NỘI DUNG
1. TỔNG QUAN MẠNG 3G 5
1.1 Quá trình phát triển 3G 5
1.1.1. Lịch sử phát triển của truyền thông di động 5
1.1.2. Đặc điểm của hệ thống GSM 6
1.1.3 Thuận lợi và khó khăn của 2G 6
1.1.4 Bước đệm 2.5 G 6
1.1.5 Công nghệ đương đại 3G 7
1.2 Hệ thống 3G 7
1.2.1 Giới thiệu 7
1.2.2 Lộ trình phát triển từ Hệ thống thông tin di động 2G GSM sang hệ thống 3G WCDMA 8
2. Công nghệ đa truy nhập của WCDMA 15
2.1. Trải phổ và đa truy cập theo mã 15
2.2.1. Các hệ thống thông tin trải phổ 15
2.2.2. Áp dụng DSSS cho CDMA 17
2.2. Điều khiển công suất 20
3.GIAO DIỆN VÔ TUYẾN CỦA WCDMA UMTS 20
3.1 Tổng quan WCDMA 20
3.2 Kiến trúc ngăn xếp giao thức 21
3.3. Các thông số vật lý và quy hoạch tần số 23
3.4. Các kênh của WCDMA 28
3.5. Cấu trúc kênh vật lý riêng 36
3.6. Sơ đồ máy phát và máy thu WCDMA 38
3.7. Phân tập phát 39
3.8. Điều khiển công suất trong WCDMA 41
3.8.1. Thí dụ về điều khiển công suất vòng hở cho PRACH 42
3.8.2. Điều khiển công suất vòng kín đường lên 42
3.8.3. Điều khiển công suất vòng kín đường xuống 44
3.9. Các kiểu chuyển giao và báo cáo sự kiện trong WCDMA 44
3.9.1. Chuyển giao cứng 44
3.9.2. Chuyển giao mềm/ mềm hơn 45
3.10. Các thông số máy thu và máy phát của UE 46
3.11. AMR code cho WCDMA 47
4.Thiết bị đầu cuối 3G – NOKIA 9500 47
5.Tình hình phát triển của mạng 3G thực tế tại Việt Nam 50
52 trang |
Chia sẻ: banmai | Lượt xem: 2411 | Lượt tải: 1
Bạn đang xem trước 20 trang tài liệu Tổng quan 3G - Thiết bị đầu cuối 3G, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
trò như BSC ở GSM
- Nút B đóng vai trò như các BTS ở các mạng GSM
- UE: User Equipment - thiết bị của người sử dụng .
Trong các quy định của 3GPP, trạm gốc được gọi là nút B. Nút B được nối đến một bộ điều khiển trạm vô tuyến RNC. RNC điều khiển các tài nguyên vô tuyến của các nút B được nối với nó. RNC đóng vai trò như BSC ở GSM. RNC kết hợp với các nút B nối với nó được gọi là hệ thống con mạng vô tuyến RNS(Radio Network Subsystem). Giao diện giữa nút B và RNC gọi là giao diện Iub. Khác với giao diện Abis tương đương ở GSM , gioa diện Uib được chuẩn hoá hoàn toàn và để mở, vì thế có thể kết nối nút B của một nhà sản xuất này với RNC của một nhà sản xuất khác.
Khác với ở GSM, các BSC trong mạng W-CDMA không nối với nhau, trong mạng truy nhập vô tuyến của UMTS (UTRAN) có cả giao diện giữa các RNC . Giao diện này gọi là Iur có tác dụng hỗ trợ tính di động giữa các RNC và chuyển giao giữa các nút B nối đến các RNC khác nhau.. Báo hiệu Iur hỗ trợ chuyển giao.
UTRAN được nối đến mạng lõi qua giao diện Iu. Giao diện Iu có hai phần tử khác nhau: Iu-CS và Iu-PS. Kết nối UTRAN đến phần chuyển mạch kênh được thực hiện qua giao diện Iu-CS, giao diện này nối RNC đến một MSC/VLR. Kết nối UTRAN đến phần chuyển mạch gói được thực hiện qua giao diện Iu-PS, giao diện này nối RNC đến một SGSN
Trong thực tế các tiêu chuẩn UMTS cho phép hỗ trợ chuyển giao cúng từ UMTS đến GSM và ngược lại. Đây là một yêu cầu rất quan trọng vì cần phải có thời gian để triển khai rộng khắp UMTS nên sẽ có khoảng trống trong vùng phủ sóng của UMTS và vì tghế thuê bao UMTS phải có khả năng nhận được dịch vụ ở vùng phủ sóng của GSM. Nếu UTRAN và GSM BSS được nối đến các MSC khác nhau, chuyển giao giữa cấc hệ thống đạt được bằng cách chuyển giao giữa các MSC. Nếu giả thiết rằng nhiều chức năng của MSC/VLR giống nhau đối với UMTS và GSM, MSC cần phải có khả năng hỗ trợ đồng thời cả hia kiểu dịch vụ. Tương tự hoàn toàn hợp lý khi giả thiết rằng SGSN phải có khả năng hỗ trợ đồng thời kết nối Iu-PS đến RNC và Gb đến GPRS BSC.
2. Công nghệ đa truy nhập của WCDMA
2.1. Trải phổ và đa truy cập theo mã
2.2.1. Các hệ thống thông tin trải phổ
Trong các hệ thống thông tin thông thường độ rộng băng tần là vấn đề quan tâm chính và các hệ thống này được thiết kế để sử dụng càng ít độ rộng băng tần càng tốt. Trong các hệ thống điều chế biên độ song biên, độ rộng băng tần cần thiết để phát một nguồn tín hiệu tương tự gấp hai lần độ rộng băng tần của nguồn này. Trong các hệ thống điều tần độ rộng băng tần này có thể bằng vài lần độ rộng băng tần nguồn phụ thuộc vào chỉ số điều chế. Đối với một tín hiệu số, độ rộng băng tần cần thiết có cùng giá trị với tốc độ bit của nguồn. Độ rộng băng tần chính xác cần thiết trong trường hợp này phụ thuộc và kiểu điều chế (BPSK, QPSK v.v...).
Trong các hệ thống thông tin trải phổ (viết tắt là SS: Spread Spectrum) độ rộng băng tần của tín hiệu được mở rộng, thông thường hàng trăm lần trước khi được phát. Khi chỉ có một người sử dụng trong băng tần SS, sử dụng băng tần như vậy không có hiệu quả. Tuy nhiên ở môi trường nhiều người sử dụng, các người sử dụng này có thể dùng chung một băng tần SS (trải phổ) và hệ thống trở nên sử dụng băng tần có hiệu suất mà vẫn duy trì được các ưu điểm của trải phổ.
Một hệ thống thông tin số được coi là SS nếu:
Tín hiệu được phát chiếm độ rộng băng tần lớn hơn độ rộng băng tần tối thiểu cần thiết để phát thông tin.
Trải phổ được thực hiện bằng một mã độc lập với số liệu.
Có ba kiểu hệ thống SS cơ bản: chuỗi trực tiếp (DSSS: Direct-Sequence Spreading Spectrum), nhẩy tần (FHSS: Frequency-Hopping Spreading Spectrum) và nhẩy thời gian (THSS: Time-Hopping Spreading Spectrum). Cũng có thể nhận được các hệ thống lai ghép từ các hệ thống nói trên. WCDMA sử dụng DSSS. DSSS đạt được trải phổ bằng cách nhân luồng số cần truyền với một mã trải phổ có tốc độ chip (Rc=1/Tc, Tc là thời gian một chip) cao hơn nhiều tốc độ bit (Rb=1/Tb, Tb là thời gian một bit) của luồng số cần phát. Hình 2.1 minh họa quá trình trải phổ trong đó Tb=15Tc hay Rc=15Rb. Hình 2.1a cho thấy sơ đồ đơn giản của bộ trải phổ DSSS trong đó luồng số cần truyền x có tốc độ Rb được nhân với một mã trải phổ c tốc độ Rc để được luồng đầu ra y có tốc độ Rc lớn hơn nhiều so với tốc độ Rb của luồng vào. Các hình 2.1b và 2.1b biểu thị quá trình trải phổ trong miền thời gian và miền tần số.
Tại phía thu luồng y được thực hiện giải trải phổ để khôi phục lại luồng x bằng cách nhân luồng này với mã trải phổ c giống như phía phát: x=y´c
x, y và c ký hiệu tổng quát cho tín hiệu vào, ra và mã trải phổ; x(t), y(t) và c(t) ký hiệu cho các tín hiệu vào, ra và mã trải phổ trong miền thời gian; X(f), Y(f) và C(f) ký hiệu cho các tín hiệu vào, ra và mã trải phổ trong miền tần số; Tb là thời gian một bit của luồng số cần phát, Rb=1/Tb là tốc độ bit của luồng số cần truyền; Tc là thời gian một chip của mã trải phổ, Rc=1/Tc là tốc độ chip của mã trải phổ. Rc=15Rb và Tb=15Tc.
