Luận văn Khảo sát ảnh hưởng của các yếu tố công nghệ đến động học quá trình lên men rượu vang nho sử dụng nấm men cố định

MỤC LỤC Chương 1: GIỚI THIỆU 1 Chương 2: TỔNG QUAN 3 2.1 TỔNG QUAN VỀ RƯỢU VANG, NHO VÀ NẤM MEN DÙNG TRONG SẢN XUẤT RƯỢU VANG 3 2.1.1 Rượu vang 3 2.1.2 Nho 4 2.1.3 Nấm men 8 2.2 CỐ ĐỊNH NẤM MEN 11 2.2.1 Sơ lược một số vấn đề về kỹ thuật cố định tế bào 11 2.2.2 Các chất mang cố định nấm men trong sản xuất rượu vang 13 2.2.3 Cố định nấm men trong gel alginate 18 2.2.4 Một số tính chất của nấm men cố định 24 2.3 ẢNH HƯỞNG CỦA CÁC YẾU TỐ CÔNG NGHỆ ĐẾN ĐỘNG HỌC QUÁ TRÌNH LÊN MEN RƯỢU VANG 30 2.3.1 Ảnh hưởng của hàm lượng đường 30 2.3.2 Ảnh hưởng của pH 34 2.3.3 Ảnh hưởng của hàm lượng SO2 36 2.3.4 Ảnh hưởng của tannin 38 2.3.5 Ảnh hưởng của nhiệt độ 39 2.4 ỨNG DỤNG CỦA KỸ THUẬT CỐ ĐỊNH TRONG SẢN XUẤT RƯỢU VANG 42 2.4.1 Dùng kỹ thuật cố định để khắc phục một số vấn đề trong sản xuất rượu vang 42 2.4.2 Dùng kỹ thuật cố định trong một số phương pháp lên men 45 2.4.3 Dùng kỹ thuật cố định trong sản xuất một số loại rượu vang 48 Chương 3: NGUYÊN LIỆU và PHƯƠNG PHÁP NGHIÊN CỨU 51 3.1 NGUYÊN LIỆU 51 3.1.1 Nho 51 3.1.2 Nấm men 52 3.1.3 Alginate 52 3.2 PHƯƠNG PHÁP NGHIÊN CỨU 52 3.2.1 Mục đích và nội dung nghiên cứu 52 3.2.2 Phương pháp cố định nấm men trong gel alginate 54 3.2.3 Khảo sát ảnh hưởng của hàm lượng đường ban đầu đến động học quá trình lên men rượu vang nho sử dụng nấm men cố định trong gel alginate 55 3.2.4 Khảo sát ảnh hưởng của hàm lượng tannin ban đầu đến động học quá trình lên men rượu vang nho, sử dụng nấm men cố định trong gel alginate 56 3.2.5 Xử lý kết quả 56 3.3 PHƯƠNG PHÁP PHÂN TÍCH 58 3.3.1 pH 58 3.3.2 Nồng độ chất khô 58 3.3.3 Hàm lượng đường khử 58 3.3.4 Hàm lượng nitơ amin tự do 59 3.3.5 Hàm lượng nitơ ammonium 61 3.3.6 Hàm lượng tannin 62 3.3.7 Hàm lượng sulfur dioxide 62 3.3.8 Hàm lượng ethanol 63 3.3.9 Hàm lượng acid tổng 65 3.3.10 Hàm lượng acid dễ bay hơi 65 3.3.11 Mật độ tế bào 65 Chương 4: KẾT QUẢ và BÀN LUẬN 66 4.1 KHẢO SÁT ẢNH HƯỞNG CỦA HÀM LƯỢNG ĐƯỜNG ĐẾN ĐỘNG HỌC QUÁ TRÌNH LÊN MEN RƯỢU VANG SỬ DỤNG NẤM MEN CỐ ĐỊNH TRONG GEL ALGINATE 66 4.1.1 Khảo sát ảnh hưởng của hàm lượng đường đến động học quá trình sinh trưởng của nấm men 66 4.1.2 Khảo sát ảnh hưởng của hàm lượng đường đến động học quá trình sử dụng cơ chất trong quá trình lên men 70 4.1.3 Khảo sát ảnh hưởng của hàm lượng đường đến động học quá trình tạo sản phẩm 80 4.1.4 Kết luận chung 89 4.2 KHẢO SÁT ẢNH HƯỞNG CỦA HÀM LƯỢNG TANNIN ĐẾN ĐỘNG HỌC QUÁ TRÌNH LÊN MEN RƯỢU VANG SỬ DỤNG NẤM MEN CỐ ĐỊNH TRONG GEL ALGINATE 90 4.2.1 Khảo sát ảnh hưởng của hàm lượng tannin đến động học quá trình sinh trưởng của nấm men 90 4.2.2 Khảo sát ảnh hưởng của hàm lượng tannin đến động học quá trình sử dụng cơ chất trong quá trình lên men 94 4.2.3 Khảo sát ảnh hưởng của hàm lượng tannin đến động học quá trình tạo sản phẩm 102 4.2.4 Kết luận chung 109 Chương 5: KẾT LUẬN VÀ KIẾN NGHỊ 110 5.1 KẾT LUẬN 110 5.2 KIẾN NGHỊ 110 TÀI LIỆU THAM KHẢO 111 Chương 1: GIỚI THIỆU Như chúng ta đã biết, rượu vang là một trong những sản phẩm lên men có lịch sử lâu đời nhất. Theo các tài liệu cổ, rượu vang có xuất xứ từ các nước Ả Rập vào khoảng thế kỷ 18 hay 19 trước Công nguyên và cho đến nay, rượu vang đã trở nên phổ biến khắp nơi trên thế giới. Rượu vang được ưa thích trước hết là do hương vị hết sức đặc trưng mà không loại sản phẩm nào có thể thay thế, sau đó là do nó đem lại cảm giác sảng khoái và sức khỏe cho người uống. Đầu tiên, rượu vang được tạo ra bằng quá trình lên men tự phát. Sau đó, người ta đã tiến hành phân lập các chủng nấm men và cấy vào dịch lên men loài Saccharomyces cerevisiae thuần thiết để thúc đẩy quá trình lên men và tăng chất lượng của rượu vang. Tuy nhiên, việc sử dụng nấm men tự do để lên men có khá nhiều nhược điểm:  Thời gian lên men dài, năng suất lên men thấp.  Tiêu tốn nhiều năng lượng để tách nấm men ra khỏi rượu vang sau quá trình lên men.  Khả năng tái sử dụng nấm men rất thấp.  Khó tự động hóa quá trình lên men. Để khắc phục các nhược điểm này, nhiều nghiên cứu về việc sử dụng nấm men cố định trong sản xuất rượu vang đã được thực hiện. Các nghiên cứu này đều cho thấy nấm men cố định có nhiều ưu điểm hơn hẳn so với nấm men tự do:  Tăng tốc độ sử dụng cơ chất, rút ngắn thời gian lên men.  Ổn định hoạt tính của nấm men. Các chất mang cố định có tác dụng như là một tác nhân bảo vệ tế bào chống lại những ảnh hưởng bất lợi của pH, nhiệt độ, dung môi và ngay cả các kim loại nặng.  Dễ dàng tách nấm men ra khỏi sản phẩm sau quá trình lên men, do đó làm giảm chi phí về thiết bị và năng lượng.  Có thể tái sử dụng nấm men nhiều lần.  Tạo điều kiện thuận lợi cho việc tối ưu hóa và tự động hóa quá trình lên men. Các nghiên cứu trước đây về ứng dụng nấm men cố định trong sản xuất rượu vang chủ yếu khảo sát quá trình sử dụng đường, quá trình sinh tổng hợp cồn và sự hình thành các hợp chất hương mà ít đề cập đến động học quá trình sinh trưởng của nấm men, quá trình sử dụng các hợp chất nitơ cũng như sự chuyển hóa của các acid hữu cơ trong suốt quá trình lên men chính. Chúng tôi cũng tìm thấy rất ít các nghiên cứu về ảnh hưởng của một số yếu tố công nghệ trong quá trình sản xuất đến động học quá trình lên men rượu vang sử dụng nấm men cố định như ảnh hưởng của hàm lượng tannin, hàm lượng SO2 trong dịch nho ban đầu. Tuy nhiên, các nghiên cứu này cũng chỉ khảo sát quá trình sinh tổng hợp cồn mà chưa khảo sát một cách toàn diện ảnh hưởng của các yếu tố này đến tất cả các mặt trong quá trình lên men chính. Trên cơ sở đó, chúng tôi đề xuất đề tài nghiên cứu “Khảo sát ảnh hưởng của các yếu tố công nghệ đến động học quá trình lên men rượu vang nho sử dụng nấm men cố định”. Chúng tôi tiến hành khảo sát ảnh hưởng của 4 yếu tố công nghệ, bao gồm: pH, hàm lượng đường, hàm lượng SO2 và hàm lượng tannin ban đầu. Tuy nhiên, trong phạm vi bài luận văn này, tôi chỉ xin trình bày sư ảnh hưởng của 2 yếu tố là hàm lượng đường và hàm lượng tannin ban đầu. Kết quả về sự ảnh hưởng của pH và hàm lượng SO2 trong dịch nho đến quá trình lên men sẽ do một bạn khác trình bày. Trong nghiên cứu này, chúng tôi sử dụng chất mang là alginate - một polysaccharide thu được từ rong mơ phân bố dọc theo bờ biển miền Trung của Việt Nam. Chúng tôi lần lượt khảo sát ảnh hưởng của hàm lượng đường và hàm lượng tannin ban đầu đến các vấn đề sau:  Động học quá trình sinh trưởng của nấm men.  Động học quá trình sử dụng cơ chất: đường khử, nitơ amin và nitơ vô vơ.  Động học quá trình hình thành sản phẩm: do thời gian hạn hẹp và chưa có điều kiện về kinh phí nên trong phạm vi bài luận văn này, chúng tôi chỉ trình bày sản phẩm quan trọng nhất của quá trình lên men là cồn mà chưa trình bày các hợp chất hương. Và chúng tôi cũng khảo sát thêm sự chuyển hóa của các acid hữu cơ trong suốt quá trình lên men chính.

