Nhân loại đang sống trong những năm đầu của thế kỷ 21,song việc phát triển sản suất nông nghiệp ở nước tavẫn có ý nghĩa vô cùng quan trọng trong nền kinh tế. Trong nông nghiệp ,sản suất lúa là một trong những lĩnh vực được ưu tiên phát triển hàng đầu. việc nghiên cứu phát triển lĩnh vực này là một việc làm thiết thực nhằm đánh giá các kết quả đã ddạt được ; từ đó, định hướng mục tiêu, chính sách cho thời gian tới. Đề tàI Dãy số thời gian và vận dụng phương pháp dãy số thời gian phân tích và dự đoán sản lượng lúa Việt Nam năm 2002.” đã giải quyết được những vấn đề sau:
1 _ sơ lược về tình hình sản xuất kương thực ở nước ta từ 1975 đến nay,bao gồm những thuộn lợi và khó khăn của đIều kiện tự nhiên cũng như các chính sách của đảng và nhà nước đến tình hình sảnxuất lương thực ở việt nam trong những năm qua; những kết quả đã đạt được và định hướng trong thời gian tới
2_Trình bày được phương pháp luận về dãy số thời gian, các phương pháp phân tích và dự đoán thông dụng đă được nghiên cứu trong qua trình học tập ở nhà trường,đIều kiện vận dụng và ưu nhược diểm của từng phương pháp ._
3-kết hợp phương pháp luận và tình hình thực tế của sản xuất lúa ở nước ta để đánh giá các kết quả đă đạt được, bao gồm: các đặc đIểm về biến động của sản lượng lúa và các chỉ tiêu có liên quan, xu hướng biến động và mối liên hệ tương quan giữa các chỉ tiêu đó
43 trang |
Chia sẻ: Kuang2 | Lượt xem: 1000 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Đề tài Vận dụng phương pháp dãy số thời gian phân tích và dợ đoán sản lượng lúa Việt Nam đến năm 2002, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
LờI NóI ĐầU
Nhân loại đã bước sang một thiên niên kỉ mới, nhiều vấn đề đang được đặt ra, trong đó có an ninh lương thực. Vào thời đIểm hiện nay, nhiều nơi trên thế giới vẫn còn tình trạng đói nghèo ,không có đủ lương thực để ăn. Việt nam là một nước nông nghiệp ,đông dân nên càng cần thiết phải quan tâm tới vấn đề này.Hơn nữa, đẩy mạnh sản xuất nông nghiệp, trong đó có sản xuất lúa là quy luật phổ biến đối với những nước có nền kinh tế chưa phát triển như Việt Nam.Công việc này đòi hỏi chi phí vật chất tương đối thấp so với các nghành khác.Mặt khác chính sự phát triển này lại là bước đi tất yếu để tích luỹ vốn trong quá trình sản xuất từ sản xuất nhỏ lên sản xuất lớn. trong những năm gần đây,Việt nam tiến hành công cuộc công nghiệp hoá đất nước, nông nghiệp là mộy lĩnh vực quan trọng để thúc đẩy quá trình này.Như vậy ,có thể nói phát triển nông nghiệp là một cách phát triển kinh tế tất yếu để đưa Việt Nam đi lên.
Tại Đại hội Đảng toàn quốc lần thứ VI (12/1986) , Đảng tađã xác định sản xuất lương thực là một trong những nội dung quan trọng của ba chương trinhf kinh tế lớn: lương thực-thực phẩm, hàng tiêu dùng và hàng xuất khẩu.Năm1989, nước ta đã xuất khẩu gạo và đến năm 1997đã vươn lên hàng thứ hai trên thế giới về lĩnh vực này.Hiện nay, mức lương thực quy thóc bình quân đầu người năm ở nước ta là 408kg ,vấn đề an ninh lương thực về cơ bản đã được đảm bảo. Tóm lại ,trong nhưng năm gần đây,Việy Nam đã đạt được một số thành tựu nhất định trong sản xuất lương thực .Để đánh giá thực chất nhận định này,đề tài: “Vận dụng phương pháp dãy số thời gian phân tích và dợ đoán sản lượng lúa việt nam đến năm 2002 .” sẽ đưa ra một số phương pháp phân tích để đánh giá những thành tựu đó, đồng thời dự đoán sản lượng lúa Việt Nam đến năm 2002.
Với mục đích đó nội dung đề tài gồm ba chương:
Chương I : Một số vấn đề về dãy số thời gian.
Chương II : Một số phương pháp biểu hiện xu hướng biến động và dự đoán thống kê ngắn hạn
Chương III: Vận dụng phương pháp dãy số thời gian để phân tích và dự đoán sản lượng lúa Việt Nam đến năm 2002.
Ngoài ra , đề tài cũng đề xuất một vài kiến nghị đối với công tác quản lí trong nông nghiệp , đặc biệt là sản xuất lươnh thực trong thời gian tới.
Để hoàn thành đề tài này, ngoài sự cố gắng của bản thân còn có sự hướng dẫn ,góp ý,nhận xết của cô giáo TS Trần Kim Thu.
CHƯƠNG I
Một số vấn đề về dãy số thời gian
I/Khái niệm về dãy số thời gian.
1.Khái niệm.
Vật chất luôn luôn vận động không ngừng theo thời gian.Để nghiên cứu biến động của kinh tế xã hội,người ta thường sử dụng dãy số thời gian.
Dãy số thời gian là dãy các trị sốcủa chỉ tiêu thống kê được sắp xềp theothứ tự thời gian. Dãy số thời gian cho phép thống kê học nghiên cứu đặc đIểm biến động của hiện tượngtheo thời gian vạch rõ xu hướng và tính quy luật của sự biến động,đồng thời dự đoán các mức độ của hiện tượng trong tương lai.
2.Kết cấu.
Dãy số thì gian gồm hai thành phần:thời gian và chỉ tiêu của hiện tượng được nghiên cứu.
+Thờt gian có thể đo bằng ngày ,tháng, năm,tuỳ theo mục đích nghiên cứu.Đơn vị thời gian phải đồng nhất trong dãy số thời gian.Độ dài thời gian giữa hai thời gian liền nhau đượcgọi là khoảng cách thời gian.
+ Chỉ tiêu về hiện tượng được nghiên cứu là chỉ tiêu được xây dựng cho dãy số thời gian.Các trị số của chỉ tiêu được gọi là các mức độ của dãy số thời gian.Các trị số này có thể là tuyệt đối ,tương đối hay bình quân.
3.Phân loại.
Có một số cách phân loại dãy số thời gian theo các mục đích nghiên cứu khác nhau.Thông thường ,người ta căn cứ vào đặc điểm tồn tại về quy mô của hiện tượng theo thời gian để phân loại.Theo cách này ,dãy số thời gian được chia thành hai loại: dãy số thời điẻm và dãy số thời kì.
Dãy số thời điểm biểu hiện quy mô của hiện tượng nghiên cứu tại những thời điểm nhất định.Do vậy ,mức độ của hiện tượng ỏ thời điểm sau có thể bao gồm toàn bộ hay một bộ phận mức độ của hiện tượng ở thời diểm trước đó.
Dãy số thời kì biểu hiện quy mô (khối lượng) của hiện tượng trong từng thờ gian nhất định.Do đó ,chúng ta có thể cộng các mức độ liền nhau để được một mức độ lớn hơn trong một khoảng thời gian dài hơn.Lúc này, số lượng các số trong dãy số giảm xuống và khoảng cách thời gian lớn hơn.
4.Tác dụng.
Dãy số thời gian có hai tác dụng chính sau:
+Thứ nhất ,cho phép thống kê học nghiên cứu các đặc điểm và xu hướng biến động của hiện tượng theo thời gian.Từ đó ,chúng ta có thể đề ra định hướng hoặc các biện pháp xử lí thích hợp.
+Thứ hai ,cho phép dự đoán các mức độ của hiện tượng nghiên cứu có khả năng xảy ra trong tương lai.
Chúng ta sẽ nghiên cứu cụ thể hai tác dụng này trong các phần tiếp theo.
5.Điều kiện vận dụng.
Để có thể vận dụng dãy số thời gian một cách hiệu quả thì dãy số thời gian phải đảm bảo tình chất có thể so sánh được giữa các mức độ trong dãy thời gian.
Cụ thể là:
+Phải thống nhất được nội dung và phương pháp tính
+Phải thống nhất được phạm vi tổng thể nghiên cứu.
+Các khoảng thời gian trong dãy số thời gian nên bằng nhau nhất là trong dãy số thời kì.