Hình 2. 1. Trải phổ chuỗi trực tiếp (DSSS)
2.2.2. Áp dụng DSSS cho CDMA
Trong công nghệ đa truy nhập phân chia theo mã dựa trên CDMA, một tập mã trực giao được sử dụng và mỗi người sử dụng được gán một mã trải phổ riêng. Các mã trải phổ này phải đảm bảo điều kiện trực giao sau đây:
Tích hai mã giống nhau bằng 1: ci´ci=1
Tích hai mã khác nhau sẽ là một mã mới trong tập mã: ci´cj=ck
Có số bit 1 bằng số bit -1 trong một mã ® , trong đó N là số chip và Ck là giá trị chip k trong một mã
Bảng 2.2. cho thấy thí dụ sử dụng bộ mã gồm tám mã trực giao: c0, c1, …, c7. Bảng 2.3 và 2.4 cho thấy thí dụ khi nhân hai mã giống nhau trong bảng 1 được 1 và nhân hai mã khác nhau trong bảng 2.1 ta được một mã mới..
Hình 2. 2. Thí dụ bộ tám mã trực giao
c0
+1
+1
+1
+1
+1
+1
+1
+1
c1
+1
+1
+1
+1
-1
-1
-1
-1
c2
+1
+1
-1
-1
+1
+1
-1
-1
c3
+1
+1
-1
-1
-1
-1
+1
+1
c4
+1
-1
+1
-1
+1
-1
+1
-1
c5
+1
-1
+1
-1
-1
+1
-1
+1
c6
+1
-1
-1
+1
+1
-1
-1
+1
c7
+1
-1
-1
+1
-1
+1
+1
-1
Hình 2. 3. Thí dụ nhân hai mã giống nhau trong bảng 1 được một
c1
+1
+1
+1
+1
-1
-1
-1
-1
´
´
´
´
´
´
´
´
´
c1
+1
+1
+1
+1
-1
-1
-1
-1
c1´c1
+1
+1
+1
+1
+1
+1
+1
+1
Hình 2. 4. Thí dụ nhân hai mã khác nhau trong bảng 1 được một mã trong tập 8 mã
c1
+1
+1
+1
+1
-1
-1
-1
-1
´
´
´
´
´
´
´
´
´
c3
+1
+1
-1
-1
-1
-1
+1
+1
= c2
+1
+1
-1
-1
+1
+1
-1
-1
Nếu ta xét một hệ thống gồm K người sử dụng được xây dựng trên cơ sở CDMA, thì sau trải phổ các người sử dụng này sẽ phát vào không gian tập các tín hiệu y như sau:
(2.1)
Ta xét quá trình xử lý tín hiệu này tại một máy thu k. Nhiệm vụ của máy thu này là phải lấy ra xk và loại bỏ các tín hiệu khác (các tín hiệu này được gọi là nhiễu đồng kênh vì trong hệ thống CDMA chúng được phát trên cùng một tần số với xk). Nhân (2.1) với xk và áp dụng quy tắc trực giao nói trên ta được:
(2.2)
Thành phần thứ nhất trong (2.2) chính là tín hiệu hữu ích còn thành phần thứ hai là nhiễu của các người sử dụng còn là nhiễu của các người sử dụng khác được gọi là MAI (Multiple Access Interferrence: nhiễu đa người sử dụng). Để loại bỏ thành phần thứ hai máy thu sử dụng bộ lọc tương quan trọng miền thời gian kết hợp với bộ lọc tần số trong miền tần số. Hình 2.2 xét quá trình giải trải phổ và lọc ra tín hiệu hữu ích tại máy thu k trong một hệ thống CDMA có K người sử dụng với giả thiết công suất phát từ K máy phát như nhau tại đầu vào máy thu k. Hình 2.2a cho thấy sơ đồ giải trải phổ DSSS. Hình 2.2b cho thấy phổ của tín hiệu tổng được phát đi từ K máy phát sau trải phổ, hình 2.2c cho thấy phổ của tín hiệu này sau giải trải phổ tại máy thu k và hình 2.2d cho thấy phổ của tín hiệu sau bộ lọc thông thấp với băng thông băng Rb.
Hình 2. 5. Quá trình giải trải phổ và lọc tín hiệu của người sử dụng k từ K tín hiệu.
Từ hình 2.5 ta thấy tỷ số tín hiệu trên nhiễu (SIR: Signal to Interference Ratio) là tỷ số giữa diện tích hình chữ nhật được tô đậm trên hình 2.5.b và tổng diện tích các hình chữ nhật trắng trên hình 2.5.c: SIR=S1/S2. Tỷ số này tỷ lệ với tỷ số Rc/Rb. vì thế tỷ số Rc/Rb được gọi là độ lợi xử lý (TA: Processing Gain).
2.2. Điều khiển công suất
Trong trường hợp một máy phát gây nhiễu đến gần máy thu k (đến gần nút B chẳng hạn), công suất của máy phát này tăng cao dẫn đến MAI tăng cao, tỷ số tín hiệu trên nhiễu giảm mạnh và máy thu k không thể tách ra được tín hiệu của mình. Hiện tượng này được gọi là hiện tượng gần và xa. Để tránh hiện tượng này hệ thống phải điều khiển công suất sao cho công suất thu tại nút B của tất cả các UE đều bằng nhau (lý tưởng). Điều khiển công suất trong WCDMA được chia thành:
Điều khiển công suất vòng hở
Điều khiển công suất vòng kín
Điều khiển công suất vòng hở được thực hiện tự động tại UE khi nó thực hiện thủ tục xin truy nhập Nút B (dựa trên công suất mà nó thu được từ kênh hoa tiêu phát đi từ B), khi này UE chưa có kết nối với nút này. Còn điều khiển công suất vòng kín được thực hiện khi UE đã kết nối với nút B. Điều khiển công suất vòng hở lại được chia thành:
Điều khiển công suất vòng trong được thực hiện tại nút B. Điều khiển công suất vòng trong được thực hiện nhanh với 1500 lần trong một giây dựa trên so sánh SIR thu với SIR đích
Điều khiển công suất vòng ngoài được thực hiện tại RNC để thiết lập SIR đích cho nút B. Điều khiển công suất này dựa trên so sánh tỷ lệ lỗi khối (BLER) thu được với tỷ lệ đích.
3.GIAO DIỆN VÔ TUYẾN CỦA WCDMA UMTS
3.1 Tổng quan WCDMA
WCDMA UMTS là một trong các tiêu chuẩn của IMT-2000 nhằm phát triển của GSM để cung cấp các khả năng cho thế hệ ba. WCDMA UMTS sử dụng mạng đa truy nhập vô tuyến trên cơ sở W-CDMA và mạng lõi được phát triển từ GSM/GPRS. W-CDMA có thể có hai giải pháp cho giao diện vô tuyến: ghép song công phân chia theo tần số (FDD: Frequency Division Duplex) và ghép song công phân chia theo thời gian (TDD: Time Division Duplex). Cả hai giao diện này đều sử dụng trải phổ chuỗi trực tiếp (DS-CDMA). Giải pháp thứ nhất sẽ được triển khai rộng rãi còn giải pháp thứ hai chủ yếu sẽ được triển khai cho các ô nhỏ (Micro và Pico). Hiện nay mới chỉ có WCDMA/FDD được triển khai vì thế trong khóa học này ta sẽ chỉ xét WCDMA/FDD.
Giải pháp FDD sử dụng hai băng tần 5 MHz với hai sóng mang phân cách nhau 190 MHz: đường lên có băng tần nằm trong dải phổ từ 1920 MHz đến 1980 MHz, đường xuống có băng tần nằm trong dải phổ từ 2110 MHz đến 2170 Mhz. Mặc dù 5 MHz là độ rộng băng danh định, ta cũng có thể chọn độ rộng băng từ 4,4 MHz đến 5 MHz với nấc tăng là 200 KHz. Việc chọn độ rộng băng đúng đắn cho phép ta tránh được nhiễu giao thoa nhất là khi khối 5 MHz tiếp theo thuộc nhà khai thác khác.
Giải pháp TDD sử dụng các tần số nằm trong dải 1900 đến 1920 MHz và từ 2010 MHz đến 2025 MHz; ở đây đường lên và đường xuống sử dụng chung một băng tần.
Giao diện vô tuyến của W-CDMA/FDD (để đơn giản ta sẽ bỏ qua ký hiệu FDD nếu không xét đến TDD) hoàn toàn khác với GSM và GPRS, W-CDMA sử dung phương thức trải phổ chuỗi trực tiếp với tốc độ chip là 3,84 Mcps. Trong WCDMA mạng truy nhập vô tuyến được gọi là UTRAN (UMTS Terrestrial Radio Access Network). Các phần tử của UTRAN rất khác với các phần tử ở mạng truy nhập vô tuyến của GSM. Vì thế khả năng sử dụng lại các BTS và BSC của GSM là rất hạn chế. Một số nhà sản xuất cũng đã có kế hoạch nâng cấp các GSM BTS cho WCDMA. Đối với các nhà sản suất này có thể chỉ tháo ra một số bộ thu phát GSM từ BTS và thay vào đó các bộ thu phát mới cho WCDMA. Một số rất ít nhà sản suất còn lập kế hoạch xa hơn. Họ chế tạo các BSC đồng thời cho cả GSM và WCDMA. Tuy nhiên đa phần các nhà sản suất phải thay thế GSM BSC bằng RNC mới cho WCDMA.
