Domoic acid (DA) trong dịch chiết của 10 mẫu vật loài Hàu Hương thu tại đầm
Nha Phu vào tháng 8 năm 2010 được phân tích đồng thời bằng phương pháp sắc ký lỏng hiệu năng
cao (HPLC) và phương pháp ELISA sử dụng kháng thể đặc hiệu gắn kết với enzyme kháng lại DA
(DA-ELISA). Hàm lượng DA phân tích bằng ELISA luôn cao hơn so với cùng mẫu phân tích bằng
HPLC. Trên sắc ký đồ HPLC, có sự xuất hiện của 1 đỉnh rất gần thời gian lưu với DA, nhưng không
phải là một trong những dẫn xuất đã biết của độc tố này. Chất này có phản ứng với kháng thể đặc
hiệu kháng lại DA trong thí nghiệm Western Blot nhưng lại không phải là protein. Kết quả nghiên
cứu này xác nhận sự đồng thời tồn tại của một chất nhất định với DA trong Hàu Hương. Nghiên
cứu về đặc tính và cấu trúc hóa học của chất này đang được tiến hành nhằm góp phần làm sáng tỏ
giả thuyết đây là sản phẩm trung gian của quá trình trao đổi chất trong cơ thể sinh vật.
6 trang |
Chia sẻ: honghp95 | Lượt xem: 523 | Lượt tải: 0
Bạn đang xem nội dung tài liệu A presence of a substance binding with the specific antibody against domoic acid in the thorny oyster spondylus versicolor, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
149
Journal of Marine Science and Technology; Vol. 14, No. 2; 2014: 149-154
ISSN: 1859-3097
A PRESENCE OF A SUBSTANCE BINDING WITH THE SPECIFIC
ANTIBODY AGAINST DOMOIC ACID IN THE THORNY OYSTER
SPONDYLUS VERSICOLOR
Dao Viet Ha1,2
1Institute of Oceanography, VAST
2School of Agriculture and Life Science, The University of Tokyo, Japan
Email: daovietha69@gmail.com
Received: 13-3-2014
ABSTRACT: Domoic acid (DA) extracts from 10 specimens of a thorny oyster, Spondylus
versicolor collected at Nha Phu bay, Khanh Hoa province, Vietnam in August, 2010 was analyzed
individually by High Performance Liquid Chromatography (HPLC) and Indirect Enzyme Linked
Immunosorbent Assay (ELISA). Domoic acid levels in the extracts detected by ELISA were always
higher than those by HPLC, significantly. In the HPLC chromatogram, the peak of an unknown
compound with retention time very close to DA, but different from the known DA isomers was
always observed. This substance reacted well with DA-specific antibody in Western Blot
experiment, but not corresponding to any standard protein. Our result indicates the occurrence of a
certain non-protein substance, which was co-presented with DA in S. versicolor. Further
investigation on chemical feature of this substance is under progress.
Keywords: Spondylus versicolor, domoic acid, HPLC, ELISA, Vietnam
INTRODUCTION
Domoic acid (DA) was the marine toxin
corresponding for Amnesic Shellfish Poisoning
(ASP) case in Prince Edward Island, Canada in
1987 [1], and a microalgae Pseudonitzschia
multiseries was identified as a causative
organism[2]. Then, DA was known to be
produced by at least 16 diatom species
belonging to Pseudo-nitzschia genus [3-5] and
Nitzschia navis-varingica [6]. After Canadian
incident, no human poisoning corresponding to
DA has been found, but this toxin has been
found naturally in numerous planktivorous
species [4]. DA is also often found to
accumulate in organisms that are not filter
feeding such as swimming crab [7], squid and
octopus [8, 9], and in such cases, the origin of
DA is not clear.
During investigation of DA in Nha Phu
bay, Khanh Hoa province, Vietnam, we found a
correlation of DA levels in S. versicolor and in
plankton net samples with the abundance of
Pseudo-nitzschia cell numbers [10, 11].
