Small and large strain monitoring of unsaturated soil behavior by means of multiaxial testing and shear wave propagation

Whenever possible, the use of parallel bender elements should be preferred over the series type to reduce the distortion produced by cross-taking and near field effects on the received traces. Their higher cost is compensated with the save in time that it takes to prepare the series bender elements to diminish such effects. Another alternative for avoiding the problems caused by the exposure of bender elements to humid environments might be the use of another device capable of generating shear waves such as flat shear plates. In view of the difficulties encountered on this investigation for the fragile nature of bender elements, it would be worthy to investigate the feasibility of using other options. A better assessment of the effect of suction on the stiffness of soils in the modified triaxial device might be to perform multistage testing varying the matric suction on the same specimen. That way, the changes of suction belong to the same soil-water characteristic curve, and they are not individual points from different curves as in the case of using different specimens.

pdf171 trang | Chia sẻ: maiphuongtl | Lượt xem: 1985 | Lượt tải: 0download
Bạn đang xem trước 20 trang tài liệu Small and large strain monitoring of unsaturated soil behavior by means of multiaxial testing and shear wave propagation, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
m unsaturated clayey silt specimens show a small variation of the S-wave travel time with applied vertical stress. This behavior may indicate the effect of suction on stiffness for the clayey silt specimens, where a stronger effect is expected than in sand specimens. In general the unsaturated clayey silt specimens with higher suctions show higher S- wave velocities. The effect of suction is also observed in the reduction of hysterisis on S-wave velocity during application and removal of vertical stresses as the matric suctions are increased. This 131 phenomenon is caused by decreased susceptibility of the material to changes in stiffness with variation of applied effective stress. The use of the power law model to approximate the relationship between S-wave velocity and effective stresses on the plane of shear wave polarization seems appropriate in this study. Results from the modified true triaxial device, however suggest that the effective stresses parallel and perpendicular to the wave propagation should use a different exponent. 7.2. Multiaxial Testing Results With respect to the evaluation of small strain behavior of these particulate materials, the bender elements used to monitor the small strain stiffness during the stress paths applied, efficiently sense variations of stress on the direction of shear wave polarization on the test conducted on the modified true triaxial device. This is repeatedly observed in hydrostatic compression stages: the velocity of S-waves increases with increasing confinement for both vertically and horizontally polarized S-waves. In most cases, the S-wave velocity increases with the applied stress on the direction of S-wave polarization during shearing stages. The effect of suction on the small strain stiffness of the particulate media is seen only on the silty soil. The S-wave velocity of sand specimens in this study is not influenced by the induced matric suction. This may be explained because the relatively big and uniform pore sizes of the sand (compared to the silty soil) are not capable to sustain the matric suction values induced. Because of its uniformity, the majority of the pores drain at a given level of matric suction leaving the soil without the beneficial effect of the menisci water on suction, and thus in stiffness. Large strain analysis of the test results unsurprisingly shows that the shear strength of the particulate materials increases with confinement. The effect of suction on shear strength invariably shows that at low confinements the specimens with higher induced matric suctions present the higher values on shear strength. An intriguing result is observed on the silt specimen with no induced suction at high confinement. At high confinement this specimen with the lowest suction presents the biggest shear strength although at low confinement it has the lowest strength. 132 7.3 Recommendations for Future Work Whenever possible, the use of parallel bender elements should be preferred over the series type to reduce the distortion produced by cross-taking and near field effects on the received traces. Their higher cost is compensated with the save in time that it takes to prepare the series bender elements to diminish such effects. Another alternative for avoiding the problems caused by the exposure of bender elements to humid environments might be the use of another device capable of generating shear waves such as flat shear plates. In view of the difficulties encountered on this investigation for the fragile nature of bender elements, it would be worthy to investigate the feasibility of using other options. A better assessment of the effect of suction on the stiffness of soils in the modified triaxial device might be to perform multistage testing varying the matric suction on the same specimen. That way, the changes of suction belong to the same soil-water characteristic curve, and they are not individual points from different curves as in the case of using different specimens. The issue of the non-changing travel time arrivals in the unsaturated silt specimens tested on the oedometer cell needs to be investigated. This phenomenon occurred in repeated specimens in which measurements of matric suction were also being recorded with a tensiometer porous cup. Although using a tensiometer to make direct measurements of matric suction is relatively simple, it is limited to measurement of matric suctions of up to about 90 kPa (-90 kPa of water tension) because of cavitation of water at tensions approaching -101 