W-CDMA sử dụng rất nhiều kiến trúc của mạng GSM, GPRS hiện có cho mạng của mình. Các phần tử như MSC, HLR, SGSN, GGSN có thể được nâng cấp từ mạng hiện có để hỗ trợ đồng thời WCDMA và GSM.
Giao diện vô tuyến của WCDMA/FDD được xây dựng trên ba kiểu kênh: kênh logic, kênh truyền tải và kênh vật lý. Kênh logic được hình thành trên cơ sở đóng gói các thông tin từ lớp cao trước khi sắp xếp vào kênh truyền tải. Nhiều kênh truyền tải được ghép chúng vào kênh vật lý. Kênh vật lý được xây dựng trên công nghệ đa truy nhập CDMA kết hợp với FDMA/FDD. Mỗi kênh vật lý được đặc trưng bởi một cặp tần số và một mã trải phổ. Ngoài ra kênh vật lý đường lên còn được đặc trưng bởi góc pha. Trong phần dưới đây ta trước hết ta xét kiến trúc giao thức của giao diện vô tuyến sau đó ta sẽ xét giao diện vô tuyến của WCDMA/FDD, sau đó sẽ xét các kênh này.
3.2 Kiến trúc ngăn xếp giao thức
Kiến trúc giao diện vô tuyến của WCDMA được cho trên hình 3.1.
UP: Mặt phẳng người sử dụng
CP: Mặt phẳng điều khiển
Hình 3. 1. Kiến trúc giao thức vô tuyến cho UTRA FDD.
Ngăn xếp giao thức của giao diện vô tuyến bao gồm 3 lớp giao thức:
Lớp vật lý (L1). Đặc tả các vấn đề liên quan đến giao diện vô tuyến như điều chế và mã hóa, trải phổ v.v..
Lớp liên kết nối số liệu (L2). Lập khuôn số liệu vào các khối số liệu và đảm bảo truyền dẫn tin cậy giữa các nút lân cận hay các thực thể đồng cấp
Lớp mạng (L3). Đặc tả đánh địa chỉ và định tuyến
Mỗi khối thể hiện một trường hợp của giao thức tương ứng. Đường không liền nét thể hiện các giao diện điều khiển, qua đó giao thức RRC điều khiển và lập cấu hình các lớp dưới.
Lớp 2 được chia thành các lớp con: MAC (Medium Access Control: Điều khiển truy nhập môi trường) và RLC (Radio link Control: điều khiển liên kết), PDCP (Packet Data Convergence Protocol: Giao thức hội tụ số liệu gói) và BMC (Broadcast/Multicast Control: Điều khiển quảng bá/đa phương ).
Lớp 3 và RLC được chia thành hai mặt phẳng: mặt phẳng điều khiển (C-Plane) và mặt phẳng người sử dụng (U-Plane). PDCP và BMC chỉ có ở mặt phẳng U.
Trong mặt phẳng C lớp 3 bao gồm RRC (Radio Resource Control: điều khiển tài nguyên vô tuyến) kết cuối tại RAN và các lớp con cao hơn: MM (Mobility Management) và CC (Connection Management), GMM (GPRS Mobility Management), SM (Session Management) kết cuối tại mạng lõi (CN).
Lớp vật lý là lớp thấp nhất ở giao diện vô tuyến. Lớp vật lý được sử dụng để truyền dẫn ở giao diện vô tuyến. Mỗi kênh vật lý ở lớp này được xác định bằng một tổ hợp tần số, mã ngẫu nhiên hoá (mã định kênh) và pha (chỉ cho đường lên). Các kênh được sử dụng vật lý để truyền thông tin của các lớp cao trên giao diện vô tuyến, tuy nhiên cũng có một số kênh vật lý chỉ được dành cho hoạt động của lớp vật lý.
Để truyền thông tin ở giao diện vô tuyến, các lớp cao phải chuyển các thông tin này qua lớp MAC đến lớp vật lý bằng cách sử dụng các kênh logic. MAC sắp xếp các kênh này lên các kênh truyền tải trước khi đưa đến lớp vật lý để lớp này sắp xếp chúng lên các kênh vật lý.
3.3. Các thông số vật lý và quy hoạch tần số
3.3.1. Các thông số lớp vật lý
Các thông số lớp vật lý của WCDMA được cho trong bảng 3.1.
Hình 3. 2. Các thông số lớp vật lý W-CDMA
W-CDMA
Sơ đồ đa truy nhập
DS-CDMA băng rộng
Độ rộng băng tần (MHz)
5/10/15/20
Mành phổ
200 kHz
Tốc độ chip (Mcps)
(1,28)/3,84/7,68/11,52/15,36
Độ dài khung
10 ms
Đồng bộ giữa các nút B
Dị bộ/đồng bộ
Mã hóa sửa lỗi
Mã turbo, mã xoắn
Điều chế DL/UL
QPSK/BPSK
Trải phổ DL/UL
QPSK/OCQPSK (HPSK)
Bộ mã hóa thoại
CS-ACELP/(AMR)
Tổ chức tiêu chuẩn
3GPP/ETSI/ARIB
DL: Downlink: đường xuống; UL: Uplink: đường lên
OCQPSK (HPSK): Orthogonal Complex Quadrature Phase Shift Keying (Hybrid PSK) = khóa chuyển pha vuông góc trực giao
CS-ACELP: Conjugate Structure-Algebraic Code Excited Linear Prediction = Dự báo tuyến tính kích thích theo mã lđại số cấu trúc phức hợp
3GPP: Third Generation Parnership Project: Đề án của các đối tác thế hệ ba
ETSI: European Telecommunications Standards Institute: Viện tiêu chuẩn viễn thông Châu Âu
ARIB: Association of Radio Industries and Business: Liên hiệp công nghiệp và kinh doanh vô tuyến
3.4.2. Quy hoạch tần số
Các băng tần sử dụng cho WCDMA FDD trên toàn cầu được cho trên hình 3.2a.WCDMA sử dụng phân bố tần số quy định cho IMT-2000 (International Mobile Telecommunications-2000) (hình 3.2b) như sau. Ở châu Âu và hầu hết các nước châu Á băng tần IMT-2000 là 2´60 MHz (1920-1980 MHz cộng với 2110-2170 MHz) có thể sử dụng cho WCDMA/ FDD. Băng tần sử dụng cho TDD ở châu Âu thay đổi, băng tần được cấp theo giấy phép có thể là 25 MHz cho sử dụng TDD ở 1900-1920 (TDD1) và 2020-2025 MHz (TDD2). Băng tần cho các ứng dụng TDD không cần xin phép (SPA= Self Provided Application: ứng dụng tự cấp) có thể là 2010-2020 MHz. Các hệ thống FDD sử dụng các băng tần khác nhau cho đường lên và đường xuống với phân cách là khoảng cách song công, còn các hệ thống TDD sử dụng cùng tần số cho cả đường lên và đường xuống.
UMTS quy định khai thác song công phân chia theo tần số là chế độ tiêu chuẩn cho thông tin thoại và số liệu. Hoạt động đồng thời và liên tục của các mạch điện phát và thu là các thay đổi đáng kể nhất so với họat động của GSM.
Hình 3. 3. Phân bố tần số cho WCDMA/FDD. a) Các băng có thể dùng cho WCDMA FDD toàn cầu; b) Băng tần IMT-2000.
Băng tần cho họat động FDD cho các băng I, II và III được cho trên hình 3.4. Băng I (B1) là ấn định băng chính ở Châu Âu. Quy định dành hai cấp phát 60MHz với khoảng cách song công chuẩn 190MHz, tuy nhiên quy định cũng cho phép song công khả biến, trong đó khoảng cách phát thu nằm trong khoảng 130 đến 250MHz. Hệ thống song công khả biến đặt ra các yêu cầu bổ sung đối với thiết kế máy phát thu vì các bộ tổ tần số máy phát và máy thu phải hoạt động độc lập với nhau. Băng II (B2) tái sử dụng băng hiện có của hệ thống thông tin di động cá nhân và dự định để sử dụng ở Mỹ để đảm bảo đồng tồn tại UMTS và GSM. Khoảng cách song công chỉ bằng 80MHz đối với băng II vì thế đặt ra các yêu cầu khó khăn hơn đối với phần cứng của máy thu phát.