However, DA amount in plankton sample was
always so small to be accumulated in the
Spondylus [10-12]. Also, the time lag (about
two weeks) between DA in S. versicolor and
plankton sample could not explain well
plankton origin of DA in this bivalve.
With the specimens collected Nha Phu bay,
Khanh Hoa province, we presented some
results on the occurrence of DA related
substances in Spondylus versicolor in which
DA accumulation was observed previously.
This data may suggest an idea of another
possible origin of DA in bivalves.
Dao Viet Ha
150
MATERIALS AND METHODS
Specimen collection: 10 specimens of S.
versicolor were collected by SCUBA diving
from Nha Phu bay, Khanh Hoa province,
Vietnam in August, 2010. They were kept cool
and transferred to the laboratory of Department
of Biochemistry, Institute of Oceanography,
Vietnam as soon as possible.
Extraction: After being removed the shells,
whole tissues of each S. versicolor specimen
were combined and homogenized with 4
volumes of distillate water, boiled in 5 minutes,
and centrifuged (10,000 × g, 20 min) according
to Quilliam, 2003 [13]. 1 mL of the crude
extract thus obtained is equivalent to about 0.2
g of the edible parts. The extracts were kept in -
200C until use.
HPLC and ELISA analysis: The
supernatant was analysed for DA by UV-HPLC
according to Kodama and Kotaki [14] and
expressed as µg/g of soft tissue for S.
versicolor. The reference standard of DA
(DACS-1C) was purchased from the Institute
for Marine Biosciences, National Research
Council of Canada (Halifax, NS, Canada). DA
in S. versicolor crude extracts were analysed by
ELISA using a DA specific antibody according
to Takata [15].
Electrophoresis and WESTERN Blot
analysis: The same S. versicolor crude extract
was applied into SDS-PAGE system (Bio Craft
Model BE-220, double rooms) with 15%
acrylamide separating gel in 1 hour and 30
mins. After that, one gel was stained with
protein staining solution (Coomassie Brilliant
Blue), while another gel was transferred into
Immobilon-P Transfer Membrane (PVDF
membrane; pore size 0.45 µm) by Trans-Blot
SD Semi-Dry Transfer Cell (Bio Rad) in
100 mV in 1 hour and 15 minutes. Next, the
membrane was incubated with DA-antibody in
1 hour with gentle sharking in room condition.
Then it was stained with the 2nd antibody
IRDye680RD Goat (polyclonal) Anti-Rabbit
IgG (H+L) in 1 hour in dark with gentle
sharking in room condition. Image was taken
by Odyssey Western Blot Blocker (LI-
CORModel 2800) at wave length 700 nm.
RESULTS AND DISCUSSION
Fig. 1. HPLC chromatograph of S. versicolor
extract No. 1 and DA standard
Fig. 1 showed the HPLC chromatogram of
a S. versicolor extract and DA standard. A clear
peak identically corresponding to DA standard
was obtained in the S. versicolor extract. In
addition, the occurrence of another peak was
always observed with a retention time of less
than 1 min earlier than that of DA itself. DA
was originally isolated from a macro red algae
Chondria armata as an insecticidal agent [16].
Its derivatives (iso-domoic acids A, B, C, G
and H) were also isolated from the same algae
[17, 18], but none of them have been found in
the extracts of planktons or shellfish tissue.
Other derivatives were isolated from toxic
shellfish and a causative diatom Pseudo-
nitzschia multiseries (e.g. iso-domoic acids D,
E, F and 5’-epi-DA) [19, 20]. But these
derivatives have been known as geometrical
isomers of DA and are not considered to be de
novo products of the plankton. In HPLC
analysis of shellfish extract, iso-D and E often
appeared about 1 min 30 sec to 2 mins earlier
than DA itself due to the difference of their
molecular weights [13]. Kotaki [21] also
reported the occurrence of some DA isomers
A presence of a substance binding
151
such as DA isomer A, B, C and D from the
Pseudo-nitzschia genus in tropical area.
