Hoạt động của pin mặt trời ZnO/In2S3/Cu2Sn3S7/Mo đã được mô phỏng bằng phần mềm
SCAPS. Các thông số chính đầu vào là bề rộng vùng cấm Eg, hệ số hấp thụ α, bề dày d, độ linh
động μ và nồng độ hạt tải n của các màng ZnO, In2S3 và Cu2Sn3S7 thu được từ thực nghiệm.
Trong quá trình mô phỏng, các thông số của các màng ZnO (Eg = 3,3 eV, d = 0,2 μm, μn = 100
cm2/(Vs)) và In2S3 (Eg = 2,96 eV, d = 0,1 μm, μn = 50 cm2/(Vs)) đã được giữ không đổi. Ảnh
hưởng của bề dày d và nồng độ hạt tải np của màng Cu2Sn3S7 (αmax = 4,2×104 cm-1, Eg = 1,46 eV)
lên Voc, Jsc, Vm, Jm, FF và η của pin đã được khảo sát trong các khoảng giá trị d = 0,3 – 3,5 μm
và n
p = 1017 – 1020 cm-3. Trong điều kiện chiếu sáng tiêu chuẩn AM 1.5G ở nhiệt độ 300 K, pin
mặt trời ZnO/In2S3/Cu2Sn3S7/Mo có Rs = 10 Ω.cm2 và Rsh = 1×106 Ω.cm2 sử dụng màng
Cu2Sn3S7 có d = 2 µm, αmax = 4,2×104 cm-1, Eg = 1,46 eV, μp = 15 cm2/(Vs) và np = 1020 cm-3 đạt
hiệu suất lớn nhất ηmax = 18,0 % với Voc = 0,98 V, Jsc = 31,2 mA/cm2, Vm = 0,62 V, Jm = 28,8
mA/cm2 và FF = 58,8 %.
7 trang |
Chia sẻ: honghp95 | Lượt xem: 645 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Scaps simulation of zno/in2s3/cu2sn3s7/mo solar cell - Phung Dinh Hoat, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Journal of Science and Technology 54 (1A) (2016) 183-189
SCAPS SIMULATION OF ZnO/In2S3/Cu2Sn3S7/Mo SOLAR CELL
Phung Dinh Hoat
1, *
, Do Phuc Hai
2
1
Faculty of Engineering Physics and Chemistry, Le Quy Don Technical University,
236 Hoang Quoc Viet Street, Cau Giay District, Hanoi
2
School of Engineering Physics, Hanoi University of Science and Technology,
1 Dai Co Viet Street, Hai Ba Trung District, Hanoi
*
Email: hoatma@gmail.com
Received: 30 August 2015. Accepted for publication: 26 October 2015
ABSTRACT
Operation of ZnO/In2S3/Cu2Sn3S7/Mo solar cell was calculated using the SCAPS software.
Main input data were energy band gap Eg, absorption coefficient α, thickness d, mobility μ and
carrier concentration n of the ZnO, In2S3 and Cu2Sn3S7 films obtained from experiments. In all
calculation processes, parameters of the ZnO (Eg = 3.3 eV, d = 0.2 μm, μn = 100 cm
2
/(Vs)) and
In2S3 (Eg = 2.96 eV, d = 0.1 μm, μn = 50 cm
2
/(Vs)) films were kept constant. Effects of thickness
d and carrier concentration np of the Cu2Sn3S7 (αmax = 4.2×10
4
cm
-1
, Eg = 1.46 eV) film on Voc,
Jsc, Vm, Jm, FF and η of the cell were investigated in the ranges of d = 0.3 – 3.5 μm and np = 10
17
– 1020 cm-3. Under the standard AM 1.5G illumination at 300 K, the ZnO/In2S3/Cu2Sn3S7/Mo
solar cell having Rs = 10 Ω.cm
2
and Rsh = 1×10
6 Ω.cm2 using Cu2Sn3S7 film having d = 2 µm,
αmax = 4.2×10
4
cm
-1
, Eg = 1.46 eV, μp = 15 cm
2
/(Vs) and np = 10
20
cm
-3
has the highest
conversion efficiency ηmax = 18.0 % with Voc = 0.98 V, Jsc = 31.2 mA/cm
2
, Vm = 0.62 V, Jm =
28.8 mA/cm
2
and FF = 58.8 %.
