Tiểu luận Công nghệ chế biến đường Glucose

MỤC LỤC I. Mở đầu 1. Giới thiệu chung 2. Tính chất và ứng dụng II. Nguyên liệu 1. Tinh bột sắn 1.1. Giới thiệu chung 1.2. Ưu điểm của nguyên liệu tinh bột sắn 1.3. Tiêu chuẩn tinh bột sắn 2.Hệ enzyme thủy phân dùng trong sản xuất đường glucose 2.1. Amilase 2.2. Glucoamylase 2.3. Chế phẩm amilase trong sản xuất đường glucose từ tinh bột 3. Quy trình công nghệ 3.1. Sơ đồ khối 3.2. Giải thích quy trình 1 3.2.1 Hòa bột 3.2.2 Hồ hóa 3.2.3 Dịch hóa 3.2.4 Làm nguội 3.2.5 Đường hóa 3.2.6 Lọc 3.2.6 Trao đổi ion 3.2.8 Cô đặc 3. 2.8 Làm nguội 3.2.8 Kết tinh 3.2.10 Ly tâm 3.2.11 Sấy và phân loại 3.2.11 Đóng gói 3.3 Giải thích quy trình 2 III. Sản phẩm 1. Mô tả sản phẩm glucose 2. Các chỉ tiêu chất lượng sản phẩm 3. Sản phẩm phụ Hydron IV. Thành tựu công nghệ và hướng phát triển Tài liệu tham khảo

doc27 trang | Chia sẻ: maiphuongtl | Lượt xem: 3030 | Lượt tải: 1download
Bạn đang xem trước 20 trang tài liệu Tiểu luận Công nghệ chế biến đường Glucose, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
Mở đầu: Giới thiệu chung Glucose là monosaccaride tiêu biểu, có công thức nguyên là C6H12O6, là loại đường khử, có nhiều ứng dụng rộng rãi trong nhiều lĩnh vực, là đường dễ tiêu hoá, hấp thu. Đường glucose là sản phẩm quá trình thuỷ phân tinh bột bằng acid hoặc enzyme. Có thể dùng tinh bột từ củ hoặc các loại hoà thảo. Ở các nước chủ yếu dùng tinh bột bắp và tinh bột khoai tây. Ở nước ta chủ yếu dùng tinh bột sắn để sản xuất đường glucose. Tính chất và ứng dụng: Việc sản xuất đường glucose là một ứng dụng quan trong đặc biệt của amilase. Các đường glucose thông thường có chỉ số đường khử (tính theo glucose) là 20 đến 65. Dung dịch đường glucose có độ nhớt thấp và thường được bảo quản ở pH 3.5- 5.5 (thêm acetate, citrate hoặc lactate). Người ta dùng dung dịch này để độ ngọt, để ngăn cản sự kết tinh saccharose và làm giảm nhiệt độ đông lạnh của dung dịch (hỗn hợp kem lạnh). Ngoài ra dung dịch đường glucose có khả năng lên men và có độ hút ẩm cao. Glucose có khả năng hoá nâu, có tính tạo khối, tạo viên. Giống như các đường đơn khác, glucose bị lên men bởi nấm men và các chủng vi sinh vật khác nhanh hơn so với các nguồn cơ chất khác. Do phân tử lượng chỉ bằng một nửa so với đường saccharose ở cùng một khối lượng sử dụng. Khi phản ứng với các hợp chất chứa nitơ, glucose tạo ra các chất màu tuỳ thuộc vào điều kiện phản ứng như pH, nhiệt độ, nồng độ và bản chất các hợp chất chứa nitơ. Đường glucose cũng tham gia các phản ứng như isomer hoá trong môi trường kiềm để tạo thành fructose và mannos, phản ứng phân huỷ kiềm tạo thành acid carboxylic, phản ứng hydro hoá tạo thành sorbitol, phản ứng phân huỷ kiềm và hydro hoá để tạo thành glycol; 1,2- propanediol và glycerol, phản ứng oxy hoá để tạo thành acid gluconic và acid glucaric. Các tính chất vật lý, hoá học và dinh dưỡng học đường glucose được ứng dụng trong nhiều lĩnh vực công nghiệp thực phẩm như công nghiệp lên men (bia, đồ uống có cồn…), sản xuất bánh mì, trong công nghiệp bánh kẹo, đồ hộp, thức ăn nhanh và những lĩnh vực khác như công nghiệp hoá chất và dược phẩm. Đường glucose được sử dụng trong sản xuất bánh mì để tăng khả năng lên men, tăng độ dai cho vỏ bánh để dễ cắt, dễ cầm bánh, cải thiện màu, mùi vị và cấu trúc bánh. Trong bánh ngọt glucose giúp tăng thể tích, cấu trúc, tính cân đối của bánh. Glucose kiểm soát độ ngọt và vị trong các loại bánh bích quy, nó được phủ lên trong quá trình nướng để tạo màu cho bề mặt và làm mềm bánh. Glucose cũng mang lại cấu trúc mềm mại, vị ngọt diệu và khả năng chảy tốt cho các sản phẩm kem và đồ tráng miệng lạnh. Trong lên men bia glucose được sử dụng như cơ chất có khả năng lên men bổ sung để làm giảm lượng cacbohydrate và lượng calori trong các loại bia năng lượng thấp. Trong rượu vang glucose được sử dụng để tăng khả năng lên men, tăng vị và độ ngọt cho sản phẩm. Trong các loại đồ uống, glucose cung cấp độ ngọt, áp suất thẩm