Luận án Bài toán giá trị biên cho phương trình vi phân hàm

BÀI TOÁN GIÁ TRỊ BIÊN CHO PHƯƠNG TRÌNH VI PHÂN HÀM NGUYỄN ĐÌNH TÙNG Trang nhan đề Lời cảm ơn Lời giới thiệu Mục lục Chương1: Các định nghĩa và định lý sử dụng trong luận văn. Chương2: Những bài toán của luận văn. Tài liệu tham khảo

pdf54 trang | Chia sẻ: maiphuongtl | Lượt xem: 2032 | Lượt tải: 0download
Bạn đang xem trước 20 trang tài liệu Luận án Bài toán giá trị biên cho phương trình vi phân hàm, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
CuljnvanCaohqc CHfJdNG II ~traG> . NHUNG BAt rOAN CUA LUA.NVAN GiasaE 1akh6nggianBanachvdiChU~11I. I C =C([- r,O],E)1akh6ng gian Banach cac ham lien t1,lctIeD [ - r,O] VaGE, r ~pvdichuin IIxll=Sup~x(e)1:8 E [- r,O]} f)~tX =C([-f,CO),E) 1akh6nggiantit cacaehamlien Wetren[-[,co) VaGE . '\IxE X va t ~O.B~t XtE C dl.fc;1cdinh bei : . Xt : [ -r,O] ~ E 61-7Xt (8) =x (t+9) Cho<p: C ~ En=E x E x...XE la anhx~tuye'ntinhlientl,lc. Taxetbailoanphuongtrinhvi phan: { X'(t) =f(t, cp(xt))+get,<p(Xt); t ~0 (I) Xo =h h E C chotrudc. (1.1). f: [0,cc)xEn ~ E lien t1,lC,va '\inc:N 3kn>0 saGcho: If(t,u)-f(t,u')1~knllu-u'll '\It E [O,n];u = (UI' U2,..., Un) E En , ( ' , ' ) E o u = U b U 2,...Un E n - IIU-U'I/=2:IUi -u~1 1achuin trenEn i=l (1.2) g:[O,co)xEn ~E la anhX?Compact NghIa1ag lien tl,lCva bienmQtt~pbi cL~ntrong[O,cc~ X En thanh t~ip Compactu'ongd6itrongE. V6inhlingkyhi~uvadint nghlanhu'trentaco : Trant]4 Luqn van CClt)AClC --------- Bini !ly 1: Gia sU'f, g thoacaedi~uki~n(1.1), (1.2)va lin Iget,u)l =: 0 ~u~-)~ llull (1.3) , - deli theot trenmOlt~pbi ch~ncua[0,00), \::11EEn, ilull=[U11+IU21+...+[Unl Kli do bai lOan(I) co nghi~mLIen[[,00) C!ui:ngminh " (1).~ { t t - (I" x(t)=h(O)+jf(s, <p(xJ)ds-+-fg(s,<p(xs))ds, , 0 0 ,xo =h D~jXo= C ([0,00),E) la khonggianFreehetilteacaehamlienWe tren[O,cc)VaGE vdih9lllla chu~n: Pn(x)=Sup ~ I x(t) I : t E [O,n]~ , \::IQ V8- metric -- ooj ) d( =2"~~:-_~_E~~__:::=_X_- ~~- 2' il 1+P (X - y)n-i d n Voi m6i x E Xo, ci~tx: [-r,oo) -0 E ciNc ciinhnghla nhu'sail : - { Xes)+h(O)- xeD);s 2 0 )(s) = h(s) ; --r :;;s :;;0 - 1ehido x lien t1fctren [-f,OO). fa dinh nghlacaelOantli': LJ: Xo-7 Xo X t~Vex) t "(ii U(x)(t) =ff(s,<p(~s»ds; 0 t 2 0 -- --- -~ -------------- Trani] 5 [ucJn l7anCao n(Jc G: Xo-7 Xo x -7 G(x) t voi G(x)(t) =Jg(s,<p(~s))ds+h(O) ; 0 l20 