Hình 3. 4 Cấp phát băng tần WCDMA/FDD
Hình 3.4 cho thấy cấp phát băng thông theo đầu thầu tại Vương Quốc Anh. Phổ tần được chia cho năm nhà khai thác như sau:
Cấp phép A (Hutchison) nhận cấp phát băng kép 14,6 MHz (tương đương 3´5MHz với băng bảo vệ nhỏ hơn)
Cấp phép B Vodafon) nhận cấp phát băng kép 14,8MHz (tương đương 3´5MHz với băng bảo vệ nhỏ hơn)
Cấp phép C (BT3G) nhận cấp phát băng kép 10MHz (2´5MHz) và băng đơn 5MHz tại 1910 MHz
Cấp phép D (One2One) nhận cấp phát băng kép 10MHz (2´5MHz) và băng dơn 5MHz tại 1900MHz
Cấp phép E (Orange) nhận cấp phát băng kép (2´5MHz) và băng đơn 5MHz tại 1905MHz.
Hình 3. 5. Thí dụ cấp phát băng tần cho năm nhà khai thác tại Vương Quốc Anh
Cấp phát tần số của Đức khác với cấp phát tần số ở Anh ở chỗ, các 10MHz băng kép được cấp phát cho sáu nhà khai thác (6´10MHz), tất cả bốn kênh TDD1 được cấp phát (1900 đến 1920 MHz) cùng với một trong số các kênh TDD2 (hình 3.5).
Hình 3. 6. Cấp phát tần số cho sáu nhà khai thác tại Đức
Tại Việt Nam băng tần 3G được cấp phát tần số theo tám khe tần số như cho trong bảng 3.7, trong đó hai hoặc nhiều nhà khai thác có thể cùng tham gia xin cấp phát chung một khe.
Hình 3. 7. Cấp phát tần số 3G tại Việt Nam
Khe tần số
FDD
TDD
BSTx*
BSRx**
BSTx/BSRx
A
2110-2125 MHz
1920-1935 MHz
1915-1920 MHz
B
2125-2140 MHz
1935-1950 MHz
1910-1915 MHz
C
2140-2155 MHz
1950-1965 MHz
1905-1910 MHz
D
2155-2170 MHz
1965-1980 MHz
1900-1905 MHz
* BSTx: máy phát trạm gốc
** BSRx: máy thu trạm gốc
Lý do cấp phát các kênh 5MHz khác nhau tại các nước khác nhau là ở chỗ các nhà khai thác phải quy hoạch mã và phải tránh việc sử dụng các mã gây ra nhiễu kênh lân cận trong cùng một nước hoặc các nhà khai thác khác trong nước liền kề. Vì thế cần phải nghiên cứu quan hệ giữa các tổ hợp mã trải phổ và hoạt động của các kênh lân cận.
3.4. Các kênh của WCDMA
Các kênh của WCDMA được chia thành các loại kênh sau đây:
Kênh vật lý (PhCH). Kênh mang số liệu trên giao diện vô tuyến. Mỗi PhCH có một trải phổ mã định kênh duy nhất để phân biệt với kênh khác. Một người sử dụng tích cực có thể sử dụng các PhCH riêng, chung hoặc cả hai. Kênh riêng là kênh PhCH dành riêng cho một UE còn kênh chung được chia sẻ giữa các UE trong một ô.
Kênh truyền tải (TrCH). Kênh do lớp vật lý cung cấp cho lớp 2 để truyền số liệu. Các kênh TrCH được sắp xếp lên các PhCH
Kênh Logic (LoCH). Kênh được lớp con MAC của lớp 2 cung cấp cho lớp cao hơn. Kênh LoCH được xác định bởi kiểu thông tin mà nó truyền.
3.4.1. Các kênh logic, LoCH
Nói chung các kênh logic (LoCH: Logical Channel) được chia thành hai nhóm: các kênh điều khiển (CCH: Control Channel) để truyền thông tin điều khiển và các kênh lưu lượng (TCH: Traffic Channel) để truyền thông tin của người sử dụng. Các kênh logic và ứng dụng của chúng được tổng kết trong bảng 3.8.
Hình 3. 8. Danh sách các kênh logic
Nhóm kênh
Kênh logic
Ứng dụng
CCH (Control Channel: Kênh điều khiển)
BCCH (Broadcast Control Channel: Kênh điều khiển quảng bá)
Kênh đường xuống để phát quảng bá thông tin hệ thống
PCCH (Paging Control Channel: Kênh điều khiển tìm gọi)
Kênh đường xuống để phát quảng bá thông tin tìm gọi
CCCH (Common Control Channel: Kênh điều khiển chung)
Kênh hai chiều để phát thông tin điều khiển giữa mạng và các UE. Được sử dụng khi không có kết nối RRC hoặc khi truy nhập một ô mới
DCCH (Dedicated Control Channel: Kênh điều khiển riêng).
Kênh hai chiều điểm đến điểm để phát thông tin điều khiển riêng giữa UE và mạng. Được thiết lập bởi thiết lập kết nối của RRC
TCH (Traffic Channel: Kênh lưu lượng)
DTCH (Dedicated Traffic Channel: Kênh lưu lượng riêng)
Kênh hai chiều điểm đến điểm riêng cho một UE để truyền thông tin của người sử dụng. DTCH có thể tồn tại cả ở đường lên lẫn đường xuống
CTCH (Common Traffic Channel: Kênh lưu lượng chung)
Kênh một chiều điểm đa điểm để truyền thông tin của một người sử dụng cho tất cả hay một nhóm người sử dụng quy định hoặc chỉ cho một người sử dụng. Kênh này chỉ có ở đường xuống.
3.4.2. Các kênh truyền tải, TrCH
Các kênh lôgic được lớp MAC chuyển đổi thành các kênh truyền tải. Tồn tại hai kiểu kênh truyền tải: các kênh riêng và các kênh chung. Điểm khác nhau giữa chúng là: kênh chung là tài nguyên được chia sẻ cho tất cả hoặc một nhóm các người sử dụng trong ô, còn kênh kênh riêng được ấn định riêng cho một người sử dụng duy nhất. Các kênh truyền tải chung bao gồm: BCH (Broadcast channel: Kênh quảng bá), FACH (Fast Access Channel: Kênh truy nhập nhanh), PCH (Paging Channel: Kênh tìm gọi), DSCH (Down Link Shared Channel: Kênh chia sẻ đường xuống), CPCH (Common Packet Channel: Kênh gói chung). Kênh riêng chỉ có một kênh duy nhất là DCH (Dedicated Channel: Kênh riêng). Kênh truyền tải chung có thể được áp dụng cho tất cả các người sử dụng trong ô hoặc cho một người hoặc nhiều người đặc thù. Khi kênh truyền tải chung được sử dụng để phát thông tin cho tất cả các ngừơi sử dụng thì kênh này không cần có địa chỉ. Chẳng hạn kênh BCH để phát thông tin quảng bá cho tất cả các người sử dụng trong ô. Khi kênh truyền tải chung áp dụng cho một người sử dụng đặc thù, thì cần phát nhận dạng người sử dụng trong băng (trong bản tin sẽ được phát). Kênh PCH là kênh truyền tải chung được sử dụng để tìm gọi một UE đặc thù sẽ chứa thông tin nhận dạng người sử dụng bên trong bản tin phát.
Danh sách các kênh truyền tải và ứng dụng của chúng dược cho ở bảng 3.9.
Hình 3. 9. Danh sách các kênh truyền tải
Kênh truyền tải
ứng dụng
DCH (Dedicated Channel: Kênh riêng)
Kênh hai chiều được sử dụng để phát số liệu của người sử dụng. Được ấn định riêng cho người sử dụng. Có khả năng thay đổi tốc độ và điều khiển công suất nhanh
BCH (Broadcast Channel: Kênh quảng bá)
Kênh chung đường xuống để phát thông tin quảng bá (chẳng hạn thông tin hệ thống, thông tin ô)
FACH (Forward Access Channel: Kênh truy nhập đường xuống)
Kênh chung đường xuống để phát thông tin điều khiển và số liệu của người sử dụng. Kênh chia sẻ chung cho nhiều UE. Được sử dụng để truyền số liệu tốc độ thấp cho lớp cao hơn
PCH (Paging Channel: Kênh tìm gọi)
Kênh chung dường xuống để phát các tín hiệu tìm gọi
RACH (Random Access Channel)
Kênh chung đường lên để phát thông tin điều khiển và số liệu người sử dụng. áp dụng trong truy nhập ngẫu nhiên và được sử dụng để truyền số liệu thấp của người sử dụng
CPCH (Common Packet Channel: Kênh gói chung)
Kênh chung đường lên để phát số liệu người sử dụng. áp dụng trong truy nhập ngẫu nhiên và được sử dụng trước hết để truyền số liệu cụm.
DSCH (Dowlink Shared Channel: Kênh chia sẻ đường xuống)
Kênh chung đường xuống để phát số liệu gói. Chia sẻ cho nhiều UE. Sử dụng trước hết cho truyền dẫn số liệu tốc độ cao.
