Bài tập phương trình, bất phương trình mũ và logarith
Bài 1: Giải và biện luận phương trình
1. (m-2)2^x + m2^-x + m = 0
2. m3^x + m3^-3 = 8
Bài 2: Tìm m để phương trình có nghiệm
(m-4)9^x - 2(m-2)3^x +m -1 = 0
14 trang |
Chia sẻ: maiphuongtl | Lượt xem: 2768 | Lượt tải: 3
Bạn đang xem nội dung tài liệu Bài tập phương trình, bất phương trình mũ và logarith, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
1
Bµi tËp ph•¬ng tr×nh, bÊt ph•¬ng tr×nh mò vµ logarit – phÇn 1
Bµi I: Gi¶i c¸c ph•¬ng tr×nh:
1.
2x x 8 1 3x2 4- + -=
2.
2 5x 6x
22 16 2
- -
=
3. x x 1 x 2 x x 1 x 22 2 2 3 3 3- - - -+ + = - +
4. x x 1 x 22 .3 .5 12- - =
5.
22 x 1(x x 1) 1-- + =
6. 2 x 2( x x ) 1-- =
7.
22 4 x(x 2x 2) 1-- + =
Bµi II: Gi¶i c¸c ph•¬ng tr×nh:
8. 4x 8 2x 53 4.3 27 0+ +- + =
9. 2x 6 x 72 2 17 0+ ++ - =
10. x x(2 3) (2 3) 4 0+ + - - =
11. x x2.16 15.4 8 0- - =
12. x x x 3(3 5) 16(3 5) 2 ++ + - =
13. x x(7 4 3) 3(2 3) 2 0+ - - + =
14. x x x3.16 2.8 5.36+ =
15.
1 1 1
x x x2.4 6 9+ =
16.
2 3x 3
x x8 2 12 0
+
- + =
17. x x 1 x 2 x x 1 x 25 5 5 3 3 3+ + + ++ + = + +
18. x 3(x 1) 1-+ =
Bµi III: Gi¶i c¸c ph•¬ng tr×nh:
19. x x x3 4 5+ =
20. x3 x 4 0+ - =
21. 2 x xx (3 2 )x 2(1 2 ) 0- - + - =
22. 2x 1 2x 2x 1 x x 1 x 22 3 5 2 3 5- + + ++ + = + +
Bµi IV: Gi¶i c¸c hÖ ph•¬ng tr×nh:
23.
x y
3x 2y 3
4 128
5 1
+
- -
ì =ï
í
=ïî
24.
2
x y
(x y) 1
5 125
4 1
+
- -
ì =ï
í
=ïî
2
25.
2x y
x y
3 2 77
3 2 7
ì - =ï
í
- =ïî
26.
x y2 2 12
x y 5
ì + =
í
+ =î
27.
x y x y
22 4
x y x y
23 6
m m m m
n n n n
- -
+ +
ì
- = -ï
í
ï - = -î
víi m, n > 1.
Bµi V: Gi¶i vµ biÖn luËn ph•¬ng tr×nh:
28. x x(m 2).2 m.2 m 0-- + + = .
29. x xm.3 m.3 8-+ =
Bµi VI: T×m m ®Ó ph•¬ng tr×nh cã nghiÖm:
30. x x(m 4).9 2(m 2).3 m 1 0- - - + - =
Bµi VII: Gi¶i c¸c bÊt ph•¬ng tr×nh sau:
31.
6
x x 29 3 +<
32.
1 1
2x 1 3x 12 2- +³
33.
2x x
1 5 25
-
< <
34. 2 x(x x 1) 1- + <
35.
x 1
2 x 1(x 2x 3) 1
-
++ + <
36.
2 32 x 2x 2(x 1) x 1+- > -
Bµi VIII: Gi¶i c¸c bÊt ph•¬ng tr×nh sau:
37. x x3 9.3 10 0-+ - <
38. x x x5.4 2.25 7.10 0+ - £
39.
x 1 x
1 1
3 1 1 3+
³
- -
40. 2 x x 1 x5 5 5 5++ < +
41. x x x25.2 10 5 25- + >
42. x x 2 x9 3 3 9+- > -
43.