Keywords: Cu2Sn3S7, SCAPS, Solar cell.
1. INTRODUCTION
Recently, compounds consisting of cheap, earth abundant and environmental green Cu, Sn
and S elements of ternary system Cu-Sn-S, such as Cu2SnS3, Cu2Sn3S7, Cu4SnS4, Cu5Sn2S7,
Cu4Sn7S16 and Cu4SnS6 etc [1 - 5], have attracted much attention because of their good optical
and electrical properties for various potential applications not only in thin film solar cells but
also in other optoelectronic devices. Among these compounds, only the Cu2SnS3 has been
widely investigated ranging from fabricating techniques and physical property characterization
of the film to the operating of thin film solar cell using the Cu2SnS3 film as an absorption layer.
Despite the fact that the Cu2Sn3S7 compound has been reported to possess similar properties for
solar cell application when compared with the Cu2SnS3 [6], to date there are only a few works [2,
Phung Dinh Hoat, Do Phuc Hai
184
7] on preparations and physical properties of the Cu2Sn3S7 film. Especially, there is no report on
solar cells using the Cu2Sn3S7 film as the absorption layer.
We have successfully fabricated the Cu2Sn3S7 film by directly spraying a mixture of
solutions containing 0.42M SC(NH2)2, 0.18M SnCl4.5H2O and 0.12M CuCl2.2H2O on Pyrex glass
at 320
o
C using the nitrogen gas as carrying gas. Physical properties of the prepared Cu2Sn3S7 film
were studied by XRD, SEM, EDAX, AFM, UV-vis. The prepared Cu2Sn3S7 film has suitable
physical properties for solar cell application, i.e., p-type semiconducting, energy band gap Eg =
1.46 eV and absorption coefficient α > 104 cm-1 in the range of wave length λ = 300 – 1100 nm
[2]. It is worthwhile investigating the operation of solar cell using the Cu2Sn3S7 film as the
absorption layer in combining with an n-type semiconducting buffer layer such as In2S3, CdS
films etc.
In this paper, using our obtained experimental results of the Cu2Sn3S7 film as the input
parameters for the absorption layer, we used the one-dimensional solar cell device simulator
SCAPS software, which has succeeded in simulating CdTe and CIGS-based thin film solar cells
[8, 9], to study the operation of ZnO/In2S3/Cu2Sn3S7/Mo solar cell. The influence of the two
main parameters of the Cu2Sn3S7 absorption film i.e. thickness d and carrier concentration np on
characteristic parameters Voc, Jsc, FF and η of ZnO/In2S3/Cu2Sn3S7/Mo solar cell was
investigated in the range of d = 0.3 – 3.5 μm and np = 10
17
– 1020 cm-3, respectively. Results
obtained from this work will give some clues to experimental research of this solar cell to save
labour, time and cost.
2. EXPERIMENTAL PROCEDURES
In the ZnO/In2S3/Cu2Sn3S7/Mo solar cell, ZnO, In2S3 and Cu2Sn3S7 films are the window,
buffer and absorption layers, respectively.
Fundamental material properties of the ZnO, In2S3 and Cu2Sn3S7 films defining the basic
calculation case are listed in Table 1.
Table 1. Fundamental material parameters.
Parameters ZnO In2S3 Cu2Sn3S7
Thickness d (μm) 0.2 0.1 0.3 – 3.5
Band gap Eg (eV) 3.3 2.96 1.46
Relative dielectric constant εr (F/cm) 9 8.4 10
Electron affinity χ (eV) 4.45 4.2 4.5
Electron mobility μe (cm
2
/(Vs)) 100 50 50
Hole mobility μh (cm
2
/(Vs)) 25 15 15
Donor density ND (cm
-3
) 1.10
18
1.10
17
1.10
1
Acceptor density NA (cm
-3
) 1.10
1
1.10
1
10
17
– 1020
The energy band gap and absorption coefficient of In2S3 and Cu2Sn3S7 were deduced from
our experiments while the other parameters of all three films were obtained from the reported
literature [10]. Figure 1 plots the absorption coefficient versus wavelength of ZnO [11], In2S3
and Cu2Sn3S7 films.