Các kênh logic được chuyển thành các kênh truyền tải như cho trên hình 3.6.
Hình 3. 10. Chuyển đổi giữa các LoCH và TrCH trên đường lên và đường xuống
3.4.3. Các kênh vật lý
Một kênh vật lý được coi là tổ hợp của tần số, mã ngẫu nhiên, mã định kênh và cả pha tương đối (đối với đường lên). Kênh vật lý (Physical Channel) bao gồm các kênh vật lý riêng (DPCH: Dedicated Physical channel) và kênh vật lý chung (CPCH: Common Physical Channel). Các kênh vật lý được tổng kết ở hình 3.11 và bảng 3.9.
Hình 3. 11. Tổng kết các kiểu kênh vật lý
Hình 3. 12. Danh sách các kênh vật lý
Tên kênh
ứng dụng
DPCH (Dedicated Physical Channel: Kênh vật lý riêng)
Kênh hai chiều đường xuống/đường lên được ấn định riêng cho UE. Gồm DPDCH (Dedicated Physical Control Channel: Kênh vật lý điều khiển riêng) và DPCCH (Dedicated Physical Control Channel: Kênh vật lý điều khiển riêng). Trên đường xuống DPDCH và DPCCH được ghép theo thời gian với ngẫu nhiên hóa phức còn trên đường lên được ghép mã I/Q với ngẫu nhiên hóa phức
DPDCH (Dedicated Physical Data Channel: Kênh vật lý số liệu riêng
Khi sử dụng DPCH, mỗi UE được ấn định ít nhất một DPDCH. Kênh được sử dụng để phát số liệu người sử dụng từ lớp cao hơn
DPCCH (Dedicated Physical Control Channel: Kênh vật lý điều khiển riêng)
Khi sử dụng DPCH, mỗi UE chỉ được ấn định một DPCCH. Kênh được sử dụng để điều khiển lớp vật lý của DPCH. DPCCH là kênh đi kèm với DPDCH chứa: các ký hiệu hoa tiêu, các ký hiệu điều khiển công suất (TPC: Transmission Power Control), chỉ thị kết hợp khuôn dạng truyền tải. Các ký hiệu hoa tiêu cho phép máy thu đánh giá hưởng ứng xung kim của kênh vô tuyến và thực hiện tách sóng nhất quán. Các ký hiệu này cũng cần cho hoạt động của anten thích ứng (hay anten thông minh) có búp sóng hẹp. TPC để điều khiển công suất vòng kín nhanh cho cả đường lên và đường xuống. TFCI thông tin cho máy thu về các thông số tức thời của các kênh truyền tải: các tốc độ số liệu hiện thời trên các kênh số liệu khi nhiều dịch vụ được sử dụng đồng thời. Ngoài ra TFCI có thể bị bỏ qua nếu tốc độ số liệu cố định. Kênh cũng chứa thông tin hồi tiếp hồi tiếp (FBI: Feeback Information) ở đường lên để đảm bảo vòng hồi tiếp cho phân tập phát và phân tập chọn lựa.
PRACH (Physical Random Access Channel: Kênh vật lý truy nhập ngẫu nhiên)
Kênh chung đường lên. Được sử dụng để mang kênh truyền tải RACH
PCPCH (Physical Common Packet Channel: Kênh vật lý gói chung)
Kênh chung đường lên. Được sử dụng để mang kênh truyền tải CPCH
CPICH (Common Pilot Channel: Kênh hoa tiêu chung)
Kênh chung đường xuống. Có hai kiểu kênh CPICH: P-CPICH (Primary CPICH: CPICH sơ cấp) và S-CPICH (Secondary CPICH: CPICH thứ cấp). P-CPICH đảm bảo tham chuẩn nhất quán cho toàn bộ ô để UE thu được SCH, P-CCPCH, AICH và PICH vì các kênh nay không có hoa tiêu riêng như ở các trường hợp kênh DPCH. Kênh S-CPICH đảm bảo tham khảo nhất quán chung trong một phần ô hoặc đoạn ô cho trường hợp sử dụng anten thông minh có búp sóng hẹp. Chẳng hạn có thể sử dụng S-CPICH làm tham chuẩn cho S-CCPCH (kênh mang các bản tin tìm gọi) và các kênh DPCH đường xuống.
P-CCPCH (Primary Common Control Physical Channel: Kênh vật lý điều khiển chung sơ cấp)
Kênh chung đường xuống. Mỗi ô có một kênh để truyền BCH
S-CCPCH (Secondary Common Control Physical Channel: Kênh vật lý điều khiển chung thứ cấp)
Kênh chung đường xuống. Một ô có thể có một hay nhiều S-CCPCH. Được sử dụng để truyền PCH và FACH
SCH (Synchrronization Channel: Kênh đồng bộ)
Kênh chung đường xuống. Có hai kiểu kênh SCH: SCH sơ cấp và SCH thứ cấp. Mỗi ô chỉ có một SCH sơ cấp và thứ cấp. Được sử dụng để tìm ô
PDSCH (Physical Downlink Shared Channel: Kênh vật lý chia sẻ đường xuống)
Kênh chung đường xuống. Mỗi ô có nhiều PDSCH (hoặc không có). Được sử dụng để mang kênh truyền tải DSCH
AICH (Acquisition Indication Channel: Kênh chỉ thị bắt)
Kênh chung đường xuống đi cặp với PRACH. Được sử dụng để điều khiển truy nhập ngẫu nhiên của PRACH.
PICH (Page Indication Channel: Kênh chỉ thị tìm gọi)
Kênh chung đường xuống đi cặp với S-CCPCH (khi kênh này mang PCH) để phát thông tin kết cuối cuộc gọi cho từng nhóm cuộc gọi kết cuối. Khi nhận được thông báo này, UE thuộc nhóm kết cuối cuộc gọi thứ n sẽ thu khung vô tuyến trên S-CCPCH
AP-AICH (Access Preamble Acquisition Indicator Channel: Kênh chỉ thị bắt tiền tố truy nhập)
Kênh chung đường xuống đi cặp với PCPCH để điều khiển truy nhập ngẫu nhiên cho PCPCH
CD/CA-ICH (CPCH Collision Detection/ Channel Assignment Indicator Channel: Kênh chỉ thị phát hiện va chạm CPCH/ấn định kênh)
Kênh chung đường xuống đi cặp với PCPCH. Được sử dụng để điều khiển va chạm PCPCH
CSICH (CPCH Status Indicator Channel: Kênh chỉ thị trạng thái CPCH)
Kênh chung đường xuống liên kết với AP-AICH để phát thông tin về trạng thái kết nối của PCPCH
Các các kênh truyền tải được chuyển thành các kênh vật lý như trên hình 3.8.
Hình 3. 13. Chuyển đổi giữa các kênh truyền tải và các kênh vật lý
Hình 3.14 cho thấy việc ghép hai kênh truyền tải lên một kênh vật lý và cung cấp chỉ thị lỗi cho từng khối truyền tải tại phía thu.
TFI= Transport Format Indicator: Chỉ thị khuôn dạng truyền tải
TFCI= Transport Format Combination Indicator: Chỉ thị kết hợp khuôn dạng truyền tải
Hình 3. 14. Ghép các kênh truyền tải lên kênh vật lý
3.4.4. Quá trình truy nhập ngẫu nhiên RACH và truy nhập gói CPCH
Quá trình truy nhập ngẫu nhiên RACH và truy nhập gói CPCH được cho trên hình 3.15a và 3.15b.
Hình 3. 15. Các thủ tục truy nhập ngẫu nhiên RACH và truy nhập gói
Các trủ tục truy nhập ngẫu nhiên trên hình 3.15a như sau. UE khởi xướng thủ tục truy nhập ngẫu nhiên RACH bằng cách phát đi một AP (tiền tố truy nhập). Nếu chấp nhận (OK), nút B phát AICH (chỉ thị phát hiện bắt) đến UE. Sau đó UE có thể phát bản tin trên kênh RACH (kênh truy nhập ngẫu nhiên).