doc128 trang | Chia sẻ: maiphuongtl | Lượt xem: 2110 | Lượt tải: 3download
Bạn đang xem trước 20 trang tài liệu Luận văn Khảo sát ảnh hưởng của các yếu tố công nghệ đến động học quá trình lên men rượu vang nho sử dụng nấm men cố định, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
Aûnh höôûng cuûa haøm löôïng tannin ban ñaàu ñeán hieäu suaát sinh toång hôïp coàn trong quaù trình leân men röôïu vang söû duïng naám men töï do vaø naám men coá ñònh trong gel alginate. Baûng 4.22: Aûnh höôûng cuûa haøm löôïng tannin ban ñaàu ñeán hieäu suaát sinh toång hôïp coàn trong quaù trình leân men röôïu vang söû duïng naám men töï do vaø naám men coá ñònh trong gel alginate. Haøm löôïng tannin ban ñaàu (g/L) Hieäu suaát sinh toång hôïp coàn h (mol ethanol/ mol glucose) Naám men coá ñònh Naám men töï do 1,8 1,65 ± 0,03cde 1,70 ± 0,02ef 2,8 1,61 ± 0,03bc 1,63 ± 0,05bcd 3,8 1,52 ± 0,04a 1,59 ± 0,03b 9,8 1,64 ± bcd 1,68 ± 0,03def 17,8 1,71 ± 0,03f 1,72 ± 0,03f Caùc giaù trò trong baûng bieåu thò giaù trò trung bình ± ñoä leäch chuaån cuûa 3 maãu ñoäc laäp. Caùc giaù trò coù kyù hieäu khaùc nhau bieåu thò söï khaùc nhau coù nghóa (P < 0,05). Quaù trình chuyeån hoùa caùc acid höõu cô Quaù trình chuyeån hoùa caùc acid höõu cô cuõng ñöôïc chuùng toâi ñaùnh giaù thoâng qua söï thay ñoåi pH, haøm löôïng acid toång vaø haøm löôïng acid deã bay hôi nhö ôû phaàn 4.1.3.2. Error! Not a valid link. Hình 4.33: Söï thay ñoåi pH trong quaù trình leân men röôïu vang, söû duïng naám men töï do vaø naám men coá ñònh trong gel alginate (haøm löôïng tannin ban ñaàu thay ñoåi trong khoaûng 1,8 – 17,8g/L). Keát quaû khaûo saùt giaù trò pH cuûa chuùng toâi cho thaáy raèng pH vaø haøm löôïng acid toång cuûa dòch leân men baèng naám men coá ñònh luoân thaáp hôn pH cuûa dòch leân men baèng naám men töï do (hình 4.33 vaø hình 4.34). Ñieàu naøy ñaõ ñöôïc giaûi thích ôû phaàn 4.1.3.2. Beân caïnh ñoù, chuùng toâi cuõng thaáy raèng khi haøm löôïng tannin taêng thì pH taêng vaø haøm löôïng acid toång cuõng taêng. Hieän töôïng naøy coù theå ñöôïc giaûi thích laø do, khi haøm löôïng tannin taêng, khaû naêng khueách taùn cô chaát vaøo beân trong teá baøo naám men bò giaûm, toác ñoä leân men chaäm, neân ñaõ taïo ñieàu kieän cho caùc loaïi vi khuaån chuyeån hoùa ñöôøng thaønh acid acetic vaø acid lactic cuõng nhö caùc loaïi vi khuaån chuyeån hoùa caùc acid maïnh hôn nhö acid citric, acid tartaric vaø acid malic thaønh caùc acid yeáu hôn neân ñaõ laøm taêng haøm löôïng acid toång, ñoàng thôøi laïi laøm taêng pH dòch leân men. Error! Not a valid link. Hình 4.34: Söï thay ñoåi haøm löôïng acid toång trong quaù trình leân men röôïu vang söû duïng naám men töï do vaø naám men coá ñònh trong gel alginate (haøm löôïng tannin ban ñaàu thay ñoåi trong khoaûng 1,8 – 17,8g/L). Cuõng töông töï nhö vaäy, haøm löôïng acid deã bay hôi cuûa naám men coá ñònh thaáp hôn so vôùi naám men töï do vaø nhìn chung, khi haøm löôïng tannin taêng thì haøm löôïng acid deã bay hôi cuõng taêng (hình 4.35). So vôùi khi khaûo saùt aûnh höôûng cuûa haøm löôïng ñöôøng, chuùng toâi nhaän thaáy raèng, giaù trò pH cuûa caùc maãu tannin phaân taùn nhieàu hôn (hình 4.15 vaø hình 4.33). Ñieàu ñoù coù nghóa laø tannin aûnh höôûng raát lôùn ñeán giaù trò pH cuûa maãu, coøn ñöôøng thì ít aûnh höôûng hôn. Khi haøm löôïng tannin caøng taêng, thôøi gian ñeå pH ñaït ñeán giaù trò cöïc tieåu caøng daøi. Hay noùi caùch khaùc, quaù trình toång hôïp acid succinic dieãn ra chaäm hôn. Nhö ñaõ ñeà caäp ôû phaàn 4.1.3.2, acid succinic laø saûn phaåm cuûa quaù trình sinh tröôûng cuûa naám men, cho neân nhöõng hieän töôïng naøy coù theå deã daøng ñöôïc giaûi thích laø do tannin öùc cheá maïnh quaù trình sinh tröôûng cuûa naám men hôn laø aâ3 Toùm laïi, qua vieäc khaûo saùt söï chuyeån hoùa cuûa caùc acid höõu cô khi haøm löôïng tannin ban ñaàu thay ñoåi, chuùng toâi cuõng nhaän thaáy raèng naám men coá ñònh coù giaù trò pH, haøm löôïng acid toång vaø haøm löôïng acid deã bay hôi thaáp hôn so vôùi naám men töï do. Nhôø ñoù, ñoä beàn sinh hoïc, hoùa lyù vaø chaát löôïng caûm quan cuûa saûn phaåm leân men baèng naám men coá ñònh cuõng toát hôn so vôùi naám men töï do. Error! Not a valid link. Hình 4.35: Söï thay ñoåi haøm löôïng acid deã bay hôi trong quaù trình leân men röôïu vang, söû duïng naám men töï do vaø naám men coá ñònh trong gel alginate (haøm löôïng tannin ban ñaàu thay ñoåi trong khoaûng 1,8 – 17,8g/L). Keát luaän chung Qua keát quaû khaûo saùt aûnh höôûng cuûa haøm löôïng tannin ñeán ñoäng hoïc quaù trình leân men röôïu vang söû duïng naám men coá ñònh trong gel alginate, chuùng toâi coù moät soá keát luaän sau: Khi haøm löôïng tannin thaáp (1,8 – 2,8g/L) thì maät ñoä teá baøo cöïc ñaïi vaø toác ñoä sinh tröôûng rieâng cöïc ñaïi cuûa teá baøo coá ñònh thaáp hôn so vôùi teá baøo töï do. Nhöng khi haøm löôïng tannin cao thì maät ñoä teá baøo cöïc ñaïi vaø toác ñoä sinh tröôûng rieâng cöïc ñaïi cuûa teá baøo coá ñònh laïi cao hôn so vôùi teá baøo töï do. Nhö vaäy, khaû naêng sinh tröôûng cuûa naám men coá ñònh ít bò aûnh höôûng bôûi haøm löôïng tannin hôn so vôùi naám men töï do. Toác ñoä söû duïng ñöôøng cuõng nhö toác ñoä sinh toång hôïp coàn cuûa naám men coá ñònh cao hôn so vôùi naám men töï do nhöng hieäu suaát sinh toång hôïp coàn thì khoâng cao hôn. Khaû naêng söû duïng nitô ammonium cuõng nhö nitô höõu cô cuûa teá baøo coá ñònh cao hôn so vôùi teá baøo töï do. pH vaø acid toång cuûa dòch leân men baèng naám men coá ñònh thaáp hôn, do ñoù laøm taêng ñoä oån ñònh veà maët sinh hoïc vaø hoùa lyù cho saûn phaåm. Haøm löôïng acid deã bay hôi taïo thaønh bôûi naám men coá ñònh thaáp hôn, do ñoù chaát löôïng saûn phaåm ñöôïc caûi thieän. KEÁT LUAÄN VAØ KIEÁN NGHÒ KEÁT LUAÄN Töø caùc keát quaû treân, chuùng toâi nhaän thaáy raèng, haøm löôïng ñöôøng vaø tannin ñeàu coù aûnh höôûng lôùn ñoái vôùi ñoäng hoïc quaù trình leân men röôïu vang. Nhìn chung, khaû naêng sinh tröôûng (theå hieän qua maät ñoä teá baøo cöïc ñaïi, toác ñoä sinh tröôûng rieâng cöïc ñaïi) cuûa naám men coá ñònh thaáp hôn so vôùi naám men töï do. Chæ tröø tröôøng hôïp khi söû duïng haøm löôïng tannin ban ñaàu cao (9,8 – 17,8g/L) thì khaû naêng sinh tröôûng cuûa naám men coá ñònh môùi cao hôn do luùc naøy khaû naêng sinh tröôûng cuûa naám men töï do bò öùc cheá raát nhieàu. Tuy nhieân, so vôùi naám men töï do thì chuùng toâi thaáy raèng naám men coá ñònh laïi coù nhieàu öu ñieåm: Thôøi gian leân men ruùt ngaén raát nhieàu. Toác ñoä söû duïng ñöôøng vaø toác ñoä sinh toång hôïp coàn cao hôn; ñaëc bieät toác ñoä söû duïng ñöôøng rieâng vaø toác ñoä sinh toång hôïp coàn rieâng thì cao hôn nhieàu. pH vaø haøm löôïng acid toång thaáp hôn, do ñoù giuùp caûi thieän ñoä beàn hoùa lyù vaø sinh hoïc cho saûn phaåm. Haøm löôïng acid deã bay hôi thaáp hôn, do ñoù giuùp caûi thieän chaát löôïng saûn phaåm. Ngoaøi ra, vieäc öùng duïng naám men coá ñònh trong saûn xuaát röôïu vang coøn coù öu ñieåm khaùc laø khaû naêng taùi söû duïng raát cao. KIEÁN NGHÒ Do nhöõng haïn cheá veà thôøi gian vaø kinh phí neân nghieân cöùu cuûa chuùng toâi chöa khaûo saùt heát ñöôïc taát caû caùc vaán ñeà lieân quan ñeán ñoäng hoïc quaù trình leân men röôïu vang söû duïng naám men coá