Ta nh~ntha'yding ne'ux E Xo Hi di~mb~tdQngcua U +G tue13 U(x)(t) + G(x)(t) =x(t), Vt 2 0 ! t t -'- x(t) =h(O)+ ff(s,<p(~s))ds+ fg(s,<p(~s))ds r 0 0 . x(O)=h(O) t t . x(t) =h(0)+Sf(s,CP(Xs))ds+ J g(s,cp(~s))ds;t 20 =>~ 0 0 - x(t) =her) ;-r ~t ~0 - Chungto x 1anghit%mcua(1')tren[-r,oo). Ta sechungminhU +G e6di~mba'tdQngb~ngeachsU'd~mgdinh1.9 2Chuang1.TrudetieRtachungminhcaeb6 d~san: B6 d~1: Gia SiTf thoac1i~ukit%ll(1.1),U du'Qed;,nhnghT~nhutren.Khi d6: Vn EN, Vz E Xo Ta c6: ( i i )< 2(n.kn.II<pllrPnDz(x)-Uz(Y)- OJ Pn(x-y)1. Changminh : Ta sechungminhr~ng-: (1) II ' I . I . . 2(tk n. <PJ I IU~(x)(t)-U~(y)(_t)I~ i!" Pn(x-y) Voi ffiQit E [O,n]vaeE [~r,O] Ta c6: 7ranq 6 LuqnvanCaohqc - - - - xsC8)-Ys(8) =x(s+8)-y(s-i 8)= = { X(S+8)-Y(S+8)+Y(O)-X(O);S+82::0 - h(s+8)- h(s+8)=0 ;-r s s+e<0 ~ !xs(8) - Y s(8)1s Ix(s+8)- yes+8)1+Ix(O)- y(O)1= =lex - y)(s+8)1+lex- y)(O)1S 2Pn(x - y) doPn(x-y)=supi Iex - y)(t) I : t E- [0 , n] ~ Tachungminh(1)b~ngquin:iptheoi. Voi i =1: 'IIx , UzCx)(t)=U(x)(t) +let) ! =ff(s,cp(xs))ds+let)" 0 Iuz(x)(t)- Uz (y)(t)1 t t I =I ff(s,cp(~s))ds- ff(8, cp(ys ))dS I0 0 ! t t s flies,cp(~s))ds - J f(s, cp(ys))Idss fknIlcp(~s).- CPcYs )lIds 0 0 0 - --- ! f - k II ( - - ) 1, < I f' 11 1111 - - II -' ~ =0 n1I<rx s - Ys I as - 0Kn <PIlixs - ys as s: t <fknllCPl12Pn(x- y)ds=2kn.t.!lcpll.Pn(x- y) 0 Gilt s11(1) dungvdi i (i2::1). Ta chungminh (1) dung vdi i +1,th~tv~y, Trang 7 Luqnvan Cao hqc IUz i+l(x)(t)- U zi+l(y)(t)1=luz (U / (x»(t) -- U z(U/ (y»(t)l- =!U(Uzi (x»(t) - z(t) +U(U zi (y»(t) +z(t)! =Iu(uzi (x»(t) - U(U zi (y»(d I I =I ff(S, <p[(u~(x)t1ds- J f(s,<p[(u~-(y)TPdS I I 0 0 ~ fknll<p[(u~(x))J-<P[(u~(y))Jds 0 ~ fknl!.<plr[I[(u~(x»)s]- [(u~(X»)s]!dS 0 Ma m6is E [O,n], 8 E [-r,O],taco: (u~(x)t (8)- (u~(y»)s(8) = --. . =U~(x)(s+8)-U~(y)(s+e) = { U;(X)(S +8) - U~(y)(s+8)+U~(y)(O)- u~(x)(O);S-I-G~0 h(s+8)- h(s+8)=0 ;- r ~s+8~a Taco: . . U~(x)(O)- U~(y)(O):=0 i =1, Vi, Uz(x)(O)- Uz(y)(O)=U(x)(O)+zeD)- U(y)(O)- zeD) =U(x)(O)- U(y)(O):=0- 0=a i =2, U;(x)(O)=Uz (Uz(x»(O)=U(U z(x»eo)+z(O) =U[U(x)(O) +zeD)]+zeD)= U[zeo)]+zeD) Tild6: U;(x)(O)-U;(y)(O)=O Bangquin;;tpc6duQcU ~ (x)(O)- U ~ (y)(O)=0 ,Vi --..----- Tranq 8 Luqn van CaDnClc Tild6 : I(u~(x)t(8) - (U~(y))s(8)1~ S;lu~(x)(s+8) - U~(y)(s +8)1::; 2[(s+8).kn.11<pllr S; .xPn(X-Y) 11 u (Dogiathi6tquin~p)- r II II] i 2l(s;kn. <P S;- - .,?