However, the peak in the present study was so
high in comparison with the peaks of DA
isomers which often occurred in Spondylus
extract [22].
Table 1: DA (µg/g soft tissue) in Spondylus
versicolor detected by HPLC and ELISA
Spondylus No. HPLC ELISA
DA-ELISA/DA-
HPLC
1 0.81 1.97 2.4
2 3.49 4.58 1.3
3 0.92 2.19 2.4
4 1.89 2.89 1.5
5 1.76 3.18 1.8
6 1.17 2.45 2.1
7 2.05 2.28 1.1
8 0.62 0.90 1.5
9 0.76 1.03 1.4
10 1.07 1.07 1.0
Table 1 showed the results of ELISA and
HPLC analysis of DA in crude extracts of 10
Spondylus specimens. As shown, 9 out of 10
ELISA results showed significantly higher
(mean: 1.65, n=10) levels of DA than those in
HPLC results, strangely. According to Takata
[15], there is a high correlation between ELISA
and HPLC method in DA analysis (R= 0.902;
n=100). So, the difference in DA amounts of S.
versicolor obtained by HPLC and ELISA was
affected by unknown factors rather than
analysis method. On the other hand, peak of
unknown substances was not detected in the
Spondylus extracts which have no presence of
DA. Interestingly, such extracts were negative
in DA-ELISA analysis (data not shown). From
these, it could be considered that the unknown
substance detected by HPLC was the same
substance which reacted with DA antibody in
ELISA.
Fig. 2 showed the results of the
electrophoresis gel after being dyed with
Coomassie Brilliant Blue (CBB) (a) and the
PVDF membrane after Western Blot (b). There
is a clear band which reacted with specific
antibody against DA (Fig. 2b). From the
distance among the bands in Fig. 2, it is noticed
that this band is not corresponding to any
protein bands in the gel being dyed with CBB.
Also, although this band reacted with specific
antibody against DA in Western Blot, it could
not be DA itself, because DA molecular weight
is too low (311daltons) for remaining in the
PDVF membrane during membrane
transferring process. This substance is not also
an isomer among the known DA isomers which
often found in shellfish extract, as DA antibody
almost does not react with these isomers [15,
22], the substance may not a protein, as from
the result of SDS-PAGE, no corresponding
band to standard proteins was observed.
Fig. 2. SDS-PAGE of Spondylus versicolor
extract (a) dyed with Coomassie Brilliant Blue
and (b) Western Blot of SDS-PAGE gel
Moreover, supporting this assumption,
almost all proteins may be destroyed at high
temperature during the extraction process in
our experiment. Western Blot data could
explain well why always ELISA showed higher
amount of DA than HPLC. In fact, the ELISA
result is included both DA and such a substance
reacting with DA-antibody. Further
investigation of isolation and identification of
chemical feature of the substance is under
progress.
Kodama (2000) [24] reviewed that
tetrodotoxin and saxitoxin are intermediate
products of biosynthetic pathway, in which
Dao Viet Ha
152
final substances are essential amino acids
(lysine, arginine ) in the living organisms. S.
versicolor was reported as a specific species to
accumulate DA in tropical regions [23, 10].
However, mechanism of toxin accumulation in
this bivalve is still unclear. In case of Pseudo-
nitzschia, Ramsey (1998) [25] reported that DA
was assembled by condensation of two separate
precursor units, both originating from acetate,
but derived by different pathways (TCA cycle
and GAP-pyruvate). Kodama et al. (1985) [26]
found the presence of TTX secreting glands in
the skin of toxic puffer. It was indicated that
puffer cannot get any benefit from TTX,
moreover, this substance may be also toxic to
puffer, therefore, highly toxic specimens tried
to release toxin as much as they can. It may be
true also in case of DA, when Spondylus bodies
accumulate DA in a high amount, this animal
may try to excrete this toxin [26]. From this, it
is possible that DA is not its internal substance
of Spondylus species. Instead of that, unknown
microorganisms living in Spondylus tissues or
cells may metabolize a certain substance into
other secondary substances such as DA. Our
future research is going toward this direction
for clear understanding on pathway of DA in
nature organisms.
