the corresponding data type property in OWL Ontology
Range = DefineDataType(range[attribute])
End if
// Describe constraint UNIQUE and PRIMARY KEY
If PriorityIndex!= 4 || PriorityIndex!= 6 && constraint == PRIMARY KEY || constraint == UNIQUE && constraint !=
FOREIGN KEY
Set the Functional for the corresponding property in OWL Ontology
End if
// Describe constraint NOT NULL
If PriorityIndex!= 4 || PriorityIndex!= 6 && isNullAttribute[attribute] == NO
&& constraint != FOREIGN KEY
Set the constraint of minCardinality equal 1 for the corresponding property in OWL Ontology
End if
// Describe CHECK constraint
If PriorityIndex!= 4 || PriorityIndex!= 6 && constraint == CHECK && constraint != FOREIGN KEY
string checkClause :: conditional clause of CHECK constraint
Consider checkClause to determine the type of CHECK constraint
// CHECK (attribute IN (value1, value2, ))
If it is CHECK (attribute IN (value1, value2, ))
Assign the constraint owl:oneOf and owl:DataRange on the range of the corresponding property in OWL Ontology.
end if
// CHECK (attribute = value)
If it is CHECK (attribute = value)
Assign the constraint owl:hasValue as the same value as the corresponding value on corresponding property in OWL
Ontology.
end if
if DefineDatatype(range[attribute]) == integer
// CHECK (attribute > 0)
If it is CHECK (attribute > 0)
Describe the range by xsd;positiveInteger for the corresponding property in OWL Ontology.
end if
// CHECK (attribute > 0)
If it is CHECK (attribute >= 0)
Describe the range by xsd;nonNegativeInteger for the corresponding property in OWL Ontology.
End if
// CHECK (attribute < 0)
If it is CHECK (attribute < 0)
Describe the range by xsd;negativeInteger for the corresponding property in OWL Ontology. end if
// CHECK (attribute <= 0)
If it is CHECK (attribute <= 0)
Describe the range by xsd;nonPositiveInteger for the corresponding property in OWL Ontology.
end if else
Describe range for the property by the corresponding data type in SQL. Range = DefineDatatype(range[attribute])
end if end if
// Describe constraint FOREIGN KEY
If PriorityIndex!= 4 || PriorityIndex!= 6 && constraint != FOREIGN KEY
Create the corresponding object property in OWL Ontology and set the minCardinality constraint equal 1 for this property
Domain = domain[attribute]
Range = range[attribute]
End if
Figure 2. The algorithm for transforming RDB into OWL Ontology
Pham Thi Thu Thuy 133
//Describe the Functional for key attribute in the inheritance table
If the considering attribute appears in tablePkeyInheritance
Set the Functional for the corresponding property in OWL Ontology
Range = DefineDatatype(range[attribute])
End if
// Describe the attribute of multi-value table
If PriorityIndex== 4 && constraint != FOREIGN KEY
Create the data type property for muti-value attribute.
Domain if the corresponding class in the main table
Set owl:someValuesFrom constraint for range of this property
End if
// Describe the attribute of binary relationship table
If PriorityIndex== 6
Create the corresponding object property in OWL Ontology
Set Domain and range as invert of eacch other
end if end for
// Crreate instances
For class in tableClassPriority
For attribute in tableAttribute
If domain[attribute] == class
Create query to extract data
end if end for
Query for extracting data
If PriorityIndex!= 4 && PriorityIndex!= 6
Create intances with its’ name is: _
Assign the value for the data type property of each instance.
end if
If PriorityIndex== 4
Assign the multi-value property for the instance of the class corresponding to the main table
end if end for
Save Ontology.owl file in the internal memory
Figure 2. The algorithm for transforming RDB into OWL Ontology (cont.)
3. EXPERIMENTAL RESULTS AND CONCLUSIONS
3.1. Experimental results
To simulate the conversion algorithm from RDB to OWL Ontology, we use the
university sample database, namely Nhatrang University. The software used are
Microsoft Visual Studio 2012 and Microsoft SQL Server 2012.
Table 2. Describing information for the university sample database
Attribute name Domain Range Constraint
Reference
table
NULL
acceptance
Conditional clause Priority
Khoa. MaKhoa Khoa varchar
PRIMARY
KEY
NONE NO NONE 1
Khoa.
SoLuongGV
Khoa int CHECK NONE YES ([SoLuongGV] >(0)) 1
Khoa. TenKhoa Khoa nvarchar ATTRIBUTE NONE NO NONE 1
MonHoc.
MaMonHoc
MonHoc varchar
PRIMARY
KEY
NONE NO NONE 1
MonHoc. SoTC MonHoc int CHECK NONE YES ([SoTC]>=(0)) 1
MonHoc.
