Whenever possible, the use of parallel bender elements should be preferred over the
series type to reduce the distortion produced by cross-taking and near field effects on the
received traces. Their higher cost is compensated with the save in time that it takes to prepare the
series bender elements to diminish such effects.
Another alternative for avoiding the problems caused by the exposure of bender elements
to humid environments might be the use of another device capable of generating shear waves
such as flat shear plates. In view of the difficulties encountered on this investigation for the
fragile nature of bender elements, it would be worthy to investigate the feasibility of using other
options.
A better assessment of the effect of suction on the stiffness of soils in the modified
triaxial device might be to perform multistage testing varying the matric suction on the same
specimen. That way, the changes of suction belong to the same soil-water characteristic curve,
and they are not individual points from different curves as in the case of using different
specimens.
171 trang |
Chia sẻ: maiphuongtl | Lượt xem: 1997 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Small and large strain monitoring of unsaturated soil behavior by means of multiaxial testing and shear wave propagation, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
m unsaturated clayey silt specimens show a small variation of the S-wave
travel time with applied vertical stress. This behavior may indicate the effect of suction on
stiffness for the clayey silt specimens, where a stronger effect is expected than in sand
specimens. In general the unsaturated clayey silt specimens with higher suctions show higher S-
wave velocities.
The effect of suction is also observed in the reduction of hysterisis on S-wave velocity
during application and removal of vertical stresses as the matric suctions are increased. This
131
phenomenon is caused by decreased susceptibility of the material to changes in stiffness with
variation of applied effective stress.
The use of the power law model to approximate the relationship between S-wave velocity
and effective stresses on the plane of shear wave polarization seems appropriate in this study.
Results from the modified true triaxial device, however suggest that the effective stresses parallel
and perpendicular to the wave propagation should use a different exponent.
7.2. Multiaxial Testing Results
With respect to the evaluation of small strain behavior of these particulate materials, the
bender elements used to monitor the small strain stiffness during the stress paths applied,
efficiently sense variations of stress on the direction of shear wave polarization on the test
conducted on the modified true triaxial device. This is repeatedly observed in hydrostatic
compression stages: the velocity of S-waves increases with increasing confinement for both
vertically and horizontally polarized S-waves. In most cases, the S-wave velocity increases with
the applied stress on the direction of S-wave polarization during shearing stages.
The effect of suction on the small strain stiffness of the particulate media is seen only on
the silty soil. The S-wave velocity of sand specimens in this study is not influenced by the
induced matric suction. This may be explained because the relatively big and uniform pore sizes
of the sand (compared to the silty soil) are not capable to sustain the matric suction values
induced. Because of its uniformity, the majority of the pores drain at a given level of matric
suction leaving the soil without the beneficial effect of the menisci water on suction, and thus in
stiffness.
Large strain analysis of the test results unsurprisingly shows that the shear strength of the
particulate materials increases with confinement. The effect of suction on shear strength
invariably shows that at low confinements the specimens with higher induced matric suctions
present the higher values on shear strength. An intriguing result is observed on the silt specimen
with no induced suction at high confinement. At high confinement this specimen with the lowest
suction presents the biggest shear strength although at low confinement it has the lowest
strength.
132
7.3 Recommendations for Future Work
Whenever possible, the use of parallel bender elements should be preferred over the
series type to reduce the distortion produced by cross-taking and near field effects on the
received traces. Their higher cost is compensated with the save in time that it takes to prepare the
series bender elements to diminish such effects.
Another alternative for avoiding the problems caused by the exposure of bender elements
to humid environments might be the use of another device capable of generating shear waves
such as flat shear plates. In view of the difficulties encountered on this investigation for the
fragile nature of bender elements, it would be worthy to investigate the feasibility of using other
options.
A better assessment of the effect of suction on the stiffness of soils in the modified
triaxial device might be to perform multistage testing varying the matric suction on the same
specimen. That way, the changes of suction belong to the same soil-water characteristic curve,
and they are not individual points from different curves as in the case of using different
specimens.
The issue of the non-changing travel time arrivals in the unsaturated silt specimens tested
on the oedometer cell needs to be investigated. This phenomenon occurred in repeated specimens
in which measurements of matric suction were also being recorded with a tensiometer porous
cup.
Although using a tensiometer to make direct measurements of matric suction is relatively
simple, it is limited to measurement of matric suctions of up to about 90 kPa (-90 kPa of water
tension) because of cavitation of water at tensions approaching -101 kpa. Therefore another
method to measure suction on laboratory specimens might be better.
Monitoring of suction on the modified true triaxial device is desirable to verify that the
suction induced by the difference of pore air and pore water pressures applied to the soil
specimen are achieved and maintain constant during the test.
133
References
Abduljauwad, S. N. and Sulaimani, G. J. (1993). “Determination of Swell Potential of Qatif
Clay”. Geotechnical Testing Journal. Vol. 16. No. 4. pp. 469-484.
Acar, Y. B. and Nyeretse, P. (1992). “Total Suction of Artificial Mixtures of Soils Compacted at
Optimum Water Content”. Geotechnical Testing Journal. Vol. 15. No. 1. pp. 65-73.
Achenbach, J.D. (1975). Wave propagation in elastic solids. North-Holland, New York. 425
pages.
Aitchison, G. D. and Woodborn, J. A. (1969). “Soil Suction in Foundation Design”. Proceedings
7th International Conference on Soil Mechanics and Foundation Engineering. Mexico, 2,
pp. 1-8.
Aitchison, G. D. (1965). “Review Panel Statement - Engineering Concepts of Moisture
Equilibria and Moisture Changes in Soils”. Proc. Conf. on Moisture Equilibria and
Moisture Changes in Soil Beneath Covered Areas. London: Butterworths, pp. 7-21.
Aitchison, G. D. and Bishop, A. W. (1960). Discussion. Proceedings Conference Pore Pressure
and Suction in Soils. London: Butterworths, p. 150.
Anderson, S. A. and Sitar, N. (1995). “Analysis of Rainfall-Induced Debris Flows”. Journal of
Geotechnical Engineering. Vol. 121. No. 7. pp. 544-552.
Arthur, J. R. F. (1988). “Cubical Devices: Versatility and Constraints”, Advanced Triaxial
Testing of Soil and Rock, ASTM STP 977. pp. 743–765.
Arulnathan, R., Boulanger, R.W., and Riemer, M.F. (1998). “Analysis of Bender Element Tests”.
Geotechnical Testing Journal. Vol. 21. No. 2. pp. 120-131.
Atkinson, R. H. (1972). “A Cubical Test Cell for Multiaxial Testing of Materials”, Ph.D.
dissertation. University of Colorado at Boulder, Boulder, CO.
Barden, L., Madedor, A. O., and Sides, G. R. (1969). “Volume Change Characteristics of
Unsaturated Clay”. Journal of Soil Mechanics and Foundations Division. Vol. 95, No.
SM1, pp. 35-52.
Bishop, A. W. and Blight, G. E. (1963). “Some Aspects of Effective Stress in Saturated and
Partly Saturated Soils”. Géotechnique. Vol. 13, No. 3, pp. 177-197.
Bishop, A. W. and Eldin, G. E. (1950). “Undrained Triaxial Tests on Saturated Sys and their
Significance on the General Theory of Shear Strength”. Geotechnique. Vol. 2 No. 1, pp.
13-22.
134
Blight, G. E. (1965). “A Study of Effective Stress for Volume Change”. Proc. Conf. on Moisture
Equilibria and Moisture Changes in Soil Beneath Covered Areas. Ed. Aitchison, G.D.
London: Butterworths, pp. 259-269.
Brand, E. W. (1981). “Some Thoughts on Rain-Induced Slope Failures”. 10th International
Conference on Soil Mechanics and Foundation Engineering. Stockholm. pp. 373-376.
Brignoli, E.G.M., Gotti, M., and Stokoe, K.H. (1996). “Measurement of shear waves in
laboratory specimens by means of piezoelectric transducers”. Geotechnical Testing
Journal. Vol. 19. No. 4. pp. 384–397.
Brocanelli, D. and Rinaldi, V. (1998). “Measurements of Low-Strain Material Damping and
Wave Velocity With Bender Elements in the Frequency Domain”. Canadian Geotechnical
Journal. Vol. 35. pp. 1032-1040.
Budhu, M. (1984). “On Comparing Simple Shear and Triaxial Test Results”, Journal of
Geotechnical Engineering. Vol. 110, No. 12. pp. 1809-1814.