kpa. Therefore another method to measure suction on laboratory specimens might be better. Monitoring of suction on the modified true triaxial device is desirable to verify that the suction induced by the difference of pore air and pore water pressures applied to the soil specimen are achieved and maintain constant during the test. 133 References Abduljauwad, S. N. and Sulaimani, G. J. (1993). “Determination of Swell Potential of Qatif Clay”. Geotechnical Testing Journal. Vol. 16. No. 4. pp. 469-484. Acar, Y. B. and Nyeretse, P. (1992). “Total Suction of Artificial Mixtures of Soils Compacted at Optimum Water Content”. Geotechnical Testing Journal. Vol. 15. No. 1. pp. 65-73. Achenbach, J.D. (1975). Wave propagation in elastic solids. North-Holland, New York. 425 pages. Aitchison, G. D. and Woodborn, J. A. (1969). “Soil Suction in Foundation Design”. Proceedings 7th International Conference on Soil Mechanics and Foundation Engineering. Mexico, 2, pp. 1-8. Aitchison, G. D. (1965). “Review Panel Statement - Engineering Concepts of Moisture Equilibria and Moisture Changes in Soils”. Proc. Conf. on Moisture Equilibria and Moisture Changes in Soil Beneath Covered Areas. London: Butterworths, pp. 7-21. Aitchison, G. D. and Bishop, A. W. (1960). Discussion. Proceedings Conference Pore Pressure and Suction in Soils. London: Butterworths, p. 150. Anderson, S. A. and Sitar, N. (1995). “Analysis of Rainfall-Induced Debris Flows”. Journal of Geotechnical Engineering. Vol. 121. No. 7. pp. 544-552. Arthur, J. R. F. (1988). “Cubical Devices: Versatility and Constraints”, Advanced Triaxial Testing of Soil and Rock, ASTM STP 977. pp. 743–765. Arulnathan, R., Boulanger, R.W., and Riemer, M.F. (1998). “Analysis of Bender Element Tests”. Geotechnical Testing Journal. Vol. 21. No. 2. pp. 120-131. Atkinson, R. H. (1972). “A Cubical Test Cell for Multiaxial Testing of Materials”, Ph.D. dissertation. University of Colorado at Boulder, Boulder, CO. Barden, L., Madedor, A. O., and Sides, G. R. (1969). “Volume Change Characteristics of Unsaturated Clay”. Journal of Soil Mechanics and Foundations Division. Vol. 95, No. SM1, pp. 35-52. Bishop, A. W. and Blight, G. E. (1963). “Some Aspects of Effective Stress in Saturated and Partly Saturated Soils”. Géotechnique. Vol. 13, No. 3, pp. 177-197. Bishop, A. W. and Eldin, G. E. (1950). “Undrained Triaxial Tests on Saturated Sys and their Significance on the General Theory of Shear Strength”. Geotechnique. Vol. 2 No. 1, pp. 13-22. 134 Blight, G. E. (1965). “A Study of Effective Stress for Volume Change”. Proc. Conf. on Moisture Equilibria and Moisture Changes in Soil Beneath Covered Areas. Ed. Aitchison, G.D. London: Butterworths, pp. 259-269. Brand, E. W. (1981). “Some Thoughts on Rain-Induced Slope Failures”. 10th International Conference on Soil Mechanics and Foundation Engineering. Stockholm. pp. 373-376. Brignoli, E.G.M., Gotti, M., and Stokoe, K.H. (1996). “Measurement of shear waves in laboratory specimens by means of piezoelectric transducers”. Geotechnical Testing Journal. Vol. 19. No. 4. pp. 384–397. Brocanelli, D. and Rinaldi, V. (1998). “Measurements of Low-Strain Material Damping and Wave Velocity With Bender Elements in the Frequency Domain”. Canadian Geotechnical Journal. Vol. 35. pp. 1032-1040. Budhu, M. (1984). “On Comparing Simple Shear and Triaxial Test Results”, Journal of Geotechnical Engineering. Vol. 110, No. 12. pp. 1809-1814. Burland, J. B. (1965). “Some Aspects of the Mechanical Behaviour of Partly Saturated Soils”. Proc. Conf. on Moisture Equilibria and Moisture Changes in Soil Beneath Covered Areas. Ed. Aitchison, G.D. London: Butterworths, pp. 270-278. Chen, G., Pan, J., Han, B., and Yan, H. (1999). “Adsorption of Methylene Blue on Montmorillonite”. Journal of Dispersion Science and Technology. Vol. 20. No. 4. pp. 309- 319. Cho, G. C. and Santamarina, J. C. (2001). “Unsaturated Particulate Materials - Particle Level Studies”. ASCE Geotechnical Journal. Vol. 127. No. 1. pp. 84-96. Cokca, E. and Birand, A. (2000). “Suction-Swelling Relations”. Proceedings of Sessions of Geo- Denver 2000. Geo-Institute of the American Society of Civil Engineers. Denver, CO. pp. 379-392. Coleman, J. D. (1962). “Stress/Strain Relations for Partly Saturated Soils”. Géotechnique (Correspondence). Vol. 12, No. 4, pp. 348-350. Department of the Army U.S. Army Corps of Engineers (1995). Geophysical Exploration for Engineering and Environmental Investigations. Engineer Manual 1110-1-1802, Washington, DC, August 1995. Dyvik, R., and Madshus, C. (1985). “Lab measurements of Gmax using bender elements”. Proceedings of the American Society of Civil Engineers Conference on Advances in the Art of Testing Soils under Cyclic Conditions. Detroit. October 24. pp. 186–196. 135 Fam, M. A. and Santamarina, J. C. (1995). “Study of Geoprocesses with Complementary Wave Measurements in an Oedometer”. Geotechnical Testing Journal. Vol. 18. No. 3. pp. 307- 314. Fernandez, A. L. and Santamarina, J. C. (2001). "The Effect of Cementation on the Small Strain Parameters of Sands". Canadian Geotechnical Journal. Vol. 38. No. 1. pp. 191-199. Ferreira, C. (2003). “Bender Element Tests Measurements Using Time and Frequency Domain Techniques”. 