thấu, nó cũng là chất độn giúp tăng vị, kiểm soát khả năng di động và tăng thời gian bảo quản cho đồ uống dạng bột. Trong sản xuất kẹo, glucose cung cấp đô ngọt, độ mềm mại cho sản phẩm đồng thời giúp kiểm soát hiện tượng kết tinh. Kết hợp glucose và saccharose giúp tăng vị, cải thiện màu sắc, độ bóng, tăng cảm giác mát lạnh ở miệng, đồng thời cân bằng được độ ngọt, độ dai, độ cứng cho sản phẩm kẹo. Glucose cũng là phụ gia lý tưởng cho quá trình đóng viên do tính chảy, khả năng kết dính cũng như tách rời tốt. Glucose cũng là chất tạo độ ngọt, độ mềm dẻo và dễ cắt trong sản phẩm kẹo dẻo. Trong các loại đồ hộp như nước chấm, xúp rau củ, đồ hộp trái cây, mứt, thạch quả, glucose được sử dụng để cung cấp độ ngọt và vị, tăng độ bền và áp suất thẩm thấu, cải thiện cấu trúc và chất lượng thẩm mỹ của sản phẩm. Glucose cũng tham gia vào quá trình tạo màu cho sản phẩm như xúc xích, bơ đậu phộng… Trong công nghiệp dược, glucose được sử dụng để truyền tĩnh mạch, hay để đóng viên. Nó cũng được sử dụng như nguyên liệu của các quá trình lên men sản xuất các acid hữu cơ, vitamine, kháng sinh, emzyme, acid amine, polysaccharide… Nhu cầu glucose cao nhất là trong lĩnh vực sản xuất cồn ethanol nhiên liệu. Đặc biệt đường glucose là một ứng dụng thực tiễn trong sản xuất nước quả, đây là nguyên liệu được phối trộn vào dịch quả nhằm làm tăng hương vị và giúp cho sản phẩm đạt chất lượng tuyệt hảo hơn đồng thời nó cũng chính là nguyên nhân giúp hạ chi phí sản xuất bởi vì đường glucose là nguyên liệu dễ chế biến và rẻ hơn nhiều so với saccharose hay còn gọi là đường kính mà ta vẫn thường hay sử dụng hằng ngày trong gia đình cũng như làm nguyên liệu chế biến một số sản phẩm khác trong công nghiệp thực phẩm: bánh kẹo, mứt quả, nước giải khát… Glucose là chất cần cho môi trường nuôi vi sinh vật, là đường dễ lên men tạo rượu, acid acetic, acid lactic, acid hữu cơ khác như acid glutamic, acid citric. II. Nguyên liệu : 1. Tinh bột sắn: a. Giới thiệu chung : Tinh boät saén goàm hai loaïi polysaccarit khaùc nhau laø amylose (17-20%) vaø amylopectin. Amylose: goàm 200 – 1000 phaân töû glucose lieân keát vôùi nhau baèng lieân keát a-1,4 glucoside taïo thaønh maïch thaúng. Phaân töû amylose goàm nhieàu chuoãi xeáp song song vôùi nhau, trong ñoù caùc chuoãi cuoän laïi thaønh hình xoaén oác. Phaân töû amylose coù 1 ñaàu khöû vaø 1 ñaàu khoâng khöû. Amylopectin: goàm 600-6000 phaân töû glucose goàm hai loaïi lieân keát a-1,4 glucoside vaø a-1,6 glucoside, maïch phaân nhaùnh. Phaân töû amylopectin chæ coù moät ñaàu khöû duy nhaát. Hình 1: Caáu truùc cuûa maïch amylose Hình 2: Caáu truùc cuûa maïch amylopectin Ưu điểm của nguyên liệu tinh bột sắn : Saén coù theå thu hoaïch quanh naêm neân khoâng caàn toán nhieàu chi phí cho vieäc toàn tröõ. Giöõa caùc maët haøng tinh boät, saén cho saûn löôïng carbohydrate cao hôn gaïo laø 40%, vaø cao hôn ngoâ vaøng laø 25%, do ñoù saén laø nguoàn tinh boät reû tieàn. Hôn nöõa, so vôùi caùc vuï muøa khaùc, saén chòu ñöôïc ñieàu kieän troàng khaéc nghieät hôn. Do saén coù haøm löôïng tinh boät cao vaø haøm löôïng caùc chaát khaùc nhö protein vaø lipit thaáp, do ñoù noù laø nguoàn lyù töôûng ñeå saûn xuaát tinh boät tinh khieát. Ñaëc tính quan troïng cuûa tinh boät saén laø khoâng muøi, taïo boät nhaõo trong, vaø khaû naêng keát dính. Nhöõng ñaëc tính naøy giuùp cho tinh boät saén deã troän vôùi caùc taùc nhaân maøu saéc vaø höông vò. Tinh boät saén coù haøm löôïng amylopectin cao neân deã hoøa tan trong nöôùc ôû 95oC hôn caùc loaïi tinh boät giaøu amylose, do caáu taïo coàng keành neân khoâng coù xu höôùng keát tinh trôû laïi vaø do ñoù coù khaû naêng giöõ nöôùc lôùn. v. Tieâu chuaån cuûa tinh boät saén Đặc tính : Baûng 2 Caáu truùc Boät maøu traéng Maøu saéc Ñoàng ñeàu vaø ñaëc tröng Höông vò Ñaëc tröng Muøi Coù muøi töôi vaø khoâng coù muøi moác vaø oâi Thành phần hóa học : Baûng 3 Haøm aåm 14.0% max Tro 0.12% max Ñoä acid (trong ml NaOH 0.1 N) 