1 x x
x
2 1 2
0
2 1
- + -
£
-
Bµi IX: Cho bÊt ph•¬ng tr×nh: x 1 x4 m.(2 1) 0- - + >
44. Gi¶i bÊt ph•¬ng tr×nh khi m=
16
9
.
3
45. §Þnh m ®Ó bÊt ph•¬ng tr×nh tháa x R" Î .
Bµi X:
46. Gi¶i bÊt ph•¬ng tr×nh:
2 1
2
x x1 1
9. 12
3 3
+
æ ö æ ö+ >ç ÷ ç ÷
è ø è ø
(*)
47. §Þnh m ®Ó mäi nghiÖm cña (*) ®Òu lµ nghiÖm cña bÊt ph•¬ng tr×nh:
( )22x m 2 x 2 3m 0+ + + - <
Bµi XI: Gi¶i c¸c ph•¬ng tr×nh:
48. ( ) ( )5 5 5log x log x 6 log x 2= + - +
49. 5 25 0,2log x log x log 3+ =
50. ( )2xlog 2x 5x 4 2- + =
51. 2
x 3
lg(x 2x 3) lg 0
x 1
+
+ - + =
-
52.
1
.lg(5x 4) lg x 1 2 lg0,18
2
- + + = +
Bµi XII: Gi¶i c¸c ph•¬ng tr×nh sau:
53.
1 2
1
4 lgx 2 lgx
+ =
- +
54. 2 2log x 10 log x 6 0+ + =
55. 0,04 0,2log x 1 log x 3 1+ + + =
56. x 16 23log 16 4 log x 2log x- =
57. 2 2xxlog 16 log 64 3+ =
58. 3lg(lgx) lg(lgx 2) 0+ - =
Bµi XIII: Gi¶i c¸c ph•¬ng tr×nh sau:
59. x3 9
1
log log x 9 2x
2
æ ö+ + =ç ÷
è ø
60. ( ) ( )x x2 2log 4.3 6 log 9 6 1- - - =
61. ( ) ( )x 1 x2 2 1
2
1
log 4 4 .log 4 1 log
8
+ + + =
62. ( )x xlg 6.5 25.20 x lg25+ = +
63. ( ) ( ) ( )x 1 x2 lg2 1 lg 5 1 lg 5 5-- + + = +
64. ( )xx lg 4 5 x lg2 lg3+ - = +
65. lg x lg55 50 x= -
4
66.
2 2lg x lg x 3
x 1 x 1
-- = -
67.
2
3 3log x log x3 x 162+ =
Bµi XIV: Gi¶i c¸c ph•¬ng tr×nh:
68. ( ) ( )2x lg x x 6 4 lg x 2+ - - = + +
69. ( ) ( )3 5log x 1 log 2x 1 2+ + + =
70. ( ) ( ) ( ) ( )23 3x 2 log x 1 4 x 1 log x 1 16 0+ + + + + - =
71. ( )5log x 32 x+ =
Bµi XV: Gi¶i c¸c hÖ ph•¬ng tr×nh:
72.
2 2
lgx lgy 1
x y 29
+ =ì
í
+ =î
73. 3 3 3
log x log y 1 log 2
x y 5
+ = +ì
í
+ =î
74.
( )
( ) ( )
2 2lg x y 1 3lg2
lg x y lg x y lg3
ì + = +ï
í
+ - - =ïî
75.
4 2
2 2
log x log y 0
x 5y 4 0
- =ìï
í
- + =ïî
76.
( ) ( )
x y
y x
3 3
4 32
log x y 1 log x y
+ì
ï =í
ï + = - +î
77.
y
2
x y
2log x
log xy log x
y 4y 3
ì =ï
í
= +ïî
Bµi XVI: Gi¶i vµ biÖn luËn c¸c ph•¬ng tr×nh:
78. ( ) ( )2lg mx 2m 3 x m 3 lg 2 xé ù+ - + - = -ë û
79. 3 x x
3
log a log a log a+ =
80. 2sin x sin xlog 2.log a 1= -
81.