Tuy nhiên,trên thực tế nhiều khi các điều kiện trên bị vi phạm do các nguyên nhân khác nhau.Vì vậy ,khi vận dụng đòi hỏi phải có sự điều chỉnh thích hợp để tiến hành phân tích đạt hiệu quả cao.
II.Các chỉ tiêu phân tích dãy số thời gian.
Để phân tích đặc điểm biến động của hiện tượng theo thời gian người ta thường sử dụng 5 chỉ tiêu chính sau đây:
1.Mức độ bình quân theo thời gian.
Chỉ tiêu này phản ành mức độ đại diện cho tất cả các mức độ tuyệt đối trong dãy số thời gian.Việc tính chỉ tiêu này phải phụ thuộc vào dãy số thời gian đó là dãy số thời điểm hay dãy số thời kì.
a.Đối với dãy số thời kì,mức độ bình quân theo thời gian được tính theo công thưc sau:
(1).
Trong đó:
yi(i=1,n).Các mức độ của dãy số thời kì.
n:Số lượng các mức độ trong dãy số.
b.Đối với dãy số thời điểm có khoảng cách thời gian bằng nhau , chúng ta áp dụng công thức:
(2).
Trong đó:
yi(i=1,n).Các mức độ của dãy số thời đIểm có khoảng cách thời gian bằng nhau.
c.Đối với dãy số thời điểm có khỏang cách thời gian không bằng nhau , chúng ta áp dụng công thức:
(3).
Trong đó:
yi(i=1,n).Các mức độ của dãy số thời điểm có khoảng cách thời gian không bằng nhau.
ti(i=1,n):Độ dài thời gian có mức độ: yi.
2.Lượng tăng (giảm) tuyệt đối
Chỉ tiêu này phản ánh sự thay đổi về trị số tuyệt đốicủa chỉ tiêu trong dãy số giữa hai thời gian nghiên cứu .Nếu mức độ của hiện tượng tăng thì trị số của chỉ tiêu mang dấu (+) và ngược lại mang dấu (-).
Tuỳ theo mục đích nghiên cứu ,chùng ta có các lượng tăng (giảm ) tuyệt đối liên hoàn,định gốc hay bình quân.
a.Lượng tăng (giảm ) tuyệt đối liên hoàn phản ánh mức chênh lệch tuyệt đối giữa mức độ nghiên cứu (yi )mức độ kì liền trước đó (yi-1)
Công thức : di=yi-yi-1 (i=2,n) (4).
Trong đó: di :Lượng tăng (giảm ) tuyệt đối liên hoàn
n:Số lượng các mức độ trong dãy thời gian.
b.Lượng tăng (giảm) tuyệt đối định gốc.Là mức độ chênh lệch tuyệt đốigiữa mức độ kì nghiên cứuyivà mức độ của một kì được chọn làm gốc, thông thường mức độ của kì gốc là mức độ đầu tiên trong dãy số (y1 ) .Chỉ tiêu này phản ánh mức tăng (giảm) tuyệt đối trong những khoảng thời gian dài .
Gọi là lượng tăng(giảm) tuyệt đối định gốc ,ta có:
(i=2,n). (5).
Giữa tăng giảm tuyệt đối liên hoàn và tăng giảm tuyệt đối định gốc có mối liên hệ được xác định theo công thức:
di (i=2,n). (6).
Công thức này cho thấy lượng tăng(giảm) tuyệt đối định gốc bằng tổng đại số lượng tăng giảm tuyệt đối liên hoàn.
Công thức tổng quát:
(7).
c.Lượng tăng (giảm) tuyệt đối bình quân là mức bình quân cộng của các mức tăng (giảm ) tuyệt đối liên hoàn.
Nếu kí hiệulà lượng tăng (giảm )tuyệt đối bình quân,ta có công thức: (8).
Lượng tăng (giảm) tuyệt đối bình quân không có ý nghĩa khi các mức độ của dãy số không có cùng xu hướng(cùng tăng hoặc cùng giảm) vì hai xu hướng trái ngược nhau sẽ triệt tiêu lẫn nhau làm sai lệch bản chất của hiện tựơng
3.Tốcđộ pháp triển.
Tốcđộ pháp triển là tương đối phản ánh tốc độvà xu hướng phát triển của hiện tượng theo thời gian.
Có các tốc độ phát triển sau:
a.Tốcđộ pháp triển liên hoàn( ti) phản ánh sự phát triển của hiện tượng giữa hai thời gian liền nhau.
ti= (i=2,n) (9)
ti có thể được tính theo lần hay phần trăm(%).
b.Tốc độ phát triển định gốc(Ti phản ánh sự phát triển của hiện tượng trong những khoảng thời gian daì.Chỉ tiêu này được xác định bằng cách lấy mức độ của kì nghiên cứu ( yi )chia cho mức độ của một kì được chon làm gốc,thường là mức độ đầu tiên trong dãy số ( yi ).
Công thức:
Ti= (i=2,n) (10).
Giữa tốc độ phát triển liên hoàn và tốc độ phát triển định gốc có các mối quan hệ sau:
+Thứ nhất, tích các tốc độ phát triển liên hoàn bằng tốc độ phát triển định gốc:
(i=2,n) (11).
+Thứ hai,thương của hai tốc độ phát triển định gốc liền nhau bằng tốc độ phát triển liên hoàn giữa hai thơì gian liền đó:
(i=2,n) (12).
Tốc độ phát triển định gốc cũng được tính theo số lần hay%.
c.Tốc độ phát triển bình quân là số bình quân nhân của các tốc độ phát triển liên hoàn,phản ánh tốc độ phát triển đại diện cho các tốc độ phát triển liên hoàn trong một thời kì nào đó .
Gọi là tốc độ phát triển bình quân ,ta có:
(13). hay :
(14).
Công thức này cũng có đơn vị tính giống hai công thức trên.Tốc độ phát triển bình quân có hạn chế là chỉ nên tính khi các mức độ của dãy số thời gian biến ddộng theo một xu hướng nhất định(cùnh tăng hoặc cùng giảm).
4.Tốc độ tăng (giảm).
Chỉ tiêu này phản ánh mức độ của hiện tượng nghiên cứu giữa hai thời gian đã tăng (+) hoặc giảm (-) bao nhiêu lần (hoặc bao nhiêu % ) Tương ứng với mỗi tốc độ phát triển,chúng ta có các tốc độ tăng giảm sau:
a.Tốc độ tăng giảm liên hoàn phản ánh sự biến động tăng(giảm) giữa hai thời gian liền nhau, là tỉ số giữa lượng tăng(giảm) liên hoàn kì nghiên cứu ()với mức độ kì liền trước trong dãy số thời gian (yi-1).
Gọi ai là tốc độ tăng (giảm) liên hoàn ,ta có:
Ai== (i=2,n). (15)
Hay: ai =ti -1 (nếu tính theo đơn vị lần) (16).
ai =ti -100 (nếu tính theo đơn vị %) (17).
b.Tốc độ tăng (giảm )định gốc là tỷ số giữa lượng tăng (giảm) định gốc nghiên cứu() với mức độ kì gốc , thường là mức độ đầu tiên trong dãy(yi).
Công thức: Ai= (18).
Trong đó : Ai:Tốc độ tăng (giảm ) định gốc có thể tính được theo lần hay%.
c.Tốc độ tăng (giảm) bình quân là số tương đối phản ánh tốc độ tăng (giảm) đại diện cho các tốc độ tăng (giảm) liên hoàn trong cả thời kì nghien cứu .
Nếu kí hiệu là tốc độ tăng (giảm) bình quân ,ta có:
(19)
(20)
Hay: (21)
Do tốc độ tăng (giảm) bình quân được tính theo tốc độ phát triển bình quân nên nó cũng có hạn chế khi áp dụng giống như tốc độ phát triển bình quân.
5.Giá trị tuyệt đối của 1% tăng(giảm).
Chỉ tiêu này phản ánh cứ 1% tăng (giảm) của tốc độ tăng(giảm) liên hoàn thì tương ứng với mổttị số tuyệt đối là bao nhiêu.
Giá trị tuyệt đối của 1% tăng (giảm) được xác định theo công thức :
(i=2,n) (22).
Trong đó: gi :Giá trị tuyệt đối của 1% tăng (giảm).
ai:Tốc độ tăng (giảm) liên hoàn tính theođ đơn vị %.
còn được tính theo công thớc sau:
(i=2,n) (23).