Burland, J. B. (1965). “Some Aspects of the Mechanical Behaviour of Partly Saturated Soils”.
Proc. Conf. on Moisture Equilibria and Moisture Changes in Soil Beneath Covered Areas.
Ed. Aitchison, G.D. London: Butterworths, pp. 270-278.
Chen, G., Pan, J., Han, B., and Yan, H. (1999). “Adsorption of Methylene Blue on
Montmorillonite”. Journal of Dispersion Science and Technology. Vol. 20. No. 4. pp. 309-
319.
Cho, G. C. and Santamarina, J. C. (2001). “Unsaturated Particulate Materials - Particle Level
Studies”. ASCE Geotechnical Journal. Vol. 127. No. 1. pp. 84-96.
Cokca, E. and Birand, A. (2000). “Suction-Swelling Relations”. Proceedings of Sessions of Geo-
Denver 2000. Geo-Institute of the American Society of Civil Engineers. Denver, CO. pp.
379-392.
Coleman, J. D. (1962). “Stress/Strain Relations for Partly Saturated Soils”. Géotechnique
(Correspondence). Vol. 12, No. 4, pp. 348-350.
Department of the Army U.S. Army Corps of Engineers (1995). Geophysical Exploration for
Engineering and Environmental Investigations. Engineer Manual 1110-1-1802,
Washington, DC, August 1995.
Dyvik, R., and Madshus, C. (1985). “Lab measurements of Gmax using bender elements”.
Proceedings of the American Society of Civil Engineers Conference on Advances in the
Art of Testing Soils under Cyclic Conditions. Detroit. October 24. pp. 186–196.
135
Fam, M. A. and Santamarina, J. C. (1995). “Study of Geoprocesses with Complementary Wave
Measurements in an Oedometer”. Geotechnical Testing Journal. Vol. 18. No. 3. pp. 307-
314.
Fernandez, A. L. and Santamarina, J. C. (2001). "The Effect of Cementation on the Small Strain
Parameters of Sands". Canadian Geotechnical Journal. Vol. 38. No. 1. pp. 191-199.
Ferreira, C. (2003). “Bender Element Tests Measurements Using Time and Frequency Domain
Techniques”. 3rd International Symposium on Deformation Characteristics of
Geomaterials. Lyon, France.
Fiorovante, V. and Capoferri, R. (2001). “On the Use of Multidirectional Piezoelectric
Transducers in Triaxial Testing”. Geotechnical Testing Journal. Vol. 24. No. 3. pp. 253-
255.
Fratta, D., Alshibli, K. A., Tanner, W. M., and Roussel, L. (2003). “Combined TDR and P-wave
Velocity Measurements for the Determination of In-Situ Soil Density”. ASTM
Geotechnical Testing Journal (Submitted for Publication).
Fratta, D. and Santamarina, J. C. (1996). "Waveguide Device for Multi-Mode, Wideband Testing
Wave Propagation in Soils". ASTM Geotechnical Testing Journal. Vol. 19, No. 2, pp. 130-
140.
Fratta, D. and Santamarina, J. C. (2002). "Shear Wave Propagation in Jointed Rock - State of
Stress". Géotechnique. Vol. 52. No. 7. pp. 495-505.
Fredlund, D. G. and Morgenstern, N. R. (1977). “Stress State Variables for Unsaturated Soils”.
Journal of Geotechnical Engineering. Vol. 103, No. GT5, pp. 447-466.
Fredlund, D.J. and Rahardjo, H. (1993). Soil Mechanics for Unsaturated Soils. Wiley
Interscience.
Garbulewsky, K., Zakowicz, S., and Al-Helo, I. K. (1994). “Expansion Potential of Compacted
Fine-Grained Soils Using Suction Measurements”. Geotechnical Testing Journal. Vol. 17.
No. 4. pp. 505-510.
Goel, R. K., Singh, B., Mehrotra, V.K., Garg, S.K., and Allu, M.R. (1998). “Effect of
Intermediate Principal Stress on Strength of Anisotropic Rock Mass”, Tunneling and
Underground Space Technology. Vol. 13, No. 1. pp. 71-79
Hoyos Jr., L. (1998). “Experimental and Computational Modeling of Unsaturated Soil Behavior
Under True Triaxial Stress States”, Ph.D. dissertation, Georgia Institute of Technology,
Atlanta, GA.
136
Hoyos, L. R. and Macari, E. J. (2001). "Development of a Stress/Suction-Controlled True
Triaxial Testing Device for Unsaturated Soils". Geotechnical Testing Journal. Vol. 24. No.
1. pp. 5-13.
Ishibashi, I. and Zhang, X. (1993). “Unified dynamic shear moduli and damping ratios of sand
and clay”. Soils and Foundations. Vol. 33. No. 1: pp.182-191.
Jardine, R. J., Kuwano, R., Zdravkovic, L. and Thornoton, C. (2001). “Some Fundamental
Aspects of the Pre-Failure Behavior of Granular Soils”. Pre-Failure Deformation
Characteristics of Geomaterials. Edited by H. Jamiolkowski, R.H. Lancellota, and D.C.F.
Lo Presti. Swets and Zeitlinger, Lisse. pp. 1077-1111.
Jennings, J. E. B. and Burland, J. B. (1962). “Limitations to the use of Effective Stresses in
Partly Saturated Soils”. Géotechnique. Vol. 12. No. 2. pp. 125-144.
Jovicic, V. (2003). “Conditions for Rigorous Bender Element Test in Triaxial Cell”. 3rd
International Symposium on Deformation Characteristics of Geomaterials. Lyon, France.
Johnson, K. A. and Sitar, N. (1990). “Hydrologic Conditions Leading to Debris-Flow Initiation”.
Canadian Geotechnical Journal. Vol. 27. pp. 789-801.
Kandhal, P.S. and Parker, Jr. F., 1998, “Aggregate Tests Related to Asphalt Concrete
Performance in Pavements, NCHRP Report 405, National Academy Press, Washington,
D.C., 103 pages.
Kawaguchi, T. (2003). “Empirical Method for Determination of Shear-Wave Travel Time in
Bender Element Test”. 3rd International Symposium on Deformation Characteristics of
Geomaterials. Lyon, France.
Ko, H-Y. and Scott, R. F. (1967). “A New Soil Testing Apparatus”, Geotechnique, Vol. 17, No.
1. pp. 40–57.
Kolsky, H. (1963). Stress Waves in Solids. Dover Publications. New York. 213 pages.
Krahn, J., Fredlun, D. G., and Klassen, M. J. (1988). “The Effect of Soil Suction on Slope
Stability at Notch Hill”. Canadian Geotechnical Conference. Montreal. pp. 103-110.
Kramer, S. L. (1995). Geotechnical Earthquake Engineering. Pearson Education, 1 edition. 653
pp.
Lade, P. V. and de Boer, R. (1997). “The Concept of Effective Stress for Soil, Concrete and
Rock”. Geotechnique. Vol. 47. No. 1. pp. 61-78.
Lade, P. V. and Duncan, J. M. (1973). “Cubical Triaxial Tests on Cohesionless Soil”, Journal of
the Soil Mechanics and Foundation Division, ASCE, Vol. 99, No. SM10. pp. 793–812.
137
Lade, P. V. and Musante, H. M. (1978). “Three-Dimensional Behavior of Remolded Clay”,
Journal of the Geotechnical Engineering Division. Vol. 104, No. 2. pp. 193-209.
Lloret, A. and Alonso, E. E. (1985). “State Surface for Partially Saturated Soils”. Proc. 11th Int.
Conf. on Soil Mechanics and Foundation Engineering. San Francisco, Rotterdam:
Balkema, Vol. 2.
Lo Presti, D. C ., Shibuya, S., and Rix, G. J. (2001). “Innovation in soil testing”, in Pre-failure
Deformation Characteristics of Geomaterials. Edited by H. Jamiolkowski, R.H. Lancellota,
and D.C.F. Lo Presti. Swets and Zeitlinger, Lisse. pp. 1027-1076.
Macari, E. J. and Hoyos, L. R. (2001). “Mechanical Behavior of an Unsaturated Soil Under
Multi-Axial State Stress”. ASTM Geotechnical Testing Journal. Vol. 24. No. 1. pp. 14-22.