2
2
ax
a 4
log a.log 1
2a x
-
=
-
Bµi XVII: T×m m ®Ó ph•¬ng tr×nh cã nghiÖm duy nhÊt:
82. ( ) ( )23 1
3
log x 4ax log 2x 2a 1 0+ + - - =
5
83.
( )
( )
lg ax
2
lg x 1
=
+
Bµi XVIII: T×m a ®Ó ph•¬ng tr×nh cã 4 nghiÖm ph©n biÖt.
84. 23 32 log x log x a 0- + =
Bµi XIX: Gi¶i bÊt ph•¬ng tr×nh:
85. ( )28log x 4x 3 1- + £
86. 3 3log x log x 3 0- - <
87. ( )21 4
3
log log x 5 0é ù- >ë û
88. ( ) ( )21 5
5
log x 6x 8 2log x 4 0- + + - <
89. 1 x
3
5
log x log 3
2
+ ³
90. ( )xx 9log log 3 9 1é ù- <ë û
91. x 2x 2log 2.log 2.log 4x 1>
92. 1
3
4x 6
log 0
x
+
³
93. ( ) ( )2 2log x 3 1 log x 1+ ³ + -
94. 8 1
8
2
2 log (x 2) log (x 3)
3
- + - >
95. 3 1
2
log log x 0
æ ö
³ç ÷ç ÷
è ø
96. 5 xlog 3x 4.log 5 1+ >
97.
2
3 2
x 4x 3
log 0
x x 5
- +
³
+ -
98. 1 3
2
log x log x 1+ >
99. ( )22xlog x 5x 6 1- + <
100. ( )23x xlog 3 x 1- - >
101.
2
2
3x
x 1
5
log x x 1 0
2
+
æ ö- + ³ç ÷
è ø
6
102. x 6 2
3
x 1
log log 0
x 2+
-æ ö >ç ÷+è ø
103. 22 2log x log x 0+ £
104. x x
216
1
log 2.log 2
log x 6
>
-
105. 23 3 3log x 4 log x 9 2log x 3- + ³ -
106. ( )2 41 2 16
2
log x 4 log x 2 4 log x+ < -
Bµi XX: Gi¶i c¸c bÊt ph•¬ng tr×nh:
107.
2
6 6log x log x6 x 12+ £
108.
3
2 22 log 2x log x 1x
x
- - >
109. ( ) ( )x x 12 1
2
log 2 1 .log 2 2 2+- - > -
110.
( ) ( )2 32 25 11
2
log x 4x 11 log x 4x 11
0
2 5x 3x
- - - - -
³
- -
Bµi XXI: Gi¶i hÖ bÊt ph•¬ng tr×nh:
111.
2
2
x 4
0
x 16x 64
lg x 7 lg(x 5) 2lg2
ì +
>ï
- +í
ï + > - -î
112.
( ) ( ) ( )
( )
x 1 x
x
x 1 lg2 lg 2 1 lg 7.2 12
log x 2 2
+ì - + + < +ï
í
+ >ïî
113.
( )
( )
2 x
4 y
log 2 y 0
log 2x 2 0
-
-
ì - >ï
í
- >ïî
Bµi XXII: Gi¶i vµ biÖ luËn c¸c bÊt ph•¬ng tr×nh( 0 a 1< ¹ ):
114. alog x 1 2x a x+ >
115.
2
a
a
1 log x
1
1 log x
+
>
+
116.
a a
1 2
1
5 log x 1 log x
+ <
- +
117. x a
1
log 100 log 100 0
2
- >
Bµi XXIII:
7
118. Cho bÊt ph•¬ng tr×nh ( ) ( )2 2a alog x x 2 log x 2x 3- - > - + + cã nghiÖm 9x 4= .
Gi¶i bÊt ph•¬ng tr×nh ®ã.
Bµi XXIV: T×m m ®Ó hÖ bÊt ph•¬ng tr×nh cã nghiÖm:
119.