TenMonHoc
MonHoc nvarchar ATTRIBUTE NONE NO NONE 1
134 TẠP CHÍ KHOA HỌC ĐẠI HỌC ĐÀ LẠT [ĐẶC SAN CÔNG NGHỆ THÔNG TIN]
Table 2. Describing information for the university sample database (cont.)
Attribute name Domain Range Constraint
Reference
table
NULL
acceptance
Conditional
clause
Priority
NghienCuu.
MaDeTai
NghienCuu varchar
PRIMARY
KEY
NONE NO NONE 1
NghienCuu.
TenDeTai
NghienCuu ntext ATTRIBUTE NONE NO NONE 1
NhanVien.
DiaChi
NhanVien nvarchar ATTRIBUTE NONE NO NONE 1
NhanVien. Email NhanVien varchar UNIQUE NONE YES NONE 1
NhanVien.
HoNhanVien
NhanVien nvarchar ATTRIBUTE NONE NO NONE 1
NhanVien.
MaNhanVien
NhanVien varchar
PRIMARY
KEY
NONE NO NONE 1
NhanVien.
TenNhanVien
NhanVien nvarchar ATTRIBUTE NONE NO NONE 1
BoMon.
MaBoMon
BoMon varchar
PRIMARY
KEY
NONE NO NONE 2
BoMon. MaKhoa BoMon Khoa
FOREIGN
KEY
Khoa YES NONE 2
BoMon.
TenBoMon
BoMon nvarchar ATTRIBUTE NONE NO NONE 2
GiangDay.
HocKy
GiangDay int CHECK NONE YES
([HocKy]=(1)
OR
[HocKy]=(2)
OR
[HocKy]=(3))
2
GiangDay.
MaGiangDay
GiangDay varchar
PRIMARY
KEY
NONE NO NONE 2
GiangDay.
MaGiangVien
GiangDay GiangVien
FOREIGN
KEY
GiangVien YES NONE 2
GiangDay.
MaMonHoc
GiangDay MonHoc
FOREIGN
KEY
MonHoc YES NONE 2
GiangDay.
NamHoc
GiangDay varchar ATTRIBUTE NONE NO NONE 2
SinhVien.
GioiTinh
SinhVien nvarchar ATTRIBUTE NONE NO NONE 2
SinhVien.
HoSinhVien
SinhVien nvarchar ATTRIBUTE NONE NO NONE 2
SinhVien.
MaKhoa
SinhVien Khoa
FOREIGN
KEY
Khoa YES NONE 2
SinhVien.
MaSinhVien
SinhVien varchar
PRIMARY
KEY
NONE NO NONE 2
SinhVien.
TenSinhVien
SinhVien nvarchar ATTRIBUTE NONE NO NONE 2
GiangVien.
MaBoMon
GiangVien BoMon
FOREIGN
KEY
BoMon YES NONE 3
Pham Thi Thu Thuy 135
Table 2. Describing information for the university sample database (cont.)
Attribute name Domain Range Constraint
Reference
table
NULL
acceptance
Conditional
clause
Priority
GiangVien.
MaGiangVien
GiangVien NhanVien
FOREIGN
KEY
NhanVien NO NONE 3
DienThoai.
MaNhanVien
DienThoai NhanVien
FOREIGN
KEY
NhanVien NO NONE 4
DienThoai.
SoDienThoai
DienThoai varchar
PRIMARY
KEY
NONE NO NONE 4
KetQua.
DiemTongKet
KetQua float CHECK NONE YES
([DiemTongKet]
>=(0))
5
KetQua.
MaGiangDay
KetQua GiangDay
FOREIGN
KEY
GiangDay NO NONE 5
KetQua.
MaSinhVien
KetQua SinhVien
FOREIGN
KEY
SinhVien NO NONE 5
TacGia.
MaDeTai
TacGia NghienCuu
FOREIGN
KEY
NghienCuu NO NONE 6
TacGia.
MaGiangVien
TacGia GiangVien
FOREIGN
KEY
GiangVien NO NONE 6
Figure 3. University sample database
BoMon
MaBoMon
TenBoMon
MaKhoa
DienThoai
MaNhanVien
SoDienThoai
GiangDay
MaGiangDay
MaGiangVien
MaMonHoc
HocKy
NamHoc
GiangVien
MaGiangVien
MaBoMon
KetQua
MaSinhVien
MaGiangDay
DiemTongKet
Khoa
MaKhoa
TenKhoa
SoLuongGV
MonHoc
MaMonHoc
TenMonHoc
SoTC
NghienCuu
MaDeTai
TenDeTai
NhanVien
MaNhanVien
HoNhanVien
TenNhanVien
DiaChi
Email
SinhVien
MaSinhVien
HoSinhVien
TenSinhVien
GioiTinh
MaKhoa
TacGia
MaDeTai
MaGiangVien
136 TẠP CHÍ KHOA HỌC ĐẠI HỌC ĐÀ LẠT [ĐẶC SAN CÔNG NGHỆ THÔNG TIN]
RDB2OWL program allows converting relational databases into a given
Ontology. The conversion can be applied to any relational database. OWL file created
can be opened by using the Ontology editor.