CONCLUSION
There is co-occurrence of the unknown
substance with domoic acid (DA) in the thorny
oyster Spondylus versicolor collected in Nha
Phu bay, Khanh Hoa province, Vietnam. This
substance could bind well with DA specific
antibody, interestingly. However, it was not
either any DA known isomers which were often
found in DA producing plankton or shellfish
nor protein. Further chemical analysis is
undertaken in order to have clear understanding
on chemical structure and feature of this
substance.
Acknowledgment: This study was funded by
the project 106.99-2010.22 - NAFOSTED,
Vietnam. I am in debt to guidance from Prof.
Dr. Masaaki Kodama for experimental design
and writing. I wish to send my sincere thank to
Prof. Dr. Yasuwo Fukuyo, Prof. Dr. Hideki
Oshio and Dr. Gen Kaneko for providing lab
facilities and working condition.
REFERENCES
1. Wright J. L. C., R. K. Boyd, A. S. W. De
Freitas , M. Falk, R. A. Foxall, W. D.
Jamieson, M. V. Laycock, A. W.
McCulloch, A. G. McInnes, P. Odense, V.
P. Pathak, M. A. Quilliam, M. A. Ragan, P.
G. Sim, P. Thibault, J. A. Walter, M.
Gilgan, D. J. A. Richard and D. Dewar.
1989. Identification of domoic acid, a
neuroexcitatory amino acid, in toxic
mussels from eastern Prince Edward Island.
Canadian Journal of Chemistry, 67: 481-
490.
2. Bates, S. S., C. J. Bird, A. S. W. de Freitas,
R. Foxall, M. Gilgan, L. A. Hanic, G. R.
Johnson, A. W. McCulloch, P. Odense, R.
Pocklington, M. A. Quilliam, P. G. Sim, J.
C. Smith, D. V. Subba Rao, E. C. D. Todd,
J. A. Walterand J. L. C. Wright, 1989.
Pennate diatom Nitzschia pungens as the
primary source of domoic acid, a toxin in
shellfish from eastern Prince Edward
Island, Canada. Canadian Journal of
Fisheries and Aquatic Sciences, 46: 1,203-
1,215.
3. Le Long, A., H. Hegaret, P. Soudant and S.
S. Bates, 2012. Pseudo-nitzschia
(Bacillariophyceae) species, domoic acid
amnesic shellfish poisoning: revisiting
previous paradigms, Phycologia, 51: 168-
216.
4. Fernandes, L. F., K. A. Hubbard, M.
Richlen, J. Smith, S. S. Bates, J. Ehrman, C.
Léger, L. L. Mafra Jr., D. Kulis, M.
Quilliam, D. Erdner, K. Libera, L.
McCauley, and D. Anderson, 2014.
Diversity and toxicity of the diatom
Pseudo-nitzschia Peragallo in the Gulf of
Maine, Northwestern Atlantic Ocean.
Deep-Sea Research .II.
2. In press.
5. Teng, S. T., H. C. Lim, P. T. Lim, V. H.
Dao, S. S. Bates, and C. P. Leaw, 2014.
Pseudo-nitzschia kodamae sp. nov.
(Bacillariophyceae), a toxigenic species
from the Strait of Malacca, Malaysia.
Harmful Algae. DOI:
10.1016/j.hal.2014.02.005. In press.
A presence of a substance binding
153
6. Kotaki, Y., K. Koike, M. Yoshida, C. V.
Thuoc, N. T. M. Huyen, N. C. Hoi, Y.
Fukuyo and M. Kodama, 2000. Domoic
acid production in Nitzschia sp.