Mancuso, C., Vassallo, R. and d’Onofrio, A. (2002). “Small strain behavior of a silty sand in
controlled-suction resonant column – torsional shear tests”. Canadian Geotechnical
Journal, Vol. No. 39. pp. 22-31.
Matthews, M. C., Clayton, C. R. I., Own, Y. (2000). “The Use of Field Geophysical Techniques
to Determine Geophysical Stiffness Parameters”. Geotechnical Engineering. Vol. 143. pp.
31-42.
Matyas, E. L. and Radhakrishna, H. S. (1968). “Volume Change Characteristics of Partially
Saturated Soils”. Géotechnique. Vol. 18, No. 4, pp. 432-448.
McKeen, R. G. (1992). “A model for Predicting Expansive Soil Behavior.” Proceedings Seventh
International Conference on Expansive Soils. Vol. 1. Texas Tech University. Dallas, TX.
pp. 1-6.
McKeen, R. G. and Hamberg, D. J. (1981). “Characterization of Expansive Soils”.
Transportation Research Record 790 – Shales and Swelling Soils. pp. 73-78.
Mitchel, J. K. (1993). Fundamentals of Soil Behavior. John Wiley & Sons. 437 pages.
Mou, C. H. and Chu, T. Y. (1981). “Soil-Suction Approach for Evaluation of Swelling
Potential”. Transportation Research Record 790. pp. 54-60.
Muraleetharan, K.K. and Wei, C. (2000). “A fully coupled analysis procedure for dynamic
behavior of unsaturated soils”, in Advances in Unsaturated Soils, Geotechnical Special
Publication No. 99 (ed. C. Shackleford, S.L. Houston and N-Y. Chang), Reston: American
Society of Civil Engineers, pp. 165-179.
Nakagawa, K., Soga, K., and Mitchell, J.K. (1996). “Pulse transmission system for measuring
wave propagation in soils”. Journal of Geotechnical Engineering, Vol. 122. No. 4. pp. 302–
308.
138
NeSmith, W. M. (1997). “Development of a Computer Controlled Multiaxial Cubical Testing
Apparatus”. M.Sc. thesis, Georgia Institute of Technology, Atlanta, GA.
O’Neill, M. and Poormoayed, N. (1980). “Methodology for Foundations on Expansive Clays”.
Journal of the Geotechnical Engineering Division. Vol. 106. No. GT12. pp. 1345-1367.
Pearce, J. A. (1972). “A New Triaxial Apparatus”, Proceedings of the Roscoe Memorial
Symposium. G. T. Foulis, Henley on Thames. pp. 330–339.
Pennington, D. S., Nash, D. F. T., and Lings, M. L. (1997). “Anisotropy of Go Shear Stiffness in
Gault Clay”. Géotechnique. Vol. 47. No. 3. pp. 391-398.
Pham, T. H., and G. W. Brindley. (1970). “Methylene blue adsorption by clay minerals:
determination of surface areas and cation exchange capacities (clay-organic studies
XVIII)”. Clays Clay Miner. 18. pp. 203-212.
Prashant, A. and Penumadu, D. (2004). “Effect of Intermediate Principal Stress on
Overconsolidated Kaolin Clay”, Journal of Geotechnical and Geoenvironmental
Engineering. Vol. 130, No. 3. pp. 284-292.
Qian, X., Gray, D. H., and Woods, R. D. (1991). “Resonant Column Tests on Partially Saturated
Sands”. Geotechnical Testing Journal. Vol. 14. No. 3. pp. 266-275.
Richart, F. E., Hall, J. R., and Woods, R. D. (1970). Vibrations of Soils and Foundations,
Prentice-Hall. Englewood Cliffs. 414 pp.
Roessler, S. (1979). “Anisotropic Shear Modulus due to Stress Anisotropic”. Journal of the
Geotechnical Engineering Division. Vol. 150. No. GT7. pp. 871-880.
Saada, A. S. and Townsend, F. C. (1981). “State of the Art: Laboratory Strength Testing of
Soils”, Laboratory Shear Strength of Soil, ASTM STP 740 R. N. Yong and F. C.
Townswnd, Eds. American Society for Testing and Materials, pp. 7-77.
Sánchez-Salinero, I., Roesset, J. M. and Stokoe, K. H. (1986). “Analytical Studies of Body Wave
Propagation and Attenuation”, Geotechnical Engineering Report GR86-15, University of
Texas at Austin, Austin, 272 pp.
Santamarina, J. C., Klein, K. A., and Fam, M. A. (2001). Soils and Waves. John Wiley & Sons,
LTD. New York. 488 pp.
Santamarina, J. C., Rinaldi, V. A., Fratta, D., Klein, K. A., Wang. Y.-H., Cho, G.-C., and
Cascante, G. (2003). “A Survey of Elastic and Electromagnetic Properties of Near-Surface
Soils” in Near-Surface Geophysics, Ed. D. Buttler, SEG (accepted for publication).
Santamarina, J.C. and Cascante, G. (1996). “Stress anisotropy and wave propagation - A
micromechanical view”. Canadian Geotechnical Journal. Vol. 33. No. 5. pp 770-782.
139
Santamarina, J.C., Klein, K.A., Wang, Y.H. and Prencke, E. (2002). “Specific Surface:
Determination and Relevance”. Canadian Geotechnical Journal. Vol. 39. No. 1.
Scott, R. F. (1963). Principles of Soil Mechanics. Addison-Wesley Publishing Company.
Reading, MA. 550 pages.
Seed, H., et al. (1962). “Prediction of Swelling Potential for Compacted Clays”, Journal of the
Soil Mechanics and Foundation Engineering Division. Vol. 88. No. SM 4. pp. 107-131.
Shibuya, S., Hwang, S. C., and Mitachi, T. (1997). “Elastic Shear Modulus of Soft Clays from
Shear Wave Velocity Measurement”. Géotechnique. Vol. 47. No. 3. pp. 593-601.
Shuai, F. and Fredlund, D.G. (2000). “Use of a New Thermal Conductivity Sensor to Measure
Soil SuctionAdvances in Unsaturated Geotechnics”. Proceedings of Sessions of Geo-
Denver 2000. Geo-Institute of the American Society of Civil Engineers. Denver, CO. pp.
1-12.
Silva, C. H. C., Porras-Ortiz, O. F., Fratta, D., and Macari, E. J. (2002). “Mechanical Response
of Unsaturated Particulate Materials – A Stiffness Assessment Study under Controlled
Matric Suction”. Proceedings of the ASME International Mechanical Engineering
Congress & Exposition. New Orleans, LA, November 17-22, 2002 (published in CD –
paper copy available in 2003).
Skempton, A. W. (1960). “Terzaghi’s Discovery of Effective Stress”. Contribution to “From
Theory to Practice in Soil Mechanics. Butterworths, London.
Snethen, D. R., (1984). “Evaluation of Expedient Methods for Identification and Classification
of Potentially Expansive Soils.” Proceedings Fifth International Conference on Expansive
Soils. Institution of Engineers, Adelaide, South Australia. pp. 22-26.
Sowers, G. B. and Sowers G. F. (1970). “Introductory Soil Mechanics and Foundations.” 3rd. ed.
Macmillan Co. New York.
Sridharan et al. (1986). “Swelling Pressure of Clays.” Geotechnical Testing Journal. Vol. 9. No.
1. pp. 24-33.
Stokoe, K. H. and Santamarina, J. C. (2000). “Seismic-Wave-Based Testing in Geotechnical
Engineering”. GeoEng 2000. Melbourne, Australia. November. pp. 1490-1536 (State-of-
the-Art).
Stokoe, K.H., II, Lee, J.N.-K. and Lee, S.H.-H. (1991). “Characterization of Soil in Calibration
Chambers with Seismic Waves”. Proc. Symp. Calibration Chamber Testing. Potsdam, NY.
Sture, S. (1979). “Development of Multiaxial Cubical Test Device With Pore-Water Pressure
Monitoring Facilities”. Report No. VPI-E-79.18, Dept. Civil Engrg., Virginia Polytechnic
Institute and State University, Blacksburg, VA.
140
Terzaghi, K. (1936). “The Shear Resistance of Saturated Soils”. Proceedings 1st International
conference on Soil Mechanics and Foundation Engineering. Cambridge, MA Vol. 1. pp.
54-56.
Terzaghi, K. and Peck, R. (1958). Mecánica de Suelos en la Ingeniería Práctica. Traducción al
español de la obra original “Soil Mechanics in the Engineering Practice”. John Wiley &
Sons, Inc. New York. 681 pages.