*Chú ý:Chỉ tiêu náy chỉ tính cho tốc độ tăng (giảm) liên hoàn, đối với tốc độ tăng (giảm ) định gốc thì không tính vì kết quả luôn là một số không đổi và băng yi /100.
chương II
một số phương pháp biểu hiên xu hướng
biến động và thống kê ngắn hạn
A một số phương pháp biểu hiện xu hướng biến
động của hiện tượng
I.Phương pháp mở rộng khoảng cách thời gian:
Mở rộng khoảng cách thời gian là ghép một số khoảng thời gian gần nhau lại thành một khoảng thời gian dài hơnvới mức độ lớn hơn.Trước khi ghép ,các mưc độ trong dãy số chưa phản ánh được mức biến động cơ bản của hiện tượng hoặc biẻu hiện chưa rõ rệt.Sau khi ghép ,ảnh hưởng của các nhân tố ngẫu nhiên triệt tiêu lẫn nhau do ảnh hưởng của các chiều hướng trái ngược nhau và các mức độ mới bộc lộ rõ xu hướngbiến động cơ bản của hiện tượng.
Tuy nhiên ,phương pháp mở rộng khoảng cách thời gian còn có một số nhược điểm nhất định .
+Thứ nhất ,phương pháp này chỉ áp dụng đối với dãy số thời kì vì nếu áp dụng cho dãy số thời điểm,các mức độ mới trở lên vônghĩa.
+Thứ hai,chỉ nên áp dụng cho dãy số tương đối dàivà chưa bộc lộ rõ xu hường biến động của hiện tượng vì sau khi mở rộng khoảng cách thời gian ,số lượng các mức độ trong dãy số giảm đI nhiều .
II.Phương pháp bình quân trượt :
Số bình quân trượt (còn gọi là số bình quân di động) là số bình quân cộng của một nhóm nhất định các mức độ của dãy số được tính bằng cách lần lượt loại dần các mức độ đầu và thêm danf các mức độ tiếp theo sao cho tổng số lượng các mức độ tham gia tính số lần bình quân không đổi.
Có hai phương pháp số bình quân trượt cơ bản.
1.Số bình quân trươt. đơn giản.
Phương pháp này coi vai trò của các mức độ tham gia tính số bình quân trượt lànhư nhau.Thông thường ,sốmức độ tham gia trượt là lẻ (VD:3,5,7,,2n+1) để giá trị bình quân nằm giữ khoảng trượt.
Công thức tổng quát: (24).
Trong đó : yt :Số bình quân trượt tại thời gian t.
yi :Mức độ tại thời gian i.
m:Số mức độ tham gia trượt.
t:Thời gian có mức độ tính bình quân trượt.
Giả sử có dãy số thời gian: y1 , y2 ,..., yn-1 , yn (gồm m mức độ).
Néu tính bình quân trượt cho nhóm ba mức độ ,chúng ta triển khai công thức như sau:
(25)
(26).
...............................
(27).
2.Số bình quân trượt gia quyền.
Cơ sở của phương pháp là gắn hệ số vai trò cho các mức độ tham gia tính bình quân trượt. Các mức độ này càng gần mức độ tính thì hệ số càng caovà càng xa thì hệ số càng nhỏ.Các hệ số vai trò được lấy từ các hệ số của tam giac Pa.scal.
1
1 1
1 2 1
1 3 3 1
Tuỳ theo mức độ tham gia tính bình quân trượt,chúng ta chọn dòng hê số tương ứng .Chẳng hạn ,số mức độ tham gia là 3, công thức là:
(28).
(29).
(30).
Phương pháp này cho chúng ta hiệu quả cao hơn phương pháp trên.Tuy nhiên cách tính phức tạp hơn nên ít được sử dụng.
III.Phương pháp hồi quy.
Hồi quy là phương pháp của toán học được vận dụng trong thống kê để biểu hiện xu hướng biến động cơ bản của hiện tượng theo thời gian. Những biến động này có nhiều giao động ngẫu nhiên và mức độ tăng (giảm) thất thường.
Hàm xu thế tổng quát có dạng:
Trong đó: : Hàm xu thế lí thuyết .
t: Thứ tự thời gian tương ứng với một mức độ trong dãy số.
:Các tham số của hàm xu thế ,các tham số này thường được xác định bằng phương pháp bình phương nhỏ nhất.
= min
Do sự biến động của hiện tượng là vô cùng đa dạng nên có hàm xu thế tương ứng sao cho sự mô tả là gần đúng nhất so với xu hướng biến động thực tế của hiện tượng.
Một số dạng hàm xu thế thường gặp là:
1.Hàm xu thế tuyến tính.
Hàm xu thế tuyến tính được sử dụng khi dãy số thời gian có các lượng tăng (giảm) liên hoàn tuyệt đối xấp xỉ nhau.Theo phương pháp bình phương nhỏ nhất,chúng ta biến đổi được hệ phương trình:
Từ đó, chúng ta tíng được .
Ngoài ra, tham số có thể tính trực tiếp theo công thức :
(31).
(32).
2.Hàm xu thế dạng Parabol bậc hai.
Hàm Parabol được sử dụng khi các sai phân bậc hai(tức là sai phân của sai phân bậc một) xấp xỉ nhau.
Dạng hàm :
(34).
với là các nghiệm của phương trình:
(35)
3.Hàm mũ.
Phương trình hàm mũ có dạng:
Hai tham số và là nghiệm của phương trình:
Hàm xu thế dạng được vận dụng khi dãy số thời gian có các tốc độ phát triển liên hoàn xấp xỉ nhau.
4.Hàm Hypecpol .
Phương trình hàm xu thế Hypecpol có dạng:
Hàm xu thế này được sử dụng khi dãy số thời gian có các mức độ ngày càng giảm chậm dần.
Các tham số được xác định theo hệphương trình:
Trên đây là một số hàm xu hướng thường gặp.Sau khi xây dựng xong hàm xu thế ,chúng ta cần thiết phải đánh giá xem mức độ phù hợp của dạng hàm có chấp nhận được hay không, hay mối liên hệ tương quan có chặt chẽ hay không.
Đói với hàm xu thế dạng tuyến tính, người ta sử dụng hệ số tương quan r :
với
Khi /r/ càng gần 1 thì mối liên hệ tương quan càng chặt chẽ.r mang dấu (-) khi y và t có mối liên hệ tương quan nghịch,còn r mang dấu (+) khi y và t có mối liên hệ tương quan thuận. Thông thường /r/ > 0.9 thì chúng ta có thể chấp nhận được.
Ngoài ra ,để đánh giá trình độ chặt chẽ của mối liên hệ tương quan giữa y và t trong các hàm xu thế phi tuyến người ta sử dụng tỉ số tương quanh.
Nếu h càng gần 1 thì mối liên hệ tương quan càng chặt chẽ.
IV.Phương pháp biểu hiện biến động thời vụ.
Để xác định được tính chất và mức độ của biến động thời vụ, chúng ta phải sử dụng số liệu trong nhiều năm theo nhiều phương pháp khác nhau.Phương pháp thông dụng nhất là sử dụng chỉ số thời vụ.
Có 2 loại chỉ số thời vụ:
+Chỉ số thời vụ đối với dãy số thời gian có các mật độ tương đối ổn định.
+Chỉ số thời vụ đối với dãy số thời gian có xu hướng biến động rõ rệt.
1.Chỉ số thời vụ đối với dãy số thời gian có các mật độ tương đối ổn định nghĩa là trong cùng một kì ,năm này qua năm khác khong có sự thay đổi rõ rệt,các mức độ xấp xỉ nhau, khi đó chỉ số thời vụ được tính theo công thức sau:
(i=1,n).
Trong đó: :Chỉ số thời vụ của kì thứ i trong năm.
:Số bình quân cộng của các mức độ cùng kì thứ i .
:Số bình quân cộng của tất cả các mức độ trong dãy số .
2.Chỉ số thời vụ đối với dãy số thời gian có xu hướng biến động rõ rệt.
Trong trường hợp này, chúng ta phả đIều chỉnh bằng phương trình hồi quy để tính các mức độ lí thuyết.Sau đó dùng các mức độ này để làm căn cứ so sánh:
(i=1,n).
Trong đó: yij : Mức độ thực tế của kì thứ i năm j .
: Mức độ lí thuyết của kì thứ i năm j .
B.Một số phương pháp dự đoán thống kê ngắn hạn.
I.Một số phương pháp dự đoán thống kê ngắn hạn thường dùng:
1.Ngoại suy bằng các mức độ bình quân.