(Bacillariophyceae) isolated from a shrimp-
culture pond in Do Son, Vietnam. Journal
of Phycology, 36: 1,057-1,060.
7. Wekell, J. C., E. J. Gauglisz, H. J. Jr.
Barnett, C. L. Hatfield and M. Eklund.
1994. The occurrence of domoic acid in
razor clam (Sliquapatula), Dungeness crab
(Cancer magister), and anchovies
(Engraulismordax). Journal of Shellfish
Research, 13: 587-593.
8. Costa, P. R., R. Rosa and M. A. M.
Sampayo, 2004. Tissue distribution of the
amnesic shellfish toxin, domoic acid in
Octopus vulgaris from the Portuguese
coast. Marine Biology,144: 971-976.
9. Costa, P. R., R. Rosa, A. Duarte-Silva, V.
Brotas and M. A. M. Sampayo, 2005.
Accumulation, transformation and tissue
distribution of domoic acid, the amnesic
shellfish poisoning toxin, in the common
cuttlefish, Sepia officinalis. Aquatic
Toxicology,74: 82-91.
10. Dao, V. H., Y. Takata, T. Omura, S. Sato, Y.
Fukuyo and M. Kodama, 2009a. Seasonal
variation of domoic acid in Spondylus
versicolor in association with that in plankton
samples in Nha Phu bay, Khanh Hoa,
Vietnam. Fisheries Science, 75: 507-512.
11. Dao, V. H., Y. Takata, T. Omura, N. T.
Dung, N. T. Hong, S. Sato, Y. Fukuyo and
M. Kodama, 2009b. Domoic acid in small-
sized plankton in Nha Phu bay, Khanh Hoa
province, Vietnam. La mer, 46: 117-120.
12. Dao V. H., P. T. Lim, P. X. Ky, Y. Takata,
S. T. Teng, T. Omura, Y. Fukuyo and M.
Kodama, 2014. Diatom Pseudo-nitzschia
cf. caciantha (Bacillariophyceae), the Most
Likely Source of Domoic Acid
Contamination in the Thorny Oyster
Spondylus versicolor in Nha Phu bay,
Khanh Hoa province, Vietnam. Asian
Fisheries Science, 27. In press.
13. Quilliam M. A., 2003. Chemical methods
for domoic acid, the amnesic shellfish
poisoning (ASP) toxin. In: Manual on
harmful marine microalgae, Monographs
on Oceanographic Methodology (Eds. G.
M. Hallegraeff, D. M. Anderson & A. D.
Cembella).Intergovernmental
Oceanographic Commission (UNESCO),
Paris: 247-266.
14. Kodama M. and Y. Kotaki, 2005. Domoic
acid. In The Manual for the Method of
Food Sanitation Test. Ministry of Health,
Labour and Welfare (ed.). Japan Food
Hygienic Association, Tokyo. (In
Japanese): 666-673.
15. Takata, Y., 2006. Study on the mechanism
of domoic acid accumulation in shellfish.
PhD Thesis, Kitasato University, Iwate,
Japan.
16. Takemoto, T. and K. Daigo, 1958.
Constituents of Chondria armata. Chem.
Pharm. Bull.,6: 578-580.
17. Maeda, M., 1986. Structures of isodomoic
acid A, B and C, novel insecticidal amino
acids from red alga Chondria armata.
Chemical Pharmacy Bulletin, 34: 4,892.
18. Zaman, L., 1997. Two new isomers of
domoic acid from red alga Chondria
armata. Toxicon, 35: 205.
19. Wright, J. L. C., M. Falk, A. G. Mcinnes
and J. A. Walter, 1990. Identification of
isodomoic acid D and two new geometrical
isomers of domoic acid in toxic mussels.
Canadian Journal of Chemistry, 68: 5-22.