Thomann, T.G. and Hryciw, R.D. (1990). “Laboratory Measurement of Small Strain Shear
Modulus Under Ko Conditions”. Geotechnical Testing Journal. Vol. 13. No. 2. pp. 97-105.
Tindall, J. A. and Kundell, J. R. (1999). Unsaturated Zone Hydrology for Scientists and
Engineers. Prentice-Hall. 624 pages.
Viggiani, G. and Atkinson, J.H. (1995a). “Interpretation of bender element tests”. Géotechnique.
Vol. 45. No. 1. pp. 149–154.
Viggiani, G., and Atkinson, J.H. (1995b). “Stiffness of fine-grained soil at very small strains”.
Géotechnique. Vol. 45. No. 2. pp. 249–265.
Vijayvergiya, V. N. and Gazzaly, O. I. (1973). “Prediction of Swelling Potential for Natural
Clays.” Proceedings Third International Conference on Expansive Soils. Haifa, Israel. pp.
227-234.
Vinale, F., d’Onofrio, A., Mancuso, C., Santucci de Magistris, F., and Tatsuoka, F. (2001). “The
Pre-failure Behavior of Soils as Construction Materials”. Pre-Failure Deformation
Characteristics of Geomaterials. Edited by M. Jamiolkowski, R. Lancellotta and D.
LoPreti. Swets & Zeitlinger, Lisse. pp. 955-1007.
Vucetic, M. and Dobry, R. (1991). “Effect of soil plasticity on cyclic response”. Journal of
Geotechnical Engineering. Vol. 117. No. GT1. pp. 89-107.
White, J. E. (1983). Underground Sound. Application of Seismic Waves. Elsevier. Amsterdam.
253 pages.
Zapata, C. E., Hourtons, W. N., Houston, S. L., and Walsh, K. D. (2000). “Soil-Water
Characteristic Curve Variability”. Proceedings of Sessions of Geo-Denver 2000. Geo-
Institute of the American Society of Civil Engineers. Denver, CO. pp. 84-121.
141
Appendix A
Travel Time Data: Clayey Silt
Figure A.1: Travel time data for vertically polarized bender elements: (a) description of stress
paths during testing (suction ua-uw = 0 kPa), (b) travel time data during isotropic consolidation,
and (c) travel time data during shearing (loading and unloading).
0 0.001 0.002
Time (s)
0 0.001 0.002
Time (s)
25 kPa
30 kPa
70 kPa
38 kPa
42 kPa
46 kPa
50 kPa
50 kPa
60 kPa
80 kPa
90 kPa
100 kPa
σ2=σo-∆σ/2
σ3=σo-∆σ/2
σ1=σo+∆σ TC Test
Soil: Silt
Net Pressure:
σo-ua= 25, 50, and 100 kPa
Suction:
ua-uw= 0 kPa
∆σ=0 kPa
7 kPa
18 kPa
30 kPa
39 kPa
51 kPa
57 kPa
45 kPa
30 kPa
9 kPa
0 kPa
∆σ=0 kPa
15 kPa
30 kPa
45 kPa
60 kPa
75 kPa
90 kPa
105 kPa
120 kPa
135 kPa
120 kPa
45 kPa
0 kPa
Net Pressure σo-ua= 25 kPa
(a)
(c)
∆σ=0 kPa
3 kPa
6 kPa
9 kPa
12 kPa
15 kPa
18 kPa
21 kPa
15 kPa
9 kPa
3 kPa
0 kPa
σo-ua=
0 0.001 0.002 0.003
Time [s]
0 0.001 0.002 0.003
Time [s]
0 0.001 0.002 0.003
Time [s]
Net Pressure σo-ua= 100 kPa
0 0.0005 0.001 0.0015 0.002 0.0025
Time [s] (b)
Net Pressure σo-ua= 50 kPa
142
Figure A.2: Travel time data for horizontally polarized bender elements: (a) description of stress
paths during testing (suction ua-uw = 0 kPa), (b) travel time data during isotropic consolidation,
and (c) travel time data during shearing (loading and unloading).
σ2=σo-∆σ/2
σ3=σo-∆σ/2
σ1=σo+∆σ TC Test
Soil: Silt
Net Pressure:
σo-ua= 25, 50, and 100 kPa
Suction:
ua-uw= 0 kPa
Net Pressure σo-ua= 25 kPa
Net Pressure σo-ua= 50 kPa
(a)
(c)
∆σ=0 kPa
3 kPa
6 kPa
9 kPa
12 kPa
15 kPa
18 kPa
21 kPa
15 kPa
9 kPa
3 kPa
0 kPa
∆σ=0 kPa
7 kPa
18 kPa
30 kPa
39 kPa
51 kPa
57 kPa
45 kPa
30 kPa
9 kPa
0 kPa
∆σ=0 kPa
15 kPa
30 kPa
45 kPa
60 kPa
75 kPa
90 kPa
105 kPa
120 kPa
135 kPa
120 kPa
45 kPa
0 kPa
25 kPa
30 kPa
70 kPa
38 kPa
42 kPa
46 kPa
50 kPa
50 kPa
60 kPa
80 kPa
90 kPa
100 kPa
0 0.001 0.002 0.003
Time [s]
0 0.001 0.002 0.003
Time [s]
0 0.001 0.002 0.003
Time [s]
Net Pressure σo-ua= 100 kPa
0 0.0005 0.001 0.0015 0.002 0.0025
Time [s]
σo-ua=
(b)
143
Figure A.3: Travel time data for vertically polarized bender elements: (a) description of stress
paths during testing (suction ua-uw = 25 kPa), (b) travel time data during isotropic consolidation,
and (c) travel time data during shearing (loading and unloading).
25 kPa
30 kPa
90 kPa
36 kPa
45 kPa
50 kPa
50 kPa
62 kPa
72 kPa
80 kPa
100 kPa
σ2=σo-∆σ/2
σ3=σo-∆σ/2
σ1=σo+∆σ TC Test
Soil: Silt
Net Pressure:
σo-ua= 25, 50, and 100 kPa
Suction:
ua-uw= 25 kPa
Net Pressure σo-ua= 25 kPa
(a)
(c)
∆σ=0 kPa
7 kPa
15 kPa
30 kPa
38 kPa
20 kPa
7 kPa
0 kPa
∆σ=0 kPa
21 kPa
30 kPa
45 kPa
60 kPa
42 kPa
27 kPa
12 kPa
0 kPa
∆σ=0 kPa
22 kPa
45 kPa
67 kPa
82 kPa
97 kPa
52 kPa
30 kPa
0 kPa
0 0.001 0.002 0.003
Time [s]
0 0.001 0.002 0.003
Time [s]
0 0.001 0.002 0.003
Time [s]
Net Pressure σo-ua= 50 kPa
0 0.0005 0.001 0.0015 0.002 0.0025
Time [s] (b)
σo-ua=
Net Pressure σo-ua= 100 kPa
144
Figure A.4. Travel time data for horizontally polarized bender elements: (a) description of stress
paths during testing (suction ua-uw = 25 kPa), (b) travel time data during isotropic consolidation,
and (c) travel time data during shearing (loading and unloading).
σ2=σo-∆σ/2
σ3=σo-∆σ/2
σ1=σo+∆σ TC Test
Soil: Silt
Net Pressure:
σo-ua= 25, 50, and 100 kPa
Suction:
ua-uw= 25 kPa
Net Pressure σo-ua= 25 kPa
(a)
25 kPa
30 kPa
90 kPa
36 kPa
45 kPa
50 kPa
50 kPa
62 kPa
72 kPa
80 kPa
100 kPa
∆σ=0 kPa
7 kPa
15 kPa
30 kPa
38 kPa
20 kPa
7 kPa
0 kPa
∆σ=0 kPa
21 kPa
30 kPa
45 kPa
60 kPa
42 kPa
27 kPa
12 kPa
0 kPa
∆σ=0 kPa
22 kPa
45 kPa
67 kPa
82 kPa
97 kPa
52 kPa
30 kPa
0 kPa
0 0.001 0.002 0.003
Time [s]
0 0.001 0.002 0.003
Time [s]
0 0.001 0.002 0.003
Time [s]
0 0.0005 0.001 0.0015 0.002 0.0025
Time [s]
σo-ua=
(b) (c)
Net Pressure σo-ua= 100 kPa
Net Pressure σo-ua= 50 kPa
145
Figure A.5. Travel time data for vertically polarized bender elements: (a) description of stress
paths during testing (suction ua-uw = 50 kPa), (b) travel time data during isotropic consolidation,
and (c) travel time data during shearing (loading and unloading).