Các thủ tục truy nhập ngẫu nhiên CPCH như sau. Dựa trên thông tin khả dụng của từng kênh PCPCH do CSICH thông báo, UE khởi xướng thủ tục truy nhập CPCH trên kênh chưa sử dụng bằng cách phát đi một AP (tiền tố truy nhập). Nếu được nút B chấp nhận (OK) UE phát đi một CP (tiền tố phát hiện va chạm) để thông báo rằng nó đã chiếm kênh này. Cuối cùng nút B phát đi CD/CA-ICH (chỉ thị phát hiện va chạm và ấn định kênh) đến UE. Sau đó UE có thể phát gói trên kênh CPCH (kênh gói chung)
3.4.5. Thí dụ về báo hiệu thiết lập cuộc gọi sử dụng các kênh logic và truyền tải
Hình 3.11 cho thấy báo hiệu thiết lập lập cuộc gọi sử dụng kênh logic và kênh truyền tải. Đầu tiên UE sử dụng kênh logic CCCH truyền trên kênh truyền tải RACH để yêu cầu đường truyền báo hiệu (RRC). RNC trả lời bằng kênh logic CCCH trên kênh truyền tải FACH. Sau khi có kết nối RRC, UE sẽ trao đổi báo hiệu với RNC qua kênh logic DCCH trên kênh truyền tải DCH. Sau khi nhận được lệnh "truyền trực tiếp" từ UE, RNC phát lệnh yêu cầu dịch vụ CM (Connection Management: quản lý kết nối) trên giao thức RANAP (Radio Access Application Part: phần ứng dụng truy nhập mạng vô tuyến) để khởi đầu báo hiệu thiết lập kênh mang lưu lượng Tùy thuộc vào yêu cầu của UE lệnh báo hiệu này có thể được chuyển đến MSC hoặc SGSN (trong trường hợp xét là MSC). Sau khi thực hiện các thủ tục an ninh, các thủ tục thiết lập kênh mang được thực hiện.
Hình 3.11. Báo hiệu thiết lập cuộc gọi.
3.5. Cấu trúc kênh vật lý riêng
Cấu trúc kênh vật lý riêng được trình bày trên hình 3.12. Trong mô hình này mỗi cặp hai bit thể hiện một cặp I/Q (một ký hiệu) của điều chế QPSK. Từ hình vẽ ta thấy, cấu trúc khung bao gồm một chuỗi các khung vô tuyến, mỗi khung bao gồm 15 khe (dài 10 ms, chứa 38400 chip) và mỗi khe chứa 2560 chip (dài 0,667 ms) bằng một chu kỳ điều khiển công suất (tần số điều khiển công suất là 1500 lần trong một giây).
Hình 3. 16. Cấu trúc kênh vật lý riêng cho đường lên và đường xuống
Cấu trúc kênh vật lý riêng đường lên cho một khe (một chu kỳ điều khiển công suất) được cho trên hình 3.16. Thông tin riêng lớp cao hơn bao gồm số liệu người sử dụng và báo hiệu được mang bởi DPDCH đường lên và thông tin điều khiển tạo ra bởi lớp 1 được mang bởi DPCCH. DPCCH bao gồm các ký hiệu hoa tiêu quy định trước (được sử dụng để ước tính kênh và tách sóng nhất quán), các lệnh điều khiển công suất (TPC: Transmit Power Control), thông tin phản hồi (FBI: Feedback Information) cho phân tập phát vòng kín và kỹ thuật phân tập chọn trạm (SSDT: Site Selection Diversity Technique), TFCI (tùy chọn). Có thể không có, một hay một số (nhiều nhất là 6) kênh DPDCH trên một liên kết vô tuyến, nhưng chỉ có một DPCCH cho liên kết này. DPDCH (hoặc các DPDCH) và DPCCH được ghép chung theo mã I/Q với ngẫu nhiên hóa phức.
Cấu trúc kênh vật lý riêng đường xuống được mô tả trên hình 3.12.Trên đường xuống kênh riêng (DPCH) đường xuống bao gồm DPDCH đường xuống và DPCCH đường xuống ghép theo thời gian với ngẫu nhiên hóa phức. Số liệu riêng được tạo ra tại các mức cao hơn trên DPDCH được ghép theo thời gian với các bit hoa tiêu, các lệnh TPC và các bit TFCI (tùy chọn) được tạo ra tại lớp vật lý.
TFCI có thể có hoặc không có, nếu không có các bit TFCI, DTX (phát không liên tục) được sử dụng trong trường tương ứng.
3.6. Sơ đồ máy phát và máy thu WCDMA
Hình 3.13 cho thấy sơ đồ khối của máy phát vô tuyến (hình 3.13a) và máy thu vô tuyến (3.13b) trong W-CDMA. Lớp 1 (lớp vật lý) bổ sung CRC cho từng khối truyền tải (TB: Transport Block) là đơn vị số liệu gốc cần xử lý nhận được từ lớp MAC để phát hiện lỗi ở phía thu. Sau đó số liệu được mã hoá kênh và đan xen. Số liệu sau đan xen được bổ sung thêm các bit hoa tiêu và các bit điều khiển công suất phát (TPC: Transmit Power Control)), được sắp xếp lên các nhánh I và Q của QPSK và được trải phổ hai lớp (trải phổ và ngẫu nhiên hoá). Chuỗi chip sau ngẫu nhiên hoá được giới hạn trong băng tần 5 MHz bằng bộ lọc Niquist cosin tăng căn hai (hệ số dốc bằng 0,22) và được biến đổi vào tương tự bằng bộ biến đổi số vào tương tự (D/A) để đưa lên điều chế vuông góc cho sóng mang. Tín hiệu trung tần (IF) sau điều chế được biến đổi nâng tần vào sóng vô tuyến (RF) trong băng tần 2 GHz, sau đó được đưa lên khuyếch đại trước khi chuyển đến anten để phát vào không gian.
Tại phía thu, tín hiệu thu được bộ khuyếch đại đại tạp âm thấp (LNA) khuyếch đại, được biến đổi vào trung tần (IF) thu rồi được khuyếch đại tuyến tính bởi bộ khuyếch đại AGC (tự điều khuyếch). Sau khuyếch dại AGC tín hiệu được giải điều chế để được các thành phần I và Q. Các tín hiệu tương tự của các thành phần này được biến đổi vào số tại bộ biến đổi A/D, được lọc bởi bộ lọc Nyquist cosine tăng căn hai và được phân chia theo thời gian vào một số thành phần đường truyền có các thời gian trễ truyền sóng khác nhau. Máy thu RAKE chọn các thành phần lớn hơn một ngưỡng cho trước). Sau giải trải phổ cho các thành phần này, chúng được kết hợp bởi bộ kết hợp máy thu RAKE, tín hiệu tổng được giải đan xen, giải mã kênh (giải mã sửa lỗi), được phân kênh thành các khối truyền tải TB và được phát hiện lỗi. Cuối cùng chúng được đưa đến lớp cao hơn.
Hình 3. 17. Sơ đồ khối máy phát tuyến (a) và máy thu vô tuyến (b)
3.7. Phân tập phát
Khi nhiều anten thu được sử dụng, ta nói máy thu sử dụng phân tập anten thu (Rx). Phân tập Rx có thể được sử dụng tại nút B để tăng dung lượng đường lên và vùng phủ sóng. Do giá thành và không gian chiếm lớn, phân tập anten thu không phổ biến tại máy đầu cuối. Để khắc phục nhược điểm này WCDMA sử dụng phân tập phát cho máy đầu cuối. Tồn tại hai kỹ thuật phân tập phát ở WCDMA: Phân tập vòng hở và phân tập vòng kín.
3.7.1. Phân tập vòng hở
Phân tập phát vòng hở sử dụng bộ mã hóa được gọi là STTD (Space time Transmit Diversity: phân tập phát không gian thời gian). Sơ đồ máy phát và máy thu sử dụng STTD được cho trên hình 3.14a và 3.14b.
MF: Matched Filter: Bộ lọc phối hợp
Hình 3. 18. Phân tập phát vòng hở của WCDMA
STTD được xây dựng trên cơ sở mã Alamouti như sau :
(3.1)
trong đó cột 1 chứa các ký hiệu được phát đi từ anten 1 còn cột 2 chứa các ký hiệu được phát đi từ anten 2. Các ký hiệu này là các ký hiệu điều chế QPSK .
Hình 3. 19. Bộ điều chế STTD sử dụng mã khối không gian thời gian trực giao (O-STBC) 2x2.
3.7.2. Chế độ vòng kín
R3 và R4 sử dụng hai khái niệm phân tập phát vòng kín. Trong cả hai chế độ này, thông tin đồng chỉnh pha được phát trên một kênh hồi tiếp nhanh (tốc độ 1500 bps) cho phép chọn 4 hoặc 16 khả năng trọng số búp sóng. Cả hai khái niệm này đều có thể coi là truyền dẫn nhất quán (tạo búp thích ứng kênh) với sử dụng cân bằng kênh và các chiến lược báo hiệu hồi tiếp khác nhau. Kiến trúc máy phát và máy thu nút B được cho trên hình 3.20a và 3.20b.
Hình 3. 20. Phân tập phát vòng kín của WCDMA
Trong cả hai chế độ trọng số phát được lựa chọn theo thủ tục dưới đây:
Đầu cuối đo các kênh hoa tiêu chung CPICH1 và CPICH2 được phát trên anten 1 và anten 2.
Đầu cuối nhận được ước tính kênh cho đường truyền h1 và h2
Vectơ trọng số phát cần thiết W(w1, w2) được xác định, được lượng tử và được gửi đến BTS trong trường FBI của kênh DCCH.