3.0 ml max pH 4.5 – 6.5 Tinh boät 84.0% min 3. Hệ enzyme thủy phân dùng trong sản xuất đường glucose: a. Amilase: Khái niệm chung: amilase là một trong những enzyme được ứng dụng rộng rãi hơn cả, đặc biệt là trong công nghiệp thực phẩm. Amilase là tên gọi một nhóm enzyme thuỷ phân tinh bột, bao gồm nhiều enzyme khác nhau về tính đặc hiệu tác dụng lên tinh bột (vị trí khác nhau trên mạch tinh bột) như:a-amilase, b-amilase, g-amilase… Chế phẩm enzyme amilase kĩ thuật và tinh khiết được sản xuất ở dạng dịch đặc có nồng độ chất khô 50% hay ở dạng bột khô thô hay tinh khiết. Phương pháp thu amilase từ canh trưởng rắn hay lỏng, trên cơ bản giống phương pháp chung thu enzyme từ vi sinh vật. Về phương pháp nuôi, ta có thể sử dụng phương pháp bề sâu hay bề mặt. Ví dụ: với chủng Asp. Awamori, Asp. Niger, endomyces pecies các nước Liên xô cũ, Tiệp Khắc, Đông Đức đã sản xuất glucoamilase ở quy mô công nghiệp bằng phương pháp nuôi chìm. Ở Nhật, Mỹ, Hungari, Tiệp Khắc… nuôi Asp. Oryzae tạo a-amilase và Rhizopus neveus tạo glucoamilase bằng phương pháp bề mặt với vi khuẩn B.subtilis người ta nuôi bằng phương pháp chìm thu enzyme a-amilase bền với nhiệt độ cao Nhóm enzyme amilase, đa phần được tổng hợp bởi nấm mốc và vi khuẩn, một số ít từ nấm men. Các chủng nấm mốc như: Asp. Oryzae; Asp. Niger; Asp. Awamori; Asp.usamii; Rhyzopus neveus; Asp. Patatae; Rhizopus delemar; Rhizopus javamicus; Mucor sp; và một số loài vi sinh vật khác như Endomycopis, fibuliger; Endomycopis, bifubuliger; saccharomycs diastaticus… tạo amylase, glucoamilase. Từ vi khuẩn B. diastaticus, B. subtilis, B. mesentericus, B. Amylosolvens... thường để thu a-amilase chịu nhiệt độ cao. Mỗi chủng vi sinh vật có thể tổng hợp nhiều loại enzyme nhưng khối lượng mỗi enzyme tổng hợp được có khác nhau. Ví dụ: Chủng Asp. Oryzae( mốc vàng) tổng hợp nhiều a-amilase nhưng ít glucoamilase còn chủng Asp. Niger, Asp. Awamori ( mốc đen)thì ngược lại tổng hợp nhiều glucoamilase và ít a-amilase. Đặc điểm a-amilase nấm mốc là có pH tối ưu 4,7- 4,9 Ca là nguyên liệu tăng hoạt động của enzyme này. a-amilase nấm mốc có khả năng chuyển được 80- 82% tinh bột thành maltose, không tác dụng lên tinh bột sống chỉ tác dụng lên tinh bột đã hồ hoá. Amilase của vi khuẩn có khả năng dịch hoá cao( tạo dextrin), khả năng đường hoá kém hơn amilase của nấm mốc, nhưng có ưu điểm là chịu được nhiệt độ cao( 900C). Ở Nhật hàng năm sản xuất 7000 tấn amilase từ vi khuẩn. Các nấm mốc Asp. Awamori; Asp. Oryzae; Asp. Usami tổng hợp nhiều Olygo-1-6-glucozidase thuỷ phân liên kết 1-6-glucoside của tinh bột. b. Glucoamylase Glucoamylase (3.2.1.3 α-1,4-glucanglucohydrrolase) hay cũng gọi là γ-amilase. Glucoamylase có khả năng cắt đứt từng đơn vị glucose từ đầu không khử của tinh bột. Khi thủy phân tinh bột glucoamylase bên cạnh glucose cũng có thể tạo ra oligosaccharide. Glucoamylase cũng có thể thủy phân liên kết α-1,6-glucoside trong các oligo- và polysaccharide. Ngoài ra glucoamylase cũng có khả năng phân cắt glucogen, amylopectin, dextrin giới hạn, isomaltose và maltose đến glucose. Glucoamylase của Aspergillus và Rhizopus có độ bền cao đối với nồng độ ion H+. c. Chế phẩm amilase trong sản xuất đường glucose từ tinh bột: Từ năm 1960 ở Nhật, 100% glucose được sản xuất bằng phương pháp thuỷ phân enzyme. Ở các nước tiên tiến khác, phương pháp dùng enzyme vi sinh vật trong lĩnh vực này cũng đã được áp dụng có hiệu quả và phổ biến, hay phối hợp phương pháp acid và enzyme. Trong sản xuất mật tinh bột-glucose 2 enzyme chủ yếu là a-amilase và glucoamilase từ nấm mốc và vi khuẩn. Enzyme a-amilase để dịch hoá tinh bột và tạo maltose còn glucoamilase dùng để đường hoá tạo glucose, chế phẩm amilase cho sản xuất glucose được sản xuất từ vi khuẩn B. subtilis, B. mesentericus. Chế phẩm glucoamilase thường sản xuất từ nấm mốc Asp. Niger; Asp. Awamori; Asp. Batatae; Rhizopus delamar; Mucor… hay từ một số nấm men sacchromyce, Endomycoppis… Termamyl ( màu