4 4
25 kPa
30 kPa
80 kPa
35 kPa
40 kPa
45 kPa
50 kPa
50 kPa
64 kPa
70 kPa
94 kPa
100 kPa
σ2=σo-∆σ/2
σ3=σo-∆σ/2
σ1=σo+∆σ TC Test
Soil: Silt
Net Pressure:
σo-ua= 25, 50, and 100 kPa
Suction:
ua-uw= 50 kPa
Net Pressure σo-ua= 25 kPa
(a)
(c)
∆σ=0 kPa
7 kPa
15 kPa
22 kPa
30 kPa
37 kPa
30 kPa
22 kPa
15 kPa
7 kPa
0 kPa
∆σ=0 kPa
9 kPa
21 kPa
39 kPa
60 kPa
39 kPa
21 kPa
9 kPa
0 kPa
∆σ=0 kPa
15 kPa
33 kPa
54 kPa
66 kPa
78 kPa
90 kPa
105 kPa
90 kPa
75 kPa
60 kPa
45 kPa
30 kPa
15 kPa
σo-ua=
0 0.0005 0.001 0.0015 0.002 0.0025
Time [s] (b)
0 0.001 0.002 0.003
Time [s]
0 0.001 0.002 0.003
Time [s]
Net Pressure σo-ua= 100 kPa
0 0.001 0.002 0.003
Time [s]
Net Pressure σo-ua= 50 kPa
146
Figure A.6. Travel time data for horizontally polarized bender elements: (a) description of stress
paths during testing (suction ua-uw = 50 kPa), (b) travel time data during isotropic consolidation,
and (c) travel time data during shearing (loading and unloading).
σ2=σo-∆σ/2
σ3=σo-∆σ/2
σ1=σo+∆σ TC Test
Soil: Silt
Net Pressure:
σo-ua= 25, 50, and 100 kPa
Suction:
ua-uw= 50 kPa
Net Pressure σo-ua= 25 kPa
(a)
(c)
25 kPa
30 kPa
80 kPa
35 kPa
40 kPa
45 kPa
50 kPa
50 kPa
64 kPa
70 kPa
94 kPa
100 kPa
∆σ=0 kPa
7 kPa
15 kPa
22 kPa
30 kPa
37 kPa
30 kPa
22 kPa
15 kPa
7 kPa
0 kPa
∆σ=0 kPa
9 kPa
21 kPa
39 kPa
60 kPa
39 kPa
21 kPa
9 kPa
0 kPa
∆σ=0 kPa
15 kPa
33 kPa
54 kPa
66 kPa
78 kPa
90 kPa
105 kPa
90 kPa
75 kPa
60 kPa
45 kPa
30 kPa
15 kPa
σo-ua=
0 0.0005 0.001 0.0015 0.002 0.0025
Time [s] (b)
0 0.001 0.002 0.003
Time [s]
0 0.001 0.002 0.003
Time [s]
0 0.001 0.002 0.003
Time [s]
Net Pressure σo-ua= 100 kPa
Net Pressure σo-ua= 50 kPa
147
Figure A.7. Travel time data for vertically polarized bender elements: (a) description of stress
paths during testing (suction ua-uw = 0 kPa), (b) travel time data during isotropic consolidation,
and (c) travel time data during shearing (loading and unloading).
σ2=σo
σ3=σo
σ1=σo+∆σ CTC Test
Soil: Silt
Net Pressure:
σo-ua= 25, 50, and 100 kPa
Suction:
ua-uw= 0 kPa
Net Pressure σo-ua= 25 kPa
Net Pressure σo-ua= 50 kPa
Net Pressure σo-ua= 100 kPa
(a)
0 0.0005 0.001 0.0015 0.002 0.0025
Time [s] (b)
0 0.001 0.002 0.003
Time [s]
0 0.001 0.002 0.003
Time [s]
0 0.001 0.002 0.003
Time [s]
(c)
25 kPa
30 kPa
70 kPa
35 kPa
40 kPa
45 kPa
50 kPa
50 kPa
60 kPa
80 kPa
90 kPa
100 kPa
σo-ua=
∆σ=0 kPa
10 kPa
15 kPa
20 kPa
25 kPa
30 kPa
35 kPa
30 kPa
25 kPa
15 kPa
0 kPa
∆σ=0 kPa
20 kPa
40 kPa
54 kPa
70 kPa
85 kPa
74 kPa
65 kPa
36 kPa
18 kPa
0 kPa
∆σ=0 kPa
15 kPa
30 kPa
45 kPa
60 kPa
76 kPa
96 kPa
120 kPa
155 kPa
190 kPa
148
Figure A.8. Travel time data for horizontally polarized bender elements: (a) description of stress
paths during testing (suction ua-uw = 0 kPa), (b) travel time data during isotropic consolidation,
and (c) travel time data during shearing (loading and unloading).
σ2=σo
σ3=σo
σ1=σo+∆σ CTC Test
Soil: Silt
Net Pressure:
σo-ua= 25, 50, and 100 kPa
Suction:
ua-uw= 0 kPa
Net Pressure σo-ua= 25 kPa
(a)
∆σ=0 kPa
20 kPa
40 kPa
54 kPa
70 kPa
85 kPa
74 kPa
65 kPa
36 kPa
18 kPa
0 kPa
0 0.0005 0.001 0.0015 0.002 0.0025
Time [s] (b)
0 0.001 0.002 0.003
Time [s]
0 0.001 0.002 0.003
Time [s]
0 0.001 0.002 0.003
Time [s]
Net Pressure σo-ua= 50 kPa
(c)
Net Pressure σo-ua= 100 kPa
25 kPa
30 kPa
70 kPa
35 kPa
40 kPa
45 kPa
50 kPa
50 kPa
60 kPa
80 kPa
90 kPa
100 kPa
σo-ua=
∆σ=0 kPa
10 kPa
15 kPa
20 kPa
25 kPa
30 kPa
35 kPa
30 kPa
25 kPa
15 kPa
0 kPa
∆σ=0 kPa
15 kPa
30 kPa
45 kPa
60 kPa
76 kPa
96 kPa
120 kPa
155 kPa
190 kPa
149
Figure A.9. Travel time data for vertically polarized bender elements: (a) description of stress
paths during testing (suction ua-uw = 25 kPa), (b) travel time data during isotropic consolidation,
and (c) travel time data during shearing (loading and unloading).
0 0.001 0.002
Time (s)
0 5 .10 4 0.001 0.0015 0.002 0.0025
Time (s)
0 5 .10 4 0.001 0.0015 0.002 0.0025
Time (s)
0 5 .10 4 0.001 0.0015 0.002 0.0025
Time (s)
σ2=σo
σ3=σo
σ1=σo+∆σ CTC Test
Soil: Silt
Net Pressure:
σo-ua= 25, 50, and 100 kPa
Suction:
ua-uw= 25 kPa
Net Pressure σo-ua= 25 kPa
Net Pressure σo-ua= 50 kPa
Net Pressure σo-ua= 100 kPa
(a)
(c)
∆σ=0 kPa
6 kPa
10 kPa
15 kPa
25 kPa
35 kPa
45 kPa
35 kPa
27 kPa
20 kPa
10 kPa
0 kPa
∆σ=0 kPa
6 kPa
12 kPa
20 kPa
28 kPa
35 kPa
45 kPa
55 kPa
65 kPa
60 kPa
50 kPa
40 kPa
30 kPa
16 kPa
0 kPa
∆σ=0 kPa
10 kPa
25 kPa
36 kPa
50 kPa
65 kPa
80 kPa
100 kPa
78 kPa
64 kPa
50 kPa
38 kPa
24 kPa
10 kPa
0 kPa
0 0.0005 0.001 0.0015 0.002 0.0025
Time [s] (b)
0 0.001 0.002 0.003
Time [s]
.001 . 02 0.003
Time [s]
.001 .002 0.003
Time [s]
σo-ua=
15 kPa
18 kPa
50 kPa
22 kPa
25 kPa
25 kPa
32 kPa
36 kPa
42 kPa
50 kPa
60 kPa
70 kPa
80 kPa
100 kPa
90 kPa
150
Figure A.10. Travel time data for horizontally polarized bender elements: (a) description of
stress paths during testing (suction ua-uw = 25 kPa), (b) travel time data during isotropic
consolidation, and (c) travel time data during shearing (loading and unloading).