3rd International Symposium on Deformation Characteristics of Geomaterials. Lyon, France. Fiorovante, V. and Capoferri, R. (2001). “On the Use of Multidirectional Piezoelectric Transducers in Triaxial Testing”. Geotechnical Testing Journal. Vol. 24. No. 3. pp. 253- 255. Fratta, D., Alshibli, K. A., Tanner, W. M., and Roussel, L. (2003). “Combined TDR and P-wave Velocity Measurements for the Determination of In-Situ Soil Density”. ASTM Geotechnical Testing Journal (Submitted for Publication). Fratta, D. and Santamarina, J. C. (1996). "Waveguide Device for Multi-Mode, Wideband Testing Wave Propagation in Soils". ASTM Geotechnical Testing Journal. Vol. 19, No. 2, pp. 130- 140. Fratta, D. and Santamarina, J. C. (2002). "Shear Wave Propagation in Jointed Rock - State of Stress". Géotechnique. Vol. 52. No. 7. pp. 495-505. Fredlund, D. G. and Morgenstern, N. R. (1977). “Stress State Variables for Unsaturated Soils”. Journal of Geotechnical Engineering. Vol. 103, No. GT5, pp. 447-466. Fredlund, D.J. and Rahardjo, H. (1993). Soil Mechanics for Unsaturated Soils. Wiley Interscience. Garbulewsky, K., Zakowicz, S., and Al-Helo, I. K. (1994). “Expansion Potential of Compacted Fine-Grained Soils Using Suction Measurements”. Geotechnical Testing Journal. Vol. 17. No. 4. pp. 505-510. Goel, R. K., Singh, B., Mehrotra, V.K., Garg, S.K., and Allu, M.R. (1998). “Effect of Intermediate Principal Stress on Strength of Anisotropic Rock Mass”, Tunneling and Underground Space Technology. Vol. 13, No. 1. pp. 71-79 Hoyos Jr., L. (1998). “Experimental and Computational Modeling of Unsaturated Soil Behavior Under True Triaxial Stress States”, Ph.D. dissertation, Georgia Institute of Technology, Atlanta, GA. 136 Hoyos, L. R. and Macari, E. J. (2001). "Development of a Stress/Suction-Controlled True Triaxial Testing Device for Unsaturated Soils". Geotechnical Testing Journal. Vol. 24. No. 1. pp. 5-13. Ishibashi, I. and Zhang, X. (1993). “Unified dynamic shear moduli and damping ratios of sand and clay”. Soils and Foundations. Vol. 33. No. 1: pp.182-191. Jardine, R. J., Kuwano, R., Zdravkovic, L. and Thornoton, C. (2001). “Some Fundamental Aspects of the Pre-Failure Behavior of Granular Soils”. Pre-Failure Deformation Characteristics of Geomaterials. Edited by H. Jamiolkowski, R.H. Lancellota, and D.C.F. Lo Presti. Swets and Zeitlinger, Lisse. pp. 1077-1111. Jennings, J. E. B. and Burland, J. B. (1962). “Limitations to the use of Effective Stresses in Partly Saturated Soils”. Géotechnique. Vol. 12. No. 2. pp. 125-144. Jovicic, V. (2003). “Conditions for Rigorous Bender Element Test in Triaxial Cell”. 3rd International Symposium on Deformation Characteristics of Geomaterials. Lyon, France. Johnson, K. A. and Sitar, N. (1990). “Hydrologic Conditions Leading to Debris-Flow Initiation”. Canadian Geotechnical Journal. Vol. 27. pp. 789-801. Kandhal, P.S. and Parker, Jr. F., 1998, “Aggregate Tests Related to Asphalt Concrete Performance in Pavements, NCHRP Report 405, National Academy Press, Washington, D.C., 103 pages. Kawaguchi, T. (2003). “Empirical Method for Determination of Shear-Wave Travel Time in Bender Element Test”. 3rd International Symposium on Deformation Characteristics of Geomaterials. Lyon, France. Ko, H-Y. and Scott, R. F. (1967). “A New Soil Testing Apparatus”, Geotechnique, Vol. 17, No. 1. pp. 40–57. Kolsky, H. (1963). Stress Waves in Solids. Dover Publications. New York. 213 pages. Krahn, J., Fredlun, D. G., and Klassen, M. J. (1988). “The Effect of Soil Suction on Slope Stability at Notch Hill”. Canadian Geotechnical Conference. Montreal. pp. 103-110. Kramer, S. L. (1995). Geotechnical Earthquake Engineering. Pearson Education, 1 edition. 653 pp. Lade, P. V. and de Boer, R. (1997). “The Concept of Effective Stress for Soil, Concrete and Rock”. Geotechnique. Vol. 47. No. 1. pp. 61-78. Lade, P. V. and Duncan, J. M. (1973). “Cubical Triaxial Tests on Cohesionless Soil”, Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 99, No. SM10. pp. 793–812. 137 Lade, P. V. and Musante, H. M. (1978). “Three-Dimensional Behavior of Remolded Clay”, Journal of the Geotechnical Engineering Division. Vol. 104, No. 2. pp. 193-209. Lloret, A. and Alonso, E. E. (1985). “State Surface for Partially Saturated Soils”. Proc. 11th Int. Conf. on Soil Mechanics and Foundation Engineering. San Francisco, Rotterdam: Balkema, Vol. 2. Lo Presti, D. C ., Shibuya, S., and Rix, G. J. (2001). “Innovation in soil testing”, in Pre-failure Deformation Characteristics of Geomaterials. Edited by H. Jamiolkowski, R.H. Lancellota, and D.C.F. Lo Presti. Swets and Zeitlinger, Lisse. pp. 1027-1076. Macari, E. J. and Hoyos, L. R. (2001). “Mechanical Behavior of an Unsaturated Soil Under Multi-Axial State Stress”. ASTM Geotechnical Testing Journal. Vol. 24. No. 1. pp. 14-22. Mancuso, C., Vassallo, R. and d’Onofrio, A. (2002). “Small strain behavior of a silty sand in controlled-suction resonant column – torsional shear tests”. Canadian Geotechnical Journal, Vol. No. 39. pp. 22-31. Matthews, M. C., Clayton, C. R. I., Own, Y. (2000). “The Use of Field Geophysical Techniques to Determine Geophysical Stiffness Parameters”. Geotechnical Engineering. Vol. 143. pp. 31-42. Matyas, E. L. and Radhakrishna, H. S. (1968). “Volume Change Characteristics of Partially Saturated Soils”. Géotechnique. Vol. 18, No. 4, pp. 432-448. McKeen, R. G. (1992). “A model for Predicting Expansive Soil Behavior.” Proceedings Seventh International Conference on Expansive Soils. Vol. 1. Texas Tech University. Dallas, TX. pp. 1-6. McKeen, R. G. and Hamberg, D. J. (1981). “Characterization of Expansive Soils”. Transportation Research Record 790 – Shales and Swelling Soils. pp. 73-78. Mitchel, J. K. (1993). Fundamentals of Soil Behavior. John Wiley & Sons. 437 pages. Mou, C. H. and Chu, T. Y. (1981). “Soil-Suction Approach for Evaluation of Swelling Potential”. Transportation Research Record 790. pp. 54-60. Muraleetharan, K.K. and Wei, C. (2000). “A fully coupled analysis procedure for dynamic behavior of unsaturated soils”, in Advances in Unsaturated Soils, Geotechnical Special Publication No. 99 (ed. C. Shackleford, S.L. Houston and N-Y. Chang), Reston: American Society of Civil Engineers, pp. 165-179. Nakagawa, K., Soga, K., and Mitchell, J.K. (1996). “Pulse transmission system for measuring wave propagation in soils”. Journal of Geotechnical Engineering, Vol. 122. No. 4. pp. 302– 308. 138 NeSmith, W. M. (1997). “Development of a Computer Controlled Multiaxial Cubical Testing Apparatus”. M.Sc. thesis, Georgia Institute of Technology, Atlanta, GA. O’Neill, M. and Poormoayed, N. (1980). “Methodology for Foundations on Expansive Clays”. Journal of the Geotechnical Engineering Division. Vol. 106. No. GT12. pp. 1345-1367. Pearce, J. A. (1972). “A New Triaxial Apparatus”, Proceedings of the Roscoe Memorial Symposium. G. T. Foulis, Henley on Thames. pp. 330–339. Pennington, D. S., Nash, D. F. T., and Lings, M. L. (1997). “Anisotropy of Go Shear Stiffness in Gault Clay”. Géotechnique. Vol. 47. No. 3. pp. 391-398. Pham, T. H., and G. W. Brindley. (1970). “Methylene blue adsorption by clay minerals: determination of surface areas and cation exchange capacities (clay-organic studies XVIII)”. Clays Clay Miner. 