vàng nâu lỏng sánh , có độ nhớt cao ). Có chứa anpha- amylase chịu được nhiệt độ cao và được sản xuất từ loài Bacillus licheniformis Tính chất : to chịu đựng : 90 – 1000 C PHopt : 6-7 Hoạt độ 120 KNU / g ( kilonovo đơn vị ) 1 KNU là lượng enzyme phân cắt 5,6 gam tinh bột hòa tan ở nhiệt độ 370 C , PH 5,6 và thời gian từ 7- 20 giờ AMGE chứa glucoamylase , được sản xuất từ loài Asp niger , đây là chất lỏng có màu vàng nâu , có tỷ trọng 1,2 g/ml Tính chất : topt : 60 -62 0C PH opt : 4.1 – 4.3 Quy trình công nghệ: Sơ đồ khối: Giải thích quy trình: 2.1 Hòa bột: Mục đích công nghệ: Chuẩn bị : Chuẩn bị cho quá trình hồ hóa nhằm tăng độ phân tán của huyền phù. Các biến đổi: Biến đổi vật lý: Tăng thể tích Hệ số dẫn nhiệt tăng Sự khuếch tán của các hạt tinh bột tăng Biến đổi hóa lý: Hạt tinh bột hấp thu một lượng nhỏ nước một cách thuận nghịch (25-50% nước) nhưng chưa trương nở. Trạng thái của nguyên liệu sau khuấy trộn ở dạng huyền phù Tăng khả năng tiếp xúc giữa hạt tinh bột và nước Biến đổi cảm quan: sự thay đổi trạng thái của dịch bột Các thiết bị: Thùng hòa bột hình trụ làm bằng thép không rỉ, có cánh khuấy. Các thông số công nghệ: Nhiệt độ: 45-50oC Tốc độ cánh khuấy: 20 vòng/phút Thời gian: 30-40 phút 2.2 Hồ hóa: Mục đích công nghệ: Chuẩn bị: Chuẩn bị cho quá trình dịch hóa, các hạt tinh bột hút nước và trương nở tối đa tạo điều kiện thuận lợi cho quá trình dịch hóa Các biến đổi: Biến đổi vật lý: Độ nhớt tăng cực đại - Hạt tinh bột trương nở tối đa - Nhiệt độ của dung dịch tăng - Nồng độ chất khô tăng Biến đổi hóa học: Xảy ra sự hydrate hóa các nhóm hydroxyl tự do và hình thành liên kết hydro với nước. Biến đổi hóa lý: - Hạt tinh bột tiếp tục hấp thu nước, khi nhiệt độ càng tăng thì khả năng hút nước càng tăng, lên đến 2500% nước. - Hệ chuyển từ dạng huyền phù sang dung dịch nhớt đồng nhất. - Tăng khả năng hòa tan Biến đổi cảm quan: màu sắc từ đục chuyển sang trong hơn. Các thiết bị: Henze cooker: Hình 1 : Thiết bị Henze Cooker Tỉ lệ h1:h2:d = 1:2:1.3 h1: chiều cao thân hình trụ h2: chiều cao đáy côn d: đường kính thân trụ Thiết bị hình trụ đáy côn, bên trong có 1 trục nối với motor giúp trục xoay. Trên trục có những cánh khuấy để đảo trộn cho mẫu đồng nhất. Phía dưới có hệ thống hơi trung tâm. Hệ thống van an toàn kết nối trực tiếp với hệ thống hơi trung tâm Thông số công nghệ : Thời gian xả: 20 phút Nhiệt độ: 52-64oC 2.3 Dịch hóa: a. Mục đích công nghệ: Chuẩn bị: Chuẩn bị cho quá trình đường hóa b. Các biến đổi: Biến đổi vật lý: Độ nhớt giảm Khả năng truyền nhiệt tăng (do kích thước phân tử nhỏ hơn) Nồng độ chất khô tăng Biến đổi hóa học: Hạt tinh bột bị phá tung, phá vỡ các liên kết hydro giữa nước và các sợi tinh bột Phản ứng Maillard giữa đường và acid amine tạo ra sản phẩm có màu - Thủy phân một phần tinh bột tạo những mạch dextrin có chiều dài mạch ngắn hơn, Biến đổi hóa lý: Sự bốc hơi nước Khả năng hòa tan của tinh bột tăng Biến đổi hóa sinh: - Enzym α-amylase hoạt động cắt các mạch amylose và amylopectin thành các dextrin mạch ngắn có khả năng hòa tan . Biến đổi sinh học: - Vi sinh vật bị ức chế hoặc tiêu diệt Các thiết bị: Henze cooker Các thông số công nghệ: Nhiệt độ: 105oC pH: 6-6.5 Hàm lượng chế phẩm enzym α-amylase: 0.25-0.3% lượng tinh bột khô Chú ý: Quá trình dịch hóa tiến hành đến hàm lượng đường khử đạt 10-15% DE. 2.4 Làm nguội: a. Mục đích công nghệ: Chuẩn bị: - Chuẩn bị cho quá trình đường hóa, tạo điều kiện tối thích cho enzym glucoamylase trong quá trình đường hóa tiếp theo Các biến đổi: Vật lý : - Nhiệt độ giảm Các biến đổi khác không đáng kể Các thiết bị: - Thiết bị trao đổi nhiệt dạng bản mỏng Hình 2 : Thiết bị trao đổi nhiệt bản mỏng phận chính của thiết bị là những tấm bản hình chữ nhật với độ dày rất mỏng và được làm bằng thép không gỉ. Mỗi tấm bản sẻ có 4 lổ tại 4 góc và hệ thống các đường rãnh trên khắp bề mặt để tạo sự chảy rối và tăng diện tích truyền nhiệt. Khi ghép các tấm bản mỏng lại với nhau trên bộ khung của