0 0.001 0.002
Time (s)
0 5 .10 4 0.001 0.0015 0.002 0.0025
Time (s)
0 5 .10 4 0.001 0.0015 0.002 0.0025
Time (s)
σ2=σo
σ3=σo
σ1=σo+∆σ CTC Test
Soil: Silt
Net Pressure:
σo-ua= 25, 50, and 100 kPa
Suction:
ua-uw= 25 kPa
Net Pressure σo-ua= 25 kPa
Net Pressure σo-ua= 50 kPa
(a)
∆σ=0 kPa
6 kPa
12 kPa
20 kPa
28 kPa
35 kPa
45 kPa
55 kPa
65 kPa
60 kPa
50 kPa
40 kPa
30 kPa
16 kPa
0 kPa
∆σ=0 kPa
10 kPa
25 kPa
36 kPa
50 kPa
65 kPa
80 kPa
100 kPa
78 kPa
64 kPa
50 kPa
38 kPa
24 kPa
10 kPa
0 kPa
∆σ=0 kPa
6 kPa
10 kPa
15 kPa
25 kPa
35 kPa
45 kPa
35 kPa
27 kPa
20 kPa
10 kPa
0 kPa
0 0.0005 0.001 0.0015 0.002 0.0025
Time [s] (b)
.001 0. 02 0.003
Time [s]
0 0.001 0.002 0.003
Time [s]
0 . 01 0. 02 0.003
Time [s]
Net Pressure σo-ua= 100 kPa
(c)
σo-ua=
15 kPa
18 kPa
50 kPa
22 kPa
25 kPa
25 kPa
32 kPa
36 kPa
42 kPa
50 kPa
60 kPa
70 kPa
80 kPa
100 kPa
90 kPa
151
Figure A.11. Travel time data for vertically polarized bender elements: (a) description of stress
paths during testing (suction ua-uw = 50 kPa), (b) travel time data during isotropic consolidation,
and (c) travel time data during shearing (loading and unloading).
0 5 .10 4 0.001 0.0015 0.002 0.0025
Time (s)
0 5 .10 4 0.001 0.0015 0.002 0.0025
Time (s)
0 5 .10 4 0.001 0.0015 0.002 0.0025
Time (s)
0 5 .10 4 0.001 0.0015 0.002 0.0025
Time (s)
σ2=σo
σ3=σo
σ1=σo+∆σ CTC Test
Soil: Silt
Net Pressure:
σo-ua= 25, 50, and 100 kPa
Suction:
ua-uw= 50 kPa
Net Pressure σo-ua= 25 kPa
Net Pressure σo-ua= 50 kPa
(a)
∆σ=0 kPa
5 kPa
10 kPa
15 kPa
25 kPa
35 kPa
41 kPa
30 kPa
20 kPa
10 kPa
0 kPa
∆σ=0 kPa
10 kPa
24 kPa
30 kPa
44 kPa
50 kPa
60 kPa
48 kPa
35 kPa
20 kPa
0 kPa
0 kPa
15 kPa
46 kPa
20 kPa
25 kPa
25 kPa
30 kPa
36 kPa
42 kPa
50 kPa
60 kPa
70 kPa
82 kPa
100 kPa
90 kPa
∆σ=0 kPa
10 kPa
20 kPa
30 kPa
40 kPa
50 kPa
58 kPa
75 kPa
90 kPa
100 kPa
90 kPa
78 kPa
55 kPa
25 kPa
0 kPa
0 0.0005 0.001 0.0015 0.002 0.0025
Time [s] (b)
.001 0. 02 0.003
Time [s]
(c)
0 0.001 0.002 0.003
Time [s]
0 0.001 0.002 0.003
Time [s]
Net Pressure σo-ua= 100 kPa
σo-ua=
152
Figure A.12. Travel time data for horizontally polarized bender elements: (a) description of
stress paths during testing (suction ua-uw = 50 kPa), (b) travel time data during isotropic
consolidation, and (c) travel time data during shearing (loading and unloading).
0 5 .10 4 0.001 0.0015 0.002 0.0025
Time (s)
0 5 .10 4 0.001 0.0015 0.002 0.0025
Time (s)
0 5 .10 4 0.001 0.0015 0.002 0.0025
Time (s)
0 5.10 4 0.001 0.0015 0.002 0.0025
Time (s)
σ2=σo
σ3=σo
σ1=σo+∆σ CTC Test
Soil: Silt
Net Pressure:
σo-ua= 25, 50, and 100 kPa
Suction:
ua-uw= 50 kPa
Net Pressure σo-ua= 25 kPa
Net Pressure σo-ua= 50 kPa
(a)
0 kPa
15 kPa
46 kPa
20 kPa
25 kPa
25 kPa
30 kPa
36 kPa
42 kPa
50 kPa
60 kPa
70 kPa
82 kPa
100 kPa
90 kPa
∆σ=0 kPa
5 kPa
10 kPa
15 kPa
25 kPa
35 kPa
41 kPa
30 kPa
20 kPa
10 kPa
0 kPa
∆σ=0 kPa
10 kPa
24 kPa
30 kPa
44 kPa
50 kPa
60 kPa
48 kPa
35 kPa
20 kPa
0 kPa
∆σ=0 kPa
10 kPa
20 kPa
30 kPa
40 kPa
50 kPa
58 kPa
75 kPa
90 kPa
100 kPa
90 kPa
78 kPa
55 kPa
25 kPa
0 kPa
0 0.0005 0.001 0.0015 0.002 0.0025
Time [s]
0.001 . 02 0.003
Time [s]
0 0.001 0.002 0.003
Time [s]
0 0.001 0.002 0.003
Time [s]
Net Pressure σo-ua= 100 kPa
(c)(b)
σo-ua=
153
Appendix B
Travel Time Data: Silica Sand
Figure B.1: Travel time data for vertically polarized bender elements: (a) description of stress
paths during testing (suction ua-uw = 0 kPa), (b) travel time data during isotropic consolidation,
and (c) travel time data during shearing (loading and unloading).
Net Pressure σo-ua= 25 kPa
Net Pressure σo-ua= 50 kPa
Net Pressure σo-ua= 100 kPa
∆σ=0 kPa
15 kPa
30 kPa
45 kPa
60 kPa
75 kPa
60 kPa
45 kPa
30 kPa
15 kPa
0 kPa
0 0.0005 0.001 0.0015
Time [s] (b)
0 0.0005 0.001 0.0015
Time [s]
(c)
25 kPa
30 kPa
70 kPa
35 kPa
40 kPa
45 kPa
50 kPa
50 kPa
60 kPa
80 kPa
90 kPa
100 kPa
σo-ua=
0 0.0005 0.001 0.0015
Time [s]
0 0.0005 0.001 0.0015
Time [s]
σ1=σo+∆σ TC Test
Soil: Sand
Net Pressure:
σo-ua= 25, 50, and 100 kPa
Suction:
ua-uw= 0 kPa
(a)
σ2=σo-∆σ/2
σ3=σo-∆σ/2
∆σ=0 kPa
7 kPa
15 kPa
22 kPa
30 kPa
22 kPa
15 kPa
7 kPa
0 kPa
∆σ=0 kPa
30 kPa
60 kPa
90 kPa
120 kPa
90 kPa
60 kPa
30 kPa
0 kPa
154
Figure B.2: Travel time data for horizontally polarized bender elements: (a) description of stress
paths during testing (suction ua-uw = 0 kPa), (b) travel time data during isotropic consolidation,
and (c) travel time data during shearing (loading and unloading).