Phương pháp này được sử dụng khi dãy số thời gian không dài và không phải xây với các dự đoán khoảng.Vì vậy, độ chính xác theo phương pháp này không cao.Tuy nhiên, phương pháp đơn giản và tính nhanh nên vẫn hay được dùng.
Có các loại ngoại suy theo các mức độ bình quân sau:
a.Ngoại suy bằng mức độ bình quân theo thời gian:
Phương pháp này được sử dụng khi các mức độ trong dãy số thời gian không có xu hướng biến động rõ rệt (biến động không đáng kể).
Mô hình dự đoán:
với:
(36).
Trong đó:
:Mức độ bình quân theo thời gian.
n:Số mức độ trong dãy số.
L:Tầm xa của dự đoán.
:Mức độ dự đoán ở thời gian (n+L).
b.Ngoại suy bằng lượng tăng (giảm ) tuyệt đối bình quân.
Phương pháp này được áp dụng trong trường hợp dãy số thời gian có các lượng tăng (giảm) tuyệt đối liên hoàn xấp xỉ nhau. Nghĩa là,các mức độ trong dãy số tăng cấp số cộng theo thời gian.
Mô hình dự đoán:
với:
(37).
Trong đó: :Mức độ cuối cùng của dãy số thời gian.
(i=1,n):Lượng tăng (giảm) tuyệt đối liên hoàn.
c.Ngoại suy bằng tốc độ phát triển bình quân.
Đây là phương pháp được áp dụng khi dãy số thời gian có các tốc độ phát triển liên hoàn xấp xỉ nhau.Nghỉa là các mức độ tăng cấp số nhân theo thời gian.
Với là tốc độ phát triển bình quân, ta có mô hình dự đoán theo năm:
(38).
Nếu dự đoán cho những khoảng thời gian dưới môt năm ( tháng ,quý ,mùa) thì:
(j=n+L) (39).
Trong đó;
:Mức độ dự đoán kì thứ i.(i=1,m) của năm j.
Yi:Tổng các mức độ của các kì cùng tên i.
(i=1,m).
Yij:mức độ thực tế kì thứ i của năm j.
2.Ngoại suy bắngố bình quân trượt.
Gọi M là dãy số bình quân trượt.
M=Mi (i=k,n)
với k là khoảng san bằng .
Đối với phương pháp này ,người ta có thể tiến hành dự đoán điểm hay dự đoán khoảng .
+Thứ nhất, đối với dự đoán điểm ,mô hình dự đoán có dạng:
(40).
Mn:Số bình quân trượt thứ n.
:Mức độ dự đoán năm thứ n+L.
+Thứ hai, mô hình dự đoán khoảng có dạng:
(41).
Trong đó:
:Giá trị trong bảng T-Student với bậc tự do (k-1) và xác xuất tin cậy (1-).
:Sai số bình quân trượt:
(42).
3.Ngoại suy hàm xu thế .
Ngoại suy hàm xu thế là phương pháp dự đoán thông dụng, được xây dựng trên cơ sở sự biến động của hiện tượng trong tương lai tiếp tục xu hướng biến động đã hình thành trong quá khứ và hiện tại Mô hình dự đoán điểm:
f(n+L) là giá trị hàm xu thế tại thời điểm (n+L).
Mô hình dự đoán khoảng:
Trong đó: Sp :Sai số dự đoán:
Se :Sai số mô hình:
p: số các tham số trong mô hình .
Các dạng hàm xu thế dùng để dự đoán là các hàm xu thế có chất lượng cao khi sai số mô hình nhỏ nhất và hệ số tương quan cao nhất (xấp xỉ 1).
4.Ngoại suy theo bảng Bays-balot.
Nhờ việc phân tích các thành phần của dãy số thời gian, chúng ta xây dựng được mô hình khá chuẩn.Từ mô hình này chúng ta có thể dự đoán các mức độ cho tương lai.
Tuy nhiên,thành phần ảnh hưởng của nhân tố ngẫu nhiênkhó xác định. Hơn nữa ,ảnh hưởng này thường không lớn nên việc loại bỏ nhân tố này, mô hình sẽ trở nen đơn giản hơn.
Kết quả dự đoán phản ánh khá chính xác cả quy luật biến độngchung lẫn biến động mùa vụ.Tuy nhiên ,mô hình dự đoán này có hạn chế là chỉ vận dụng dự đoán khi các mùa vụ có chung xu hướng biến động .Nghĩa là các mùa vụ phải cùng tăng (giảm) và cùng tốc độ phát triển.
5.Phương pháp san bằng mũ.
Hầu hết các mô hình dự đoán kể trên đều có chung một nhược điểm là đánh giá vai trò của các mức độ trong dãy số thời gian như nhau .
Để khắc phục nhợc điểm này, người ta xây dựng mô hình dự đoán theo phương pháp san bằng mũ.Phương pháp dự đoán này dựa trên cơ sở các mức độ của dãy số thời gian phải được xem xét một cách không như nhau.Các mức độ càng mới (càng cuối dãy số) càng cần phải được chú ý nhiều hơn . Nhờ vậy, mô hình dự đoán có khả năng thích nghi với những sự biến động mới nhất của hiện tượng trong dãy số thời gian.
Gọi yt là mức độ thực tế tại thời điểm t.
:mức độ lí thuyết tại thời điểm t.
Ta có mức độ lí thuyết dự đoán tại thời đIểm tiếp theo(t+1) là:
Đặt:, ta có:
là các hệ số san bằng nằm trong khoảng [0,1].
Như vậy mức độ dự đoán là trung bình cộng gia quyền của các mức độ thực tế và mức độ dự đoán .
Sau một loạt các phép biến đổi, chúng ta xây dựng được một công thức tổng quát:
Trong đó: y0 :Mức độ được chọn làm điều kiện ban đầu.
Dự đoán bằng phương pháp san bằng mũ chịu ảnh hưởng mạnh nhất của mức độ mới nhất và giảm dần đối với các mức độ ở cáng đầu dãy số.Do có sự tự diều chỉnh khi không có thông tin mới nhất nên mức độ dự đoán luôn luôn sát th
CHƯƠNG III
vận dụng dãy số thời gian phân tích và dự đoán
sản lượng lúa việt nam đến năm 2002
I.Phân tích sản lượng lúa việt nam thời kì (1975 -1998).
1.Phân tích đặc điểm biến động:
a. Sản lượng lúa theo năm:
Sự biến động của các mức độ trong dãy số thời gian là đặc điểm cơ bản nhất mà chúng ta cần nghiên cứu. Sau đây là một vài phân tích đặc điểm biến động của từng chỉ tiêu.
Bảng I.1:Tình hình biến động sản lượng lúa Việt Nam thời kỳ 1975- 1998.
.
Chỉ tiêu
Năm
Sản lượng
(nghìn tấn)
Lượng tăng giảm tuyệt đối liên đoàn( nghìn tấn)
Tốc độ phát triển liên đoàn(%)
1975
10539
1976
11827
1288
112,2
1977
10597
-1230
98,6
1978
9790
-807
92,4
1979
11363
1573
116,1
1980
11647
284
102,5
1981
12415
768
106,6
1982
14390
1975
115,9
1983
14743
353
102,5
1984
15506
763
105,2
1985
15815
309
102,0
1986
16003
188
101,2
1987
15103
-900
94,4
1988
17000
1891
112,6
1989
18996
1996
111,7
1990
19225
229
101,2
1991
19622
397
102,1
1992
21590
1967
110,0
1993
22837
1247
105,8
1994
23528
691
103,0
1995
24964
1436
106,1
1996
26397
1433
105,7
1997
27524
1127
104,3
1998
29142
1618
105,9
Trung bình
17526
809
104,5
Qua quan sát trên, chúng ta thấy sản lượng lúa tăng mạnh qua các năm đặc biêt là từ năm 1987 .Năm 1975, sản lượng lúa nước ta chỉ đạt 10.539 nghìn tấn, năm 1987 tăng lên 15.103 nghìn tấn và đến năm 1998 đã là 29142 nghìn tấn. Tốc độ phát triển bình quân cả thời kỳ là 104,5%, tương đương mỗi năm tăng lên 809 nghìn tấn thóc. Trong thời kỳ đầu (1975-1987), tốc độ tăng còn thấp và chưa ổn định. Nguyên nhân là do trong những năm này cơ chế quản lý nông nghiệp ở nước ta chưa khuyến khích được bà con nông dân yên tâm phát triển sản xuất, hơn thế nữa, mùa màng thường xuyên bị thiên tai, sâu bệnh. Do vậy, sản lượng các năm 1977, 1978, 1987 giảm mạnh so với các năm trước đó. Các năm còn lại tuy có tăng nhưng không đều. Trong nửa thời kỳ sau (1987-1998), cơ chế quản lý thay đổi,bà con nông dân bắt đầu thực hiện theo cơ chế khoán 10. Kết quả là sản lượng lúa nước ta từ đây bắt đầu tăng mạnh. Hầu hết các năm, snả lượng năm sau tăng nhanh hơn năm trước hơn 1 triệu tấn. Riêng 3 năm 1990,1991,1994 tăng ít hơn do bị thiên tai và sâu bệnh. Bắt đầu từ năm 1989, nước ta không những sản xuất đủ tiêu dùng trong nước mà còn dư thừa gạo để xuất khẩu. Năm 1987, sản lượng lúa ở nước ta là 15103 nghìn tấn nhưng đến năm 1998 đã là 29142 nghìn tấn, tăng thêm 14039 nghìn tấn với tốc độ trung bình quân hàng năm là 6,2%, đạt mức cao nhất thế giới từ trước đến nay. Không chỉ tăng mạnh, trong thời gian này, tốc độ tăng rất ổn định. Trung bình mỗi năm sản lượng lúa nước ta tăng thêm 1170 nghìn tấn.