2lg x mlgx m 3 0
x 1
ì - + + £
í
>î
Bµi XXV: Cho bÊt ph•¬ng tr×nh:
( ) ( )2 1
2
x m 3 x 3m x m log x- + + < -
120. Gi¶i bÊt ph•¬ng tr×nh khi m = 2.
121. Gi¶i vµ biÖn luËn bÊt ph•¬ng tr×nh.
Bµi XXVI: Gi¶i vµ biÖn luËn bÊt ph•¬ng tr×nh:
122. ( ) ( )xalog 1 8a 2 1 x-- ³ -
8
Bµi tËp ph•¬ng tr×nh, bÊt ph•¬ng tr×nh mò vµ logarit – phÇn 2
1. 125.3.2 21 =-- xxx
2. xx 3322 loglogloglog =
3. xx 234432 loglogloglogloglog =
4. xxx 332332 loglogloglogloglog =+
5. 2loglog3loglog 32 xx ³
6. 2)4(log 82 xx x ³
7. xxxx lg25,4lg3lg 10
22 --- =
8. 2)1( 11 log)1(log £-+ ++ - xx xx xx
9. 5lglg 505 xx -=
10. 126 6
2
6 loglog £+ xx x
11. xx =+ )3(log52
12. 1623 3
2
3 loglog =+ xx x
13. xx
x
-+ = 22 3.368
14.
265 3
1
3
1
2 +-+
> xxx
15. xx 31
1
13
1
1 -
³
-+
16. 13
1
12
1
22 +- ³ xx
17. 2551
2
<<
-xx
18. ( )
( )12log
log
5,0
5,0
2
25
08,0
--
-
÷÷
ø
ö
çç
è
æ
³
x
x
x
x
19. 48loglog 22 £+ xx
20. 1log
5
log 255 =+ xxx
21. ( ) 15log.5log 225 =xx
22. 5log5log xx x -=
23. 42log.4log 2sinsin =xx
24. 12log.4log 2coscos =xx
9
25. 5)1(log2)1(4log
2
1)1(2 =+++ ++ xx xx
26. 03loglog 33 <-- xx
27. ( )[ ] 05loglog 243/1 >-x
28. 3log2/5log 3/1 xx ³+
29. 14log.2log.2log 22 >xxx
30. 0
5
34
log
2
2
3 ³-+
+-
xx
xx
31. 0
2
1
loglog 2
3
6 >÷
ø
ö
ç
è
æ
+
-
+ x
x
x
32.
6log
1
2log.2log
2
16/ -
>
xxx
33. 12log 2 ³xx
34. ( ) 193loglog 9 £-xx
35. 1
2
23
log >
+
+
x
x
x
36. ( ) 13log 23 >-- xxx
37. ( ) 2385log 2 >+- xxx
38. ( )[ ] 169loglog 3 =-xx
39. xxx 216 log2log416log3 =-
40. 364log16log 22 =+ xx
41. ( )1log
1
132log
1
3/1
2
3/1
+
>
+- xxx
42. ( )101
log1
log1 2
¹
+
+
a
x
x
a
a
43.
( )
( ) 1035log
35log 3
¹
-
-
avíi
x
x
a
a
44. 05
10
1
2 1cos2sin2
7lgsincos
1cos2sin2 =+÷
ø
ö
ç
è
æ- +-
--
+- xx
xx
xx
45.
( ) ( )
0
352
114log114log
2
32
11
22
5 ³
--
-----
xx
xxxx
10
46. ( ) ( ) 31log1log2 2
32
2
32
=-++++ -+ xxxx
47. xxxxxx 532532 loglogloglogloglog =++
48. 02)5(log6)5(log3)5(log 25/155
2
5/1 £+-+-+- xxx
49. Víi gi¸ trÞ nµo cña m th× bÊt ph•¬ng tr×nh ( ) 32log 22/1 ->+- mxx cã nghiÖm vµ
mäi nghiÖm cña nã ®Òu kh«ng thuéc miÒn x¸c ®Þnh cña hµm sè
( ) 2log1log 13 -+= + xxy xx
50. Gi¶i vµ biÖn luËn theo m: 0100log
2
1
100log >- mx
51.