thiết bị sẽ hình thành nên những hệ thống đường vào và ra cho mẫu khảo sát và chất tải nhiệt. Tùy thuộc vào điều kiện cụ thể, các nhà sản xuất sẻ bố trí hệ thống những đường dẩn thích hợp. Nguyên tắc hoạt động : Thực phẩm sẽ lần lượt đi qua 2 vùng, mỗi vùng gồm 4 khoang được kí hiệu là 4x 2. Chất tải nhiệt sẻ lần lượt đi qua 4 vùng, mỗi vùng gồm 2 khoang và được kí hiệu là 2x4. Thông số công nghê : - Nhiệt độ hạ xuống : 55- 600C 2.5 Đường hóa: a. Mục đích công nghệ: Khai thác : Tạo thành syrup có thành phần chủ yếu là glucose, các đường đơn giản và các dextrin mạch ngắn. Các biến đổi: Biến đổi vật lý: - Giảm độ nhớt - Tăng khả năng truyền nhiệt của dung dịch. - Tăng hàm lượng chất khô Biến đổi hóa học: - Phản ứng thủy phân cắt dextrin mạch dài (sản phẩm sau quá trình dịch hóa) thành sản phẩm chính là glucose, các đường đơn giản khác và dextrin mạch ngắn,… - Phản ứng Maillard tạo thành các chất màu làm sẫm màu dịch thủy phân Biến đổi hóa lý: tăng khả năng hòa tan Biến đổi hóa sinh: - Có tương tác đồng thời của enzym a- amylase và glucoamylase lên các mạch polysaccharide và oligosaccharide, tạo hỗn hợp sản phẩm gồm maltose, glucose, triose và các oligosaccharide khác. Trong đó glucoamylase hoạt động với điều kiện tối thích còn a- amylase vẫn hoạt động nhưng hoạt tính yếu hơn. Các thiết bị: Mash tub(Lực làm) Các thông số công nghệ: Nhiệt độ: 55-60oC pH: 5.0-5.5 Thời gian: 24-48h Lượng enzym: 2000Ukg-1 hàm lượng chất khô 2.6 Lọc: a. Mục đích: khai thác,chuẩn bị cho quá trình cô đặc b. Các biến đổi: - Vật lí: giảm khối lượng dung dịch tỷ trọng thay đổi hệ số truyền nhiệt tăng -Hoá lí: thay đổi pha , tách được pha rắn và pha lỏng c. Thiết bị: Máy lọc khung bản Cấu tạo Tay quay,thân trục vít,đế máy , đĩa holddown, bộ phận có thể di động, đĩa lọc , khung lọc , môi trường lọc, bộ phận tĩnh, đồng hồ đo áp suất, van, bơm nhập liệu, thùng chứa… Thông số công nghệ: -Áp suất ≤0.3 Mpa -Nhiệt độ :55oC Nguyên tắc hoạt động: -Khi quá trình lọc bắt đầu,dịch cần lọc sẽ được bơm bằng bơm nhập liệu vào khung lọc,chất lỏng thấm qua môi trường lọc và vào bản lọc,dịch lọc được tháo ra. -Khi bắt đầu bơm nhậo liệu vào, mở van khí thoát ra,mở van nhập liệu chậm, điều khiển tốc độ chảy để để áp lực lọc chậm và đều ,tránh áp lực tăng quá nhanh, ảnh hưởng đến môi trường lọc. -Khi quá trình lọc hoàn thành, đóng van nhập liệu đầu tiên,sau đó dừng bơm ,ngăn cản dòng quay trở lại hư hỏng môi trường lọc. -Mở van khí vào, làm sạch chất lỏng trong đĩa ,bản lọc sử dụng áp lực của khí hoặc hơi nước,sau đó nới lỏng bộ phận di chuyển được.cách này ta có thể tháo bã lọc ra và làm sạch và thay thế môi trường lọc. -Quay trở lại những bước như trên để thực hiện quá trình. 2.6 Trao đổi ion: Mục đích : + Mục đích : - Chuẩn bị cho quá trình cô đặc, tách các ion và hấp thụ được những hợp chất hữu cơ khác . Các biến đổi: Hóa học : Các anion và cation sẽ khếch tán qua các lỗ xốp và trao đổi ion với chất rắn điện giải. Trao đổi cation : + Ion làm việc là H+ hoặc là Na+ ( nên lựa chọn ion H+ vì có thể tách được cả ion Na+ ) Cơ chế : Mn+ + nHR → MRn + nH+ Trong đó : Mn+ : - Là các ion trong dung dịch như là : Na+ , Ca2+ , Mg2+, Cu2+, Fe2+, Fe3+, Ba2+, Al3+… - Là những chất hữu cơ mang điện tích dương trong dung dịch. HR : Là các loại nhựa polymer tổng hợp không tan có chứa các nhóm sulfonic , carboxylic hay phenolic. ( R- là biểu diễn phần anion cố định trong nhựa ) Trao đổi anion : + Ion làm việc là Cl- hoặc OH- Cơ chế : m RNH3- OH + Am- → ( RNH3 )m – A + mOH- H+ + OH- → H2O Trong đó : Am- : - Là những anion trong dung dịch như là : SO42-, NO3-…. - Là những chất hưu cơ mang điện tích âm trong dung dịch RNH3 – OH hay RNH3 – Cl : là các loại nhựa polimer không tan có chứa nhóm amin và các anion để trao đổi . ( RNH3 + là biểu diễn phần cation cố định trong nhựa ) Thiết bị : Hệ thống gồm hai cột trao đổi ion , được làm từ vật liệu polimer . + 1 cột có khả năng trao đổi anion + 1 cột có khả năng trao