During the implementation process, there are five files that are created, including:
_Attributes.xml, _ClassPriority.xml,_PkeyInheritance.xml, _MTRDB.xml, Ontology.owl.
The content of those files is the results after converting Nhatrang University database.
The content of those files is very long, so in this section, we present only a small section
of the conversion results when transforming BoMon table into.owl file (Figure 4).
<!DOCTYPE rdf:RDF [
]>
<rdf:RDF xmlns=""
xml:base=""
xmlns:rdfs=""
xmlns:owl=""
xmlns:xsd=""
xmlns:rdf="">
1
1
Hệ thống thông tin
INS
Figure 4. The contents of into.owl file
Pham Thi Thu Thuy 137
3.2. Comparing results with other studies
We evaluated our proposed converting method by matching a relational database
with an OWL file to determine the true matches and compared our results with other
methods. To assess the quality of the matching system, we used precision and recall
(Wikipedia, 2016). Given the set of expected matching pairs, R (produced by a human),
the set of alignment pairs, T (produced by the matching system for the proposed methods),
the precision is computed as in the following equation:
R T
precision(R,T)
T
(1)
Recall specifies the share of real correspondences:
R T
recall(R,T)
R
(2)
Although precision and recall are the most widely used measures, when
comparing matching systems, one may prefer to have only a single measure. For this
reason, F-measure (Wikipedia, 2016), is introduced to aggregate the precision and recall.
(3)
To obtain practical evidence, we applied our transformation to two sample
databases produced by Microsoft, particularly Microsoft (2011) and Microsoft (2013).
We compared the precision, recall, and F-measure values between our proposed
method and the results of other studies, such as Edgard et al. (2013); Nguyen et al. (2012);
Mona and Esmaeil (2015); and Yutao et al. (2012). The matching system is also
implemented by using Visual Studio (C#). The compared results are shown in the
following Figure 5 and Figure 6.
precision* recall
F measure 2*
precision+recall
138 TẠP CHÍ KHOA HỌC ĐẠI HỌC ĐÀ LẠT [ĐẶC SAN CÔNG NGHỆ THÔNG TIN]
Figure 5. Matching comparison between our method and others’ on Northwind
database
Figure 6. Matching comparison between our method and others’ on Pub Database
Figure 5 and Figure 6 show that our matching quality is the highest when
compared to those of other studies. Nguyen (2012) is ranked second, followed by Edgard
et al. (2013); Mona and Esmaeil (2015); and Yutao et al. (2012). The main reason is that
our method (RDB2OWL) and Nguyen et al. (2012) transform all the CHECK constraints
whereas the other three methods ignore this condition. Moreover, our method maintains
the relationships between the foreign key and primary key among relations whereas other
compared methods do not.
There are some small differences between Figure 5 and Figure 6 due to, the
differences of Northwind and Pubs databases. Northwind database has 13 relations in
comparison with 11 relations in Pubs database. Among those relations, there are
relationships between foreign keys and primary keys. In this experiment, the total number
of the relationships in the Northwind database is higher than that of Pubs database.
Therefore, for those methods which do not maintain the foreign key and primary key
Pham Thi Thu Thuy 139
relationship, their matching results in the Northwind database are lower than those in the
Pubs database.
3.3. Conclusions
Compared with other methods of conversion of reference, our method was more
complete in mapping of CHECK constraint (CHECK form (attribute> 0), CHECK
(attribute> = 0), CHECK (attribute <0), CHECK (attribute <= 0)) and the way to name
the class.
First, the CHECK constraint (CHECK form (attribute> 0), CHECK (attribute> =
0), CHECK (attribute <0), CHECK (attribute <= 0)) in relational databases can apply
under data type property about numbers (integers, real numbers) whereas, Nguyen et al.
(2012) mapping rule is only used for integer data type. Therefore, when mapping this
kind of constraint, we will review the data type of the property. If the type attribute is
integer, then the mapping follows the rules specified by Nguyen et al. (2012), otherwise
the attribute type in the Ontology is the corresponding data type in SQL.