ñònh trong gel alginate. Töø ñoù chuùng toâi ñöa ra moät soá kieán nghò sau: Khaûo saùt theâm ñoäng hoïc hình thaønh caùc hôïp chaát höông. Khaûo saùt theâm aûnh höôûng cuûa caùc yeáu toá coâng ngheä quan troïng khaùc nhö: maät ñoä caáy, nhieät ñoä leân men, haøm löôïng nitô ban ñaàu ñeán ñoäng hoïc quaù trình leân men röôïu vang. Khaûo saùt khaû naêng taùi söû duïng cuûa naám men coá ñònh trong chaát mang alginate. Toái öu hoùa quaù trình leân men vaø tieán haønh saûn xuaát thöû ôû quy moâ lôùn. Khaûo saùt vieäc coá ñònh naám men treân caùc loaïi chaát mang môùi, ñaëc bieät laø caùc chaát mang traùi caây nhö taùo, leâ, moäc qua,.. TAØI LIEÄU THAM KHAÛO Buøi AÙi, Coâng ngheä leân men öùng duïng trong coâng ngheä thöïc phaåm, Nhaø xuaát baûn Ñaïi hoïc Quoác gia TpHCM, 2003, 235p. Phaïm Troïng Khoa, Nghieân cöùu quaù trình leân men coàn baèng naám men coá ñònh trong gel alginate, Luaän aùn cao hoïc, 2002. Leâ Vaên Vieät Maãn, Laïi Mai Höông, Thí nghieäm vi sinh vaät hoïc thöïc phaåm, Nhaø xuaát baûn Ñaïi hoïc Quoác gia TpHCM, 2006, 152p. Offiical methods of analysis of AOAC international, 1996. Ageeva, N. M., Merzhanian, A. A., Sobolev, E. M.. Effect of yeast adsorption on the functional activity of the yeast cells and composition of wine, Mikrobiologiya, Vol.54, No.5, 1985, 830-834. Agrawal, D. and Jain, V. K.. Kinetics of repeated batch production of ethanol by immobilized growing yeast cells, Biotechnology Letters, Vol. 8, No. 1, 1986, 67-70. Alexandrea, H., Costellob, P.J., Remize, F., Guzzoc, J., Benatier, M.G.. Saccharomyces cerevisiae –Oenococcus oeni interactions in wine: current knowledge and perspectives, International Journal of Food Microbiology, Vol. 93, 2004, 141-154. Alteriis, E., Porro, D., Romano, V., Parascandola, P.. Relation between growth dynamics and di¡usional limitations in Saccharomyces cerevisiae cells growing as entrapped in an insolubilised gelatin gel, Journal of Food Composition and Analysis, Vol.16, 2003, 49–56. Antonelli, A., Castellari, L., Zambonelli, C., and Carnacini, A.. Yeast Influence on Volatile Composition of Wines, J. Agric. Food Chem., Vol. 47, 1999, 1139-1144. Arasaratnam, V., Nutrients Along with Calcium in Glucose Feed Enhance the Life of Alginate Entrapped Yeast Cells, Process Biochemistry, Vol. 29, 1994, 253-256. Argiriou, T., Kanellaki, M., Voliotis, S., Koutinas, A.A.. Kissiris-supported yeast cells: high biocatalytic stability and productivity improvement by successive preservations at 00C, J. Agric. Food Chem. Vol.44, 1996, 4028–4031. Bajpai, P.K. and Margaritis, A.. Kinetics of ethanol production by immobilized cells of Zymomonas mobolis at varying D-glucose concentrations, Enzyme Microb. Technol., Vol. 7, 1985, 462-464. Bakoyianis, V., Kanellaki, M., Kalliafas, A., Koutinas, A. A. Low temperature wine making by immobilized cells on mineral kissiris, J.Agric.Food Chem, Vol.40, No.7, 1992, 1293-1296. Bakoyianis, V., Koutinas, A. A., Agelopoulos, K. and Kanellaki, M.. Comparative Study of Kissiris, ç-Alumina, and Calcium Alginate as Supports of Cells for Batch and Continuous Wine-Making at Low Temperatures, J. Agric. Food Chem., Vol.45, 1997, 4884-4888. Balli, D., Flari, V., Sakellaraki, E., Schoina, V., Iconomopoulou, M., Bekatorou, A., Kanellaki, M.. Effect of yeast cell immobilization and temperature on glycerol content in alcoholic fermentation with respect to wine making, Process Biochemistry, Vol.39, 2003, 499_/506. Bandyopadhyay, K. K . and Ghose, T. K.. Studies on Immobilized Saccharomyces cerevisiae. III.Physiology of Growth and Metabolism on Various Supports. Bardi, E. P. and Koutinas, A. A.. Immobilization of Yeast on Delignified Cellulosic Material for Room Temperature and Low-Temperature Wine Making, J. Agric. Food Chem., Vol. 42, 1994, 221-226. Bardi, E. P., Bakoyianis, V., Koutinas, A. A. and Kanellaki, M.. Room Temperature and Low Temperature Wine Making Using Yeast Immobilized on Gluten Pellets, Process Biochemisty, Vol. 31, No. 5, 1996, 425-430. Bardi, E. P., Koutinas, A. A., Soupioni, M. J., and Kanellaki, M. E.,.Immobilization of Yeast on Delignified Cellulosic Material for Low Temperature Brewing, Journal of Agriultural and Food Chemistry, Vol.44, 1996, 463-467. Bardi, E., Koutinas, A. A., Psarianos, C., Kanellaki, M.. Volatile by-products formed in low-temperature wine-making using immobilized yeast cells, Process Biochemistry, Vol. 32, No. 7, 1997, 579-584. Bartowsky, E. J. and Henschke, P. A.. The ‘buttery’ attribute of wine—diacetyl—desirability, spoilage and beyond, International Journal of Food Microbiology, Vol. 96, 2004, 235– 252. Bartroli, J., Escalada, M., Jorquera, C.J. and Alonso, J.. Determination of Total and Free Sulfur Dioxide in Wine by Flow Injection Analysis and Gas-Diff usion Using p -Aminoazobenzene as the Colorimetric Reagent, Analytical Chemistry, Vol.63, No.21, 1991, 2532-2535. Beh, A. L.. Development of molecular probes for the identification yeasts in winemaking, AFFA Science and Innovation Award for Young People, 2002, 16p. Beltran, G., Novo, M., Rozes, N., Mas, A., Guillamon, J. M.. Nitrogen catabolite repression in Saccharomyces cerevisiae during wine fermentations, FEMS Yeast Research, Vol.4, 2004, 625–632. Beltran, G., Torija, M. J., Novo, M., Ferrer, N., Poblet, M., Guillamoùn, J. M., Rozeøs, N. and Mas, A..Analysis of yeast populations during alcoholic fermentation:A six year follow-up study, Systematic and applied microbilogy, vol 25, 2002, 287-293. Berthels, N.J., Cordero Otero, R.R., Bauer a, F.F., Thevelein, J.M., Pretorius, I.S.. Discrepancy in glucose and fructose utilisation during fermentation by Saccharomyces cerevisiae wine yeast strains, FEMS Yeast Research, Vol.4, 2004, 683–689. Birol, G., Doruker, P., Kardar, B.,Onsan, Z.I. and Ulgen, K., Mathematical description of ethanol fermentation by immobilised Saccharomyces cerevisiae, Process Biochemistry, Vol. 33, No. 7, 1998, 763-777. Boido, E., Lloret, A., Medina, K., Farina, L., Carrau, F., Versini, G. and Dellacassa, E.. Aroma Composition of Vitis vinifera Cv. Tannat: the Typical Red Wine from Uruguay, J. Agric. Food Chem., Vol.51, 2003, 5408-5413. Borkowski, T., Szymusiak, H., Gliszczynska-Sawiglo, A., Rietjens, A. I. M. C. M. and Tyrakowska, B.. Radical Scavenging Capacity of Wine Anthocyanins Is Strongly pH-Dependent, J. Agric. Food Chem., Vol.53, 2005, 5526-5534. Bradshaw, M. P., Scollary, G. R. and Prenzler, P. D.. Examination of the sulfur dioxide–ascorbic acid anti-oxidant system in a model white wine matrix, J Sci Food Agric, Vol. 84, 2004, 318–324. Brenna, O. V. and Pagliarini, E.. Multivariate Analysis of Antioxidant Power and PolyphenolicComposition in Red Wines, J. Agric. Food Chem., Vol. 49, 2001, 4841-4844. Burn, V. J., Turner, P. R. and Brown, C. M..Aspects of inorganic nitrogen assimilation in yeasts, Antonie van Leeuwenhoek, Vol.40,1974, 93-102. Busova, K., Magyar, I., Janky, F.. Effect of immobilized yeasts on the quality of bottle-fermented sparkling wine, Acta Aliment. Vol.23, 1994, 9–23. Buzas, Zs., Dallmann, K. and Szajani, B.. Influence of pH on the Growth and Ethanol Production of Free and Immobilized Saccharomyces cerevisiae Cells, Biotechnology