3.8. Điều khiển công suất trong WCDMA
CDMA rất nhạy cảm với điều khiển công suất: để hệ thống WCDMA hoạt động bình thường, cần có một cơ chế điều khiển công suất tốt để duy trì tỉ số tín hiệu trên nhiễu (SIR) tại mức cho phép. Vì nhiều người sử dụng cùng truyền đồng thời trên cùng một tần số, nên mức nhiễu phụ thuộc vào số lượng người sử dụng.
Tồn tại hai kiểu điều khiển công suất:
Điều khiển công suất vòng hở: cho các kênh chung
Điều khiển công suất vòng kín: cho các kênh riêng DPDCH/DPCCH và chia sẻ DSCH
Điều khiển công suất vòng hở thường được UE trước khi truy nhập mạng và nút B trong quá trình thiết lập đường truyền vô tuyến sử dụng để ước lượng công suất cần phát trên đường lên dựa trên các tính toán tổn hao đường truyền trên đường xuống và tỷ số tín hiệu trên nhiễu yêu cầu.
Điều khiển công suất vòng kín có nhiêm vụ giảm nhiễu trong hệ thống bằng cách duy trì chất lượng thông tin giữa UE và UTRAN (đường truyền vô tuyến) gần nhất với mức chất lượng tối thiểu yêu cầu đối kiểu dịch vụ mà người sử dụng đòi hỏi.
Điều khiển công suất vòng kín bao gồm hai phần: điều khiển công suất nhanh vòng trong tốc độ 1500 Hz và điều khiển công suất chậm vòng ngoài tốc độ 10-100Hz.
3.8.1. Thí dụ về điều khiển công suất vòng hở cho PRACH
Dựa trên tính toán của PC vòng hở, UE thiết lập các công suất ban đầu cho tiền tố kênh truy nhập ngẫu nhiên vật lý (PRACH). Trong thủ tục truy nhập ngẫu nhiên , UE thiết lập công suất phát tiền tố đầu tiên như sau:
Preamble_Initial_power = CPICH_Tx_power – CPICH _RSCP
+ UL_interference + UL_required_CI (3.2)
trong đó CPICH_Tx-power là công suất phát của P-CPICH, CPICH _RSCP là công suất P-CPICH thu tại UE, CPICH_Tx_power – CPICH _RSCP là ước tính suy hao đường truyền từ nút B đến UE. UL_interferrence (được gọi là ‘tổng công suất thu băng rộng’) được đo tại nút B và được phát quảng bá trên BCH, UL_required_CI là hằng số tương ứng với tỷ số tín hiệu trên nhiễu được thiết lập trong quá trình quy hoạch mạng vô tuyến.
3.8.2. Điều khiển công suất vòng kín đường lên
Sơ đồ điều khiển công suất vòng kín đường lên đựcc cho trên hình 3.17.
Hình 3. 21. Nguyên lý điều khiển công suất vòng kín đường lên
a/ Điều khiển công suất vòng trong đường lên
Phương pháp điều khiển công suất nhanh vòng kín lên như sau (xem hình 3.17). Nút B thường xuyên ước tính tỷ số tín hiệu trên nhiễu thu được (SIR= Signal to Interference Ratio) trên hoa tiêu đường lên trong UL DPCCH và so sánh nó với tỷ số SIR đích (SIRđích). Nếu SIRướctính cao hơn SIRđích thì nút B thiết lập bit điều khiển công suất trong DPCCH TPC=0 để lệnh UE hạ thấp công suất (Tùy vào thiết lập cấu hình: 1dB chẳng hạn) , trái lại nó thiết lập bit điều khiển công suất trong DPCCH TPC=1 để ra lệnh UE tăng công suất (1dB chẳng hạn). Chu kỳ đo-lệnh-phản ứng này được thực hiện 1500 lần trong một giây (1,5 KHz) ở W-CDMA. Tốc độ này sẽ cao hơn mọi sự thay đổi tổn hao đường truyền và thậm chí có thể nhanh hơn phađinh nhanh khi MS chuyển động tốc độ thấp.
b/ Điều khiển công suất vòng ngoài đường lên
Điều khiển công suất vòng ngoài thực hiện điều chỉnh giá trị SIRđích ở nút B cho phù hợp với yêu cầu của từng đường truyền vô tuyến để đạt được chất lượng các đường truyền vô tuyến như nhau. Chất lượng của các đường truyền vô tuyến thường được đánh giá bằng tỷ số bit lỗi (BER: Bit Error Rate) hay tỷ số khung lỗi (FER= Frame Error Rate). Lý do cần đặt lại SIRđích như sau. SIR yêu cầu (tỷ lệ với Ec/N0) chẳng hạn là FER=1% phụ thuộc vào tốc độ của MS và đặc điểm truyền nhiều đường. Nếu ta đặt SIRđích đích cho trường hợp xấu nhất (cho tốc cao độ nhất) thì sẽ lãng phí dung lượng cho các kết nối ở tốc độ thấp. Như vậy tốt nhất là để SIRđích thả nổi xung quanh giá trị tối thiểu đáp ứng được yêu cầu chất lượng. Để thực hiện điều khiển công suất vòng ngoài, mỗi khung số liệu của người sử dụng được gắn chỉ thị chất lượng khung là CRC. Nếu kiểm tra CRC cho thấy BLERướctính> BLERđích thì SIRđích sẽ bị giảm đi một nấc bằng DSIR, trái lại nó sẽ được tăng lên một nấc bằng DSIR. Lý do đặt điều khiển vòng ngoài ở RNC vì chức năng này thực hiện sau khi thực hiện kết hợp các tín hiệu ở chuyển giao mềm.
3.8.3. Điều khiển công suất vòng kín đường xuống
Điều khiển công suất vòng kín được minh họa trên hình 3.18. UE nhận được BLER đích từ lớp cao hơn do RNC thiết lập cùng với các thông số điều khiển khác. Dựa trên BLER đích nhận được từ RNC, nó thực hiện điều khiển công suất vòng ngoài bằng cách tính toán SIR đích cho điều kiển công suất vòng kín nhanh đường xuống. UE ước tính SIR đường xuống từ các ký hiệu hoa tiêu của DL DPCCH . Ước tính SIR này được so sánh với SIR đích. Nếu ước tính này lớn hơn SIR đích, thì UE thiết lập TPC=0 trong UL DPCCH và gửi nó đến nút B, trái lại nó thiết lập TPC=1. Tốc độ diều khiển công suất vòng trong là 1500Hz
Hình 3. 22. Nguyên lý điều khiển công suất vòng kín đường xuống
3.9. Các kiểu chuyển giao và báo cáo sự kiện trong WCDMA
Chuyển giao là quá trình được thực hiện khi UE đã có kết nối vô tuyến để duy trì chất lượng truyền dẫn. Trong WCDMA có thể có chuyển giao cừng hoặc chuyển giao mềm.
3.9.1. Chuyển giao cứng
Chuyển giao cứng (HHO: Hard Handover) của WCDMA cũng giống như của GSM. UE chỉ nối đén một nút B. Khi thực hiện HO đến một nút B khác, kết nối đến nút B cũ được giải phóng.
Tất cả các kết nối sử dụng kênh FACH (kênh không sử dụng điều khiển công suất và dành cho các gói ngắn) hay DSCH (kênh phù hợp nhất cho các dịch vụ chuyển mạch gói) đều sử dụng HHO.
Ngoài ra HHO sử dụng cho:
HO giữa các hệ thống (giữa UTRAN và GSM)
HO giữa các tần số sóng mang khác nhau của UTRAN
3.9.2. Chuyển giao mềm/ mềm hơn
Chuyển giao mềm (hoặc mềm hơn) sử dụng nhiều kết nối từ một UE đến nhiều nút B. Danh sách các nút B tham gia vào kết nối với UE trong chuyển giao mềm/mềm hơn được gọi là “tập tích cực”. Có thể quy định được kích thước cực đại của tập tích cực. Thực chất chuyển giao là quá trình trong đó một ô (đoạn ô) hoặc được kết nạp vào tập tích cực hoặc bị loại ra khỏi tập tích cực. Định kỳ hoặc tại các sự kiện báo cáo (sự kiện 1A, 1B và 1C chẳng hạn), SRNC nhận được kết quả đo từ UE để đưa ra quyết định chuyển giao. Sau khi quyết định chuyển giao, SRNC giửi bản tin lập lại cấu hình liên kết vô tuyến đã được đồng bộ đến các nút B liên quan và đồng thời gửi bản tin RRC về lập lại cấu hình kênh vật lý đến UE để các nút B này và UE thực hiện chuyển giao. Chuyển giao mềm cho phép tăng số đường truyền thu được trên đường xuống và đường lên nhờ vậy tăng tỷ số tín hiệu trên nhiễu (SIR: Signal to Interference Ratio): Ec/I0 (Ec là năng lượng chip còn I0 là mật độ phổ công suất nhiễu) và lượng tăng này được gọi là độ lợi chuyển giao. Sơ đồ tổng quát SHO được cho trên hình 3.19.