<Pn(x - y) ; \f8 E [-r,O]1. \ \ " " suyfa : IU~+1(x)(t)- U~+\(y)(t)!s; S;fkn 11<p11.11((]~(x»)s - (U~(y»)sIrs0 < tf - II II 2(s.kn .JI<pll)i - , - kn <p. ., XPn(x-YJ 0 1. . 2(tkn .jI<pll)i+\- X P (X - 'H) - (i + I)! Xl J V~Y(1)dungchoIIlQilEN, tiIdochungminhdu'<;Jcb6d~1. B6d~2: ToantU'U thoacacdi~ukit$ni, ii, iii cuadinh1y2,ChuangI, Chrlngminh.. . ~. ~(n,kn.II <pI I)1 A' ;, n,k ,11<v11 DochuOl~ or . hQ1 tvvee n "'" i=\ 1. Nen suyfa Jim 2(n.knll<pll)i -i~oo i!--- =0 ,nen ::Jin (inph1,lthuQctheon ) saocho: 2(n.kn .1I<pII)i< 1A= " 1. Vi >i, - n Tild6 : Pn(U~(x)- U~(y»)S;APn(x- y) Trang 9 Luqn vanCaonc;c ------- Vflv U thoaQi~ukieniii..1 . Uz (x)(t)=U(x)(t) +z(t) , '\Ix E Xo -Nen Iuz(x)(t)- V z(y)(t)1=jU(x)(t)- U(y)(t)1= t t =I ff(s, <p(~s»ds - ff(s, <p(ys »ds[~. 0 0 t t I~ ff(s, <p(~s»- ff(s,<p(ys»ds ~ 0 0 I t t ~ fkn 1I<p(~s)- <p(ys )Ids=Jkn Ilcp(xs---ys 0 0 -- ~ Jk,~'P!I-~6',)- (y, i ds~ Jkn 11<p11-2p,(x - y)ds 0 I 0 ~(2t.kn.1I<PIIPn(x - y) ~2kn.n.II<PIIPn(x - y) =k'Pn (x- y) ~ Pn(V(x) - U(y»)~k.pn(x - y). U thoaii) Co th~SHYra tuB6 d~1,voi i =1 cli6i clingtachungminhU thoadi~uki~ni) tile1adi~uki~nA V: Xo-7Xo x t-7Vex) t ; U(x)(t) =ff(s,<p(xs»ds 0 Z E Xo , u z : Xo -7Xo Uz(x}=Vex) +z AI: Vz E Xo , Uz(Xo)c Xo h";? 1.'~Jell lldlen A2: Ta phai chungminh :Vz E Xo , Vpn, :3kz EZ + saacha : Vs >0, :3r E N va (5>0: Vx,y E Xo, a~(x,y) <S+(5 ~ a~(u~(x)~U~(y» <S Trang"10 [wIn van CaDh(JC a day a~(x,y) =max{Pn(U~(x)- U~(y))i i, j =0,..., kz }--- ai(V~(x),U~(y»)=max{Pn(U~H(x)-U~+r(y))/i,j=O,...,kz} Taco: -- Pn(U~+r(x)~ U~+r(y»)=Pn(U~(U~(x»)- U~(lJ~(y)) 2(n.k . ll ml ll) r ( . . \ °, ,- .< . n . 't' V i ( ) - U J (.. ' (B A a/' 1)- f - . x Pn z X - z YJ) 0 ef. . 2(n.kn .11<pllr ( ) - ( --x 8+0(8 r! Khi r duldnva ai (x,y)(s+o. Vf}.yU thoadi~uki~nA. B6d~2duQc hungminhKong. Lzl,anva n CaD ~oc ? ~B'ode3: Gia sli'g rhea(1.2)va Gndlt<;5cdinhnghlanhusail: Gn: Xn ~ Xn =C([O,n].E) t Gn(x)(t)= fg(s,<p(xs)ds+h(O) 0 0::::;t::::;n Khi d6Gnla roantli'CompactIeDkh6nggianBanachXnvoichu~n Ilxll=sup~x(t)1: 0 ::::;t :::;n}. x E X n thl x:[- r,n]~ E - { X(S)+h(O)-X(O);S ~0 xes)= h(s) ;-r ::::; s ::::; 0 xs : [- r,O]~ E eH x(s+e) Chitngminh: TnJ'oc tieDta c6 th§ tha'yGn(x)E Xn, th~tv~y: Vc:)O, . . t t' I IG n(x)(t)-Gn(x)(t')!