and Bioengineering, Vol. 34, 1989, 882-884. Casson, D. and Emery, A. N.. On the elimination of artefactual effects in assessing the structure of calcium alginate cell immobilization gels, Enzyme Microb. Technol., Vol. 9, 1987, 102-106. Cataldi, T. R. I. and Nardiello, D.. Determination of Free Proline and Monosaccharides in Wine Samples by High-Performance Anion-Exchange Chromatography with Pulsed Amperometric Detection (HPAEC-PAD), J. Agric. Food Chem,Vol 51, 2003, 3737-3742. Charoenchai, C., Fleet, G.H. and Henschke, P.A.. Effects of Temperature, pH, and Sugar Concentration on the Growth Rates and Cell Biomass of Wine Yeasts, American Journal of Enology and Viticulture, Vol.49, No.3, 1998, 283-288. Chen, C., Dale, M. C. and Okos, M. R.. Minimal Nutritional Requirements for Immobilized Yeast, Biotechnology and Bioengineering, Vol. 36, 1990, 993-1001. Cheong, Park, J. K., Kim, B. S. and Chang, H. N.. Microencapsulation of yeast cells in calcium alginate membrane, Biotechnology Techniques, Vol.7, No.12, 1993, 879-884. Chibata, I., and Tosa, T.. Use Of Immobilized Cells, Ann. Rev. Biopbys. Bioeng, Vol.10, 1981,197-216. Ciani, M. and Comitini, F. Influence of temperature and oxygen concentration on the fermentation behaviour of Candida stellata in mixed fermentation with Saccharomyces cerevisiae, World Journal of Microbiology & Biotechnology, Vol. 22, 2006, 619–623. Ciani, M. and Ferraro, L.. Combined use of immobilized Candida stellata cells and Saccharomyces cerevisiae to improve the quality of wines, Journal of Applied Microbiology, Vol.85, 1998, 247–254. Ciani, M. and Ferraro, L.. Enhanced Glycerol Content in Wines Made with Immobilized Candida stellata Cells, Applied and Environmental Microbiology, 1996,128–132. Ciani, M. and Picciotti, G. The growth kinetics and fermentation behaviour of some non-saccharomyces yeasts associated with wine-making, Biotechnology letters, Vol. 17, No. 2, 1995, 1247-1250. Ciani, M., Beco, L., Comitini, F.. Fermentation behaviour and metabolic interactions of multistarter wine yeast fermentations, International Journal of Food Microbiology, Vol.108, 2006, 239–245. Cocolin, L., Bisson, L.F., Mills, D.A.. Direct profiling of the yeast dynamics in wine fermentations, FEMS Microbiology Letters, Vol.189, 2000, 81-87. Colagrande, O., Silva, A., Fumi, M.D.. Recent applications of biotechnology in wine production. Rev. Biotechnol. Progr., Vol.10, 1994, 2–18. Constantí, M., Reguant, C., Poblet, M., Zamora, F., Mas, A.. Molecular analysis of yeast population dynamics: Effect of sulphur dioxide and inoculum on must fermentation, International Journal of Food Microbiology, Vol.41, 1998, 169–175. D'Amore, T., Russell, I. and Stewart, G. G.. Sugar utilization by yeast during fermentation, Journal of IndustriaI Microbiology, Vol. 4, 1989, 315-324. De Soto, R.T. and Huber, R.. The Effect of Tannic Acid on the Secondary Fermentation of Champagne, American Journal of Enology and Viticulture, Vol.19, No.42, 1968, 46-253. Demianovaù, Z., Sireùn, H., Kuldvee, R., Riekkola, M.L.. Nonaqueous capillary electrophoretic separation of polyphenolic compounds in wine using coated capillaries at high pH in methanol, Electrophoresis, Vol. 24, 2003, 4264–4271. Demuyakor, B. and Ohta, Y.. Promotive action of ceramics on yeast ethanol production, and its relationship to pH, glycerol and alcohol dehydrogenase activity, Appl. Microbiol. Biotechnol., Vol.36, 1992, 717-721. Desimone, M. F., Degrossi, J., Aquino, M.D. and. Diaz, L. E.. Ethanol tolerance in free and sol-gel immobilised Saccharomyces cerevisiae, Biotechnology Letters , Vol.24, 2002, 1557–1559. Díaz, C., Condea, J.E., Claveriea, C., Díaz, E.. Conventional enological parameters of bottled wines from the Canary Islands (Spain), Journal of Food Composition and Analysis, Vol.16, 2003, 49–56. Dizy, M. and Bisson, L. F.. Proteolytic Activity of Yeast Strains During Grape Juice Fermentation, Am. J. Enol. Vitic., Vol. 51, No. 2, 2000, 155-167. Doran, P. M. and Bailey, J.E.. Effects of Immobilization on Growth,Fermentation Properties, and Macromolecular Composition of Saccharomyces cerevisiae Attached to Gelatin, Biotechnology and Bioengineering, Vol. XXVIII, 1986, 73-87. Dorneles, D., Machado, I. M. P., Chociai, M. B. and Bonfim, T. M. B.. Influence of the Use of Selected and Non-selected Yeasts in Red Wine Production, Brazilian Archives of Biology and Technology, Vol.48, 2005, 747-751. Egli, C.M., Edinger, W.D., Mitrakul, C.M., Henick-Fling, T.. Dynemics of indigenous and inoculated yeast population and their effect on the sensory character of Riesling and Chardonnay wines, Journal of Applied Microbiology, Vol.85, 1998, 779-789. Eisenman, L. The home winemakers manual, Del Mar, 1998, 179p. Erasmus, D. J., Merwe, G. K., Vuuren, H. J. J.. Genome-wide expression analyses: Metabolic adaptation of Saccharomyces cerevisiae to high sugar stress, FEMS Yeast Research, Vol. 3, 2003, 375-399. Esteùvez, P., Guil, M.L., Falqueù, E.. Effects of seven yeast strains on the volatile composition of Palomino wines, International Journal of Food Science and Technology, Vol.39, 2004, 61–69. Ezeogu, L. and Emeruwa, A. C.. High level ethanol-tolerant Saccharomyces from nigerian palm wine, Biotechnology letters, Vol. 15, No. 1, 1993, 83-86. Falcone, F. and Maxwell, K. C.. Simultaneous Continuous Flow Analysis of Free and Total Sulfur Dioxide in Wine, J. Agrlc. Food Chem., Vol 40, 1992, 1355-1357. Fang, F., Li, J-M, Pan, Q-H, Huang, W-D.. Determination of red wine flavonoids by HPLC and effect of aging, Food Chemistry, 2006, 1-6. Ferraro, L., Fatichenti, F., Ciani, M.. Pilot scale vinification process using immobilized Candida stellata cells and Saccharomyces cerevisiae, Process Biochemistry, Vol. 35, 2000, 1125–1129. Ferraro, L., Fatichenti, F., Ciani, M.. Pilot scale vinification process using immobilized Candida stellata cells and Saccharomyces cerevisiae, Process Biochem, Vol.35, 2000, 1125–1129. Flink, J.M. and Johansen, A.. A novel method for immobilization of yeast cells in alginate gels of varios shapes by internal liberation of Ca-ions, Biotechnology Letters, Vol.7, No.10, 1985, 765-768. Fornachon, J. C. M.. The pH of Wines: Examination of Glass and Quinhydrone Electrode Values, Analytical Edition, 1946, 790-793. Frivik, S.K., and Ebeler, S.E.. Influence of Sulfur Dioxide on the Formation of Aldehydes in White Wine, Am. J. Enol. Vitic., Vol. 54, Issue 1, 2003, 32-38. Fumi, M. D., Trioli, G. and Colagrande, O.. Preliminary assessment on the use of immobilized yeast cells in sodium alginate for sparkling wine processes, Biotechnology Letters, Vol. 9, No. 5, 1987, 339-342. Fumi, M. D., Trioli, G., Colombi, M. G. and Colagrande, O..Immobilization of Saccharomyces cerevisiae in Calcium Alginate Gel and Its Application to Bottle-Fermented Sparkling Wine Production, Am. J. Enol. Vitic., Vol. 39, No. 4, 1988, 267-272. Fumi, M.D., Bufo, N., Trioll, G. and Colagrande, O.. Bulk sparkling wine production by external encapsulated yeast bioreactor, Biotechnology Letters, Vol.11, No.11, 1989, 821-824. Galazzo, J. L. and Bailey, J. E.. In Vivo Nuclear Magnetic Resonance Analysis of Immobilization