( )
( )î
í
ì
>+
+<++- +
22log
)122.7lg()12lg(2lg1 1
x
x
x
xx
52. T×m tËp x¸c ®Þnh cña hµm sè ( )10
2
5
2
log
2
1
2 ¹<
÷
ø
ö
ç
è
æ +
-
+
= a
x
x
y
a
53. 3log29log4log 33
2
3 -³+- xxx
54. ( )41622 2/1 log42log4log xxx -<+
55. ( ) 0log213log 2222 £+--+ xxx
56. 0455 1 =+- - xx
57. 0103.93 <-+ -xx
58. 8log2
16
1
4
1
4
1
>÷
ø
ö
ç
è
æ-÷
ø
ö
ç
è
æ
- xx
59. 12
3
1
.9
3
1
/12/2
>÷
ø
ö
ç
è
æ+÷
ø
ö
ç
è
æ
+ xx
60. 01228
332
=+-
+
x
x
x
61. xxx 5555 12 +<+ +
62.
16
5
202222 22 =+++ -- xxxx
63. ( ) ( ) 10245245 =-++ xx
64. ( ) ( ) 32531653 +=-++ xxx
11
65. ( ) ( ) 02323347 =+--+ xx
66. ( ) ( ) 14347347 ³++- xx
67. ( ) ( ) 43232 =++- xx
68. ( ) ( ) 10625625 tantan =-++ xx
69. xxx /1/1/1 964 =+
70. 104.66.139.6 =+- xxx
71. 010.725.24.5 £-+ xxx
72. 333 8154154
xxx
³++-
73. 02515.349 12212
222
³+- +--+- xxxxxx
74. 2log
cos2sin
sin22sin3
log 22 77 xx xx
xx
--
=
-
75. ( ) 2/1213log 23 =+--+ xxx
76. ( ) 2log2log
22
=++ + xx xx
77. ( )
( )
( )1log2
2log
1
13log 2
3
2 ++=+-
+
xx
x
78. ( ) ( )32log44log 1
2
12 --=+
+xx x
79. ( ) 1323.49log 13 +=--+ xxx
80. ( ) 4log1log1 12 -=-+ xx
81. ( ) ( )
8
1
log14log.44log
2/12
1
2 =++
+ xx
82. ( ) ( ) 222log12log 12/12 ->-- +xx
83. ( ) ( ) 1
1
1
2525 +
-
-
-³+ x
x
x
84. 0
12
1221
£
-
+--
x
xx
85. 02cos
2
sinlogsin
2
sinlog
3
13 =÷
ø
ö
ç
è
æ ++÷
ø
ö
ç
è
æ - x
x
x
x
86. ( ) ( )293
32
27 3log2
1
log
2
1
65log -+÷
ø
ö
ç
è
æ -=+- x
x
xx
12
87. T×m m ®Ó tæng b×nh ph•¬ng c¸c nghiÖm cña ph•¬ng tr×nh
( ) ( ) 02log422log2 22
2
1
22
4 =-++-+- mmxxmmxx lín h¬n 1.
88. T×m c¸c gi¸ trÞ cña m ®Ó ph•¬ng tr×nh sau cã nghiÖm duy nhÊt:
( ) 0log1log
25
2
25
=++++ -+ xmmxx .
89. T×m m ®Ó ph•¬ng tr×nh ( ) ( ) 02log422log2 222/1224 =-++-+- mmxxmmxx
cã 2 nghiÖm u vµ v tho¶ m·n u2+v2>1
90. xx xx coslogsinlog 2sincos ³
91. x
x
4115 =+
92. 132 2 +=
x
x
93.
xxxx 202459 ++=
94. 2112212 532532 +++- ++=++ xxxxxx
95. 9,2
5
2
2
5
/1
=÷
ø
ö
ç
è
æ+÷
ø
ö
ç
è
æ
xx
(*)
96. xxx 6321 11 <++ ++
97. ( ) xxx 233 log21log3 =++
98.
22
2
)1(
12
log262
-
+
=+-
x
x
xx
99.
x
xx
x
x
x
2
2
22
22
2 211
-
=-
--
100. ( ) ( ) 0212232 =-+-- xx xx
101. 255102.25 >+- xxx
102. 20515.33.12 1 =-+ +xxx
103. log2x+2log7x=2+log2x.log7x
104. xx coslogcotlog2 23 =
105. ( ) 5,1lg1log =+xx
106.