=I fg(s,<p(xs»ds - Jg(s,<p(xs»dSI 0 0 I t = I fg(s,<p(xs»ds t' t ::::; ~g(s,<p(xs»!ds t' t ::::; fMds::::;let- t')IM t' (Vi g la anhx<:tCompactlienhich?ntIeDt~phi ch?n) Tild6 : I G. (x)(t)- G (x)(t') I <c:')\ 1" E khi It - t'1<8= M Tranc 12 Lzi,arzvanCao ~oc Ta chli'ngminhGn lien tl,lC: La'y(Xk)kladaytrongXnsaccholimxk=Xo k---j>CX) - D~tB ={(Xk)s/s E [O,n],k E Z+} - Khi doB CompactrongC =C([-r,O],E). Th~tv~y,giasa (Cxki)sJi 1aday-trongB, Ta co th~giltsarAnglimsi =s i---j>CX) va limxki=x i---j>CX) (Chu yr~ngx coth~Iii mQttrongcacXkdacho,k E Z+va(xki)ico th€ khongla dayconcua(Xk)k.) Taco: 1/(Xki)Si-Xsllsll(Xki)Si -Xsill+IIXSi-xsIIS2Pn(Xki-x)+IIXSi -Xsil vdim6ix E Xncodin:.lI,faco anhX~ [O,n]~ C =C ([-r,O],E) ; S M Xs lienwc Th~tv~y,V E>0VI x lien tl,lCd~utren[O,n] lien38>0: 'lit,t' E [O,n]: !t-t'I<8 =?lx{t)-x(t')I<Eo Khido '118E[-r,0] 'IIs,s'E[O,n]:ls-s'I<8 thl: Ix(s+8)- x(s'+8)I<E , nay Ixs(8)- xs.(8)I(E dungchom9i8 E [-r,O],dodo : IlKs- Xs'"=sup~xs(8)- xs'(8)1:8E [- r,O])(£ Cholientuba'tding thli'c: II(Xki)Si- xslls2Pn(xki - x)+IlxSi- xsll Taco lim(xki)Si=xs trongC i-to: V~yB CompacttrongC. Trang 13 Lt1,an17anCaohoc --- Do cp: C ~ Entuye'ntinh, lien Wc lien cp(B) CompacttrGRgEn, nen suyra t~p[O,n]X cp(B) Compacttrong[0,00)x En. Vdi mQi c:> a clio trudc, VI g lien Wc trel1t~pCompact [O,n]x cp(B) lien38 >0: V u, V E B. t: IIcp(ut-cp(v)IIIg(s,cp(u))- g(s,cp(v))I<- - - - - 11 Yl- limxk =-Xo trongXn lien 3ko EN: \fk ;;:::ko k-+oo 8 Ilx~ - xoll<21lcpll II(x,),- (;:0 ),11:£211xk- xoll<II:11 Dftnde'n: Suyfa 'itE [O,n].Ta co : t t IGn(Xk Jet) - Gn(Xo)(t),=Ifg(s,cp«~k)s))ds~ fg(s,cp((;Zo)J)ds 0 0 l ~ Ii g(s,cp«~k)s))-g(s,cp«~o)s))ds 0 - ! c: - ~ I- ds~c: r n - Vk;;:::ko (VI Vk;;:::ko,II<p(~k)J-cp(xo)sll " II'I'II-II(:X-k), - (xo t 11<11'1'11-11:11= 8 - Tli do: 110n(xk)- GIi (x 0)11<c:, Vk 2::ko Nghla I} Gnlien h,lc. Bay gid tachungminh Gn13Compact. Giasli'D 13t~pbi chi;introngXn 8~tA = {~sE C: x ED,s E [O,n]}thlA bi ch~ntrongC (d~thay). VI g Compactlien t~pg ([O,n]x cp(An Compacttu'cJngdoi trongE (chuy:A bi ch~ntrongC , cp: C -7Entuyentinh lien tJ,lclien cp(A) bi ch~n trong En,Th~t v~y, Vx E A,llcp(x)11~ Ilcpllllxll~ IlcpilM) Tram] 14 Lwin van CaD h9C ------------ Kbi dotheodinhnghla dla Gntaco Gn(O)Q~nglienh!ctre-n[O,n] Th~tv~y,cp(A) bi ch?n trongEnnen:3 R>0 :cp(A) c B(O,R) Do g l?tanhx~CompactnenWpg ([O,n]x B(G, t6nt~i\1>0: Ig(s,u)~M, \:IsE [0,nJ}iuEBeG,R) : ) / ch?in.Suyra Vdi m9i t,t'E [O,n],taco :_- t t' IG n(x)(t)- Gn (x)(t')1=If g(s,cp(~s»ds - fg(s,cp(~s))ds 0 0 - , t - 1- ~If g(s,cp(~s»dSI~Mlt - t'l Tli do Gn(O)d~nglien tl,lctren[O,n]. B?t K =Co(g([O,n]xcp(A»)U{O}] K CompactrongE. - - - g(s,cp(xs»E K, \:IsE [O,n], \/x E Q nensuyra \:ItE[O,n] taco: { t _1 - Gn (O)(t) = fg(s,cp(xs»ds+h(O)/x E n J c tK +h(O) V~yGn(Q)(t)Compactu'dngd6itrongE. Theodinhly Ascoli- Azela Gn(0) compactu'dngd6i trongXn.V~y Gnl?tanhx~Compact,b6ciS3duQccblIngminh. Tranq15 Lz(anvanCao ~oc Ifo d~4: Tmintu G: Xo -7 Xo X H G(x) t E)inh bdi G(x)(t) = fg(s,<p(X"s))ds+h(O) lil toaD tu'compact(hoan 0 . to~mlien tl,lc)va Pn(G(D))(+oo voiPn(D)(+oo, DcXo Chitngminh : - Giasu(xkhladaytrongXosaorho: limxk=Xo nghHila limPn (Xk - xo):"':0, k-7CC . k~"'" \in Vi (xkhhQitl,ld~uv~Xotrel1[O,n],Vn. Do dotheob6d~3 Gnlien tl,lCtrenXnDenc6 : Gn(Xkl[o,nJ)k-=tOOGn(xol[o,nJ) (*) t maGn(Xk Jet) = fg(s,<p(~k&,))ds+h(O) 0 - G(x Vt\. 0<j <) - ]- -kl,-/' _I__c.. ( d"y \ \ 1-0') Densuyfa lim Pn(G(Xk) - G(Xo))=0, \In K-700 Th?tV?y, Pn(G(Xk)- G(XO))=sUP~G(Xk)(t)- G(XO)(t)1:0~t ~n} Tli (*)va(**) suyra: G(Xk)(t) -7 G(xo)(t), Vt E [0,n] k-7OO Do d6 Pn(G(Xk)-G(x.O))-7 0 k-7CO Nghiala G lien tl,lctrenXo GQi[2la t?P bi ch?ntrongXo,tachungminhG(0) Vi compactu'ang doitrongXo.DungBinh ly 3 ChuangIta cbIc§nchungmint d.c di~usau: G(~~)d~nglien tl,lctren[O,n],Vn. Bi~unayc6do : Trang 16 Lz1,an17an CaD ho Co G(X)(t)=Gn(xlxnXt); O~t~n ma Gn(xlXnXt) lien tl.JcdSutren[0,n] (doGn compacttrenXn) 'vE>0, 38>0 : '\It,1'E [O,n] Ie- t'I(8=>IGn(xlXnXt) ~? n(xlXnft' *~ =>IG(x)(t)-G(x)(t' )1<8 . DiSu nay dungcho mQix E Q~V~yG(Q) d~nglien tlfcireDXu. {XCi)/ x E G(O); t E [0, I!J}compacttHongc1cfitrong E . - Di~unaycolado: {x(t)/xE G(Q); t E [O,nJ} ={X(t)/xlxnEG(OnXn); tE[O,n]} T~pnaycompactu'ongd6itrongE VIGncompactrongXn- V?y b6 d~.4duQcchungminh- - .. ? ;I;:Bhde5: Voi toantll'G dinhnghlaa tr&11faco : lim Pn(G(x)) Pn(X)-700Pn(x) =0, \:In Chitngn1inh : Voi E>0ba'tky,do . Ig(s,u)I_Ohm - , IIUII-7CXJ Ilull Ig(s,u)1yM 6nll~II' liencoso'Y>0,y>IIhl!saoeha: '\IsE [0,n] g compactlien: 3M>0:lg(s,u)I~M, '\IuEEn)lIull:::;y,VsE[O,n] M E Ch9nYl> 0 saocha -<- Yl 2n Trant]17 Lzi,a nvanCao hoc -_.