Net Pressure σo-ua= 25 kPa
(b)
Net Pressure σo-ua= 50 kPa
(c)
Net Pressure σo-ua= 100 kPa
25 kPa
30 kPa
70 kPa
35 kPa
40 kPa
45 kPa
50 kPa
50 kPa
60 kPa
80 kPa
90 kPa
100 kPa
σo-ua=
0 0.0005 0.001 0.0015
Time [s]
0 0.0005 0.001 0.0015
Time [s]
0 0.0005 0.001 0.0015
Time [s]
0 0.0005 0.001 0.0015
Time [s]
σ1=σo+∆σ TC Test
Soil: Sand
Net Pressure:
σo-ua= 25, 50, and 100 kPa
Suction:
ua-uw= 0 kPa
(a)
σ2=σo-∆σ/2
σ3=σo-∆σ/2
∆σ=0 kPa
7 kPa
15 kPa
22 kPa
30 kPa
22 kPa
15 kPa
7 kPa
0 kPa
∆σ=0 kPa
15 kPa
30 kPa
45 kPa
60 kPa
75 kPa
60 kPa
45 kPa
30 kPa
15 kPa
0 kPa
∆σ=0 kPa
30 kPa
60 kPa
90 kPa
120 kPa
90 kPa
60 kPa
30 kPa
0 kPa
155
Figure B.3: Travel time data for vertically polarized bender elements: (a) description of stress
paths during testing (suction ua-uw = 25 kPa), (b) travel time data during isotropic consolidation,
and (c) travel time data during shearing (loading and unloading).
Net Pressure σo-ua= 25 kPa
Net Pressure σo-ua= 50 kPa
Net Pressure σo-ua= 100 kPa
(c)(b)
25 kPa
30 kPa
70 kPa
35 kPa
40 kPa
45 kPa
50 kPa
50 kPa
60 kPa
80 kPa
90 kPa
100 kPa
σo-ua=
0 0.0005 0.001 0.0015
Time [s]
0 0.0005 0.001 0.0015
Time [s]
0 0.0005 0.001 0.0015
Time [s]
0 0.0005 0.001 0.0015
Time [s]
σ1=σo+∆σ TC Test
Soil: Sand
Net Pressure:
σo-ua= 25, 50, and 100 kPa
Suction:
ua-uw= 25 kPa
(a)
σ2=σo-∆σ/2
σ3=σo-∆σ/2
∆σ=0 kPa
30 kPa
60 kPa
90 kPa
120 kPa
90 kPa
60 kPa
30 kPa
0 kPa
∆σ=0 kPa
15 kPa
30 kPa
45 kPa
60 kPa
75 kPa
60 kPa
45 kPa
30 kPa
15 kPa
0 kPa
∆σ=0 kPa
7 kPa
15 kPa
22 kPa
30 kPa
22 kPa
15 kPa
7 kPa
0 kPa
156
Figure B.4: Travel time data for horizontally polarized bender elements: (a) description of stress
paths during testing (suction ua-uw = 25 kPa), (b) travel time data during isotropic consolidation,
and (c) travel time data during shearing (loading and unloading).
σ1=σo+∆σ TC Test
Soil: Sand
Net Pressure:
σo-ua= 25, 50, and 100 kPa
Suction:
ua-uw= 25 kPa
Net Pressure σo-ua= 25 kPa
Net Pressure σo-ua= 50 kPa
(a)
(b)
Net Pressure σo-ua= 100 kPa
(c)
25 kPa
30 kPa
70 kPa
35 kPa
40 kPa
45 kPa
50 kPa
50 kPa
60 kPa
80 kPa
90 kPa
100 kPa
σo-ua=
0 0.0005 0.001 0.0015
Time [s]
0 0.0005 0.001 0.0015
Time [s]
0 0.0005 0.001 0.0015
Time [s]
0 0.0005 0.001 0.0015
Time [s]
σ2=σo-∆σ/2
σ3=σo-∆σ/2
∆σ=0 kPa
30 kPa
60 kPa
90 kPa
120 kPa
90 kPa
60 kPa
30 kPa
0 kPa
∆σ=0 kPa
15 kPa
30 kPa
45 kPa
60 kPa
75 kPa
60 kPa
45 kPa
30 kPa
15 kPa
0 kPa
∆σ=0 kPa
7 kPa
15 kPa
22 kPa
30 kPa
22 kPa
15 kPa
7 kPa
0 kPa
157
Figure B.5: Travel time data for vertically polarized bender elements: (a) description of stress
paths during testing (suction ua-uw = 50 kPa), (b) travel time data during isotropic consolidation,
and (c) travel time data during shearing (loading and unloading).
Net Pressure σo-ua= 25 kPa
Net Pressure σo-ua= 50 kPa
(b) (c)
Net Pressure σo-ua= 100 kPa
25 kPa
30 kPa
70 kPa
35 kPa
40 kPa
45 kPa
50 kPa
50 kPa
60 kPa
80 kPa
90 kPa
100 kPa
σo-ua=
0 0.0005 0.001 0.0015
Time [s]
0 0.0005 0.001 0.0015
Time [s]
0 0.0005 0.001 0.0015
Time [s]
0 0.0005 0.001 0.0015
Time [s]
σ1=σo+∆σ TC Test
Soil: Sand
Net Pressure:
σo-ua= 25, 50, and 100 kPa
Suction:
ua-uw= 50 kPa
(a)
σ2=σo-∆σ/2
σ3=σo-∆σ/2
∆σ=0 kPa
30 kPa
60 kPa
90 kPa
120 kPa
90 kPa
60 kPa
30 kPa
0 kPa
∆σ=0 kPa
15 kPa
30 kPa
45 kPa
60 kPa
75 kPa
60 kPa
45 kPa
30 kPa
15 kPa
0 kPa
∆σ=0 kPa
7 kPa
15 kPa
22 kPa
30 kPa
22 kPa
15 kPa
7 kPa
0 kPa
158
Figure B.6: Travel time data for horizontally polarized bender elements: (a) description of stress
paths during testing (suction ua-uw = 50 kPa), (b) travel time data during isotropic consolidation,
and (c) travel time data during shearing (loading and unloading).
Net Pressure σo-ua= 25 kPa
Net Pressure σo-ua= 50 kPa
Net Pressure σo-ua= 100 kPa
(c)(b)
25 kPa
30 kPa
70 kPa
35 kPa
40 kPa
45 kPa
50 kPa
50 kPa
60 kPa
80 kPa
90 kPa
100 kPa
σo-ua=
0 0.0005 0.001 0.0015
Time [s]
0 0.0005 0.001 0.0015
Time [s]
0 0.0005 0.001 0.0015
Time [s]
0 0.0005 0.001 0.0015
Time [s]
σ1=σo+∆σ TC Test
Soil: Sand
Net Pressure:
σo-ua= 25, 50, and 100 kPa
Suction:
ua-uw= 50 kPa
(a)
σ2=σo-∆σ/2
σ3=σo-∆σ/2
∆σ=0 kPa
30 kPa
60 kPa
90 kPa
120 kPa
90 kPa
60 kPa
30 kPa
0 kPa
∆σ=0 kPa
15 kPa
30 kPa
45 kPa
60 kPa
75 kPa
60 kPa
45 kPa
30 kPa
15 kPa
0 kPa
∆σ=0 kPa
7 kPa
15 kPa
22 kPa
30 kPa
22 kPa
15 kPa
7 kPa
0 kPa
159
Figure B.7: Travel time data for vertically polarized bender elements: (a) description of stress
paths during testing (suction ua-uw = 0 kPa), (b) travel time data during isotropic consolidation,
and (c) travel time data during shearing (loading and unloading).
σ2=σo
σ3=σo
σ1=σo+∆σ CTC Test
Soil: Sand
Net Pressure:
σo-ua= 25, 50, and 100 kPa
Suction:
ua-uw= 0 kPa
Net Pressure σo-ua= 25 kPa
Net Pressure σo-ua= 50 kPa
Net Pressure σo-ua= 100 kPa
(a)
∆σ=0 kPa
20 kPa
40 kPa
60 kPa
80 kPa
100 kPa
80 kPa
60 kPa
40 kPa
20 kPa
0 kPa
0 0.0005 0.001 0.0015
Time [s] (b)
0 0.0005 0.001 0.0015
Time [s]
(c)
25 kPa
30 kPa
70 kPa
35 kPa
40 kPa
45 kPa
50 kPa
50 kPa
60 kPa
80 kPa
90 kPa
100 kPa
σo-ua=
0 0.0005 0.001 0.0015
Time [s]
0 0.0005 0.001 0.0015
Time [s]
0 kPa
∆σ=0 kPa
30 kPa
60 kPa
90 kPa
120 kPa
150 kPa
120 kPa
90 kPa
60 kPa
30 kPa
∆σ=0 kPa
15 kPa
30 kPa
45 kPa
60 kPa
45 kPa
30 kPa
15 kPa
0 kPa
160
Figure B.8: Travel time data for horizontally polarized bender elements: (a) description of stress
paths during testing (suction ua-uw = 0 kPa), (b) travel time data during isotropic consolidation,
and (c) travel time data during shearing (loading and unloading).