đổi cation - Gồm những đường ống để dẫn dòng dung dịch đến cột trao đổi ion , dòng hoàn lưu , hệ thống dung dịch rửa giải và hệ thống để tái sinh ion làm việc trên cột. Ion – exchange system Nguyên lý hoạt động : Dung dịch sẽ được cho đi qua cột trao đổi anion . Tại đây các anion sẽ bị giữ lại trên cột . Dung dịch tiếp tục đi qua cột trao đổi cation . Tại đây các cation sẽ bị giữ lại. Tiến hành rửa giải để tách những ion Sau quá trình trao đổi ion phải tiến hành tái sinh ion làm việc trên cột, bằng cách ngâm cột vào những dung dịch thích hợp Thông số công nghệ : Thời gian tiến hành 20-25 phút Nhiệt độ tiến hành 70 – 750C Chiều cao và đường kính cột trao đôi ion sẽ do mỗi hãng sản xuất quy định . Chú ý: Khi lượng chất đã bão hòa trên cột thì ta phải tiến hành rửa giải cột và hồi lưu phần dung dịch đi ra để dung dịch sạch hơn. 2.8 Cô đặc : a. Mục đích công nghệ: Hoàn thiện sàn phẩm: quá trình cô đạc nhằm tăng hàm lượng chất khô, tạo điều kiện cho quá trình vận chuyển và phân phối sản phẩm. Bảo quản: nồng độ cao ức chế vi sinh vật. Các biến đổi: Biến đổi vật lý: Độ nhớt tăng. Khối lượng giảm do mất đi một lượng nước. Nồng đọ tăng. Thể tích giảm. Nhiệt độ tăng. Biến đổi hóa lý: Bốc hơi nước. Có thể bay hơi chất mùi. Các biến đổi còn lại không đáng kể. c. Thiết bị : - Thiết bị cô đặc chân không : Hình 10 : Hệ thống thiết bị cô đặc chân không Buồng đun nóng Buồng bốc hơi nước Hệ thống ống dẫn khí nóng vào buồng đun nóng 4) Bơm chân không Thông số công nghệ: Nồng độ sau khi cô đặc đạt được từ 30 – 50%. Áp suất hơi đốt: £ 2kg/cm2 Nhiệt độ cô đặc: 60-65oC Thời gian cô đặc: 2-3giờ Áp suất chân không: 720mmHg 2.8 Làm nguội : a . Mục đích : Chuẩn bị : hạ nhiệt độ dung dịch chuẩn bị cho quá trình kết tinh. b. Biến đổi và thiết bị giống như làm nguội ở phần trên. 2.8 Kết tinh: a. Mục đích công nghệ: Chuẩn bị: tạo ra tinh thể đường, chuẩn bị cho quá trình ly tâm tách tinh thể tiếp theo. b. Các biến đổi: - Biến đổi vật lý: quá trình kết tinh glucose là quá trình tỏa nhiệt (1mol hydrat glucose khi kết tinh tỏa 19.8kJ). - Biến đổi hóa lý: kết tinh tạo tinh thể glucose có độ ẩm cao. - Biến đổi cảm quan: tùy thuộc vào điều kiện kết tinh ta có thể thu nhận được tinh thể thuộc nhiều hệ thống khác nhau. Thiết bị: Các thông số công nghệ: Thời gian khuấy trộn với mầm là 12-24h Nhiệt độ kết tinh: 24°C Thời gian kết tinh khoảng 100-120h Đường non mẻ trước để lại là 1/3 thể tích . Tốc độ giảm theo nhiệt độ theo một chế độ nhất định do thực nghiệm xây dựng Đưòng giảm nhiệt độ thực tế nằm gần đưòng thẳng lý tưỏng. Nếu giảm quá chậm, trong mật còn lại những tinh thể lớn ,sau đó chúng lại lớn rất nhanh do đó bị vàng. Ngược lại nếu nhiệt độ giảm quá nhanh, nhiều tinh thể bé khó li tâm,giảm chất lưọng sản phẩm. Nhược điểm của chế độ kết tinh này là thời gian quá dài. Quá trình kết tinh kết thúc khi nhiệt độ bao quanh tinh thể (mật cái) thấp hơn nồng độ đường non (khối dung dịch và các tinh thể sau khi kết tinh xong chưa ly tâm) 12-14°Bx, độ tinh khiết của chúng chênh lệch 9-11%. Bảng 2 : Các chỉ tiêu của quá trình kết tinh Nồng độ mật vào kết tinh (°Bx) 74.3-75.5 77-78 Độ tinh khiết mật vào(% khối lượng glucose so với chất khô) 91-93 84-85 Nhiệt độ mật vào(°C) 48-50 48-50 Lượng mầm bổ sung (% khối lượng) 30 30-35 Nhiệt độ sau khi trộn với giống(°C) 43-44 43-44 Thời gian từ khi trộn đến ly tâm(h) 100-120 220-265 Nồng độ mật cái (°Bx) 62-63 65-67 Độ tinh khiết mật nâu(%)-(mật 1) 78-80 68-71 Độ tinh khiết mật trắng (%)-(mật 2) 88-90 -- Nhiệt độ đường non trước ly tâm 24-25 27-28 pH đường non 4.2-4.3 4.2-4.3 Hệ số quá bão hoà a 1.15-1.2 1.25-1.4 2.10 Ly tâm: Mục đích:chuẩn bị cho quá trình sấy. Các biển đổi: - Biến đổi vật lý: Khối lượng dung dịch giảm. Tỷ trọng thay đổi. -Biến đổi hóa lý : Tách lượng nước ra khỏi hỗn hợp. Thiết bị: Hình 2:Thiết bị ly tâm lọc 2.11 Sấy và phân loại: a. Mục đích công nghệ: - Bảo quản: sấy để tách độ ẩm tự do. Các biến đổi: - Biến đổi vật lý: Khối