----------- --- Vx E Xn ma: IIxlln;:::11 chua'ntIeD Xn Taco: IG(x)(t)1 1 ( n - I. '\ IIxllo ::;N[ jlg(s:cp(Xs»Ids-+Ih(G)1) . ~llxlll ( flg(s,cp(xs»ldS+flg(s,cp(xs»Ids+I n II 12 ? " II =~E [O,n]: Il cp(Xs) ll ::;y}0 day .- -. --I2=[O,n]\II Suy ra-: 'lit E [O,n] IG(x)(t)1<M.n+ fll'l'(;:,)11(S'CP(,,~t~ !!xllo-!!xt 12 "Xlln Ilcp(Xs )11 'lIxlin - rXeS)+h(O)- xeD); s;::0 Dc xes)=1 -Lh(s) ; -[:5;sS;O - - Va Xs(8)~ x(st 8) Neil: IlKs II::;IIxL ::;2/1xlln+Ilhll Th?tv~y,Ixs (9)1=!x(s+8)/ = { Ix(s+e)+h(O)- x(O)I;s ;:::0 Ih(s)1 ;;-r::;s::;O ~ 211xlln +IIhll Suy fa : IIcp(Xs)/I~ flcpllllxsII::;IIcpll(Lllxt+IIhl!) - "' Ig(s,cp(xs)1 's 0 11 - II Ma Ilcp(xs)/1 y (*) Tran9 18 Lzi,an17anCao ~oc f" x ds - 12 Ilxl!n 11<p(~s)1I < E f[ Ilhll JI I£I"\II - 6nll<p112 2 +IlxliuI~ds < Ellffllfn ( 2+it J dS - 6nll<p110 ' Ilxlin .. =~ ( 2+it ] <~(2+1)=~ 6 Ilx!ln 6 ,".. 2 khi Ilxlin auldntilela: , lp(X' )11x Igrs,<p~x,))1ds <-"- 12 Ilxnll '11<p(xs)11 2 (**) Tli (*) va (**) suyra Jim Pn(G(x» =0, Vn , Pn(X)~a) Pn (x) Nhu'v~y,tli B6 d~4,5, G thoadi~uki~niv) v) cuaBinh 112 Chuang ~ , " B~ d~,.... TT G ~ d.~ bK;fA 0 ' 1 . ~ 1 .oJ. h~1va tu 0 e L, m suy ra u + co tern ,at uQng.: '~nnIy uu\:fcCll(ng .. niinh. Chti thich : Pn(G(D» < +00 voi PileD)<+00, D c Xo Th~tv~y,la'yD c Xo : pnCD)<+00 ,11 E N Ta d~tfn =sup~Pn(X): XE D r Suyra IIXI!n~rn, '\IxE D,llt l?lchu{{ntrenC([O,n],E) Ta CO: Pn(G(X»)=sup~G(X)(t)l:t E[0,n]} :0;SUP{~g(S''1'(;[,))Ids+Ih(O)I:tE[0,n]} Do:11<p(~s)11 ~11<pIIII~sII ~1I<p11(21Ixl!n+II wO ~11<p11(2rn+I:hij)=Mn c6dinhvdincbotruck Tram}19 "Cz1,anvan Cao 00C \:! g compactlien:3hn>0: Ig(s,cpC;Zs»1:::;;hn \Is E [O,n], Vx ED.' Suy ra : Pn(G(x» :::;;hnt +Ih(O)1:::;;nhn+Ih(O)[ Vx ED d§:nd€n Pn(G(D» <+00 rtJo*a@rtJo*a@rtJo*a@rtJo*..e.i'*a@ - , , . '\ - - - Gia sli'X =C([-r;-oo);E) la kh6nggianFrechetHitcacachamlien - . lIen [-r,co)vaoE vdihQml'achuin. p'n(x)=sup~X(t)1:t E [-r, n]} A(t) la mQthQcuacacroantli'tuy€n Huhbi ch?ntu En -) E ph1,1 thuQclien t1,1ctheot;:::O. . Voi m?ikE Z+, giasagk: [0,00)x En-) E t~oacacc1i~uki~n (1.2), k 0 . - - (1.3)vag ~. g . Voi day(hkhtrongC thoahmhk =ho . k~oo, Voi m6ik E Z+,-giasaXkla nghi~mcuabailoanvdigia trid~u: _ { XI(t) - . - A . (t)CP(Xt) +gk(t,cp(Xt»; t ;:::0 Ilk Xo = hk Voi nhtinggiathi€t a lIen tacodint 19sail: IJ nhry 2: Ne'uphuongtrmhlIo-!lICphuongtrlnh: { X' (t) =oA(t)CP(Xt)+gO(t,cp(Xt»; t ;:::0 Xo=h - conghi~mduynha'tXO thltaco: lim xk =Xo k~oo --- Tranq 