Effects on Glucose Metabolism of Yeast Saccharomyces cerevisiae, Biotechnology and Bioengineering, Vol. 33, 1989, 1283-1289. Galazzo, J. L. and Bailey, J.E.. Growing Saccharomyces cerevisiae in Calcium-Alginate Beads Induces Cell Alterations which Accelerate Glucose Conversion to Ethanol, Biotechnology and Bioengineering, Vol. 36, 1990, 417-426. Galazzo, J. L., Shanks, J.V. and Bailey, J.E., Comparsion of suspended and immobilized yeast metabolism using 31P Nuclear Magnetic Resonance Spectroscopy, Biotechnology Techniques, Vol.1, No.1, 1987, 1-6. Ganga, A., Candelas, L.G., Ramon, D., and Jgonzalez, J.A.. Glucose-Tolerant Expression of Trichoderma longibrachiatum Endoglucanase I, an Enzyme Suitable for Use in Wine Production, J. Agric. Food Chem., Vol.45, 1997, 2359-2362. Ghose, T. K. and Bandyopadhyay, K. K.. Studies on Immobilized Saccharomyces cerevisiae. II. Effect of Temperature Distribution on Continuous Rapid Ethanol Formation in Molasses Fermentation, Biotechnology and Bioengineering, Vol. XXIV, 1982, 797-804. Ginohara, T., Kubodera, S., Yanagida, F.. Distribution of Phenolic Yeasts and Production of Phenolic Off-Flavors in Wine Fermentation, Journal of Bioscience and Bioengineering, Vol. 90, No. 1, 2000, 90-97. Gomes, M.T., Rocha, T.A., Duarte, A.C. and Oliveira, J.P. Determination of Sulfur Dioxide in Wine Using a Quartz Crystal Microbalance, Analytical Chemistry, Vol. 68, No. 9, 1996, 950-954. Gomez-Cordoves, C., Bartolome, B., Vieira, W. and Virador, V. M.. Effects of Wine Phenolics and Sorghum Tannins on Tyrosinase Activity and Growth of Melanoma Cells, J. Agric. Food Chem., Vol. 49, 2001, 1620-1624. Gomez-Miguez, M. and Heredia, F. J.. Effect of the Maceration Technique on the Relationships between Anthocyanin Composition and Objective Color of Syrah Wine, Journal of Agriultural and Food Chemistry, Vol.52, 2004, 5117-5123. Goødia, F., Casas, C., Castellano, G. and Solaø, C.. Immobilized cells: behaviour of carrageenan entrapped yeast during continuous ethanol fermentation, Applied Microbiology and Biotechnology, Vol.26, 1987, 342-346. Goødia, F., Casas, C. and Sola, C.. Application of Immobilized Yeast Cells to Sparkling Wine Fermentation, Bilotechnol. Prog., Vol. 7, 1991, 468-470. Granchi, L., Bosco, M., Messini, A. and Vincenzini, M.. Rapid detection and quantification of yeast species during spontaneous wine fermentation by PCR–RFLP analysis of the rDNA ITS region, Journal of Applied Microbiology, Vol.87, 1999, 949–956. Guilamoùn, J.M. and Rozeøs, N.. Effect or low temperature fermentation and nitrogen content on wine yeast metabolism, Tarragona, 2004, 248p. Guntenwik, J., Nilsson, B., Axelsson, A.. Mass Transfer Effects On The Reaction Rate For Heterogeneously Distributed Immobilized Yeast Cells, Department Of Chemical Enginerring, Lund University, Sweden, 2002. Hagerman, A. E.. Tannin Chemistry, Department of Chemistry and Biochemistry, Miami University, 1998- 2002. Hamdy, M. K.. Method for rapidly fermending alcoholic beverages, PCT Int. Appl., WO 9005, 189, 1990. Heard, G. M. and Fleet, G. H.. Growth of Natural Yeast Flora during the Fermentation of Inoculated Wines, Applied and Environmental Microbiology, 1985, 727-728. Henick-Kling, T., Edinger, W., Daniel, P., P. Monk, P.. Selective effects of sulfur dioxide and yeast starter culture addition on indigenous yeast populations and sensory characteristics of wine, Journal of Applied Microbiology, Vol. 81, 1998, 865–876. Holcberg, I.B. and Margalith, P.. Alcoholic Fermentation by Immobilized Yeast at High Sugar Concentrations, European J. Appl. Microbiol. Biotechnol., Vol.13, 1981, 133-140. Howell, K. S., Bartowsky, E. J., Fleet, G. H. and Henschke, P. A.. Microsatellite PCR profiling of Saccharomyces cerevisiae strains during wine fermentation, Letters in Applied Microbiology, Vol. 38, 2004, 315–320. Iconomopoulou, M., Psarianos, K., Kanellaki, M., Koutinas, A.A.. Low temperature and ambient temperature wine making using freeze dried immobilized cells on gluten pellets, Process Biochemistry, Vol.37, 2002, 707–717. Iconomou, L., Kanellaki, M.,Voliotis, S., Agelopoulos, K., Koutinas, A. A.. Continuous wine making by delignified cellulosic materials supported biocatalyst, Appl. Biochem. Biotechnol, Vol.60, 1996, 303-313. J.P. Mazauric, J.P. and Salmon, J.M.. Interactions between Yeast Lees and Wine Polyphenols during Simulation of Wine Aging: I. Analysis of Remnant Polyphenolic Compounds in the Resulting Wines, Journal of Agriultural and Food Chemistry, Vol. 53, 2004, 5647-5653. Jamai, L., Sendide, K., Ettayebi, K., Errachidi, F., Hamdouni-Alami, O., Tahri-Jouti, M. A., McDermott, T., Ettayebi, M.. Physiological di¡erence during ethanol fermentation between calcium alginate immobilized Candida tropicalis and Saccharomyces cerevisiae, FEMS Microbiology Letters, Vol. 204 , 2001, 375-379. Jamuna, R. and Ramakrishna, S. V.. High concentration ethanol production using immobilized yeast cells, Biomass and Bioenergy, Vol. 3, No. 2, 1992, 117-119. Jirku, V.. A novel entrapping matrix for yeast-catalyzed ethanol fermentation, Process Biochemistry, Vol.34, 1999, 193–196. Joaõo, M.S., Laranjinha, A. N., Almeida, L.M.and Maiani, G.. Inhibition of human LDL lipid peroxidation by phenol-rich beverages and their impact on plasma total antioxidant capacity in humans, The Journal of Nutritional Biochemistry, Vol.11, Issues 11-12 , 2000, 585-590. Johansen, A. and Flink, J. M.. Immobilization of yeast cells by internal gelation of alginate, Enzyme Microb. Technol., Vol. 8, 1986, 145-148. Johansen, A. and Flink, J.M.. Influence of alginate properties and gel reinforcement on fermentation characteristics of immobilized yeast cells, Enzym Microbiology and Biotechnology, Vol.8, 1986, 737-748. Kierstan, M. and Bucke, C.. The Immobilization of Microbial Cells, Subcellular Organelles, and Enzymes in Calcium Alginate Gels, Biotechnology and bioengineering, Vol. 19, 1977, 387-397. Kim, S.W. and Kim, E.Y.. Development of New Alginate Fiber for the Immobilization of Yeast, Biotechnology Techniques, Vol.10, No.8, 1990, 579-584. Klaus, D. Vorlop, K.D, Estap, D. and Goødia, F.. Design of Ca-alginate immobilized yeast cell beads with controlled low desity to enhance their fluidization behavior in bioreactiors, Biotechnology techniques, Vol.7, No.4, 1993, 297-292. Kourkoutas, Y., Kanellaki, M., Koutinas, A.A., Tzia, C.. Effect of storage of immobilized cells at ambient temperature on volatile by-products during wine-making, Journal of Food Engineering, Vol.74, 2006, 217–223. Kourkoutas, Y., Douma, M., Koutinas, A.A., Kanellaki, M., Banat, I.M., Marchant, R.. Continuous winemaking fermentation using quince-immobilized yeast at room and low temperatures, Process Biochemistry, Vol.39, 2002,143-148. Kourkoutas, Y., Kanellaki, M., Koutinas, A.A., Tzia, C.. Effect of fermentation conditions and immobilization supports on the wine making, Journal of Food Engineering, Vol.69, 2005,115–123. Kourkoutas, Y., Kanellaki, M., Koutinas, A. A., Banat, I. M., and Marchant, R.. Storage of Immobilized Yeast Cells for Use in Wine-Making at Ambient Temperature, J. Agric. Food Chem., Vol. 51, 2003, 