18. pp. 203-212. Prashant, A. and Penumadu, D. (2004). “Effect of Intermediate Principal Stress on Overconsolidated Kaolin Clay”, Journal of Geotechnical and Geoenvironmental Engineering. Vol. 130, No. 3. pp. 284-292. Qian, X., Gray, D. H., and Woods, R. D. (1991). “Resonant Column Tests on Partially Saturated Sands”. Geotechnical Testing Journal. Vol. 14. No. 3. pp. 266-275. Richart, F. E., Hall, J. R., and Woods, R. D. (1970). Vibrations of Soils and Foundations, Prentice-Hall. Englewood Cliffs. 414 pp. Roessler, S. (1979). “Anisotropic Shear Modulus due to Stress Anisotropic”. Journal of the Geotechnical Engineering Division. Vol. 150. No. GT7. pp. 871-880. Saada, A. S. and Townsend, F. C. (1981). “State of the Art: Laboratory Strength Testing of Soils”, Laboratory Shear Strength of Soil, ASTM STP 740 R. N. Yong and F. C. Townswnd, Eds. American Society for Testing and Materials, pp. 7-77. Sánchez-Salinero, I., Roesset, J. M. and Stokoe, K. H. (1986). “Analytical Studies of Body Wave Propagation and Attenuation”, Geotechnical Engineering Report GR86-15, University of Texas at Austin, Austin, 272 pp. Santamarina, J. C., Klein, K. A., and Fam, M. A. (2001). Soils and Waves. John Wiley & Sons, LTD. New York. 488 pp. Santamarina, J. C., Rinaldi, V. A., Fratta, D., Klein, K. A., Wang. Y.-H., Cho, G.-C., and Cascante, G. (2003). “A Survey of Elastic and Electromagnetic Properties of Near-Surface Soils” in Near-Surface Geophysics, Ed. D. Buttler, SEG (accepted for publication). Santamarina, J.C. and Cascante, G. (1996). “Stress anisotropy and wave propagation - A micromechanical view”. Canadian Geotechnical Journal. Vol. 33. No. 5. pp 770-782. 139 Santamarina, J.C., Klein, K.A., Wang, Y.H. and Prencke, E. (2002). “Specific Surface: Determination and Relevance”. Canadian Geotechnical Journal. Vol. 39. No. 1. Scott, R. F. (1963). Principles of Soil Mechanics. Addison-Wesley Publishing Company. Reading, MA. 550 pages. Seed, H., et al. (1962). “Prediction of Swelling Potential for Compacted Clays”, Journal of the Soil Mechanics and Foundation Engineering Division. Vol. 88. No. SM 4. pp. 107-131. Shibuya, S., Hwang, S. C., and Mitachi, T. (1997). “Elastic Shear Modulus of Soft Clays from Shear Wave Velocity Measurement”. Géotechnique. Vol. 47. No. 3. pp. 593-601. Shuai, F. and Fredlund, D.G. (2000). “Use of a New Thermal Conductivity Sensor to Measure Soil SuctionAdvances in Unsaturated Geotechnics”. Proceedings of Sessions of Geo- Denver 2000. Geo-Institute of the American Society of Civil Engineers. Denver, CO. pp. 1-12. Silva, C. H. C., Porras-Ortiz, O. F., Fratta, D., and Macari, E. J. (2002). “Mechanical Response of Unsaturated Particulate Materials – A Stiffness Assessment Study under Controlled Matric Suction”. Proceedings of the ASME International Mechanical Engineering Congress & Exposition. New Orleans, LA, November 17-22, 2002 (published in CD – paper copy available in 2003). Skempton, A. W. (1960). “Terzaghi’s Discovery of Effective Stress”. Contribution to “From Theory to Practice in Soil Mechanics. Butterworths, London. Snethen, D. R., (1984). “Evaluation of Expedient Methods for Identification and Classification of Potentially Expansive Soils.” Proceedings Fifth International Conference on Expansive Soils. Institution of Engineers, Adelaide, South Australia. pp. 22-26. Sowers, G. B. and Sowers G. F. (1970). “Introductory Soil Mechanics and Foundations.” 3rd. ed. Macmillan Co. New York. Sridharan et al. (1986). “Swelling Pressure of Clays.” Geotechnical Testing Journal. Vol. 9. No. 1. pp. 24-33. Stokoe, K. H. and Santamarina, J. C. (2000). “Seismic-Wave-Based Testing in Geotechnical Engineering”. GeoEng 2000. Melbourne, Australia. November. pp. 1490-1536 (State-of- the-Art). Stokoe, K.H., II, Lee, J.N.-K. and Lee, S.H.-H. (1991). “Characterization of Soil in Calibration Chambers with Seismic Waves”. Proc. Symp. Calibration Chamber Testing. Potsdam, NY. Sture, S. (1979). “Development of Multiaxial Cubical Test Device With Pore-Water Pressure Monitoring Facilities”. Report No. VPI-E-79.18, Dept. Civil Engrg., Virginia Polytechnic Institute and State University, Blacksburg, VA. 140 Terzaghi, K. (1936). “The Shear Resistance of Saturated Soils”. Proceedings 1st International conference on Soil Mechanics and Foundation Engineering. Cambridge, MA Vol. 1. pp. 54-56. Terzaghi, K. and Peck, R. (1958). Mecánica de Suelos en la Ingeniería Práctica. Traducción al español de la obra original “Soil Mechanics in the Engineering Practice”. John Wiley & Sons, Inc. New York. 681 pages. Thomann, T.G. and Hryciw, R.D. (1990). “Laboratory Measurement of Small Strain Shear Modulus Under Ko Conditions”. Geotechnical Testing Journal. Vol. 13. No. 2. pp. 97-105. Tindall, J. A. and Kundell, J. R. (1999). Unsaturated Zone Hydrology for Scientists and Engineers. Prentice-Hall. 624 pages. Viggiani, G. and Atkinson, J.H. (1995a). “Interpretation of bender element tests”. Géotechnique. Vol. 45. No. 1. pp. 149–154. Viggiani, G., and Atkinson, J.H. (1995b). “Stiffness of fine-grained soil at very small strains”. Géotechnique. Vol. 45. No. 2. pp. 249–265. Vijayvergiya, V. N. and Gazzaly, O. I. (1973). “Prediction of Swelling Potential for Natural Clays.” Proceedings Third International Conference on Expansive Soils. Haifa, Israel. pp. 227-234. Vinale, F., d’Onofrio, A., Mancuso, C., Santucci de Magistris, F., and Tatsuoka, F. (2001). “The Pre-failure Behavior of Soils as Construction Materials”. Pre-Failure Deformation Characteristics of Geomaterials. Edited by M. Jamiolkowski, R. Lancellotta and D. LoPreti. Swets & Zeitlinger, Lisse. pp. 955-1007. Vucetic, M. and Dobry, R. (1991). “Effect of soil plasticity on cyclic response”. Journal of Geotechnical Engineering. Vol. 117. No. GT1. pp. 89-107. White, J. E. (1983). Underground Sound. Application of Seismic Waves. Elsevier. Amsterdam. 