R1a, R1b là dải báo cáo cho các sự kiện 1a và 1b được thiết lập bởi RNC; H1a, H1b là hằng số trễ được quy định cho các sự kiện 1a và 1b
Hình 3. 23. Thí dụ về giải thuật SHO
Trong thí dụ trong trên hình 3.19 ta sử dụng các sự kiện báo cáo 1A, 1B và 1C.
Từ hình 3.19 ta thấy:
Lúc đầu. Chỉ có ô 1 và ô 2 nằm trong tập tích cực
Tại sự kiện A. (Ec/I0)P-CPICH1 > (Ec/I0)P-CPICH3- (R1a-H1a/2) trong đó (Ec/I0)P-CPICH1 là tỷ số tín hiệu trên nhiễu kênh hoa tiêu của ô 1 mạnh nhất, (Ec/I0)P-CPICH3 là tỷ số tín hiệu trên nhiễu kênh hoa tiêu của ô 3 nằm ngoài tập tích cực, R1a là hằng số dải báo cáo (do RNC thiết lập), H1a là thông số trễ sự kiện và (R1b-H1a/2) 1à cửa sổ kết nạp cho sự kiện 1A. Nếu bất đẳng thức này tồn tại trong khoảng thời gian DT thì ô 3 được kết nạp vào tập tích cực
Tại sự kiện C. (Ec/I0)P-CPICH4 > (Ec/I0)P-CPICH2 +H1c, trong đó (Ec/I0)P-CPICH4 là tỷ số tín hiệu trên nhiễu của ô 4 nằm ngoài tập tích cực và (Ec/I0)P-CPICH2 là tỷ số tín hiệu trên nhiễu của ô 2 tồi nhất trong tập tích cực, H1c là thông số trễ sự kiện 1C. Nếu quan hệ này tồn tại trong thời gian DT và tập tích cực đã đầy thì ô 2 bị loại ra khỏi tập tich cực và ô 4 sẽ thế chỗ của nó trong tập tích cực
Tại sự kiện B. (Ec/I0)P-CPICH1 < (Ec/I0)P-CPICH3- (R1b+H1b) trong đó (Ec/I0)P-CPICH1 là tỷ số tín hiệu trên nhiễu kênh hoa tiêu của ô 1 yếu nhất trong tập tích cực, (Ec/I0)P-CPICH3 là tỷ số tín hiệu trên nhiễu của ô 3 mạnh nhất trong tập tích cực và R1b là hằng số dải báo cáo (do RNC thiết lập), H1b là thông số số trễ và (R1b+H1b) là cửa sổ loại cho sự kiện 1C. Nếu quan hệ này tồn tại trong khoảng thời gian DT thì ô 3 bị loại ra khỏi tập tích cực
3.10. Các thông số máy thu và máy phát của UE
Các thông số máy thu và máy phát quan trọng trong phần vô tuyến của UE được cho trong bảng.
Hình 3. 24. Các thông số máy thu và máy phát vô tuyến quan trọng cho phần vô tuyến của UE
Các thông số chung
Tần số công tác
Băng tần I: 2110-2170 MHz
Băng tần II: 1930-1990 MHz
Băng tần III: 1805-1880 MHz
Phân cách song công chuẩn
Băng tần I: 190 MHz
Băng tần II: 80 MHz
Băng tần III: 95 MHz
Các thông số máy thu
Độ nhạy
Băng tần 1: -117dBm
Băng tần II: -115dBm
Băng tần III: - 114dBm
Các thông số máy phát
Công suất phát cực đai và độ chính xác
Loại 1: +33dBm +1/-3dB
Loại 2: +27dBm +1/-3dB
Loại 3: +24dBm +1/-3dB
Loại 4: +21dBm ±2dB
Điều khiển công suất phát vòng hở
Bình thường: ±9dB
Cực đai: ±12dB
3.11. AMR code cho WCDMA
Bộ mã hoá tiếng đa tốc độ thích ứng (AMR CODEC: Adaptive Multirate Codec) được coi là công nghệ vượt trội các công nghệ mã hoá tiếng khác. Vì thế nó được chọn là sơ đồ mã hoá tiếng cho 3GW-CDMA UMTS. Nó cung cấp 8 chế độ mã hoá từ 12,2 bps đến 4,75kbps. Trong số các chế độ này, 12,2kbps, 7,4 kbps và 6,7 kbps có chung một giải thuật với các sơ đồ mã hoá tiếng được tiêu chuẩn hoá ở các tiêu chuẩn của các vùng khác trên thế giới. AMC CODEC cho phép lựa chọn tốc độ tùy theo chất lượng kênh truyền sóng. Nếu chất lượng tốt, tốc độ cao nhất (12,2kbps) được chọn. Nếu đường truyền xấu, một trong số các tốc độ thấp hơn được lựa tùy thuộc vào chất lượng đường truyền.
AMR cũng quy định các công nghệ ngoại vi cần thiết cho thông tin di động. Hai tuỳ chọn được cung cấp là giải thuật VAD (phát hiện tích cực tiếng) và DTX (phát không liên tục. Ngoài ra cũng định nghĩa các yêu cầu cho che dấu lỗi khi xẩy ra lỗi. Chẳng hạn nội suy các thông số mã hoá như khuếch đại bảng mã, hệ số dự đoán ngắn hạn cũng được định nghĩa theo sự chuyển đổi trạng thái do lỗi gây ra.
4.Thiết bị đầu cuối 3G – NOKIA 9500
Song song với sự phát triển của hệ thống thông tin di động, các thiết bị đầu cuối 3G cũng không ngừng phát triển. Nokia 9500 là một trong những sản phẩm có khả năng này.
Một số các tính năng:
Hoạt động ở 3 băng tần 900MHz, 1800MHz và 1900MHz, có thể tự động chuyển đổi băng tần.
Kết nối EDGE, WLAN
Bluetooth.
Hồng ngoại
Tin nhắn đa phương tiện MMS (Multimedia Message Service): kết hợp hình ảnh, video, văn bản…)
Email: hỗ trợ giao thức SMTP, POP3
SMS
Fax
Ứng dụng: Word, Excel, Power Point, tương thích với MS Office
Duyệt Internet:
Sử dụng trình duyệt Opera
Hỗ trợ HTML, XHTML, Java Scrip
Tính năng mới của Nokia 9500 là truy cập Internet bằng Wifi. Hiện nay, khi công nghệ kỹ thuật ngày càng phát triển thì không chỉ Labtop mới có thể kết nối Wifi mà cả điện thoại di động cũng có thể. Wifi gồm nhiều phiên bản khác nhau như 802.11, 802.11a/b… là chuẩn kết nối không dây tốc độ cao, được sử dụng để kết nối các thiết bị số với nhau và với Internet. Với Wifi, các loại điện thoại di động hỗ trợ công nghệ này có thể kết nối Internet không dây trong bán kính 50m xung quanh điểm truy cập gọi là hot-spot, được lắp đặt tại một địa điểm nào đó mà không cần bất cứ một cài đặt hay hỗ trợ nào khác. Các hot-spot hỗ trợ chuẩn 802.11b. Theo ly thuyết tốc độ cao nhất cảu chuẩn này là 11Mbps. Hạn chế của việc sử dụng Wifi kết nối Internet bằng điện thoại di động là hiện nay các model điện thoại di động hỗ trợ công nghệ Wifi còn quá ít và hot-spot chưa nhiều.
Nokia 9500 đã hộ trợ phần mềm diệt virus và nhiều giải pháp bảo mật.
Hình 4. 1 NOKIA 9500
Hình 4. 2 Đặc tính kỷ thuật của NOKIA 9500
5.Tình hình phát triển của mạng 3G thực tế tại Việt Nam
Các dịch vụ trên nền 3G phụ thuộc nhiều vào thiết bị đầu cuối (smartphone 3G và USB fast connect). Theo hãng nghiên cứu Gartner, năm 2009 lượng máy điện thoại thông minh bán ra (không hoàn toàn là 3G) chiếm khoảng 14%, tăng 24% so với năm 2008, thị trường Việt Nam cũng tương tự như vậy. Còn giá một USB Fast Connect còn ở mức cao, khoảng 100 USD. Vì thế, năm 2010, 3G chưa phát huy được những ưu việt của công nghệ mà sẽ chỉ dừng lại ở việc làm “trang sức” cho các mạng tăng thuê bao.
CDMA : “Ngọn nến leo lắt”
Công nghệ CDMA sẽ khó có đất sống tại thị trường Việt Nam do sự cạnh tranh ngày càng khốc liệt. CDMA vẫn gặp khó khăn về thiết bị đầu cuối và ảnh hưởng bởi công nghệ này đang bị thoái trào. Tuy nhiên, năm 2010 chưa phải là dấu chấm hết của CDMA, nhưng CDMA sẽ vẫn như “ngọn nến” leo lắt và gần như khó có cơ hội cạnh tranh được với các doanh nghiệp thông tin di động đang sử dụng công nghệ GSM.
Các file đính kèm theo tài liệu này:
- TAng QUAN MANG 3G.docx
- trangbia.docx