654-658. Kourkoutas, Y., Kanellaki, M., Koutinas, A.A.. Apple pieces as immobilization support of various microorganisms, LWT, Vol.39, 2006, 980–986. Kourkoutas, Y., Komaitis, M., Koutinas, A. A., and Kanellaki, M.. Wine Production Using Yeast Immobilized on Apple Pieces at Low, J. Agric. Food Chem., Vol. 49, 2001, 1417-1425. Kourkoutas, Y., Komaitis, M., Koutinas, A.A., Kaliafas, A., Kanellaki, M., Marchant, R., Banat, I.M.. Wine production using yeast immobilized on quince biocatalyst at temperatures between 30 and 00C, Food Chemistry, Vol.82, 2003, 353–360. Kourkoutas, Y., Koutinas, A.A., Kanellaki, M., Banat, I.M.. Continuous wine fermentation using a psychrophilic yeast immobilized on apple cuts at di¡erent temperatures, Food Microbiology, Vol.19, 2002, 127-134. Kourkoutas, Y., Bekatoroua, A., Banatb, I.M., Marchantb, R., Koutinasa, A.A.. Immobilization technologies and support materials suitable inalcohol beverages production: a review, Food Microbiology, Vol.2, 2004, 377-397. Koyama, K. and Seki , M.. Preparation of Low-Viscous Liquid-Core Capsules with Alginate-Membrane Shell for Cell Immobilization, On-line Number 728, 1-10. Koyama, K., Seki, M.. Cultivation of Yeast and Plant Cells Entrapped in the Low-Viscous Liquid-Core of an Alginate Membrane Capsule Prepared Using Polyethylene Glycol, Journal of bioscience and bioengineering, Vol. 97, No. 2, 2004, 111–118. Kozawa, T., Yamagiwa, K. and Ohkawa, A.. Relationship between mannuronic to guluronic acid ratio of alginate and charge density of Ca-alginate complex, Journal of chemical engineering of Japan, Vol. 27, No. 6, 1994, 833-834. Krisch, J. and Szajaùni, B.. Ethanol and acetic acid tolerance in free and immobilized cells of Saccharomyces cerevisiae and Acetobacter aceti, Biotechnology Letters, Vol 19, No 6, 1997, 525–528. Lamikanra, O.. Changes in Organic Acid Composition during Fermentation and Aging of Noble Muscadine Wine, J. Agric. Food Chem., Vol. 45, 1997, 935-937. Lapidot, T., Harel, S., Akiri, B., Granit, R. and Kanner, J.. pH-Dependent Forms of Red Wine Anthocyanins as Antioxidants, J. Agric. Food Chem., Vol. 47, 1999, 67-70. Liu, S.Q.. A Review : Malolactic fermentation in wine – beyond deacidification, Journal of Applied Microbiology, Vol.92, 2002, 589–601. Lommi, H., Advenainen, J.. Method using immobilized yeast to produce ethanol and alcoholic beverages, European Patent Application, EP 361, 165, 1990. Lopes, C.A., Broock, M., Querol, A. and Caballero, A.C.. Saccharomyces cerevisiae wine yeast populations in a cold region in Argentinean Patagonia, Journal of Applied Microbiology, Vol.93, 2002, 608–615. Lother, A. M.. Immobilized Saccharomyces cerevisiae and Leuconostoc oenus for alcoholic and malolactic fermentation in continuous wine making, Athens, 1999, 149p. Loukatos, P., Kanellaki, M., Komaitis, M., Athanasiadis, I., and Koutinas, A. A.. A New Technological Approach Proposed for Distillate Production Using Immobilized Cells, Journal Of Bioscience And Bioengineering, Vol. 95, No. 1, 2003, 35–39. Loukatos, P., Kiaris, M., Ligas, I., Bourgos, G., Kanellaki, M., Komaitis, M., Koutinas, A.A.. Continuous wine-making by g-alumina-supported biocatalyst. Quality of the wine and distillates, Appl. Biochem. Biotechnol., Vol.89, 2000, 1–13. Magyar, I. and Panyik, I.. Biological Deacidification of Wine with Schizosaccharomyces pombe Entrapped in C a-Alginate Gel, Am. J. Enol. Vitic., Vol. 40, No. 4, 1989, 233-240. Maicas, S., Pardo, I., Ferrer, S.. The potential of positively-charged cellulose sponge for malolactic fermentation of wine, using Oenococcus oeni., Enz. Microbial.Technol., Vol.28, 2001, 415-419. Maicas, S.. The use of alternative technologies to develop malolactic fermentation in wine, Applied Microbiology and Biotechnology, Vol.56, 2001,35–39. Malacrinoø, P., Tosi, E., Caramia, G., Prisco, R. and Zapparoli, G.. The vinification of partially dried grapes: a comparative fermentation study of Saccharomyces cerevisiae strains under high sugar stress, Letters in Applied Microbiology, Vol. 40, 2005, 466–472. Mallios, P., Kourkoutas, Y., Iconomopoulou, M., Koutinas, A.A., Psarianos, C., Marchant, R. and Banat I.M.. Low-temperature wine-making using yeast immobilized on pear pieces, Journal of the Science of Food and Agriculture, Vol.84, 2004,1615–1623. Mallouchos, A., Komaitis, M., Koutinas, A. and Kanellaki, M.. Evolution of Volatile Byproducts during Wine Fermentations Using Immobilized Cells on Grape Skins, J. Agric. Food Chem., Vol. 51, Issue 8, 2003, 2402 -2408. Mallouchos, A., Reppa, P., Aggelis, G., Kanellaki, M., Koutinas, A. A. and Komaitis, M.. Grape skins as a natural support for yeast immobilization, Biotechnology Letters , Vol. 24, 2002, 1331–1335. Mallouchos, A., Komaitis, M., Koutinas, A., Kanellaki, M.. Investigation of Volatiles Evolution during the Alcoholic Fermentation of Grape Must Using Free and Immobilized Cells with the Help of Solid Phase Microextraction (SPME) Headspace Sampling, J. Agric. Food Chem., Vol. 50, 2002, 3840-3848. Mallouchos, A., Skandamis, P., Loukatos, P., Komaitis, M., Koutinas, A., and Kanellaki, M.. Volatile Compounds of Wines Produced by Cells Immobilized on Grape Skins, J. Agric. Food Chem., Vol. 51, 2003, 3060-3066. Mallouchos, A., Komaitisa, M., Koutinasb, A., Kanellakib M.. Wine fermentations by immobilized and free cells at different temperatures. Effect of immobilization and temperature on volatile by-products, Food Chemistry, Vol.80, 2003,109–113. Martinez-Rodriguez, A.J., Carrascosa, A.V., Polo, M.C.. Release of nitrogen compounds to the extracellular medium by three strains of Saccharomyces cerevisiae during induced autolysis in a model wine system, International Journal of Food Microbiology, Vol.68, 2001, 155–160. Martynenko, N.N., Gracheva, I. M., Sarishvili, N. G., Zubov, A. L., El’-Registan G. I. and Lozinsky V. I.. Immobilization of Champagne Yeasts by Inclusion into Cryogels of Polyvinyl Alcohol: Means of Preventing Cell Release from the Carrier Matrix, Appl. Bioch. and Microbiol., Vol. 40, No. 2, 2004, 158–164. Martynenko, N. N. and Gracheva, L. M.. Physiological and Biochemical Characteristics of Immobilized Champagne Yeasts and Their Participation in Champagnizing Processes: A Review, Applied Biochemistry and Microbiology, Vol. 39, No. 5, 2003, 439–445. Mateo, J. J., Jimeùnez, M., Pastor, A., Huerta, T.. Yeast starter cultures affecting wine fermentation and volatiles, Food Research International, Vol. 34, 2001, 307-314. Mazauric, J.P., and Salmon, J.M.. Interactions between Yeast Lees and Wine Polyphenols during Simulation of Wine Aging: II. Analysis of Desorbed Polyphenol Compounds from Yeast Lees, J. Agric. Food Chem., Vol.54, No.11, 2006, 3876 -3881. Medina, K., Boido, E., Dellacassa E. and Carrau, F.. Yeast Interactions with Anthocyanins during Red Wine Fermentation, American Journal of Enology and Viticulture, Vol.56, No.2, 2005, 104-109. Melzoch, Y., Rychtera, M.. Effect of immobilization upon the properties and behaviour of Saccharomyces cerevisiae cells, Journal of Biotechnology, Vol. 32, 1994, 59-65. Morata, A., Cordoves, M.C., Calderol, F., Suarez, J.A.. Effects of pH, temperature and SO2 