ïî
ï
í
ì
=+
=+
)sin3(logcos31log
)cos3(logsin31log
32
32
xy
yx
107.
( ) ( )
( ) ( )ïî
ï
í
ì
+-=-+
+-=-+
21log131log
21log131log
2
3
2
2
2
3
2
2
xy
yx
108. ( ) ( ) xxxxxx 33lg36lg 22 ++=-++-+
13
109. Chøng minh r»ng nghiÖm cña ph•¬ng tr×nh ( ) xxx 446 loglog2 =+ tho¶ m·n bÊt
®¼ng thøc
x
x pp 16
sin
16
cos < .
110. T×m x sao cho bÊt ph•¬ng tr×nh sau ®©y ®•îc nghiÖm ®óng víi mäi a:
( ) 014log 2 >++- xaax
111. ( ) )2lg(46lg 2 ++=--+ xxxx
112. )3(log)2(log)1(loglog 5432 +++=++ xxxx
113. T×m nghiÖm d•¬ng cña bÊt ph•¬ng tr×nh
12
1036 1
-
>
- +
xx
x
(*)
114.
( )
( )î
í
ì
=+
=+
246log
246log
xy
yx
y
x
115. ( ) 0log213log 2222 £+--+ xxx
116. ( ) 016)1(log)1(4)1(log2 323 =-+++++ xxxx
117. 035)103(25.3 22 =-+-+ -- xx xx
118. T×m a ®Ó ph•¬ng tr×nh sau cã 4 nghiÖm ph©n biÖt 0loglog2 3
2
3 =+- axx
119. ( ) ( ) 06log52log1 2/12 2/1 ³++++ xxxx
120. ( )88 1214 ->- -- xx exxex
121. 62.3.23.34 212 ++<++ + xxxx xxx
122. ( ) ( ) ( ) )4ln(32ln4ln32ln 22 xxxx -+-=-+-
123. ( ) ( )
x
xx
x
xx x
2
log2242141
2
1272 22 +--£÷
ø
ö
ç
è
æ -+-+
124. Trong c¸c nghiÖm (x, y) cña bÊt ph•¬ng tr×nh ( ) 1log 22 ³++ yxyx h·y t×m nghiÖm cã
tæng x+2y lín nhÊt xx xxxxxxx 3.43523.22352 222 +-->+-- .
125. T×m t ®Ó bÊt ph•¬ng tr×nh sau nghiÖm ®óng víi mäi x: ( ) 13
2
1
log 22 >úû
ù
êë
é +
+
+
x
t
t
.
126. T×m a ®Ó bÊt ph•¬ng tr×nh sau tho¶ m·n víi mäi x: ( ) 02log 2
1
1 >+
+
ax
a
.
127. T×m a ®Ó bÊt ph•¬ng tr×nh sau nghiÖm ®óng víi mäi x: 1
32
2log2log.
2
2
2
2
<
--
++
xx
xax a
14
128. T×m m ®Ó mäi nghiÖm cña bÊt ph•¬ng tr×nh 12
3
1
3
3
1
1
12
>÷
ø
ö
ç
è
æ+÷
ø
ö
ç
è
æ
+
xx
còng lµ nghiÖm
cña bÊt ph•¬ng tr×nh (m-2)2x2-3(m-6)x-(m+1)<0. (*)
129. ( ) ( ) 025353 222 2122 £--++ -+-- xxxxxx
130. ( ) ( ) 312223 +-=+ xx
131. 1
23
23.2 2
£
-
- +
xx
xx
132. 04.66.139.6
222 222 £+- --- xxxxxx
133. ( ) ( ) 022log.2log 222 ³-+ -xx
134.
2
222 4log6log2log 3.24 xx x =-
135. ( ) ( ) 421236log4129log 232273 =+++++ ++ xxxx xx
Các file đính kèm theo tài liệu này:
- BTmu_logaritmathvn.com.7121.pdf