lượng giảm Thể tích giảm. - Biến đổi hóa học: nồng độ chất khô tăng. - Biến đổi hóa lý: tách độ ẩm tự do, còn độ ẩm liên kết 8-9% (theo lý thuyết glucose ngậm nước có độ ẩm 9.09%, nhưng trong sản xuất sấy đến độ ẩm nhỏ hơn để glucose không bị vón cục khi bảo quản) Các thiết bị: thiết bị sấy tầng sôi. Đặc tính thiết bị   1.Thiết bị dùng luồng khí nóng để sấy .Khí nóng với áp lực lớn đẩy nguyên liệu tung lên nhằm sấy nhanh chóng tức thì, tốc độ truyền nhiệt nhanh, do vậy lượng nước ngậm trong nguyên liệu được bay hơi nhanh và theo khí nóng thoát ra ngoài.. Tốc độ sấy tùy thuộc vào cài đặt nhiệt độ. 2.Thùng chứa nguyên liệu sấy được nâng lên để tạo độ kín khi vận hành, cơ cấu nâng dùng xi lanh khí nén và có cấu tạo đơn giản, dế vận hành, bảo dưỡng, hoạt động ổn định. 3. Thùng chứa nguyên liệu sấy được lắp thêm bộ cánh khuấy và bộ đĩa chia gió đặc biệt và không có góc cạnh bên trong. Nguyên liệu sau khi sấy được đổ ra ngoài bằng cách quay nghiêng thùng chứa, kết cấu này cũng là để thuận tiện cho việc lau chùi vệ sinh hàng ngày được nhanh chóng. Thông số công nghệ: Công suất máy (kg/mẻ) :80-120 Lượng gió lưu thông của quạt (m3/h):4723 Áp lực tối đa của quạt hút (Pa) :9590 Áp lực của hơi nóng (Mpa): 0.4-0.6 Nhiệt độ khí vào (oC) :6-110 (điều chỉnh được) Sau khi sấy glucose được phân loại theo kích thước bằng hệ thống sàng. Thực tế nước ta glucose sau khi sấy qua giai đoạn nghiền. Đường cục trên sàng chiếm khoảng 10% thường đem đi hòa tan, cho hồi lưu với đưòng thô (cũng có thể đem nghiền trộn với sản phẩm, nhưng chất lựong sản phẩm sẽ giảm đi rõ rệt) 2.11 Đóng gói : Giải thích quy trình 2: Sau quá trình ly tâm, dung dịch đường không kết tinh được sẽ được đánh giá và phân thành 2 loại: Mật 1: có độ tinh khiết là 78-80% khối lượng glucose so với chất khô, được pha loãng rồi trở lại quá trình đường hóa, sau đó tiến hành các quá trình tiếp theo như quy trình công nghệ. Mật 2: có độ tinh khiết là 88-90% khối lượng glucose so với chất khô Ngoài ra trong quy trình 2 còn có sản phẩm phụ là hydron Hydron là mật bỏ của nhà máy sản xuất glucose, chỉ có một số nơi dùng một lượng rất ít để chỉnh lí đường non sản phẩm II nhằm giảm lượng tinh thể trong đường non. Thành phần của nó như sau: Nồng độ chất khô 66°Bx RS 68-72% Tro 5-6% pH 4,0-4,2 Không chứa tạp chất vô cơ. Trong hydron còn hơn 20% glucose tạo thành khi thuỷ phân tinh bột nhưng tận thu lượng glucose đó không kinh tế nên thực tế không tiến hành quá trình tận thu. Hydron được ứng dụng chủ yếu trong các ngành công nghiệp như: làm môi rường điều chế các chất kháng sinh, thuộc da, làm chất khử trong sản xuất tơ nhân tạo, làm thức ăn gia súc hỗn hợp… Chúng có thể dùng một lượng nhỏ trong quá trình lên men rượu. Vấn đề Quy trình 1 Quy trình 2 Quy trình sản xuất Quá trình kiểm soát ít nghiêm ngặt hơn Phức tạp hơn. Cần kiểm soát nghiêm ngặt hơn vể thông số công nghệ nhăm đáp ứng các hàm đa mục tiêu (thiết bị, năng lượng, kinh tế,...) Chi phí năng lượng Thấp hơn Cao hơn. Đầu tư thiết bị Thấp hơn Cao hơn do chi phí nhiều cho thiết bị. Hiệu suất thu hồi sản phẩm Cao hơn Thấp hơn do tổn thất nhiều trong quá trình Chất lượng sản phẩm Kém hơn Tốt hơn do có quá trình hồi lưu sản phẩm chưa đạt yêu cầu ở giai đoạn ly tâm. Ô nhiễm môi trường nhiều hơn Ít hơn do tận dụng mật bỏ hydron. Sản phẩm: 1. Mô tả sản phẩm glucose: Sản phẩm glucose phải trắng, tinh thể đều, khô, rời, không có mùi lạ, độ tinh khiết cao. Bảo quản trong bao bì PE hay lọ thuỷ tinh, kín, sạch để nơi mát mẻ. 2. Các chỉ tiêu chất lượng sản phẩm: Các chỉ tiêu Đường tiêm Đường ăn Độ ẩm (%) ≤ 9.0 ≤ 9.0 Độ tinh khiết (DE) 99.9 99.7 Tro (%) ≤0.1 ≤0.1 Muối sắt ≤0.004 ≤0.004 Các acid vô cơ, kim loại nặng và tạp chất Không cho phép Không cho phép Độ acid (ml) <0.1 <0.1 Độ màu <3 Độ trong <4 3. Sản phẩm phụ Hydron Thành tựu công nghệ và hướng phát triển : Một lần nữa, các vi sinh vật chính là chìa khoá then chốt. Nguồn nguyên liệu chính tạo ra đường glucose công