253 pages. Zapata, C. E., Hourtons, W. N., Houston, S. L., and Walsh, K. D. (2000). “Soil-Water Characteristic Curve Variability”. Proceedings of Sessions of Geo-Denver 2000. Geo- Institute of the American Society of Civil Engineers. Denver, CO. pp. 84-121. 141 Appendix A Travel Time Data: Clayey Silt Figure A.1: Travel time data for vertically polarized bender elements: (a) description of stress paths during testing (suction ua-uw = 0 kPa), (b) travel time data during isotropic consolidation, and (c) travel time data during shearing (loading and unloading). 0 0.001 0.002 Time (s) 0 0.001 0.002 Time (s) 25 kPa 30 kPa 70 kPa 38 kPa 42 kPa 46 kPa 50 kPa 50 kPa 60 kPa 80 kPa 90 kPa 100 kPa σ2=σo-∆σ/2 σ3=σo-∆σ/2 σ1=σo+∆σ TC Test Soil: Silt Net Pressure: σo-ua= 25, 50, and 100 kPa Suction: ua-uw= 0 kPa ∆σ=0 kPa 7 kPa 18 kPa 30 kPa 39 kPa 51 kPa 57 kPa 45 kPa 30 kPa 9 kPa 0 kPa ∆σ=0 kPa 15 kPa 30 kPa 45 kPa 60 kPa 75 kPa 90 kPa 105 kPa 120 kPa 135 kPa 120 kPa 45 kPa 0 kPa Net Pressure σo-ua= 25 kPa (a) (c) ∆σ=0 kPa 3 kPa 6 kPa 9 kPa 12 kPa 15 kPa 18 kPa 21 kPa 15 kPa 9 kPa 3 kPa 0 kPa σo-ua= 0 0.001 0.002 0.003 Time [s] 0 0.001 0.002 0.003 Time [s] 0 0.001 0.002 0.003 Time [s] Net Pressure σo-ua= 100 kPa 0 0.0005 0.001 0.0015 0.002 0.0025 Time [s] (b) Net Pressure σo-ua= 50 kPa 142 Figure A.2: Travel time data for horizontally polarized bender elements: (a) description of stress paths during testing (suction ua-uw = 0 kPa), (b) travel time data during isotropic consolidation, and (c) travel time data during shearing (loading and unloading). σ2=σo-∆σ/2 σ3=σo-∆σ/2 σ1=σo+∆σ TC Test Soil: Silt Net Pressure: σo-ua= 25, 50, and 100 kPa Suction: ua-uw= 0 kPa Net Pressure σo-ua= 25 kPa Net Pressure σo-ua= 50 kPa (a) (c) ∆σ=0 kPa 3 kPa 6 kPa 9 kPa 12 kPa 15 kPa 18 kPa 21 kPa 15 kPa 9 kPa 3 kPa 0 kPa ∆σ=0 kPa 7 kPa 18 kPa 30 kPa 39 kPa 51 kPa 57 kPa 45 kPa 30 kPa 9 kPa 0 kPa ∆σ=0 kPa 15 kPa 30 kPa 45 kPa 60 kPa 75 kPa 90 kPa 105 kPa 120 kPa 135 kPa 120 kPa 45 kPa 0 kPa 25 kPa 30 kPa 70 kPa 38 kPa 42 kPa 46 kPa 50 kPa 50 kPa 60 kPa 80 kPa 90 kPa 100 kPa 0 0.001 0.002 0.003 Time [s] 0 0.001 0.002 0.003 Time [s] 0 0.001 0.002 0.003 Time [s] Net Pressure σo-ua= 100 kPa 0 0.0005 0.001 0.0015 0.002 0.0025 Time [s] σo-ua= (b) 143 Figure A.3: Travel time data for vertically polarized bender elements: (a) description of stress paths during testing (suction ua-uw = 25 kPa), (b) travel time data during isotropic consolidation, and (c) travel time data during shearing (loading and unloading). 25 kPa 30 kPa 90 kPa 36 kPa 45 kPa 50 kPa 50 kPa 62 kPa 72 kPa 80 kPa 100 kPa σ2=σo-∆σ/2 σ3=σo-∆σ/2 σ1=σo+∆σ TC Test Soil: Silt Net Pressure: σo-ua= 25, 50, and 100 kPa Suction: ua-uw= 25 kPa Net Pressure σo-ua= 25 kPa (a) (c) ∆σ=0 kPa 7 kPa 15 kPa 30 kPa 38 kPa 20 kPa 7 kPa 0 kPa ∆σ=0 kPa 21 kPa 30 kPa 45 kPa 60 kPa 42 kPa 27 kPa 12 kPa 0 kPa ∆σ=0 kPa 22 kPa 45 kPa 67 kPa 82 kPa 97 kPa 52 kPa 30 kPa 0 kPa 0 0.001 0.002 0.003 Time [s] 0 0.001 0.002 0.003 Time [s] 0 0.001 0.002 0.003 Time [s] Net Pressure σo-ua= 50 kPa 0 0.0005 0.001 0.0015 0.002 0.0025 Time [s] (b) σo-ua= Net Pressure σo-ua= 100 kPa 144 Figure A.4. Travel time data for horizontally polarized bender elements: (a) description of stress paths during testing (suction ua-uw = 25 kPa), (b) travel time data during isotropic consolidation, and (c) travel time data during shearing (loading and unloading). σ2=σo-∆σ/2 σ3=σo-∆σ/2 σ1=σo+∆σ TC Test Soil: Silt Net Pressure: σo-ua= 25, 50, and 100 kPa Suction: ua-uw= 25 kPa Net Pressure σo-ua= 25 kPa (a) 25 kPa 30 kPa 90 kPa 36 kPa 45 kPa 50 kPa 50 kPa 62 kPa 72 kPa 80 kPa 100 kPa ∆σ=0 kPa 7 kPa 15 kPa 30 kPa 38 kPa 20 kPa 7 kPa 0 kPa ∆σ=0 kPa 21 kPa 30 kPa 45 kPa 60 kPa 42 kPa 27 kPa 12 kPa 0 kPa ∆σ=0 kPa 22 kPa 45 kPa 67 kPa 82 kPa 97 kPa 52 kPa 30 kPa 0 kPa 0 0.001 0.002 0.003 Time [s] 0 0.001 0.002 0.003 Time [s] 0 0.001 0.002 0.003 Time [s] 0 0.0005 0.001 0.0015 0.002 0.0025 Time [s] σo-ua= (b) (c) Net Pressure σo-ua= 100 kPa Net Pressure σo-ua= 50 kPa 145 Figure A.5. Travel time data for vertically polarized bender elements: (a) description of stress paths during testing (suction ua-uw = 50 kPa), (b) travel time data during isotropic consolidation, and (c) travel time data during shearing (loading and unloading). 4 4 25 kPa 30 kPa 80 kPa 35 kPa 40 kPa 45 kPa 50 kPa 50 kPa 64 kPa 70 kPa 94 kPa 100 kPa σ2=σo-∆σ/2 σ3=σo-∆σ/2 σ1=σo+∆σ TC Test Soil: Silt Net Pressure: σo-ua= 25, 50, and 100 kPa Suction: ua-uw= 50 kPa Net Pressure σo-ua= 25 kPa (a) (c) ∆σ=0 kPa 7 kPa 15 kPa 22 kPa 30 kPa 37 kPa 30 kPa 22 kPa 15 kPa 7 kPa 0 kPa ∆σ=0 kPa 9 kPa 21 kPa 39 kPa 60 kPa 39 kPa 21 kPa 9 kPa 0 kPa ∆σ=0 kPa 15 kPa 33 kPa 54 kPa 66 kPa 78 kPa 90 kPa 105 kPa 90 kPa 75 kPa 60 kPa 45 kPa 30 kPa 15 kPa σo-ua= 0 0.0005 0.001 0.0015 0.002 0.0025 Time [s] (b) 0 0.001 0.002 0.003 Time [s] 0 0.001 0.002 0.003 Time [s] Net Pressure σo-ua= 100 kPa 0 0.001 0.002 0.003 Time [s] Net Pressure σo-ua= 50 kPa 146 Figure A.6. Travel time data for horizontally polarized bender elements: (a) description of stress paths during testing (suction ua-uw = 50 kPa), (b) travel time data during isotropic consolidation, and (c) travel time data during shearing (loading and unloading). σ2=σo-∆σ/2 σ3=σo-∆σ/2 σ1=σo+∆σ TC Test Soil: Silt Net Pressure: σo-ua= 25, 50, and 100 kPa Suction: ua-uw= 50 kPa Net Pressure σo-ua= 25 kPa (a) (c) 25 kPa 30 kPa 80 kPa 35 kPa 40 kPa 45 kPa 50 kPa 50 kPa 64 kPa 70 kPa 94 kPa 100 kPa ∆σ=0 kPa 7 kPa 15 kPa 22 kPa 30 kPa 37 kPa 30 kPa 22 kPa 15 kPa 7 kPa 0 kPa ∆σ=0 kPa 9 kPa 21 kPa 39 kPa 60 kPa 39 kPa 21 kPa 9 kPa 0 kPa ∆σ=0 kPa 15 kPa 33 kPa 54 kPa 66 kPa 78 kPa 90 kPa 105 kPa 90 kPa 75 kPa 60 kPa 45 kPa 30 kPa 15 kPa σo-ua= 0 0.0005 0.001 0.0015 0.002 0.0025 Time [s] (b) 0 0.001 0.002 0.003 Time [s] 0 0.001 0.002 0.003 Time [s] 0 0.001 0.002 0.003 Time [s] Net Pressure