b.Sản lựơng lúa theo mùa vụ:
Để phân tích sâu hơn, chúng ta cùng nghiên cứu đặc điểm biến động của từng mùa vụ trong năm, xem mùa vụ nào tạo ra sự tăng (giảm) của sản lượng lúa, có ảnh hưởng tới chỉ tiêu này.
Bảng I.2:Cơ cấu sản lượng lúa Việt Nam chia theo mùa vụ thời kỳ 1975- 1998.
Vụ
Năm
Đông xuân
Hè thu
Mùa
1975
26,5
11,4
62,1
1976
31,5
13,0
55,5
1977
30,9
12,6
56,5
1978
36,3
11,2
52,4
1979
34,3
11,4
54,3
1980
33,3
13,6
53,1
1981
33,6
12,0
54,4
1982
31,5
13,6
54,9
1983
34,8
14,9
50,3
1984
35,9
16,9
47,2
1985
38,8
18,0
43,2
1986
38,2
18,8
43,0
1987
36,5
16,7
46,8
1988
41,0
19,9
39,1
1989
39,7
21,4
38,9
1990
40,8
21,4
37,8
1991
34,6
24,0
41,4
1992
42,4
22,7
34,9
1993
39,6
24,7
35,7
1994
44,6
23,9
31,5
1995
43,0
26,0
31,0
1996
46,3
26,0
27,7
1997
48,4
24,1
27,5
1998
46,5
25,8
27,7
Qua bảngI.2, chúng ta có một nhận xét chung là tỷ trọng sản lượng vụ đông xuân và hè thu tăng mạnh và ngày càng chiếm ưu thế, đặc biệt là vụ đông xuân. Năm 1975, sản lượng vụ đông xuân chỉ chiếm tỷ trọng 26,5%, sua đó tỷ trọng này tăng dần và đến năm 1998 đã là 46,5%. Điều này cho thấy, hiện nay vụ đông xuân đã thực sự có ý nghĩakhi tạo ra một khối lượng sản phẩm gần bằng1/2 tổng sản lượng của cả 3 mùa vụ trong năm.Đối với vụ hè thu, sản lựơng năm 1975 chỉ chiếm 11,4%, nay đã lên đến 25,8%, tăng gấp hơn 2 lần. Tuy nhiên sản lượng lúa vụ hè thu vẫn chỉ ở mức khiêm tốn. Riêng vụ mùa, sản lượng có sự giảm tỷ trọng đáng kể. Với tỷ trọng 62,1% năm 1975, hiện nay giảm chỉ còn 27,7%, nghĩa là chưa bằng một nửa trước kia. Nhìn vào những con số này, chúng ta tưởng trừng vụ mùa sản xuất ngày càng có hiệu quả. Thực tế hoàn toàn như vậy. Sở dĩ tỷ trọng sản lượng vụ mùa.
Bảng I.3: Tình hình biến động sản lượng từng mùa vụ ở Việt Nam thời kỳ 1975-1998.
Năm
Sản lượng (nghìn tấn)
Lượng tăng giảm tuyệt đối liên hoàn(nghìn tấn)
Tốc độ phát triển liên hoàn(%)
Đông xuân
Hè thu
Mùa
Đông
xuân
Hè thu
Mùa
Đông xuân
Hè thu
Mùa
1975
2797,4
1197,4
6544,2
-
-
-
-
-
-
1976
3730,3
1531,2
6565,7
932,9
333,8
21,5
133,3
127,9
100,3
1977
3278,3
13386,2
5982,6
-452,0
-195
-583,1
87,9
87,3
91,1
1978
3558,7
1100,1
5131,1
280,4
-236,1
-851,5
108,6
82,3
85,8
1979
3898,9
1294,4
6169,6
340,2
194,3
1038,5
109,6
117,7
120,2
1980
3874,0
1593,8
6179,6
-24,9
299,4
10,0
99,4
123,1
100,2
1981
4172,7
1489,3
6753,2
298,7
-104,5
573,6
107,7
93,4
109,3
1982
4526,5
1958,7
7905,0
353,8
469,4
1151,8
108,5
131,5
117,1
1983
5134,2
2193,9
7415,2
607,7
235,2
-489,8
113,4
112,0
93,8
1984
5560,5
2631,7
7313,4
426,3
437,8
-101,8
108,3
120,0
98,6
1985
6131,3
2855,3
6828,2
570,8
223,6
-485,2
110,3
108,5
93,4
1986
6118,2
3008,6
6876,1
-13,1
153,3
47,9
99,8
105,4
100,7
1987
5499,4
2529,4
7073,8
-618,8
-497,2
197,7
89,9
84,1
102,9
1988
6874,1
3378,7
6647,2
1474,7
849,3
-426,6
126,8
133,6
94,0
1989
7538,7
4063,2
7393,8
565,6
684,5
746,6
108,1
120,3
111,2
1990
7854,8
4110,4
7629,0
306,1
47,2
-124,8
104,1
101,2
98,3
1991
7688,3
4717,5
8116,1
-1057,5
607,1
847,1
86,5
114,8
111,7
1992
9153,1
4910,3
7526,9
2364,8
192,8
-589,2
134,8
104,1
92,7
1993
9035,6
5633,2
8176,8
-117,5
722,9
640,9
98,7
114,7
108,5
1994
10503,9
5629,5
7394,8
1468,3
-3,7
-773
116,3
99,9
90,5
1995
10736,6
6500,8
7726,3
232,7
871,3
331,5
102,2
115,5
104,5
1996
12209,5
6778,5
7308,7
1472,9
377,7
417,6
113,7
105,8
94,6
1997
13310,3
6637,8
7575,8
1100,8
-240,7
267,1
109,0
96,5
103,7
1998
13559,5
7524,4
8057,8
249,2
886,6
48,2
101,9
113,4
106,4
Tr. bình
6914,0
3529,3
7079,2
467,9
275,1
65,8
107,1
108,3
100,9
giảm đi là vì diện tích ngày càng thu thu hẹp lại, một phần chuyển sang gieo trồng vụ đông xuân và vụ hè thu, hai vụ cho năng suất cao hơn, một phần chuyển sang trồng các loại hoa màu khác có hiệu quả hơn. Phần diện tíchđất gieo trồng còn lại vẫn cho năng suất ngày càng cao và đẩy sản lượng vụ mùalên, mặc dù còn thấp và không ổn định. Chúng ta có thể thấy rõ sự tăng giảm lượng này qua bảng I.3. Các con số trong bảng này cho chúng ta thấy tốc độ tăng của vụ mùa là có nhưng thấp. Trung bình mỗi năm, sản lượng vụ mùa tăng 65,8 nghìn tấn hay 0,9%/ năm. Sự gia tăng này biến động rất thất thường, cứ một đến hai năm tăng lại có một năm giảm. Còn hai vụ đông xuân và hè thu tuy có tăng mạnh nhưng cũng có một vài năm bị giảm sản lượng so với năm trớc đó. Nguyên nhân của sự biến động thất thường này là do ảnh hưởng của thiên tai và sâu bệnh. Chẳng hạn, vụ đông xuân năm 1991 do bị thiên tai và sâu bệnh đã làm giảm sản lượng thực tế 1,4 triệu tấn thóc và giảm so với năm 1990 hơn 1 triệu tấn. Tính chung cho cả thời kỳ(1975-1998), sản lơựng vụ đông xuân tăng mỗi năm 467,9 nghìn tấn, tốc độ tăng bình quân hàng năm là 7,1%. Còn sản lượng vụ hè thu tăng bình quân 275,1 nghìn tấn/ năm, tương đương với tốc độ tăng 8,3%. Sở dĩ tốc độ tăng sản lượng lúa cảu vụ hè thu cao hơn vụ đông xuân vì quy mô sản lượng vụ hè thu nhỏ hơn vụ đông xuân.