σ2=σo
σ3=σo
σ1=σo+∆σ CTC Test
Soil: Sand
Net Pressure:
σo-ua= 25, 50, and 100 kPa
Suction:
ua-uw= 0 kPa
Net Pressure σo-ua= 25 kPa
(a)
(b)
Net Pressure σo-ua= 50 kPa
(c)
Net Pressure σo-ua= 100 kPa
25 kPa
30 kPa
70 kPa
35 kPa
40 kPa
45 kPa
50 kPa
50 kPa
60 kPa
80 kPa
90 kPa
100 kPa
σo-ua=
∆σ=0 kPa
20 kPa
40 kPa
60 kPa
80 kPa
100 kPa
80 kPa
60 kPa
40 kPa
20 kPa
0 kPa
0 kPa
∆σ=0 kPa
30 kPa
60 kPa
90 kPa
120 kPa
150 kPa
120 kPa
90 kPa
60 kPa
30 kPa
0 0.0005 0.001 0.0015
Time [s]
0 0.0005 0.001 0.0015
Time [s]
0 0.0005 0.001 0.0015
Time [s]
0 0.0005 0.001 0.0015
Time [s]
∆σ=0 kPa
15 kPa
30 kPa
45 kPa
60 kPa
45 kPa
30 kPa
15 kPa
0 kPa
161
Figure B.9: Travel time data for vertically polarized bender elements: (a) description of stress
paths during testing (suction ua-uw = 25 kPa), (b) travel time data during isotropic consolidation,
and (c) travel time data during shearing (loading and unloading).
σ2=σo
σ3=σo
σ1=σo+∆σ CTC Test
Soil: Sand
Net Pressure:
σo-ua= 25, 50, and 100 kPa
Suction:
ua-uw= 25 kPa
Net Pressure σo-ua= 25 kPa
Net Pressure σo-ua= 50 kPa
Net Pressure σo-ua= 100 kPa
(a)
(c)
∆σ=0 kPa
15 kPa
30 kPa
45 kPa
60 kPa
45 kPa
30 kPa
15 kPa
0 kPa
(b)
25 kPa
30 kPa
70 kPa
35 kPa
40 kPa
45 kPa
50 kPa
50 kPa
60 kPa
80 kPa
90 kPa
100 kPa
σo-ua=
∆σ=0 kPa
20 kPa
40 kPa
60 kPa
80 kPa
100 kPa
80 kPa
60 kPa
40 kPa
20 kPa
0 kPa
0 kPa
∆σ=0 kPa
30 kPa
60 kPa
90 kPa
120 kPa
150 kPa
120 kPa
90 kPa
60 kPa
30 kPa
0 0.0005 0.001 0.0015
Time [s]
0 0.0005 0.001 0.0015
Time [s]
0 0.0005 0.001 0.0015
Time [s]
0 0.0005 0.001 0.0015
Time [s]
162
Figure B.10: Travel time data for horizontally polarized bender elements: (a) description of
stress paths during testing (suction ua-uw = 25 kPa), (b) travel time data during isotropic
consolidation, and (c) travel time data during shearing (loading and unloading).
σ2=σo
σ3=σo
σ1=σo+∆σ CTC Test
Soil: Sand
Net Pressure:
σo-ua= 25, 50, and 100 kPa
Suction:
ua-uw= 25 kPa
Net Pressure σo-ua= 25 kPa
Net Pressure σo-ua= 50 kPa
(a)
(b)
Net Pressure σo-ua= 100 kPa
(c)
25 kPa
30 kPa
70 kPa
35 kPa
40 kPa
45 kPa
50 kPa
50 kPa
60 kPa
80 kPa
90 kPa
100 kPa
σo-ua=
∆σ=0 kPa
15 kPa
30 kPa
45 kPa
60 kPa
45 kPa
30 kPa
15 kPa
0 kPa
∆σ=0 kPa
20 kPa
40 kPa
60 kPa
80 kPa
100 kPa
80 kPa
60 kPa
40 kPa
20 kPa
0 kPa
0 kPa
∆σ=0 kPa
30 kPa
60 kPa
90 kPa
120 kPa
150 kPa
120 kPa
90 kPa
60 kPa
30 kPa
0 0.0005 0.001 0.0015
Time [s]
0 0.0005 0.001 0.0015
Time [s]
0 0.0005 0.001 0.0015
Time [s]
0 0.0005 0.001 0.0015
Time [s]
163
Figure B.11: Travel time data for vertically polarized bender elements: (a) description of stress
paths during testing (suction ua-uw = 50 kPa), (b) travel time data during isotropic consolidation,
and (c) travel time data during shearing (loading and unloading).
σ2=σo
σ3=σo
σ1=σo+∆σ CTC Test
Soil: Sand
Net Pressure:
σo-ua= 25, 50, and 100 kPa
Suction:
ua-uw= 50 kPa
Net Pressure σo-ua= 25 kPa
Net Pressure σo-ua= 50 kPa
(a)
(b) (c)
Net Pressure σo-ua= 100 kPa
25 kPa
30 kPa
70 kPa
35 kPa
40 kPa
45 kPa
50 kPa
50 kPa
60 kPa
80 kPa
90 kPa
100 kPa
σo-ua=
∆σ=0 kPa
20 kPa
30 kPa
40 kPa
50 kPa
60 kPa
50 kPa
40 kPa
30 kPa
20 kPa
0 kPa
∆σ=0 kPa
20 kPa
40 kPa
60 kPa
80 kPa
100 kPa
80 kPa
60 kPa
40 kPa
20 kPa
0 kPa
∆σ=0 kPa
25 kPa
50 kPa
75 kPa
100 kPa
125 kPa
150 kPa
125 kPa
100 kPa
75 kPa
50 kPa
25 kPa
0 kPa
0 0.0005 0.001 0.0015
Time [s]
0 0.0005 0.001 0.0015
Time [s]
0 0.0005 0.001 0.0015
Time [s]
0 0.0005 0.001 0.0015
Time [s]
164
Figure B.12: Travel time data for horizontally polarized bender elements: (a) description of
stress paths during testing (suction ua-uw = 50 kPa), (b) travel time data during isotropic
consolidation, and (c) travel time data during shearing (loading and unloading).
σ2=σo
σ3=σo
σ1=σo+∆σ CTC Test
Soil: Sand
Net Pressure:
σo-ua= 25, 50, and 100 kPa
Suction:
ua-uw= 50 kPa
Net Pressure σo-ua= 25 kPa
Net Pressure σo-ua= 50 kPa
(a)
Net Pressure σo-ua= 100 kPa
(c)(b)
25 kPa
30 kPa
70 kPa
35 kPa
40 kPa
45 kPa
50 kPa
50 kPa
60 kPa
80 kPa
90 kPa
100 kPa
σo-ua=
∆σ=0 kPa
20 kPa
30 kPa
40 kPa
50 kPa
60 kPa
50 kPa
40 kPa
30 kPa
20 kPa
0 kPa
∆σ=0 kPa
20 kPa
40 kPa
60 kPa
80 kPa
100 kPa
80 kPa
60 kPa
40 kPa
20 kPa
0 kPa
∆σ=0 kPa
25 kPa
50 kPa
75 kPa
100 kPa
125 kPa
150 kPa
125 kPa
100 kPa
75 kPa
50 kPa
25 kPa
0 kPa
0 0.0005 0.001 0.0015
Time [s]
0 0.0005 0.001 0.0015
Time [s]
0 0.0005 0.001 0.0015
Time [s]
0 0.0005 0.001 0.0015
Time [s]
165
Vita
166
Oscar Fernando Porras Ortiz was born in Durango, Durango, Mexico, on May 25, 1963.
He received his Bachelor of Science in Civil Engineering from Instituto Tecnológico de
Durango, Mexico. After working on the construction industry and for Secretaría de Educación
Pública for several years, he went to the United States to continue his education. He obtained a
Master of Science in Civil Engineering degree in the area of asphalt technology from Louisiana
State University in December 2000. Subsequently, he stayed at the same institution pursuing a
doctoral degree where he expects to receive the degree of Doctor of Philosophy in civil
engineering in December 2004.
Các file đính kèm theo tài liệu này:
- 76.pdf