on the formation of pyranoanthocyanins during red wine fermentation with two species of Saccharomyces, International Journal of Food Microbiology, Vol.106, 2006, 123-129. Morch, Y.A., Donati, I., Strand, B.L., Skjak - Brak, G.. Effect of Ca2+, Ba2+, and Sr2+ on Alginate Microbeads, Biomacromolecules, Vol.7, 2006, 1471-1480. Mori, S.. Fruit wine or sake manufacture by bioreactor, Jpn. Kokai Tokkyo Koho., JP 6261, 577, 1987. Najafpour, G., Younesi, H., Ismail, K.. Ethanol fermentation in an immobilized cell reactor using Saccharomyces cerevisiae, Bioresource Technology, Vol.92, 2004, 251–260. Nakanishi, K., Yokotsuka, K.. Fermentation of white wine from Koshu grape using immobilized yeast, Nippon ShokuhinKogyo Gakkaishi, Vol.34, No.6, 1987, 362-369. Navarro, J.M. and Durand, G.. Modification of Yeast Metabolism by Immobilization onto Porous Glas, European J. Appl. Microbiology, Vol 4, 1977, 243-254. Nevado, F.P., Albergaria, H., Hogg, T., Girio, F.. Cellular death of two non-Saccharomyces wine-related yeasts during mixed fermentations with Saccharomyces cerevisiae, International Journal of Food Microbiology, Vol.108, 2006, 336–345. Norton, S., Watson, K. D'Amore, T.. Ethanol tolerance of immobilized brewers' yeast cells, Appl. Microbiol. Biotechnol., Vol.43, 1995, 18-24. Nurgel, C., Erten, H., Canbas, A., Cabaroglu, T. and Selli, S.. Influence of Saccharomyces cerevisiae strains on fermentation and flavor compounds of white wines made from cv. Emir grown in Central Anatolia, Turkey, Journal of Industrial Microbiology & Biotechnology, Vol.29, 2002, 28-33. Ogbonna, J. C., Amano, Y., Nakamura, Yokotsuka, K. K., Shimazu, Y., Watanabe, M. and Hara, S..A Multistage Bioreactor with Replaceable Bioplates for Continuous Wine Fermentation, Am. J. Enol. Vitic., Vol. 40, No. 4, 1989, 292-298. Otsuka, K... Wine making. Jpn. Kokkai Tokkyo Koho., 159, 789, 1980. Parascandola, P., Alteriis, E. D., Farris, G. A., Budroni, M., and Scardi, V.. Behaviour of Grape Must Ferment Saccharomyces cerevisiae Immobilized within Insolubilized Gelatin, Journal Of Fermentation And Bioengineering, Vol. 74, No. 2, 1992, 123-125. Peinado, R. A., Moreno, J. J, Maestre, O. and Mauricio, J. C., Use of a novel immobilization yeast system for winemaking, Biotechnology Letters, Vol. 27, 2005, 1421–1424. Peinado, R.A., Moreno, J. J., Villalba, J. M., Gonzalez-Reyes, J. A.,. Ortega, J. M., Mauricio, J.C.. Yeast biocapsules: A new immobilization method and their applications, Enzyme and Microbial Technology. 2006, 1-6. Pellegrini, N., Simonetti, P., Gardana, C., Brenna, O., Brighenti, F. and Pietta, P.. Polyphenol Content and Total Antioxidant Activity of Vini Novelli (Young Red Wines) , J. Agric. Food Chem., Vol.48, No.3, 2000, 732 -735. Perez, F., Ramírez, M. & Regodoùn, J.A., Influence of killer strains of Saccharomyces cerevisiae on wine fermentation, Antonie van Leeuwenhoek, Vol.79, 2001, 393-399. Phillips, G. O. and Williams, P. A.. Handbook of hydrocolloids, Woodhead Publishing Limited and CRC Press LLC, 2000. Plessis, H.W., Steger, C.L.C., Toit, M. and Lambrechts, M.G.. The occurrence of malolactic fermentation in brandy base wine and its influence on brandy quality, Journal of Applied Microbiology, Vol.92, 2002, 1005–1013. Querol, A., Barrio, E., Ramoùn, D. Population dynamics of natural Saccharomyces strains during wine fermentation, International Journal of Food Microbiology, Vol. 21, 1994, 315-323. Qureshi, N. and Tamhane, D. V.. Mead production by continuous series reactors using immobilized yeast cells, Applied Microbiology and Biotechnology, vol23, 1986, 438-439. Reed, G. and Nagodawithana, T. W..Technology of Yeast Usage in Winemaking, Am. J. Enol. Vitic., Vol. 39, No. I, 1988, 83-90. Regodon, J. A., Perez, F., Valdes, M. E., De Miguel, C. and Ramirez, M.. A simple and effective procedure for selection of wine yeast strains, Food Microbiology, Vol.14, 1997, 247–254. Remy, S., Fulcrand, H., Labarbe, B., Cheynier, V., and Moutounet, M... First confirmation in red wine of products resulting from direct anthocyanin–tannin reactions, J Sci Food Agric, Vol. 80, 2000, 745-751. Renouf, V., Falcou, M., Miot-Sertier, C., Perello, M.C., Revel, G. and Lonvaud-Funel, A.. Interactions between Brettanomyces bruxellensis and other yeast species during the initial stages of winemaking, The Society for Applied Microbiology, Journal of Applied Microbiology, Vol.100, 2006, 1208–1219. Romero, E.G. and Mufioz, G.S.. Determination of organic acids in grape musts, winesand vinegars by high-performance liquid chromatography, Journal of Chromatography A, Vol.655, 1993, 111-117. Rosini, G. and Ciani, M.. Influence of Sugar Type and Level on Malate Metabolism of Immobilized Schizosaccharomyces pombe Cells, Am. J. Enol. Vitic., Vol. 44, No. 1, 1993, 113-117. Rossi-Alva, G.C. and Rocha-Leao, M.H.M.. A strategic study using mutant-strain entrapment in calcium alginate for the production of Saccharomyces cerevisiae cells with high invertase activity, Biotechnol. Appl. Biochem., Vol.38, 2003, 43–51. Roustan, J. L. and Sablayrolles, J. M.. Role of Trehalose and Glycogen in Alcoholic Fermentation in Wine-making Conditions, Journal of Wine Research, Vol. 15, No. 3, 2004, 189–202. Ruiz-Jimeùnez, J., Luque de Castro, M. D.. On-line pervaporation-capillary electrophoresis for the determination of volatile acidity and free sulfur dioxide in wines, Electrophoresis, Vol. 26, 2005, 2231–2238. Salmon, J.M.. Interactions between yeast, oxygen and polyphenols during alcoholic fermentations: Practical implications, LWT, Vol.39, 2006, 959–965. Seifert, D. B. and Phillips, J. A.. Production of Small, Monodispersed Alginate Beads for Cell Immobilization, Biotechnol. Prog., Vol.13, 1997, 562-568. Serafini, M., Maiani, G., and Ferro-Luzzi, A.. Effect of Ethanol on Red Wine Tannin-Protein (BSA) Interactions, J. Agric. Food Chem., Vol. 45, 1997, 3148-3151. Serra, A., Strehaiano, P., Taillandier, P.. Influence of temperature and pH on Saccharomyces bayanus var. uvarum growth; impact of a wine yeast interspecific hybridization on these parameters, International Journal of Food Microbiology, Vol.104, 2005, 257– 265. Shibasaki-Kitakawa, N., Iizuka, Y. and Yonemoto, T.. Cultures of Nicotiana tabacum Cells Immobilized in Calcium Alginate Gel Beads Coated with Cell-Free Gel Film, Journal of Chemical Engineering of Japan, Vol. 34, No. 11, 2001, 1431–1438. Shimobayashi, Y., Tominaga, K.. Application of biotechnology in the food industry. I. Brewing of white wine by a bioreactor, Hokaidoritsu Kogyo Shikenjo Hokoku, Vol.285, 1986, 199-204. Shinohara, T., Saito, K., Yanagida, F., and Goto, S.. Selection and Hybridization of Wine Yeasts for Improved Winemaking, Properties: Fermentation Rate and Aroma Productivity, Journal of fermentation and bioengineering, Vol. 77, No. 4, 1994, 428-431. Silva, S., Ramon-Portugal, F., Silva, P., Texeira, M.F., Strehaiano, P., Use of encapsulated yeast for the treatment of stuck and sluggish fermentations, J. Int. Sci. Vigne Vin, Vol.36, 2002,161–168. Silva, S., Ramoùn-Portugal, F., Andrade, P., Abreu, S., Fatima Texeira, M. and Strehaiano, P.. Malic Acid Consumption by Dry Immobilized