20. Walter, J. A., M. Falk and J. L. C. Wright
1994. Chemistry of the shellfish toxin
domoic acid: characterization of related
compounds. Canadian Journal of
Chemistry, 72: 430.
21. Kotaki, Y., E. F. Furio, F. F. A. Bajarias,
M. Satake, N. Lundholm, K. Koike, S. Sato,
Y. Fukuyo and M. Kodama, 2006. New
stage of study on domoic acid producing
diatoms: A finding of Nitzschia navis
varingica that produces domoic acid
derivatives as major toxin components.
Coastal Marine Science, 30(1): 116-120.
22. Takata Y., S. Sato, V. H. Dao, U. M.
Montojo, T. Lirdwitayaprasit, S.
Kamolsiripichaiporn, Y. Kotaki, Y. Fukuyo,
Dao Viet Ha
154
M. Kodama, 2009. Occurrence of domoic
acid and isomers in tropical bivalves.
Fisheries Science,75: 473-480.
23. Dao, V. H., Y. Takata, S. Sato, Y. Fukuyo
and M. Kodama, 2006. Domoic acid in a
bivalve Spondylus cruentus in Nha Trang
bay, Khanh Hoa province, Vietnam.
Coastal Marine Science, 30(1): 130-132.
24. Kodama, M., 2000. Ecobiology,
Classification, and Origin. In: Seafood and
Freshwater Toxins (Ed. L. M. Botana).
Marcel Dekker, Inc. New York Basel. 125-
149.
25. Ramsey, U. P., D. J. Douglas, J. A. Walter
and J. L. C. Wright, 1998. Biosynthesis of
domoic acid by the diatom Pseudo-
nitzschia multiseries. Natural Toxins, 6:
137-146.
26. Kodama, M. S. Sato, T. Ogata, Y. Suzuki, T.
Kaneko and K. Aida, 1985. Tetrodotoxin
secreting glands in the skin of puffer fishes.
Toxicon, 24: 891-829.
SỰ CÓ MẶT CỦA HỢP CHẤT GẮN KẾT VỚI KHÁNG THỂ ĐẶC
HIỆU KHÁNG ĐỘC TỐ DOMOIC ACID TRONG LOÀI HÀU HƯƠNG
SPONDYLUS VERSICOLOR
Đào Việt Hà1,2
1Viện Hải dương học-Viện Hàn lâm Khoa học và Công nghệ Việt Nam
2Khoa Nông nghiệp và Khoa học sự sống, Đại học Tokyo, Nhật Bản
TÓM TẮT: Domoic acid (DA) trong dịch chiết của 10 mẫu vật loài Hàu Hương thu tại đầm
Nha Phu vào tháng 8 năm 2010 được phân tích đồng thời bằng phương pháp sắc ký lỏng hiệu năng
cao (HPLC) và phương pháp ELISA sử dụng kháng thể đặc hiệu gắn kết với enzyme kháng lại DA
(DA-ELISA). Hàm lượng DA phân tích bằng ELISA luôn cao hơn so với cùng mẫu phân tích bằng
HPLC. Trên sắc ký đồ HPLC, có sự xuất hiện của 1 đỉnh rất gần thời gian lưu với DA, nhưng không
phải là một trong những dẫn xuất đã biết của độc tố này. Chất này có phản ứng với kháng thể đặc
hiệu kháng lại DA trong thí nghiệm Western Blot nhưng lại không phải là protein. Kết quả nghiên
cứu này xác nhận sự đồng thời tồn tại của một chất nhất định với DA trong Hàu Hương. Nghiên
cứu về đặc tính và cấu trúc hóa học của chất này đang được tiến hành nhằm góp phần làm sáng tỏ
giả thuyết đây là sản phẩm trung gian của quá trình trao đổi chất trong cơ thể sinh vật.
Từkhóa: Spondylus versicolor, domoic acid, HPLC, ELISA, Việt Nam.
Các file đính kèm theo tài liệu này:
- 4481_15997_1_pb_2354_2079637.pdf