Sự biến động của sản lượng lúa từng mùa vụ thời kỳ 1975-1998 được biểu diễn qua đồ thị sau:
Hìng 1:Đồ thị biểu diễn sự biến động sản lượng lúa thực tế từng mùa vụ ở Việt Nam thời kỳ 1975-1998.
Qua đồ thị trên, chúng ta thấy rằng vụ hè thu mặc dù có sản lượng thấp nhưng tăng khá ổn định, vụ đông xuân tăng với tốc độ nhanh hơn và hiện đang cho sản lượng cao nhất. Riêng vụ mùa kém ổn định và bấp bênh, snả lương trong nhiều năm qua gần như không tăng.
2. Phân tích xu hướng biến động:
Để phân tích xu hướng biến động cơ bản của hiện tượng, người ta sử dụng nhiều phương pháp khác nhau như: bình quân trượt, chỉ số mùa vụ, hàm xu thế...
Sau đây chúng ta cùng phân tích xu hướng biến động của từng chỉ tiêu.
a. Sản lượng lúa theo năm:
Trước hết chúng ta cùng quan sát đồ thị được biểu diễn trên hình 2.
Hình 2: Đồ thị biểu diễn sự biến động sản lượng lúa thực tế ở Việt nam thời kỳ 1975-1998.
Nhìn vào đồ thị, chúng ta thấy đồ thị có xu hướng đi lên và khá ổn định, đặc biệt từ năm 1987, đồ thị gần như là một đường thẳng. Vì vậy trong trường hợp này, để biểu diễn xu hướng biến động cơ bản của sản lượng lúa, chúng ta sử dụng hàm xu thế dạng tuyến tính: yt= a0+a1.t . Dãy số thời gan sử dụng là sản lượng lúa thời kỳ 1987- 1998.
Các tham số a0, a1 của hàm xu thế được xác định theo công thức:
a1 =1198
Vậy hàm xu thế là:
Hàm xu thế này cho chúng ta biết sau mỗi năm, sản lượng lúa trung bình tăng thêm 1198 nghìn tấn.
Để đánh giá mối liên hẹ tương quan giữa thời gian và sản lượng lúa, chúng ta sử dụng hệ số tương quan.
Với hệ số tương quan r =0,9946, mối liên h tương quan thuận giữa thời gian và sản lượng lúa rất chặt chẽ thời gian quyết địng 99,46% sự biến động của sản lượng lúa qua các năm.
b. Sản lượng lúa theo mùa vụ:
Phương pháp sử dụng bảng BB để phân tích các thành phần của dãy số thời gian. Cũng như trên chúng ta chọn hàm xu thế tuýen tính để phân tích, dãy số thời gian là sản lượng lúa theo mùa vụ thời kỳ 1987-1998:
Trong đó, hai hàm số a,b và thành phần biến động chu kỳ, mùa vụ C1
được xác định theo công thức đã nêu ở phần lý thuyết.
Từ nguồn số liệu đã có, chúng ta xây dựng đợc một bảng sau:
: Bảng B.B vận dụng cho phân tích mùa vụ sản lượng lúa Việt Nam thời kỳ 1987-1998.
Vụ(i)
Năm(j)
Đông xuân(1)
Hè thu(2)
Mùa(3)
1987(1)
5499,4
2529,4
7073,8
15102,6
5043,2
5034,2
1988(2)
6974,1
3378,7
6647,2
17000,0
5666,7
11333,4
1989(3)
7539,7
4063,2
7393,8
18996,7
6332,2
18996,6
1990(4)
7845,8
4110,4
7269,0
19225,2
6408,4
25633,6
1991(5)
6788,3
4717,5
6116,1
19621,9
6540,6
32703,0
1992(6)
9153,1
4910,3
7526,9
21590,3
7196,8
43180,8
1993(7)
9035,6
5633,2
8167,8
22886,6
7612,2
53285,4
1994(8)
10503,9
5629,5
7394,8
23528,2
7842,7
62741,6
1995(9)
10736,6
6500,8
7726,3
24963,7
8321,2
74890,8
1996(10)
12209,5
6878,5
7308,7
26396,7
8798,9
87989,8
1997(11)
13310,3
6637,8
7575,8
27523,9
9174,6
100920,6
1998(12)
13559,5
7524,4
8057,9
29141,7
9713,9
116566,8
113155,8
62513,7
90528,0
265927,5
633275,8
9429,7
5209,5
7521,5
7386,9
Vậy:
Từ đó, chúng ta tính được thành phần biến động mùa vụ theo công thức:
C1=2175,9
C2= -2177,4
C3 = 1,5.
Theo kết quả này, chúng ta có phương trình xu thế:
Nghĩa là, trong thời kỳ 1987-1998, sản lượng lúa trung bình mỗi mùa vụ là 7386,9 nghìn tấn. Trong đó sản lượng lúa vụ đông xuân cao hơn 2175,9 nghìn tấn sản lượng lúa vụ hè thu cao hơn 1,5 nghìn tấn, còn sản lượng lúa vụ mùa thấp hơn 2177,4 nghìn tấn so với sản lượng lúa trung bình chung. Sau mỗi năm sản lượng lúa từng vụ tăng thêm 133,1x 3= 399,3 nghìn tấn. Tuy nhiên, đây chỉ là con số trung bình thời kỳ 1987-1998. Tốc độ phát triển bình quân của từng mùa vụ khác nhau gây nên một sai số nhất định đến kết quả phân tích. Vì vậy trong trường hợp này, chúng ta xây dựng các hàm xu thế tương ứng với sự biến động của từng mùa vụ.
Giả xử các hàm xu thế biểu diễn sự biến động sản lượng lúa từng mùa vụ lần lượt là:
Vẫn với nguồn số liệu trên, ta có: t= 1,2,...,12
Vận dụng hpương pháp bình phương nhỏ nhất để ước lượng các tham số, chúng ta có được kết quả sau:
Với hệ số tương đương lần lợt là:
r1=0,9684.
r2=0,9867.
r3=0,5452.
Chúng ta thấy rằng sản lượmg lúa hai vụ đông xuân và hè thu tăng khá ổn định với mối liên hệ tương quan rất chặt chẽ. Trung bình mỗi năm sản lượng vụ đông xuân tăng thêm 712,79 nghìn tấn, còn sản lượng vụ hè thu năm sau cao hơn năm trước 417,46 nghìn tấn. Đối với vụ mùa, mặc dù mô hình có hệ số tương quan không chặt, song trên thực tế, lượng tăng( giảm) tuyệt đối hằng năm là nhỏ(67,65 nghìn tấn) nên sai số đó vẫn có thể chấp nhận được.
3.Phân tích hồi quy- tương quan:
Chúng ta biết rằng, giữa các dãy số thời gian nhất định nào đó luôn có một mối liên hệ nhất định. Để phân tích mối liên hệ này, chúng ta sử dụng phương pháp phân tích hồi quy tương quan trong dãy số thời gian.
a.Phân tích tự hồi quy và tự tương quan:
Với dãy số liệu về sản lượng lúa ở Việt Nam thời kỳ 1987-1998, chúng ta dùng phương trình tự hồi quy:
Các tham số a1,a0 được xác định bằng phương pháp bình phương nhỏ nhất.
Từ đó chúng ta có:
a1= 0,98437
a0= 1612,15.
Vậy phương trình tự hồi quy là:
với hệ số tương quan r1= 0,98768.
Nghĩa là sản lượng lúa năm sau phụ thuộc 98,768% vào sản lúa năm trước đó.
b. Phân tích tương quan giữa hai dãy số thời gian:
Trong phần này chúng ta phân tích mối liên hệ tương quan giữa diịen tích gieo trồng và năng suốt lúa đạt được.
Gọi Xt là diện tích gieo trồng( nghìn ha)
Yt là năng suốt lúa(tạ/ ha).