σo-ua= 100 kPa Net Pressure σo-ua= 50 kPa 147 Figure A.7. Travel time data for vertically polarized bender elements: (a) description of stress paths during testing (suction ua-uw = 0 kPa), (b) travel time data during isotropic consolidation, and (c) travel time data during shearing (loading and unloading). σ2=σo σ3=σo σ1=σo+∆σ CTC Test Soil: Silt Net Pressure: σo-ua= 25, 50, and 100 kPa Suction: ua-uw= 0 kPa Net Pressure σo-ua= 25 kPa Net Pressure σo-ua= 50 kPa Net Pressure σo-ua= 100 kPa (a) 0 0.0005 0.001 0.0015 0.002 0.0025 Time [s] (b) 0 0.001 0.002 0.003 Time [s] 0 0.001 0.002 0.003 Time [s] 0 0.001 0.002 0.003 Time [s] (c) 25 kPa 30 kPa 70 kPa 35 kPa 40 kPa 45 kPa 50 kPa 50 kPa 60 kPa 80 kPa 90 kPa 100 kPa σo-ua= ∆σ=0 kPa 10 kPa 15 kPa 20 kPa 25 kPa 30 kPa 35 kPa 30 kPa 25 kPa 15 kPa 0 kPa ∆σ=0 kPa 20 kPa 40 kPa 54 kPa 70 kPa 85 kPa 74 kPa 65 kPa 36 kPa 18 kPa 0 kPa ∆σ=0 kPa 15 kPa 30 kPa 45 kPa 60 kPa 76 kPa 96 kPa 120 kPa 155 kPa 190 kPa 148 Figure A.8. Travel time data for horizontally polarized bender elements: (a) description of stress paths during testing (suction ua-uw = 0 kPa), (b) travel time data during isotropic consolidation, and (c) travel time data during shearing (loading and unloading). σ2=σo σ3=σo σ1=σo+∆σ CTC Test Soil: Silt Net Pressure: σo-ua= 25, 50, and 100 kPa Suction: ua-uw= 0 kPa Net Pressure σo-ua= 25 kPa (a) ∆σ=0 kPa 20 kPa 40 kPa 54 kPa 70 kPa 85 kPa 74 kPa 65 kPa 36 kPa 18 kPa 0 kPa 0 0.0005 0.001 0.0015 0.002 0.0025 Time [s] (b) 0 0.001 0.002 0.003 Time [s] 0 0.001 0.002 0.003 Time [s] 0 0.001 0.002 0.003 Time [s] Net Pressure σo-ua= 50 kPa (c) Net Pressure σo-ua= 100 kPa 25 kPa 30 kPa 70 kPa 35 kPa 40 kPa 45 kPa 50 kPa 50 kPa 60 kPa 80 kPa 90 kPa 100 kPa σo-ua= ∆σ=0 kPa 10 kPa 15 kPa 20 kPa 25 kPa 30 kPa 35 kPa 30 kPa 25 kPa 15 kPa 0 kPa ∆σ=0 kPa 15 kPa 30 kPa 45 kPa 60 kPa 76 kPa 96 kPa 120 kPa 155 kPa 190 kPa 149 Figure A.9. Travel time data for vertically polarized bender elements: (a) description of stress paths during testing (suction ua-uw = 25 kPa), (b) travel time data during isotropic consolidation, and (c) travel time data during shearing (loading and unloading). 0 0.001 0.002 Time (s) 0 5 .10 4 0.001 0.0015 0.002 0.0025 Time (s) 0 5 .10 4 0.001 0.0015 0.002 0.0025 Time (s) 0 5 .10 4 0.001 0.0015 0.002 0.0025 Time (s) σ2=σo σ3=σo σ1=σo+∆σ CTC Test Soil: Silt Net Pressure: σo-ua= 25, 50, and 100 kPa Suction: ua-uw= 25 kPa Net Pressure σo-ua= 25 kPa Net Pressure σo-ua= 50 kPa Net Pressure σo-ua= 100 kPa (a) (c) ∆σ=0 kPa 6 kPa 10 kPa 15 kPa 25 kPa 35 kPa 45 kPa 35 kPa 27 kPa 20 kPa 10 kPa 0 kPa ∆σ=0 kPa 6 kPa 12 kPa 20 kPa 28 kPa 35 kPa 45 kPa 55 kPa 65 kPa 60 kPa 50 kPa 40 kPa 30 kPa 16 kPa 0 kPa ∆σ=0 kPa 10 kPa 25 kPa 36 kPa 50 kPa 65 kPa 80 kPa 100 kPa 78 kPa 64 kPa 50 kPa 38 kPa 24 kPa 10 kPa 0 kPa 0 0.0005 0.001 0.0015 0.002 0.0025 Time [s] (b) 0 0.001 0.002 0.003 Time [s] .001 . 02 0.003 Time [s] .001 .002 0.003 Time [s] σo-ua= 15 kPa 18 kPa 50 kPa 22 kPa 25 kPa 25 kPa 32 kPa 36 kPa 42 kPa 50 kPa 60 kPa 70 kPa 80 kPa 100 kPa 90 kPa 150 Figure A.10. Travel time data for horizontally polarized bender elements: (a) description of stress paths during testing (suction ua-uw = 25 kPa), (b) travel time data during isotropic consolidation, and (c) travel time data during shearing (loading and unloading). 0 0.001 0.002 Time (s) 0 5 .10 4 0.001 0.0015 0.002 0.0025 Time (s) 0 5 .10 4 0.001 0.0015 0.002 0.0025 Time (s) σ2=σo σ3=σo σ1=σo+∆σ CTC Test Soil: Silt Net Pressure: σo-ua= 25, 50, and 100 kPa Suction: ua-uw= 25 kPa Net Pressure σo-ua= 25 kPa Net Pressure σo-ua= 50 kPa (a) ∆σ=0 kPa 6 kPa 12 kPa 20 kPa 28 kPa 35 kPa 45 kPa 55 kPa 65 kPa 60 kPa 50 kPa 40 kPa 30 kPa 16 kPa 0 kPa ∆σ=0 kPa 10 kPa 25 kPa 36 kPa 50 kPa 65 kPa 80 kPa 100 kPa 78 kPa 64 kPa 50 kPa 38 kPa 24 kPa 10 kPa 0 kPa ∆σ=0 kPa 6 kPa 10 kPa 15 kPa 25 kPa 35 kPa 45 kPa 35 kPa 27 kPa 20 kPa 10 kPa 0 kPa 0 0.0005 0.001 0.0015 0.002 0.0025 Time [s] (b) .001 0. 02 0.003 Time [s] 0 0.001 0.002 0.003 Time [s] 0 . 01 0. 02 0.003 Time [s] Net Pressure σo-ua= 100 kPa (c) σo-ua= 15 kPa 18 kPa 50 kPa 22 kPa 25 kPa 25 kPa 32 kPa 36 kPa 42 kPa 50 kPa 60 kPa 70 kPa 80 kPa 100 kPa 90 kPa 151 Figure A.11. Travel time data for vertically polarized bender elements: (a) description of stress paths during testing (suction ua-uw = 50 kPa), (b) travel time data during isotropic consolidation, and (c) travel time data during shearing (loading and unloading). 0 5 .10 4 0.001 0.0015 0.002 0.0025 Time (s) 0 5 .10 4 0.001 0.0015 0.002 0.0025 Time (s) 0 5 .10 4 0.001 0.0015 0.002 0.0025 Time (s) 0 5 .10 4 0.001 0.0015 0.002 0.0025 Time (s) σ2=σo σ3=σo σ1=σo+∆σ CTC Test Soil: Silt Net Pressure: σo-ua= 25, 50, and 100 kPa Suction: ua-uw= 50 kPa Net Pressure σo-ua= 25 kPa Net Pressure σo-ua= 50 kPa (a) ∆σ=0 kPa 5 kPa 10 kPa 15 kPa 25 kPa 35 kPa 41 kPa 30 kPa 20 kPa 10 kPa 0 kPa ∆σ=0 kPa 10 kPa 24 kPa 30 kPa 44 kPa 50 kPa 60 kPa 48 kPa 35 kPa 20 kPa 0 kPa 0 kPa 15 kPa 46 kPa 20 kPa 25 kPa 25 kPa 30 kPa 36 kPa 42 kPa 50 kPa 60 kPa 70 kPa 82 kPa 100 kPa 90 kPa ∆σ=0 kPa 10 kPa 20 kPa 30 kPa 40 kPa 50 kPa 58 kPa 75 kPa 90 kPa 100 kPa 90 kPa 78 kPa 55 kPa 25 kPa 0 kPa 0 0.0005 0.001 0.0015 0.002 0.0025 Time [s] (b) .001 0. 02 0.003 Time [s] (c) 0 0.001 0.002 0.003 Time [s] 0 0.001 0.002 0.003 Time [s] Net Pressure σo-ua= 100 kPa σo-ua= 152 Figure A.12. Travel time data for horizontally polarized bender elements: (a) description of stress paths during testing (suction ua-uw = 50 kPa), (b) travel time data during isotropic consolidation, and (c) travel time data during shearing (loading and unloading). 0 5 .10 4 0.001 0.0015 0.002 0.0025 Time (s) 0 5 .10 4 0.001 0.0015 0.002 0.0025 Time (s) 0 5 .10 4 0.001 0.0015 0.002 0.0025 Time (s) 0 5.10 4 0.001 0.0015 0.002 0.0025 Time (s) σ2=σo σ3=σo σ1=σo+∆σ CTC Test Soil: Silt Net Pressure: σo-ua= 25, 50, and 100 kPa Suction: ua-uw= 50 kPa Net Pressure σo-ua= 25 kPa Net Pressure σo-ua= 50 kPa (a) 0 kPa 15 kPa 46 kPa 20 kPa 25 kPa 25 kPa 30 kPa 36 kPa 42 kPa 50 kPa 60 kPa 70 kPa 82 kPa 100 kPa 90 kPa ∆σ=0 kPa 5 kPa 10 kPa 15 kPa 25 kPa 35 kPa 41 kPa 30 kPa 20 kPa 10 kPa 0 kPa ∆σ=0 kPa 10 kPa 24 kPa 30 kPa 44 kPa 50 kPa 60 kPa 48 kPa 35 kPa 20 kPa 0 kPa ∆σ=0 kPa 10 kPa 20 kPa 30 kPa 40 kPa 50 kPa 58 kPa 75 kPa 90 kPa 100 kPa 90 kPa 78 kPa 55 kPa 25 kPa 0 kPa 0 0.0005 0.001 0.0015 0.002 0.0025 Time [s] 0.001 . 