Scaps simulation of ZnO/Ni2S3/Cu2Sn3S7/Mo Solar Cell
185
Figure 1. Absorption coefficient of ZnO, In2S3 and Cu2Sn3S7 films. Inset is the AM 1.5G solar spectrum.
The front and back contacts are characterized by the work function, reflectivity and surface
recombination velocity. The work functions of ZnO, In2S3 and Cu2Sn3S7 were 4.45, 4.2 and 4.5
eV, respectively. The reflection was assumed to be 100 % at the back contact and 0 % at the
front contact. The surface recombination velocities of electron (Sn) and hole (Sp) were
respectively 10
7
, 10
4
cm/s at the front contact and 10
4
, 10
7
cm/s at back contact. The contacts
between metal and semiconductor were Ohmic. The shunt and series resistances of the solar cell
were chosen as Rsh = 10
6 Ω.cm2 and Rs = 10 Ω.cm
2
, respectively.
All calculations were performed under the standard AM1.5G solar spectrum (100 mW/cm
2
)
illumination [12] shown in Fig. 1. The operating temperature was set at 300 K.
3. RESULTS AND DISCUSSION
3.1. Effect of thickness d of Cu2Sn3S7 film on characteristic parameters of
ZnO/In2S3/Cu2Sn3S7/Mo solar cell
To study effect of thickness d of the Cu2Sn3S7 film on characteristic parameters of
ZnO/In2S3/Cu2Sn3S7/Mo solar cell, d was changed from 0.3 to 3.5 μm while the carrier
concentration of the Cu2Sn3S7 film was kept constant at np = 10
18
cm
-3
. Figure 2a and 2b show
the change of J-V and QE (λ) curves of ZnO/In2S3/Cu2Sn3S7/Mo solar cell as varying the
Cu2Sn3S7 thickness, respectively. The dependence of the solar cell characteristic parameters Voc,
Jsc, Vm, Jm, FF and η on the Cu2Sn3S7 film thickness are plotted in Fig. 3 and summarized in
Table 2.
It can be seen in Fig. 2b that with the increasing of Cu2Sn3S7 film thickness from 0.3 to 2.0
μm the quantum efficiency of the solar cell increases significantly. This is due to the more
photon absorption of a thicker Cu2Sn3S7 film and it leads to a higher value of Jsc. The Jsc
enhances considerably from 26.4 to 32.0 mA/cm
2
, while the Voc increases in a small range from
0.78 to 0.80 V (Fig. 3a). The conversion efficiency η of the solar cell increases from 11.3 to
12.9 % (Fig. 3b).
Phung Dinh Hoat, Do Phuc Hai
186
In the range of thickness d = 2.0 – 3.5 μm of the Cu2Sn3S7 film, all characteristic
parameters of the solar cell are almost unchanged. It demonstrates that the ability to collect and
convert light energy into electricity of the solar cell is saturated. The saturated thickness of
Cu2Sn3S7 film is determined 2 μm. Using the 2-μm-thick Cu2Sn3S7 film with np = 10
18
cm
-3
, the
ZnO/In2S3/Cu2Sn3S7/Mo solar cell has the characteristic parameters Voc = 0.80 V, Jsc = 32.0
mA/cm
2
, FF = 50.3 % and η = 12.9 %.
Figure 2. J-V (a) and QE (b) curves of ZnO/In2S3/Cu2Sn3S7/Mo solar cell using Cu2Sn3S7 film
with different thicknesses.