Second, about the way to name instances for the class. In most of the related
works, naming for instances will get by the value of the primary key. However, in a
number of databases, the data type of the primary key is automatic number. That means
the key values are the ascending integer. Therefore, when mapping this value there occurs
the same name, so we cannot identify the class of this instance. So, when naming the
instance of the class, we put the name of the class before primary key values to avoid
having the same (by identical primary key values) because OWL Ontology requires that
the name of the class in the Ontology is unique.
Finally, the transformation program into OWL Ontology is done automatically
and the OWL file result complies with the format and syntax of the W3C and can be used
directly by the application program without any supplements.
140 TẠP CHÍ KHOA HỌC ĐẠI HỌC ĐÀ LẠT [ĐẶC SAN CÔNG NGHỆ THÔNG TIN]
REFERENCES
Andrew, J. O. (2009). Databases: A beginner's guide. New York, USA: The McGraw-
Hill Companies.
Edgard, M., Percy, S., Karin, B., José, V., & Marco, A. C. (2013). RDB2RDF: A
relational to RDF plug-in for Eclipse. Software: Practice Expert, 43(4), 435-447.
Guntars, B. (2010). Mapping between relational databases and OWL ontologies: An
example. Computer Science and Information Technologies, 756(3), 99-117.
Lei, Z., & Jing, L. (2011). Automatic generation of Ontology based on database. Journal
of Computational Information Systems, 7(4), 1148-1154.
Microsoft. (2011). Northwind database. Retrieved from
codeplex.com/
Microsoft. (2013). Pubs sample database. Retrieved from
en-us/library/aa238305%28v=sql.80%29.aspx/
Mohammed, R. C. L., Hicham, B., & Said, O. E. A. (2013). Transformation rules for
building OWL Ontologies from relational databases. Paper presented at The
Second International Conference on Advanced Information Technologies and
Applications, UAE.
Mona, D., & Esmaeil, K. (2015). An approach for transforming of relational databases to
OWL Ontology. International Journal of Web & Semantic Technology, 6(1), 19-
28.
Nguyen, L. H. H., Hoang, H. H., & Le, M. T. (2012). Convert relational model to semantic
model based on Ontology. Hue University Journal of Science, 73(4), 115-124.
Noreddine, G., Khaoula, A., & Mohamed, B. (2012). Mapping relational database into
OWL structure with data semantic preservation. OALib Journal, 10(1), 42-47.
Yutao, R., Lihong, J., Fenglin, B., & Hongming, C. (2012). Rules and implementation for
generating Ontology from relational database. Paper presented at The Second
International Conference on Cloud and Green Computing, USA.
Wikipedia. (2016). Precision and recall. Retrieved from
Precision_and_recall/
Pham Thi Thu Thuy 141
RDB2OWL: MỘT PHƯƠNG PHÁP CẢI TIẾN TRONG VIỆC
CHUYỂN ĐỔI CƠ SỞ DỮ LIỆU QUAN HỆ SANG OWL
Phạm Thị Thu Thúya*
aKhoa Công nghệ Thông tin, Trường Đại học Nha Trang, Khánh Hoà, Việt Nam
*Tác giả liên hệ: Email: thuthuy@ntu.edu.vn
Lịch sử bài báo
Nhận ngày 11 tháng 01 năm 2017 | Chỉnh sửa ngày 11 tháng 04 năm 2017
Chấp nhận đăng ngày 17 tháng 05 năm 2017
Tóm tắt
Một trong những lợi thế của Semantic Web là để mô tả dữ liệu với một ý nghĩa rõ ràng và
liên kết giữa các dữ liệu bằng cách sử dụng ngôn ngữ OWL (Web Ontology Language). Ngày
nay hầu hết các dữ liệu được lưu trữ trong cơ sở dữ liệu quan hệ. Để tận dụng lại các dữ liệu
này, cần thiết phải có phương pháp chuyển dữ liệu lưu trữ trong cơ sở dữ liệu quan hệ vào
định dạng của OWL Ontology. Một số phương pháp đã được đề xuất, tuy nhiên, hầu hết các
quy tắc chuyển đổi đã không được hoàn chỉnh. Bài báo này đề xuất một số quy tắc cải thiện
trong việc chuyển đổi cơ sở dữ liệu quan hệ sang OWL Ontology. Ngoài ra, tất cả các bước
chuyển đổi trong thuật toán RDB2OWL được thực hiện tự động mà không cần bất kỳ sự can
thiệp của người dùng.
Từ khóa: Biến đổi; Cơ sở dữ liệu; Ontology; OWL.
Các file đính kèm theo tài liệu này:
- rdb2owl_an_improved_method_for_converting_relational_databas.pdf