Quan sát hai dãy số thời kỳ 1987-1998, chúng ta thấy các mức độ tăng lên khá đều theo thời gian. Vậy hàm xu thế vận dụng để biểu diễn xu hướng biến động của hai chỉ tiêu này là hàm tuyến tính:
Các hàm số a0, a1,a’0, a’1 được xác định bằng phương pháp bình phương nhỏ nhất. Từ đó chúng ta xây dựng được hai hàm xu thế:
(t = -11,-9,...,9,11).
Năm
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
TB
Để nghiên cứu nối liên hệ tương quan giữa năng suốt và diện tích gieo trồng lúa, chúng ta nghiên cứu mối liên hẹ tương quan giữa các độ chênh lệch của chúng nhằm loại bỏ phần naò hiện tượng tự tương quan và đơn giản các bước tính toán.
Từ số liệu ban đầu và xu thế ở trên, chúng ta lập đợc bảng sau:
Xt
Yt
Xt
Yt
dxt
dyt
dxt.dyt
dxt
5589
27,0
5603
28,3
-14
-1,3
18,2
196
1,96
5726
29,7
5756
29,4
-30
0,3
-9
900
0,09
5896
32,3
5910
30,4
-14
1,9
-26,6
196
3,61
6028
31,9
6064
31,5
-36
0,4
-14,4
1296
0,16
6303
31,1
6218
32,5
85
-1,4
-119
7225
1,96
6475
33,3
6372
33,6
103
-0,3
-30,9
10609
0,09
6559
34,8
6525
34,6
34
0,2
6,8
1156
0,04
6599
35,7
6679
35,6
-80
0,1
-8
6400
0,01
6766
36,9
6833
36,7
-67
0,2
-13,4
4489
0,04
7004
37,7
6987
37,7
17
0
0
289
0
7100
38,8
7141
38,8
-41
0
0
1681
0
7337
39,7
7294
39,8
43
-0,1
-4,3
1849
0,01
77382
408,9
-200,6
36289
7,7
6648,5
34,08
Vậy mối liên hệ tương quan giữa năng suốt và diện tích gieo trồng lúa là mối liên hệ tương quan nghịch nhưng không chặt chẽ. Nghĩa là , với cùng một sản lượng như nhau tăng diện tích so với xu hướng chung làm giảm năng suốt so với xu hướng chung và ngược lại. Tuy nhiên hai chỉ tiêu này chỉ ảnh hưởng đến nhau 37,95%, còn lại là do các nhân tố khác.
khẩu gạo tăng thêm 0,2409 nghìn tấn.
II. Dự đoán sản lượng lúa Việt Nam đến năm 2002:
Việc dự đoán sản lơựng kúa Việt Nam có ý nghĩa rất quan trọng. Qua việc dự đoán, chúng ta biết kết quả sản xuất có thể đạt được trong thời gian tới. Từ đó định hướng sản xuất, đè ra mục tiêu, chính sách cho phù hợp và khả thi; đồng thời hạn chế những khó khăn, tổn thất có thể xảy ra...
Dự đoán sản lựơng lúa bao gồm: dự đoán sản lượng lúa theo năm, dự đoán sản lượng lúa theo mùa vụ.
1. Dự đoán sản lượng lúa theo năm:
Từ đặc điểm dãy số liệu và qua sự phân tích ở trên, các phương pháp dự đoán sản lượng lúa theo năm được vận dụng là: ngoại suy theo lượng tăng ( giảm) tuyệt đối bình quân, ngoại suy theo hàm xu thế tuyến tính và ngoại suy theo phương trình tự hồi qui.
Ngoại suy theo tăng giảm tuyệt đối bình quân:
( L=1,2,3,...)
Với: yn=y1998 = 29142 (nghìn tấn)
(nghìn tấn)
Ta có sản lượng lúa dự đoán đến năm 2002 là:( đơn vị: nghìn tấn).
Các kết quả dự đoán này dựa vào lượng tăng(giảm) tuyệt đối
bình quân cả thời kỳ 1975-1998.Tuy nhiên, trong nửa thời kỳ đầu, tốc độ tăng còn chậm và chưa ổn định. Trong nửa thời kỳ sau(1987-1998),
tốc độ tăng đều và nhanh hơn. Do vậy, kết quả dự đoán trên có thể sẽ thấp hơn kết quả thực tế. Để khắc phục hạn chế này, chúng ta vận dụng lượng tăng( giảm) tuyệt đối bình quân thời kỳ 1987-1998 để dự đoán.
Vậy kết quả dự đoán theo là:
Theo kết quả đầu, sản lượng lúa Việt Nam đến năm 2002 sẽ đạt 32378 nghìn tấn. Còn theo kết quả sau, sản lượng lúa nước ta lúc đó sẽ là 34246 nghìn tấn. Kết quả này có khả năng chính xác hơn.
b. Ngoại suy theo hàm xu thế:
Như đã phân tích ở trên, sản lượng lúa nước ta từ năm 1987 đến nay tăng tương đối ổn định và tuân theo hàm xu thế tuyến tính:
Với giả thiết xu hướng biến động này tiếp tục duy trì trong vài năm tới, chúng ta có dược các kết quả dự đoán như sau:
(nghìn tấn)
(nghìn tấn)
(nghìn tấn)
(nghìn tấn)
Theo phương pháp này, sản lượng lúa Việt Nam năm 2002 là 33542 nghìn tấn. Với mối liên hệ tương quan r = 0,9946, đây là một kết qủa dự đoán rất khả quan.
Trên đây là kết quả dự đoán theo hàm xu thế tuyến tính. Từ hàm xu thế này, chúng ta cũng có thể dự đoán sản lượng lúa theo mô hình dự đoán khoảng:
Với xác xuất tin cậy 95% và bậc tự do n-1=11, chúng ta có t=1,796.
Sp là sai số dự đoán được tính riêng cho từng mức độ dự đoán theo công thức:
Trong đó Se là sai số mô hình:
=454( nghìn tấn)
Vậy kết quả dự đoán khoảng là( đơn vị: nghìn tấn):
Năm 1999:
Năm 2000:
Năm 2001:
Năm 2002:
2/ Dự đoán sản lượng lúa theo mùa vụ:
a.Dự đoán theo tỷ trọng của từng mùa vụ:
Quan sát tỷ trọng sản lượng lúa theo từng mùa vụ trong những năm qua( Bảng I.2), chúng ta thấy rằng tỷ trọng sản lượng vụ đông xuân và hè thu có xu hướng tăng qua các năm, còn tỷ trọng sản lượng vụ mùa lại có xu hướng giảm dần
Với kết quả dự đoán sản lượng kúa theo năm ở trên, tỷ trọnh sản lượng lúa từng mùa vụ năm 1998 là:
Đông xuân: 46,5%
Hè thu: 25,8%.
Mùa: 27,7%
Chúng ta thu được một số kết quả dự đoán theo mùa vụ như sau:
- Theo kết quả ngoại suy hàm xu thế:
Đơn vị: nghìn tấn
Năm
Đông xuân
Hè thu
Mùa
Cả năm
1999
13926
7727
8296
29948
2000
14483
8036
8627
31146
2001
15040
8354
8959
32344
2002
15597
8654
9291
33542
Như vậy, theo kết quả này, đến năm 2000, sản lượng lúa Việt Nam đạt 33542 nghìn tấn. Trong đó sản lượng lúa đông xuân là 15597 nghìn tấn, sản lượng lúa hè thu là 8654 nghìn tấn, sản lượng lúa muà là 9291 nghìn tấn. Kết quả dự đoán này phù hợp với kết quả sản xuất lúa của từng mùa vụ trong những năm qua.
- Theo kết quả ngoại suy phương trình tợ hồi quy:
Đơn vị: nghìn tấn
Năm
Đông xuân
Hè thu
Mùa
Cả năm
1999
14089
7817
8393
30299
2000
14619
8111
8708
31438
2001
15140
8400
9019
32559
2002
15653
8685
9325
33663
Theo kết quả dự đoán này, sản lượng lúa đông xuân năm 2000 dạt 15653 nghìn tấn, sản lượng lúa hè thu đạt 8685 nghìn tấn và sản lượng lúa mùa đạt 9325 nghìn tấn. Kêt quả dự đoán này tương đương với kết quả dự đoán trên nên chúng ta có thể hoàn toàn tin tưởng.
b. Dự đoán theo hàn xu thế riêng của từng mùa vụ:
Như phân tích ở trên, chúng ta xây dựng được 3 hàm xu thế tương ứng với 3 mùa vụ như sau:
Vụ đông xuân: xt =7496,53 + 712,79.t
Vụ hè thu: yt =2495,96 = 417,46.t
Vụ mùa :zt = 7081,75 + 67,65.t
( t= 1,2,...,12).