Cells of Schizosaccharomyces pombe, Am. J. Enol. Vitic., Vol. 54, No.1, 2003, 50-55. Simpsona, N. E., Grant, S. C., Blackband, S. J., Constantinidis, I.. NMR properties of alginate microbeads, Biomaterials, Vol. 24, 2003, 4941–4948. Sims, C. A. and Morris, J. R.. Effects of Acetaldehyde and Tannins on the Color and Chemical Age of Red Muscadine (Vitis rotundifolia), American Journal of Enology and Viticulture, Vol.37, No.2, 1986, 163-165. Sluis, C., Stoffelen, C.J.P, Castelein, S.J., Engbers, G.H.M., Schure, E.G., Tramper, J., Wijffels, R.E.. Immobilized salt-tolerant yeasts: application of a new polyethylene-oxide support in a continuous stirred-tank reactor for flavour production, Journal of Biotechnology, Vol.88, 2001, 129-139. Solorzano, L.. 4500-NH3 F.Phenate Method, Standard Methods Committee, 1997. Souza, S.F., Melo, J.S., Deshpande, A. and Nadkarni, G.B.. Immobilation od yeast cells by adhesion to glass surface sing polyethylenimine, Biotechnology Letters ,Vol. 8, No. 9, 1986, 643-648. Steinbuchel and Rhee, S. K.. Alginates from algae, Wiley-VCH, Weinheim, 2005, 30p. Strehaiano, P. and Goma, G.. Effect of Initial Substrate Concentration on Two Wine Yeasts: Relation Between Glucose Sensitivity and Ethanol Inhibition, Am. J. Enol. Vitic., Vol. 34, No. 1, 1983, 1-5. Suzzi,G., Romano, P., Vannini, L.,Turbanti, L. and Domizio, P.. Cell-recycle batch fermentation using immobilized cells of flocculent Saccharomyces cerevisiae wine strains, World Journal of Microbiology & Biotechnology, Vol.12, 1996, 25-27. Szajaùni, B., Buzaù, J., Dallmann, K., Gimesi, I., Krisch, J. and Toth, M.. Continuous production of ethanol using yeast cells immobilized in preformed cellulose beads, Appl. Microbiol. Biotechnol., Vol.46, 1996, 122-125. Takaya, M., Matsumoto, N., Yanase, H.. Characterization of membrane bioreactor for dry wine production, J. Biosci. Bioeng., Vol.93, 2002, 240–244. Tal, Y., Rijn, J. V., Nussinovitch, A.. Improvement of Structural and Mechanical Properties of Denitrifying Alginate Beads by Freeze-Drying, Biotechnol. Prog., Vol. 13, 1997, 788-793. Tanaka, H. and Irie, S.. Preparation of Stable Alginate Gel Beads In Electrolyte Solutions Using Ba2+ and Sr2+, Biotechnology Techniques, Vol. 2, No.2, 1988, 115-120. Tataridis, P., Ntagas, P., Voulgaris, I., Nerantzis, E. T.. Production of sparkling wine with immobilized yeast fermentation, Technological Educational Institution of Athens, Department of Oenology and Beverage Technology, Ag. Spyridona Street, 12210 Aegaleo, Greece. Toro, M.E. and Vazquez, F.. Fermentation behaviour of controlled mixed and sequential cultures of Candida cantarellii and Saccharomyces cerevisiae wine yeasts, World Journal of Microbiology & Biotechnology, Vol.18, 2002, 347–354. Torrado, R.P., Carrasco, P., Aranda, A., Alcadizi, J.G.. Study of the First Hours of Microvinification by the Use of Osmotic Stress-response Genes as Probes, System. Appl. Microbiol., Vol.25, 2002, 153–161. Tsakiris, A., Bekatorou, A., Psarianos, C., Koutinas, A.A., Marchant, R., Banat, I.M.. Immobilization of yeast on dried raisin berries for use in dry white wine-making, Food Chemistry, Vol.87, 2004, 11–15. Tsakiris, A., Sipsas, V., Bekatorou, A., Mallouchos, A., and Koutinas, A. A.. Red Wine Making by Immobilized Cells and Influence on Volatile Composition, J. Agric. Food Chem., Vol. 52, 2004, 1357-1363. Vieira, A.M., Correia, I.S., Novais, J.M. , Cabral, J.M.S.. Could the improvement in the alcohol fermentation of high glucose concentration by yeast immobilization be explained by media supplementation?, Biotechnology Letters, Vol.11, No.2, 1989, 137-140. Vine R. P., Harkness, E. M, Browning, T. and Wagner, C.. Winemaking from grape growing to marketplace, Chapman & Hall, New York, 1997, 439p. Vorlop, K.D, Estap, D. & and Goødia, F.. Design of Ca-alginate immobilized yeast cell beads with controlled low desity to enhance their fluidization behavior in bioreactiors, Biotechnology techniques, Vol.7, No.4, 1993, 297-292. Wada, M., Kato, J. and Chibata, I.. Continuous Production of Ethanol Using Immobilized Growing Yeast Cells, European J. Appl. Microbiol. Biotechnol., Vol.10, 1980, 275-287. Walker, T., Morris, J., Threlfall, R. and Main, G.. pH Modification of Cynthiana Wine Using Cationic Exchange, J. Agric. Food Chem., Vol. 50, 2002, 6346-6352. Wauters, T., Iserentant, D., Verachtert, H.. Impact of mitochondrial activity on the cell wall composition and on the resistance to tannic acid in Saccharomyces cerevisiae, J. Gen. App.l Microbiol., Vol.47, No.1, 2001a, 21-26. Wauters, T., Iserentant, D., Verachtert, H.. Sensitivity of Saccharomyces cerevisiae to tannic acid is due to iron deprivation, Canadian Journal of Microbiology, Vol.47, No.4, 2001b, 290-293. Williams, D. and Munnecke, D. M.. The Production of Ethanol by Immobilized Yeast Cell, Biotechnology and Bioengineering, Vol. 23, 1981, 1813-1825. Xu, P., Thomas, A. and Gilson, C. D.. Combined Use Of Three Methods For High Concentration Ethanol Production By Saccharomyces Cerevisiae, Biotechnology Letters, Vol. 18, No.12, 1996, 1439-1440. Xufre, A., Albergaria, H., Inaùcio, J., Spencer-Martins, I., Gírio, F.. Application of fluorescence in situ hybridisation (FISH) to the analysis of yeast population dynamics in winery and laboratory grape must fermentations, International Journal of Food Microbiology, Vol.108, 2006, 376–384. Yajima, M. and Yokotsuka, K.. Volatile Compound Formation in White Wines Fermented Using Immobilized and Free Yeast, Am. J. Enol. Vitic. Vol. 52, No.3, 2001, 210-218. Yamagiwa, G., Shimizu, Y., Kozawa, T., Odenara, M., Ohkawa, A.. Formation of calcium alginate gel coating on biocatolyst immobilization carrier, Graduate of school Natural Science and Technology, Niigata University, Niigata, Vol.25, No.6, 1992, 723-728. Yamagiwa, K., Kozawa, T., Ohkawa, A.. Effect of alginate composition and gelling conditions on diffusional and mechanical properties of calcium alginategel beads, Journal of Chemical Engineering of Japan, Vol.28, No.4, 1995, 462-467. Yamagiwa, K., Shimizu, Y., Kozawa, T., Onodera. M. and Ohkawa, A.. Ethanol production by encapsulated and immobilized yeast, Biotechnology techniques, Vol. 8, No. 4, 1994, 271-274. Yokotsuka, K., Otaki, A., Naitoh, A. and Tanaka, H.. Controlled Simultaneous Deacidification and Alcohol Fermentation of a High-Acid Grape Must Using Immobilized Yeasts, Schizosaccharomyces pombe and Saccharomyces cerevisiae, Am. J. Enol. Vitic., Vol. 44, No. 4, 1993, 371-377. Yokotsuka, K., Takayanagi, T., Okuda, T. and Yajima, M.. Production of Sweet Table Wine by Termination of Alcohol Fermentation Using an Antimicrobial Substance from Paprika Seed, Am. J. Enol. Vitic., Vol. 54, No.2, 2003, 112-118. Yokotsuka, K., Yajima, M. and Matsudo, T.. Production of Bottle-Fermented Sparkling Wine Using Yeast Immobilized in Double-Layer Gel Beads or Strands, Am. J. Enol. Vitic., Vol.48, No. 4, 1997, 471-481. www.smegtz.org.vn/index.php?option=com_docman&task=doc_download&gid=150 www.aces.uiuc.edu/food-lab/classes/399/lectures/Wine9_01.ppt

Các file đính kèm theo tài liệu này:

  • docLUAN VAN TOT NGHIEP -chinh thuc.doc
Tài liệu liên quan