0 1 2 3 4
24
27
30
33
0 1 2 3 4
0.75
0.78
0.81
V
o
c
(
V
)
d ( m)
d ( m)
J s
c
(
m
A
/c
m
2
)
0 1 2 3 4
10
11
12
13
d m
0 1 2 3 4
48
50
52
54
56
F
F
(
%
)
d m)
d ( m)
(
%
)
Figure 3. Dependence of Voc, Jsc, FF and η of ZnO/In2S3/Cu2Sn3S7/Mo solar cell on thickness of
Cu2Sn3S7 film.
Table 2. Effect of thickness d of Cu2Sn3S7 film on characteristic parameters Voc, Jsc, Vm, Jm, FF and η
of ZnO/In2S3/Cu2Sn3S7/Mo solar cell.
d (μm) 0.3 0.5 1.0 1.5 2.0 2.5 3.5
Voc (V) 0.78 0.79 0.80 0.80 0.80 0.80 0.80
Jsc (mA/cm
2
) 26.35 29.51 31.07 31.56 31.97 32.30 32.30
FF (%) 54.95 51.81 50.97 50.65 50.31 50.00 50.00
η (%) 11.35 12.08 12.61 12.78 12.90 13.00 13.00
Vm (V) 0.48 0.46 0.46 0.46 0.46 0.45 0.45
Jm (mA/cm
2
) 23.61 26.42 27.21 27.83 28.30 28.68 28.68
(a) (b)
Scaps simulation of ZnO/Ni2S3/Cu2Sn3S7/Mo Solar Cell
187
3.2. Effect of carrier concentration np of Cu2Sn3S7 film on characteristic parameters of
ZnO/In2S3/Cu2Sn3S7/Mo solar cell
Figure 4. J-V (a) and QE (b) curves of ZnO/In2S3/Cu2Sn3S7/Mo solar cell using Cu2Sn3S7 film with
different carrier concentration.
10
17
10
18
10
19
10
20
0.4
0.6
0.8
1.0
10
17
10
18
10
19
10
20
31
32
33
np (cm
-3
)
J
sc
(
m
A
/c
m
2
)
n
p
(cm-1)
V
o
c
(
V
)
10
17
10
18
10
19
10
20
6
9
12
15
18
10
17
10
18
10
19
10
20
40
50
60
n
p
(cm
-3
)
F
F
(
%
)
n
p
(cm-1)
(
%
)
Figure 5. Dependence of Voc, Jsc, FF and η of ZnO/In2S3/Cu2Sn3S7/Mo solar cell on carrier concentration
of Cu2Sn3S7 film.
To study effect of carrier concentration np of the Cu2Sn3S7 film on characteristic parameters
of ZnO/In2S3/Cu2Sn3S7/Mo solar cell, np was changed from 10
17
to 10
20
cm
-3
while the thickness
of film was kept constant at saturated value d = 2 μm. J-V and QE (λ) curves of solar cell using
the Cu2Sn3S7 film having different carrier concentrations are shown in Fig. 4a and 4b,
respectively. Calculation results of Voc, Jsc, FF, η, Vm and Jm of ZnO/In2S3/Cu2Sn3S7/Mo solar
cell are depicted in Fig. 5 and summarized in Table 3.
Generally, resistivity ρ of a p-type film is inversely proportional to the carrier concentration
np. Therefore, a higher value of np of the absorption film makes a lower value of ρ leading to a
higher value of Voc of the solar cell using that film (Fig. 4a). Figure 5a shows that when np of the
Cu2Sn3S7 film increases from 10
17
to 10
20
cm
-3
, the Voc of ZnO/In2S3/Cu2Sn3S7/Mo solar cell
increases linearly from 0.80 to 0.98 V, while Jsc of the solar cell decreases from 31.97 to 31.18
mA/cm
2
and np hardly affects the quantum efficiency QE (Fig. 4b). Figure 5b reveals that η of
the solar cell increases from 12.9 to 18.0 % as increasing the carrier concentration of the
Cu2Sn3S7 film. Using the Cu2Sn3S7 film with np = 10
20
cm
-3
and d = 2 μm, the
ZnO/In2S3/Cu2Sn3S7/Mo solar cell has the highest fill factor FF of 58.8 % and the best
conversion efficiency η of 18.0 % with Voc = 0.98 V and Jsc = 31.18 mA/cm
2
.