20 Lz(a n17Cln Cao 00 C Nlfanxet: Vdi m6ik phuongtrlnhIlkluonconghi(~nL Th~tv~y,d?tf: [0,00)x En-7E f(t,u)=A(t)(u). / If(t,u)-f(t,u')1=IA(tyu)-ACtXh')1:=~!A(t)(u-u')1Ta co: ~IIA(t)l!X Ilu --:-u'll VI hQ A(t) : En -7E tuy€ntfnh,lienWephl,lthuQclien tlfctheet,nen- . V'n E N, :3kn : IIA(t)1I~kn, V'tE [0,11] Tli Binh 1y1,tacophuongtrlnhIlk co Ta chungminhDinh1y2quacacbucksail: Bude1: Vdi m6in E N, giasaX' n=C([-r,n],E)vdi chua'n IIXii'n=sup~x(t)l:t E [-r,n]} - Bn ={xkh-r,nr k E Z+} Ta eo Bnbi ch?ntrongX' II Chicngminhbui1c 1 : Trucktientachungminhr~ng: Igk(t,u)I~M+~llulln vdi E > 0 cho trude,'v'tE [O,n],Vu E Ell. Vdi m6ik E Z+tadfu co: I p-k C <- ]1 )1. I;::' t, ,-,"hrn -, =0 liuil~oo [lull d~utheet trenm6it~pbieh~nctJa[0,00). ~ Igk(t, u)1 E Neil V'E>0 , :3Nk>0: Illlll <~ V'tE [O,n], V'u E Ell : Ilull>N k Tranq 21 Lwjn win Caonqc ~lgk(t,u)I<~llulln gk~ gO nen3ko>0: 'ifk 2::ko V(t,u)E[O,n]xEll Igk(t,u) - gO(t,u)!<1 Suy ra Igk(t,u)1~Igk(t,u) -gO(t,u)1+Igo(t,u)1<1+Ig0(t,u)/ V~yIgk(t,u)1<1+lgO(t,u)l;~k2::ko - - Theo trenchungtaco: Igk(t,u)1<~IIulln Bung chamQitE[O,n],VuEEll :llull>Nk (N k ph\! thuQcrheak,E). B?t N =max{N0'N 1"'" N ko}. Khi d6'ifu:Ilull>N tacolgk(t,u)1<~IIull, Vk =0,1,...,k0n Vi gk (k =0,1,2,...,kG) compact-m~nt~pgk([0,n]xB(O,N) la compacttu'ongd6i trongE nen3Mk >O:lgk(t,u)I~Mk 'iftE[O,n] Vu:llull~N, (k= 0,1,2;...,ko) ChQn M'= max{Mo,M1,M2,...,Mko} Taco: Tac6:lgk(t,u)I~M'+~llull,'iftE[O,n]n VUE Ell, k=O,1,2,...,ko Tli Igk(t,u)1 ko Taco: Igk(t,u)lkon Va hiSnnhienk =0,1,2,...,ko ba'td~ngthuGy§:ndung V~y Igk(t,U)I<l+NI'+~llull=M+~llulln n' D?t m=Sup~IA(t)11:t E [0,n]} (1IA(t)lichufincuatoaDt1"1'tuye'ntinhbi ch~nACt» Voim6ikEZ,taco VtE[O,n]: Trang- 22 Luqn vanCao hqc t t IXk(t)/:5:/hk(O)/+JIIA(s)lllp(x;)llds+JlgkCS,q>(x;)/ds 0 0 t t ~ I h k (0)[+ m fllcp(x; )!~s+ f(M +~Ilcp(x; )11)ds:5: 0 0 n t t ~Ihk (0)1+mllcpllf x; I~sj- J (M +~Ilcpliiix;il)ds~ 0 0 n t . t .. ~Ihk(O)!+mllcpllfllx;l~s+nM + J~llcp""x;llds~ 0 on t <(N +Mn)+(mll<p11+~11<p11)~Ix~Irs - n 0 N =max{hk(0)1:k E Z +} Tli d6rheab§td~ngthlicGronwalltaco : n mIIIpII ,-+E Ilx ~11.<::;(N + Mil )e II<pll=(N +Mn )emn+s \7'tE [O,n] ,Vk E Z+ Suy ra B n bi eh~ntrongX n (xong bu'oc1) Bu'oc2: Vdi m6i k E Z +' tadinhnghiacaeroantU' U'va Ck : X -+ X =C([-r,co),E) nhu'sail : { fACS)<P(XS)dS;t;::::0 D' (x)(t) = 0 0 ;-r.