nghiệp tại vùng Bắc Mỹ là cellolose ngô có giá tương đối đắt. Cũng giống như tinh bột, cellulose là một hợp chất polime từ đường glucose. Nhưng không giống với tinh bột, cellulose rất dai. Nhưng nếu có thể sử dụng nó để tạo ra đường glucose, thì phần lớn chất thải nông nghiệp như rơm và phần thừa của cây ngô đều có thể trở nên có giá trị. Có thể phá vỡ chúng bằng con đường sinh học và các enzyme có thể làm được công việc đó được phát hiện thấy ở rất nhiều vi khuẩn và nấm. Hiện nay một số hãng đang tiến hành nghiên cứu nhằm tìm ra những loại enzyme và các phương pháp tốt nhất để nâng cấp chúng thành những sản phẩm công nghiệp. Một số tiến bộ đáng kể đã đạt được. Novozymes, một công ty của Đan Mạch có phòng thí nghiệm nghiên cứu nằm ở Davis, California đang đi sâu vào vấn đề này. Công ty này đang tiến hành nghiên cứu một hỗn hợp gồm các enzyme nấm, chúng có thể hoạt động bằng cách tấn công vào các phần khác nhau trên mạch cellulose. Một loại vi khuẩn mới được chế tạo sản xuất cellulose có thể được dùng để chế biến ethanol và các loại nhiên liệu sinh học khác. Các nhà khoa học thuộc đại học Texas tại Austin nói rằng loại vi khuẩn này có thể cung cấp một lượng đáng kể nhiên liệu vận chuyển cho cả quốc gia nếu phương thức sản xuất này được thúc đẩy. Ngoài cellulose, vi khuẩn cyanobacteria do giáo sư R. Malcolm Brown Jr. và tiến sĩ David Nobles Jr. còn sản xuất cả glucose và sucrose. Theo Brown và Nobles, vi khuẩn cyanobacteria của họ có thể phát triển trong các điều kiện sản xuất trên diện tích đất không dùng để trồng cấy sử dụng nước mặn không thích hợp với con người và cả mùa màng. Những phát hiện quan trọng khác bao gồm: - Dòng vi khuẩn cyanobacteria mới sử dụng ánh sáng mặt trời làm nguồn cung cấp năng lượng để sản xuất và bài tiết đường và cellulose. - Glucose, cellulose và sucrose có thể được thu hoạch liên tục mà không làm hại hoặc làm chết vi khuẩn cyanobacteria (thu hoạch cellulose và đường từ tảo hoặc cây trồng như ngô hay mía buộc phải tiêu diệt vi khuẩn cũng như phải sử dụng enzim và các phương pháp cơ học để tách chiết đường). Vi khuẩn cyanobacteria có thể tiết ra một lượng lớn glucose hoặc sucrose, phân tử đường có thể được thu hoạch trực tiếp từ vi khuẩn - Vi khuẩn cyanobacteria có thể cố định phân tử nitơ trong khí quyển phát triển được mà không cần phân bón gốc dầu. Nghiên cứu của hai nhà khoa học được đăng tải mới đây trên tờ Cellulose. Ảnh trái: Hai tế bào vi khuẩn cyanobacteria hình que dạng hoang dại không chứa cellulose hoặc đường trên bề mặt. Ảnh phải: Một vi khuẩn cyanobacteria đã được biến đổi gen sản xuất cellulose quan sát được (cellulase kết hợp với nhân tố chỉ thị màu vàng dày đặc electron). Ảnh: Brown và Nobles, đại học Texas tại Austin Nobles tạo ra dòng vi khuẩn cyanobacteria mới (còn có tên gọi tảo lam xanh) bằng cách cấy ghép cho chúng một nhóm gen sản xuất cellulose từ một loại vi khuẩm “dấm” không quang hợp có tên Acetobacter xylinum nổi tiếng với biệt hiệu vi khuẩn sản xuất cellulose năng suất. Vi khuẩn cyanobacteria mới tạo ra cellulose ở dạng gel khá trong và có thể bị bẻ gãy dễ dàng thành phân tử glucose. Theo Nobles, “vấn đề với cellulose trong thực vật chính là việc phân tử này rất khó bị bẻ gãy do có cấu trúc tinh thể cao pha trộn cả linhin cùng các hợp chất khác”. Tài liệu tham khảo: Hóa sinh công nghiệp – Lê Ngọc Tú (chủ biên) – Nhà xuất bản khoa học và kĩ thuật Hà Nội, 444 trang. Các quá trình công nghệ cơ bản trong sản xuất thực phẩm – Lê Bạch Tuyết và cộng sự – Nhà xuất bản giáo dục Hà Nội, 1996, 360 trang. Quá trình và thiết bị trong công nghệ hóa học&thực phẩm. Tập 3: Truyền khối – Võ Văn Bang và Vũ Bá Minh – Nhà xuất bản Đại học Quốc gia Thành phố Hồ Chí Minh. Quá trình và thiết bị trong công nghệ hóa học&thực phẩm. Tập 5: Quá trình và thiết bị truyền nhiệt – Phạm Văn Bôn – Nhà xuất bản Đại học Quốc gia Thành phố Hồ Chí Minh. Các trang web:

Các file đính kèm theo tài liệu này:

  • docGlucose.doc