(a) (b)
Phung Dinh Hoat, Do Phuc Hai
188
Table 3. Effect of carrier concentration np of Cu2Sn3S7 film on characteristic parameters
Voc, Jsc, Vm, Jm, FF and η of ZnO/In2S3/Cu2Sn3S7/Mo solar cell.
np (cm
-3
) 1×10
17
5×10
17
1×10
18
5×10
18
1×10
19
5×10
19
1×10
20
Voc (V) 0.80 0.84 0.86 0.90 0.92 0.96 0.98
Jsc (mA/cm
2
) 31.97 31.64 31.53 31.33 31.28 31.20 31.18
FF (%) 50.31 52.72 53.74 55.66 56.49 58.10 58.80
η (%) 12.90 14.09 14.61 15.77 16.29 17.47 18.00
Vm (V) 0.46 0.49 0.51 0.55 0.57 0.61 0.62
Jm (mA/cm
2
) 28.30 28.57 28.53 28.68 28.66 28.82 28.81
4. CONCLUSION
In this work, the operation of ZnO/In2S3/Cu2Sn3S7/Mo solar cell was simulated using
SCAPS software. The effects of thickness and carrier concentration of Cu2Sn3S7 film on
characteristic parameters Voc, Jsc, Vm, Jm, FF and η of the solar cell were studied. The saturated
value of Cu2Sn3S7 film thickness is 2 μm. The conversion efficiency of the solar cell increases
correspondingly with the increase of carrier concentration of the Cu2Sn3S7 film. The highest
conversion efficiency η of 18.0 % with Voc = 0.98 V, Jsc = 31.18 mA/cm
2
, Vm = 0.62 V, Jm =
28.8 mA/cm
2
and FF = 58.8 % was achieved in the ZnO/In2S3/Cu2Sn3S7/Mo solar cell using the
Cu2Sn3S7 absorption film having physical parameters np = 10
20
cm
-3, d = 2 µm, α > 104 cm-1 in
the range λ = 300 – 1100 nm, Eg = 1.46 eV, μp = 15 cm
2
/(Vs) under the standard AM 1.5G solar
spectrum (100 mW/cm
2
) illumination at 300 K.
Acknowledgements. This work was financially supported by the Vietnam Ministry of Education and
Training (2013-2014, Code: B2013-01-56).
REFERENCES
1. Bouaziz M., Amlouk M., Belgacem S. - Structural and optical properties of Cu2SnS3
sprayed thin films, Thin Solid Films 517 (2009) 2527-2530.
2. Quan Thi Minh Nguyet, Do Phuc Quan, Nguyen Duc Chien, Duong Ngoc Huyen, Nguyen
Huu Lam, Dang Duc Vuong, Do Phuc Hai - Synthesis of the Cu2Sn3S7 film for solar cell
applications, Journal of Science and Technology 52 (3B) (2014) 219-224.
3. Chen Q., Dou X., Li Z., Ni Y., Chen J., Zhou F., Yamaguchi Y., Zhuang S. - Study on the
photovoltaic property of Cu4SnS4 synthesized by mechanochemical process, Optik 125
(2014) 3217–3220.
4. Zhenghua S. , Kaiwen S., Zili H., Fangyang L., Yanqing L., Jie L., yexiang L. -
Fabrication of ternary Cu-Sn-S sulfides by a modified successive ionic layer adsorption
and reaction (SILAR) method, Journal of Materials Chemistry 22 (2012) 16346-16352.
5. Xue-an C., Hiroaki W., Akira S., Masahiro M. - Synthesis, electrical conductivity and
crystal structure of Cu4Sn7S16 and structure refinement of Cu2SnS3, Journal of Solid State
Chemistry 139 (1998) 144-151.
6. Fiechter S., Martinez M., Schmidt G., Henrion W., Tomm Y. - Phase relations and optical
properties of semiconducting ternary sulfides in the system Cu-Sn-S, Journal of Physics
and Chemistry of Solids 64 (2003) 1859-1862.