Vận dụng các hàm xu thế trên dự đoái sản lượng lúa từng mùa vụ đến năm 2002, ta có kết quả như sau( thay lần lượt bằng 13,14,15,16).
Đơn vị: nghìn tấn
Năm
Đông xuân
Hè thu
Mùa
Cả năm
1999
14062,8
7922,9
7961,2
29946,9
2000
14775,6
8340,4
8021,9
31137,9
2001
15488,4
8757,9
8096,5
32342,8
2002
16201,2
9175,3
8164,2
33540,7
Như vậy theo phương pháp này,sản lượng lúa Việt Nam đến năm 2002 sẽ đạt 33540,7 nghìn tấn, trong đó sản lựơng lúa đông xuân là 16201,2 nghìn tấn, sản lượng lúa hè thu là 9175,3 nghìn tấn và sản lượng lúa mùa là 8164,2 nghìn tấn. Về tỷ trọng, lúa đông xuân chiếm 48,3% tổng sản lượng lúa cả
năm, lúa hè thu là 27,4% và lúa mùa là24,3%.
III. nhận xét và kiến nghị
Qua các phân tich và đoán xản lượng lúa ở trên,chúng ta rút ra một số nhận xét sau:
+Sản lượng lía nướcta từ 1975 đến nay tăng rất nhanh,tốc độ tăng bình quân cả thời kỳlà 4,5% năm. Đặc biệt trong 12 năm sau (1987-1998),Sản lượng lúa nước ta đI vào ổn định và tăng 6,2% năm,đạt mức tăng trưởng cao nhất thế giới.
+Quy mô sản lượng lúa lớn.Từ sau khi thực hiện cơ chế khoán 10 (1988) ,nước ta đẵ thay thế nhập khẩu bằng xuất khẩu gạo,đứng thưba trên thế giới trong lĩnh vvực này và đến năm 1997 đă vươn lên đứng vị trí thứ hai,sau TháI Lan.
+Cơ cấu mùa vụ có sự chuyển dịch mạnh .Vụ mùa có năng suất thấp và biến động lớnđược thay thế bằng vụ đông xuân và hè thu cho năng suất caovà ổn định hơn.Hiện nay,sản lượng lúa vụ đỗng xuân chiếm 46,5% tỷ trọng tổng sản lượng lúa cả ba mùa vụ .
Từ đặc điểm biến động ,xu hướngbiến động của sản lượng lúaViệt Nam trong những năm qua và kết qua dự đoán cho một vàI năm tới, em xin có một vàikiến nghị như sau:
+Về cơ cấu mùa vụ, sản lượng lúa vụ mùa thường cho năng suất thấp và mất ổn định,trong khi đó sản lượng lúa hai vụ đông xuân và hè thu có nhieeuf đIều kiện thuận lợi hơn để phát triển.Vì vậy,trong một vàI năm tới cần tiếp tục xu hướng chuyển dịch cơ cấu mùa vụ từ vụ từ vụ mùa sang vụ đông xuân và hè thu
+Về sản lượng lúa trong một vài năm tới,xu hướng vẫn tiếp tục tăng.Nếu có mất mùa thì chỉ làm giảm sản lượng lúa ở phần tăng thêm chứ khônglàm giảm sản lượng lúa so với năm trước đó. Với quy mô sản lượng lúa như hiện nay, việc tăng tốc độ phát triển là rất khó khăn.Vì vây, cần duy trì tốc độ này và giữ nguyên tốc độ phát triển cũng là một thành công đối với lĩnh vực gieo trồng lúa ở Việt Nam
+Về vấn đề chất lượng sản phẩm, trong những năm qua ,năng suất lúa nước ta đẵ tăng khá nhanh và ổn định. Tuy nhiên,tăng năng suất càn phải gắn với tăng chất lượng sản phẩm. Có như vậy,gao nước ta mới có sức cạnh tranh lớn và đem lại mộtt nguồn lợi lớn cho đất nước, tránh tình trạng xuất khẩu nhiều mà lợi nhuận vẫn thấp.
+Cuối cùng là nhà nước cần thiết phải điều chỉnh cân đối lại giữa đầu vao và đầu gia sản phẩm củ bà con nông dân.Trên thực tế hiện nay, giá lúa gạo không thực cao để khuyến khích bà con nông dân phát triển sản xuất. Trong khi đó, giá phân bón , thuốc trừ sâu còn tương đối cao, các giống lúa mới cho năng suất và chất lượng cao còn chưa phổ biến; việc vay vốn cho sản suất còn có những hạn chế.Vì vậy,tạo đIều kiện cho bà con nông dân phát triển sản xuất và giảm giá đầu vào là một việc làm vô cùng cần thiết hiện nay.
kết luận
Nhân loại đang sống trong những năm đầu của thế kỷ 21,song việc phát triển sản suất nông nghiệp ở nước tavẫn có ý nghĩa vô cùng quan trọng trong nền kinh tế. Trong nông nghiệp ,sản suất lúa là một trong những lĩnh vực được ưu tiên phát triển hàng đầu. việc nghiên cứu phát triển lĩnh vực này là một việc làm thiết thực nhằm đánh giá các kết quả đã ddạt được ; từ đó, định hướng mục tiêu, chính sách cho thời gian tới. Đề tàI Dãy số thời gian và vận dụng phương pháp dãy số thời gian phân tích và dự đoán sản lượng lúa Việt Nam năm 2002.” đã giải quyết được những vấn đề sau:
1 _ sơ lược về tình hình sản xuất kương thực ở nước ta từ 1975 đến nay,bao gồm những thuộn lợi và khó khăn của đIều kiện tự nhiên cũng như các chính sách của đảng và nhà nước đến tình hình sảnxuất lương thực ở việt nam trong những năm qua; những kết quả đã đạt được và định hướng trong thời gian tới
2_Trình bày được phương pháp luận về dãy số thời gian, các phương pháp phân tích và dự đoán thông dụng đă được nghiên cứu trong qua trình học tập ở nhà trường,đIều kiện vận dụng và ưu nhược diểm của từng phương pháp ._
3-kết hợp phương pháp luận và tình hình thực tế của sản xuất lúa ở nước ta để đánh giá các kết quả đă đạt được, bao gồm: các đặc đIểm về biến động của sản lượng lúa và các chỉ tiêu có liên quan, xu hướng biến động và mối liên hệ tương quan giữa các chỉ tiêu đó
4-Từ tình hình thực tế của sản xuất lúa ở nước ta trong những năm qua và kết phân tích ở trên, vận dụng các phương pháp dự đoán thích hợp để dự đoán sản lượng lúa của việt nan đến năn 2002.
5-Dánh giá chung về sản xuất lúa ở nước ta qua kết quả phân tích và dự đoán ở trên; từ đó, đưa gia một số kiến nghị nhằm cảI thiện và nâng cao kết quả sản xuất trong lĩnh vưc gieo trồng lúa.
Tuy nhiên, bên cạnh những mặt đã đạt được,đề tại vẫn còn có một số hạn chế sau:
+Thứ nhất ,chưa nghiên cứu sâu được về sản lượng lúa và các chỉ tiêu liên quan; các quan đIểm và phương pháp mới nhất
+Thứ hai,các phương pháp phân tích và dự đoán còn hạn hẹp trong khuôn khổ kiến thức đã đưpợc học ở nhà trường.Do vậy, đề tàI chưa đánh giá được một cách đầy đủ,toàn diện về lĩnh vực nghiên cứu.
+Thứ ba, các kết quả phân tích và dự đoán còn có những sai sót nhất định ,chưa đánh giá được vai tro của các nhân tố không lượng hoá được vì vậy,kết quả có đươc chỉ mang tính tương đối.
Tóm lại, phân tich và dự đoán sản lượng lúa là một việc làm vô cùng khó khăn nhưng lai co ý nghĩa vô cùng quan trọng .việc vận dụng các phương pháp đòi hỏi phảI mất nhiều công sức.do đó, nhà nước cần quan tâm,giúp đỡ và tạo đIều kiên để công tác thống kê đạt được kết quả tốt; từ đó thúc đẩy nền kinh tế đi lên.
Các file đính kèm theo tài liệu này:
- V0350.doc