02 0.003 Time [s] 0 0.001 0.002 0.003 Time [s] 0 0.001 0.002 0.003 Time [s] Net Pressure σo-ua= 100 kPa (c)(b) σo-ua= 153 Appendix B Travel Time Data: Silica Sand Figure B.1: Travel time data for vertically polarized bender elements: (a) description of stress paths during testing (suction ua-uw = 0 kPa), (b) travel time data during isotropic consolidation, and (c) travel time data during shearing (loading and unloading). Net Pressure σo-ua= 25 kPa Net Pressure σo-ua= 50 kPa Net Pressure σo-ua= 100 kPa ∆σ=0 kPa 15 kPa 30 kPa 45 kPa 60 kPa 75 kPa 60 kPa 45 kPa 30 kPa 15 kPa 0 kPa 0 0.0005 0.001 0.0015 Time [s] (b) 0 0.0005 0.001 0.0015 Time [s] (c) 25 kPa 30 kPa 70 kPa 35 kPa 40 kPa 45 kPa 50 kPa 50 kPa 60 kPa 80 kPa 90 kPa 100 kPa σo-ua= 0 0.0005 0.001 0.0015 Time [s] 0 0.0005 0.001 0.0015 Time [s] σ1=σo+∆σ TC Test Soil: Sand Net Pressure: σo-ua= 25, 50, and 100 kPa Suction: ua-uw= 0 kPa (a) σ2=σo-∆σ/2 σ3=σo-∆σ/2 ∆σ=0 kPa 7 kPa 15 kPa 22 kPa 30 kPa 22 kPa 15 kPa 7 kPa 0 kPa ∆σ=0 kPa 30 kPa 60 kPa 90 kPa 120 kPa 90 kPa 60 kPa 30 kPa 0 kPa 154 Figure B.2: Travel time data for horizontally polarized bender elements: (a) description of stress paths during testing (suction ua-uw = 0 kPa), (b) travel time data during isotropic consolidation, and (c) travel time data during shearing (loading and unloading). Net Pressure σo-ua= 25 kPa (b) Net Pressure σo-ua= 50 kPa (c) Net Pressure σo-ua= 100 kPa 25 kPa 30 kPa 70 kPa 35 kPa 40 kPa 45 kPa 50 kPa 50 kPa 60 kPa 80 kPa 90 kPa 100 kPa σo-ua= 0 0.0005 0.001 0.0015 Time [s] 0 0.0005 0.001 0.0015 Time [s] 0 0.0005 0.001 0.0015 Time [s] 0 0.0005 0.001 0.0015 Time [s] σ1=σo+∆σ TC Test Soil: Sand Net Pressure: σo-ua= 25, 50, and 100 kPa Suction: ua-uw= 0 kPa (a) σ2=σo-∆σ/2 σ3=σo-∆σ/2 ∆σ=0 kPa 7 kPa 15 kPa 22 kPa 30 kPa 22 kPa 15 kPa 7 kPa 0 kPa ∆σ=0 kPa 15 kPa 30 kPa 45 kPa 60 kPa 75 kPa 60 kPa 45 kPa 30 kPa 15 kPa 0 kPa ∆σ=0 kPa 30 kPa 60 kPa 90 kPa 120 kPa 90 kPa 60 kPa 30 kPa 0 kPa 155 Figure B.3: Travel time data for vertically polarized bender elements: (a) description of stress paths during testing (suction ua-uw = 25 kPa), (b) travel time data during isotropic consolidation, and (c) travel time data during shearing (loading and unloading). Net Pressure σo-ua= 25 kPa Net Pressure σo-ua= 50 kPa Net Pressure σo-ua= 100 kPa (c)(b) 25 kPa 30 kPa 70 kPa 35 kPa 40 kPa 45 kPa 50 kPa 50 kPa 60 kPa 80 kPa 90 kPa 100 kPa σo-ua= 0 0.0005 0.001 0.0015 Time [s] 0 0.0005 0.001 0.0015 Time [s] 0 0.0005 0.001 0.0015 Time [s] 0 0.0005 0.001 0.0015 Time [s] σ1=σo+∆σ TC Test Soil: Sand Net Pressure: σo-ua= 25, 50, and 100 kPa Suction: ua-uw= 25 kPa (a) σ2=σo-∆σ/2 σ3=σo-∆σ/2 ∆σ=0 kPa 30 kPa 60 kPa 90 kPa 120 kPa 90 kPa 60 kPa 30 kPa 0 kPa ∆σ=0 kPa 15 kPa 30 kPa 45 kPa 60 kPa 75 kPa 60 kPa 45 kPa 30 kPa 15 kPa 0 kPa ∆σ=0 kPa 7 kPa 15 kPa 22 kPa 30 kPa 22 kPa 15 kPa 7 kPa 0 kPa 156 Figure B.4: Travel time data for horizontally polarized bender elements: (a) description of stress paths during testing (suction ua-uw = 25 kPa), (b) travel time data during isotropic consolidation, and (c) travel time data during shearing (loading and unloading). σ1=σo+∆σ TC Test Soil: Sand Net Pressure: σo-ua= 25, 50, and 100 kPa Suction: ua-uw= 25 kPa Net Pressure σo-ua= 25 kPa Net Pressure σo-ua= 50 kPa (a) (b) Net Pressure σo-ua= 100 kPa (c) 25 kPa 30 kPa 70 kPa 35 kPa 40 kPa 45 kPa 50 kPa 50 kPa 60 kPa 80 kPa 90 kPa 100 kPa σo-ua= 0 0.0005 0.001 0.0015 Time [s] 0 0.0005 0.001 0.0015 Time [s] 0 0.0005 0.001 0.0015 Time [s] 0 0.0005 0.001 0.0015 Time [s] σ2=σo-∆σ/2 σ3=σo-∆σ/2 ∆σ=0 kPa 30 kPa 60 kPa 90 kPa 120 kPa 90 kPa 60 kPa 30 kPa 0 kPa ∆σ=0 kPa 15 kPa 30 kPa 45 kPa 60 kPa 75 kPa 60 kPa 45 kPa 30 kPa 15 kPa 0 kPa ∆σ=0 kPa 7 kPa 15 kPa 22 kPa 30 kPa 22 kPa 15 kPa 7 kPa 0 kPa 157 Figure B.5: Travel time data for vertically polarized bender elements: (a) description of stress paths during testing (suction ua-uw = 50 kPa), (b) travel time data during isotropic consolidation, and (c) travel time data during shearing (loading and unloading). Net Pressure σo-ua= 25 kPa Net Pressure σo-ua= 50 kPa (b) (c) Net Pressure σo-ua= 100 kPa 25 kPa 30 kPa 70 kPa 35 kPa 40 kPa 45 kPa 50 kPa 50 kPa 60 kPa 80 kPa 90 kPa 100 kPa σo-ua= 0 0.0005 0.001 0.0015 Time [s] 0 0.0005 0.001 0.0015 Time [s] 0 0.0005 0.001 0.0015 Time [s] 0 0.0005 0.001 0.0015 Time [s] σ1=σo+∆σ TC Test Soil: Sand Net Pressure: σo-ua= 25, 50, and 100 kPa Suction: ua-uw= 50 kPa (a) σ2=σo-∆σ/2 σ3=σo-∆σ/2 ∆σ=0 kPa 30 kPa 60 kPa 90 kPa 120 kPa 90 kPa 60 kPa 30 kPa 0 kPa ∆σ=0 kPa 15 kPa 30 kPa 45 kPa 60 kPa 75 kPa 60 kPa 45 kPa 30 kPa 15 kPa 0 kPa ∆σ=0 kPa 7 kPa 15 kPa 22 kPa 30 kPa 22 kPa 15 kPa 7 kPa 0 kPa 158 Figure B.6: Travel time data for horizontally polarized bender elements: (a) description of stress paths during testing (suction ua-uw = 50 kPa), (b) travel time data during isotropic consolidation, and (c) travel time data during shearing (loading and unloading). Net Pressure σo-ua= 25 kPa Net Pressure σo-ua= 50 kPa Net Pressure σo-ua= 100 kPa (c)(b) 25 kPa 30 kPa 70 kPa 35 kPa 40 kPa 45 kPa 50 kPa 50 kPa 60 kPa 80 kPa 90 kPa 100 kPa σo-ua= 0 0.0005 0.001 0.0015 Time [s] 0 0.0005 0.001 0.0015 Time [s] 0 0.0005 0.001 0.0015 Time [s] 0 0.0005 0.001 0.0015 Time [s] σ1=σo+∆σ TC Test Soil: Sand Net Pressure: σo-ua= 25, 50, and 100 kPa Suction: ua-uw= 50 kPa (a) σ2=σo-∆σ/2 σ3=σo-∆σ/2 ∆σ=0 kPa 30 kPa 60 kPa 90 kPa 120 kPa 90 kPa 60 kPa 30 kPa 0 kPa ∆σ=0 kPa 15 kPa 30 kPa 45 kPa 60 kPa 75 kPa 60 kPa 45 kPa 30 kPa 15 kPa 0 kPa ∆σ=0 kPa 7 kPa 15 kPa 22 kPa 30 kPa 22 kPa 15 kPa 7 kPa 0 kPa 159 Figure B.7: Travel time data for vertically polarized bender elements: (a) description of stress paths during testing (suction ua-uw = 0 kPa), (b) travel time data during isotropic consolidation, and (c) travel time data during shearing (loading and unloading). σ2=σo σ3=σo σ1=σo+∆σ CTC Test Soil: Sand Net Pressure: σo-ua= 25, 50, and 100 kPa Suction: ua-uw= 0 kPa Net Pressure σo-ua= 25 kPa Net Pressure σo-ua= 50 kPa Net Pressure σo-ua= 100 kPa (a) ∆σ=0 kPa 20 kPa 40 kPa 60 kPa 80 kPa 100 kPa 80 kPa 60 kPa 40 kPa 20 kPa 0 kPa 0 0.0005 0.001 0.0015 Time [s] (b) 0 0.0005 0.001 0.0015 Time [s] (c) 25 kPa 30 kPa 70 kPa 35 kPa 40 kPa 45 kPa 50 kPa 50 kPa 60 kPa 80 kPa 90 kPa 100 kPa σo-ua= 0 0.0005 0.001 0.0015 Time [s] 0 0.0005 0.001 0.0015 Time [s] 0 kPa ∆σ=0 kPa 30 kPa 60 kPa 90 kPa 120 kPa 150 kPa 120 kPa 90 kPa 60 kPa 30 kPa ∆σ=0 kPa 15 kPa 30 kPa 45 kPa 60 kPa 45 kPa 30 kPa 15 kPa 0 kPa 160 Figure B.8: Travel time data for horizontally polarized bender elements: (a) description of stress paths during testing (suction ua-uw = 0 kPa), (b) travel time data during isotropic consolidation, and (c) travel time data during shearing (loading and unloading). σ2=σo σ3=σo σ1=σo+∆σ CTC Test Soil: Sand Net Pressure: σo-ua= 25, 50, and 100 kPa Suction: ua-uw= 0 kPa Net Pressure σo-ua= 25 kPa (a) (b) Net Pressure σo-ua= 50 kPa (c) Net Pressure σo-ua= 100 kPa 25 kPa 30 kPa 70 kPa 35 kPa 40 kPa 45 kPa 50 kPa 50 kPa 60 kPa 80 kPa 90 kPa 100 kPa σo-ua= ∆σ=0 kPa 20 kPa 40 kPa 60 kPa 80 kPa 100 kPa 80 kPa 60 kPa 40 kPa 20 kPa 0 kPa 0 kPa ∆σ=0 kPa 30 kPa 60 kPa 90 kPa 120 kPa 150 kPa 120 kPa 90 kPa 60 kPa 30 kPa 0 0.0005 0.001 0.0015 Time [s] 0 0.0005 0.001 0.0015 Time [s] 0 0.0005 0.001 0.0015 Time [s] 0 0.0005 0.001 0.0015 Time [s] ∆σ=0 kPa 15 kPa 30 kPa 45 kPa 60 kPa 45 kPa 30 kPa 15 kPa 0 kPa 161 Figure B.9: Travel time data for vertically polarized bender elements: (a) description of stress paths during testing (suction ua-uw = 25 kPa), (b) travel time data during isotropic consolidation, and (c) travel time data during shearing (loading and unloading). σ2=σo σ3=σo σ1=σo+∆σ CTC Test Soil: Sand Net Pressure: σo-ua= 25, 50, and 100 kPa Suction: ua-uw= 25 kPa Net Pressure σo-ua= 25 kPa Net Pressure σo-ua= 50 kPa Net Pressure σo-ua= 100 kPa (a) (c) ∆σ=0 kPa 15 kPa 30 kPa 45 kPa 60 kPa 45 kPa 30 kPa 15 kPa 0 kPa (b) 25 kPa 30 kPa 70 kPa 35 kPa 40 kPa 45 kPa 50 kPa 50 kPa 60 kPa 80 kPa 90 kPa 100 kPa σo-ua= ∆σ=0 kPa 20 kPa 40 kPa 60 kPa 80 kPa 100 kPa 80 kPa 60 kPa 40 kPa 20 kPa 0 kPa 0 kPa ∆σ=0 kPa 30 kPa 60 kPa 90 kPa 120 kPa 150 kPa 120 kPa 90 kPa 60 kPa 30 kPa 0 0.0005 0.001 0.0015 Time [s] 0 0.0005 0.001 0.0015 Time [s] 0 0.0005 0.001 0.0015 Time [s] 0 0.0005 0.001 0.0015 Time [s] 162 Figure B.10: Travel time data for horizontally polarized bender elements: (a) description of stress paths during testing (suction ua-uw = 25 kPa), (b) travel time data during isotropic consolidation, and (c) travel time data during shearing (loading and unloading). σ2=σo σ3=σo σ1=σo+∆σ CTC Test Soil: Sand Net Pressure: σo-ua= 25, 50, and 100 kPa Suction: ua-uw= 25 kPa Net Pressure σo-ua= 25 kPa Net Pressure σo-ua= 50 kPa (a) (b) Net Pressure σo-ua= 100 kPa (c) 25 kPa 30 kPa 70 kPa 35 kPa 40 kPa 45 kPa 50 kPa 50 kPa 60 kPa 80 kPa 90 kPa 100 kPa σo-ua= ∆σ=0 kPa 15 kPa 30 kPa 45 kPa 60 kPa 45 kPa 30 kPa 15 kPa 0 kPa ∆σ=0 kPa 20 kPa 40 kPa 60 kPa 80 kPa 100 kPa 80 kPa 60 kPa 40 kPa 20 kPa 0 kPa 0 kPa ∆σ=0 kPa 30 kPa 60 kPa 90 kPa 120 kPa 150 kPa 120 kPa 90 kPa 60 kPa 30 kPa 0 0.0005 0.001 0.0015 Time [s] 0 0.0005 0.001 0.0015 Time [s] 0 0.0005 0.001 0.0015 Time [s] 0 0.0005 0.001 0.0015 Time [s] 163 Figure B.11: Travel time data for vertically polarized bender elements: (a) description of stress paths during testing (suction ua-uw = 50 kPa), (b) travel time data during isotropic consolidation, and (c) travel time data during shearing (loading and unloading). σ2=σo σ3=σo σ1=σo+∆σ CTC Test Soil: Sand Net Pressure: σo-ua= 25, 50, and 100 kPa Suction: ua-uw= 50 kPa Net Pressure σo-ua= 25 kPa Net Pressure σo-ua= 50 kPa (a) (b) (c) Net Pressure σo-ua= 100 kPa 25 kPa 30 kPa 70 kPa 35 kPa 40 kPa 45 kPa 50 kPa 50 kPa 60 kPa 80 kPa 90 kPa 100 kPa σo-ua= ∆σ=0 kPa 20 kPa 30 kPa 40 kPa 50 kPa 60 kPa 50 kPa 40 kPa 30 kPa 20 kPa 0 kPa ∆σ=0 kPa 20 kPa 40 kPa 60 kPa 80 kPa 100 kPa 80 kPa 60 kPa 40 kPa 20 kPa 0 kPa ∆σ=0 kPa 25 kPa 50 kPa 75 kPa 100 kPa 125 kPa 150 kPa 125 kPa 100 kPa 75 kPa 50 kPa 25 kPa 0 kPa 0 0.0005 0.001 0.0015 Time [s] 0 0.0005 0.001 0.0015 Time [s] 0 0.0005 0.001 0.0015 Time [s] 0 0.0005 0.001 0.0015 Time [s] 164 Figure B.12: Travel time data for horizontally polarized bender elements: (a) description of stress paths during testing (suction ua-uw = 50 kPa), (b) travel time data during isotropic consolidation, and (c) travel time data during shearing (loading and unloading). σ2=σo σ3=σo σ1=σo+∆σ CTC Test Soil: Sand Net Pressure: σo-ua= 25, 50, and 100 kPa Suction: ua-uw= 50 kPa Net Pressure σo-ua= 25 kPa Net Pressure σo-ua= 50 kPa (a) Net Pressure σo-ua= 100 kPa (c)(b) 25 kPa 30 kPa 70 kPa 35 kPa 40 kPa 45 kPa 50 kPa 50 kPa 60 kPa 80 kPa 90 kPa 100 kPa σo-ua= ∆σ=0 kPa 20 kPa 30 kPa 40 kPa 50 kPa 60 kPa 50 kPa 40 kPa 30 kPa 20 kPa 0 kPa ∆σ=0 kPa 20 kPa 40 kPa 60 kPa 80 kPa 100 kPa 80 kPa 60 kPa 40 kPa 20 kPa 0 kPa ∆σ=0 kPa 25 kPa 50 kPa 75 kPa 100 kPa 125 kPa 150 kPa 125 kPa 100 kPa 75 kPa 50 kPa 25 kPa 0 kPa 0 0.0005 0.001 0.0015 Time [s] 0 0.0005 0.001 0.0015 Time [s] 0 0.0005 0.001 0.0015 Time [s] 0 0.0005 0.001 0.0015 Time [s] 165 Vita 166 Oscar Fernando Porras Ortiz was born in Durango, Durango, Mexico, on May 25, 1963. He received his Bachelor of Science in Civil Engineering from Instituto Tecnológico de Durango, Mexico. After working on the construction industry and for Secretaría de Educación Pública for several years, he went to the United States to continue his education. He obtained a Master of Science in Civil Engineering degree in the area of asphalt technology from Louisiana State University in December 2000. Subsequently, he stayed at the same institution pursuing a doctoral degree where he expects to receive the degree of Doctor of Philosophy in civil engineering in December 2004.

Các file đính kèm theo tài liệu này:

  • pdf76.pdf
Tài liệu liên quan