Scaps simulation of ZnO/Ni2S3/Cu2Sn3S7/Mo Solar Cell
189
7. Tai H.L., Fei Y.H., Truan S.L., Kuan J.C. - Preparation of Cu2Sn3S7 thin film using a three
- step bake - sulfurization - sintering process and film characterization, Journal of
Nanomaterials 2015 (2015) 1-7.
8. Verschragen J., Burgelman M. - Numerical modeling of intra-band tunneling for
heterojunction solar cells in SCAPS, Thin Solid Films 515 (2007) 6276-6279.
9. Burgelman M., Nollet P., Degrave S. - Modelling polycrystalline semiconductor solar
cells, Thin Solid Films 361-362 (2000) 527-532.
10. Gloeckler M. - Device physics of Cu(In,Ga)Se2 thin-film solar cells, Doctor dissertation,
Colorado State University (2005) pp. 31.
11. Arachi S. - Optical constants of crystalline and amorphous semiconductors, Kluwer
Academic Publishers (1999) 426-428.
12. Hulstrom M., Bird R., Riordan C. - Spectral solar irradiance data sets for selected
terrestrial conditions, Solar cell 15 (1985) 365-391.
TÓM TẮT
MÔ PHỎNG PIN MẶT TRỜI ZnO/In2S3/Cu2Sn3S7/Mo BẰNG CHƯƠNG TRÌNH SCAPS
Phùng Đình Hoạt1, *, Đỗ Phúc Hải2
1
Khoa Hóa lý kỹ thuật, Đại học kỹ thuật Lê Quý Đôn, số 236 Hoàng Quốc Việt,
Quận Cầu Giấy, Hà Nội, Việt Nam
2
Viện Vật lý kỹ thuật, Đại học bách khoa Hà Nội, số 1 Đại Cồ Việt,
Quận Hai Bà Trưng, Hà Nội, Việt Nam
*
Email: hoatma@gmail.com
Hoạt động của pin mặt trời ZnO/In2S3/Cu2Sn3S7/Mo đã được mô phỏng bằng phần mềm
SCAPS. Các thông số chính đầu vào là bề rộng vùng cấm Eg, hệ số hấp thụ α, bề dày d, độ linh
động μ và nồng độ hạt tải n của các màng ZnO, In2S3 và Cu2Sn3S7 thu được từ thực nghiệm.
Trong quá trình mô phỏng, các thông số của các màng ZnO (Eg = 3,3 eV, d = 0,2 μm, μn = 100
cm
2
/(Vs)) và In2S3 (Eg = 2,96 eV, d = 0,1 μm, μn = 50 cm
2
/(Vs)) đã được giữ không đổi. Ảnh
hưởng của bề dày d và nồng độ hạt tải np của màng Cu2Sn3S7 (αmax = 4,2×10
4
cm
-1
, Eg = 1,46 eV)
lên Voc, Jsc, Vm, Jm, FF và η của pin đã được khảo sát trong các khoảng giá trị d = 0,3 – 3,5 μm
và np = 10
17
– 1020 cm-3. Trong điều kiện chiếu sáng tiêu chuẩn AM 1.5G ở nhiệt độ 300 K, pin
mặt trời ZnO/In2S3/Cu2Sn3S7/Mo có Rs = 10 Ω.cm
2
và Rsh = 1×10
6 Ω.cm2 sử dụng màng
Cu2Sn3S7 có d = 2 µm, αmax = 4,2×10
4
cm
-1
, Eg = 1,46 eV, μp = 15 cm
2
/(Vs) và np = 10
20
cm
-3
đạt
hiệu suất lớn nhất ηmax = 18,0 % với Voc = 0,98 V, Jsc = 31,2 mA/cm
2
, Vm = 0,62 V, Jm = 28,8
mA/cm
2
và FF = 58,8 %.
Từ khóa: Cu2Sn3S7, SCAPS, Pin mặt trời.
Các file đính kèm theo tài liệu này:
- 11824_103810382075_1_sm_1504_2061471.pdf