<::;t.<::;O ! }gk(S,<P(XJdS+hk(O) ; t;::::0 Ck(x)(t) = 0 hk(t) ;-r.<::;t.<::;O ~ vi gk -+g° va limhk =h° trongC =C([-r,O)],E)k~co lien ta c6 (C kh hQi tl,l d~uv~Co tren X' n=C([-r,n], E) - ( fgO(S,<PCXJdS+hkCO) ;t;::::0 Co(x)(t) = 0 ho(t) :- r::; t::; 0 Trant;! 23 Lwjn van CaD h(JC Vi {A(t)}la tuye-nHnb, bi ch~ntu En-7 ~ lien U' clingla tmlnttr tuye-ntinh va hon mla 11(0')'11',,;(mono!I<pII)'\fiEN1. * Chung minh U' tuye'nHnh: Vx, Y EX, Vt 2:0 t t U' (x +y)(t)=fA(s)cp[(x+y)s]ds=fA(s)cp(xs+ys)ds 0 0 t t =fA(s)cp(xs)ds + fA(s)cp(ys )ds =U' (x)(t) + u'(y)(t) 0 0 / Tu'ong tl1 U'(ax)(t)=aU(x)(t) Chuy: x:[-r,CX)~E ;t2:0,xt :[-r,O]~E ; Taco (x+Y)t=Xt+Yr va (ax)t=axt Th~tv~yV8E[-r,O] (X+Y\ (8)=(x+y)(t+8)=x(t+8)+y(t+8) =Xt(8)+Yr(8)=(Xt +Yt)(8) (ax\ (8)=(axXt+8)=a.x(t+8)=axt(8) 8H x(t+8) Voi phgnchliynaytadtichungminhU' tuye-ntinh: Ta chungminh: 'v'iE N thi 1(U'r(x)(t)- (U')'(y)(t)l-:;(m.II~II.t)iIlx- yll'n1. 'v'x,yE X~,'v'tE [O,n] i =1: t t I iU' (x)(t) - U' (y)(t)1=If A(s)cp(xs)ds- fA(s)<p(ys)dS Iu 0 t t I =lfA(s)l<p(xs)-<p(ys)!ds=fA(s)cp[(xs)-(ys)]ds! () iO I t , ~ fIIA(s)II.II<pil.llxs- ysllds~m.llcpl/.t.llx- ylln () , (dol-r.O]c[-r.nlnen x\-Ys!l~ilx-yl'n) Tranq 24 LU{jnvanCaDhqc Gia sadi~ukh~ngdinhtrendUligyoi i :2:1 (1U')i+1(x)(t) - (U')i+l (y)(t)1 =1U'[(U')i(x)](t) - U,[(U')i (y)](tJI I I IjA(S)<P(((U')i(x),)]ds - jA(S)<P[((U')i(y),)]dS ,', I ~ ~IA(s)!I.II<plll(U')i(x», - ((U')i (y)~llds 0 Ta c6: 1((U')i(X)\(8)-((U')i(y»,(8)1 = I . I [m.II<pII.(s +8)]' II II ' / (U')I(x»(s+8)-(U')'(y»(s+8) ~ " . X -y n (gia thiet qui nc:).p) 1. (m.II<plj.s)i II II ' ~ .x- y n.,l. Suyra: II((U')'(x», - ((U,)i(y»,/I~(m."~".s;;.IIX- d" . I (mII II S)i , Tli d6:1(U')'+I(X)(t)_(U')'+I(y)(t)I~m.II<pII,f 'I~I' ,IIX-ylln,ds 0 1. (m.II<pII.S)i+1.IIX - II'" (i+1)! y V~ybatd~ngthuctrenduQcchungminh.Tli d6suyra: /I(U')i(X)_(U')i(y)l(n ~ (m.n.-!'<pll), .IIx-yl(n1. / . ' (m.n.II<pII)', VI U' tuyen tlnh nen: II(U')'(X)IIn ~ " .!lxll nl. D~n de'n:II(U');/I'" ~(m.n..!!<pllr1. (Thu h~pVI trenX~ '-.C([-r,n],E) Bu'oc3 : Tren kh6nggian X~=C([-r, n],E) ..:r. I xetchin moi Ilxli n = 2:11(0' Y(x~1n, '\Ix E X~ i=O Chuoi ('jvephai hQitl,lVI theobuGe2 taco : Trang 25 CuqnvanCaDhqc 11(U')'(x~ln~ (mo~o:I<pIf)iollxll~ nensuyfa i: II(U')' (x ~I' ~ Ilx/L i: (mono!lcpllJ'=emnll.II.llxll~i=O n i=O 1. ~--- --Hi~nnhle-n-Ilxt:s;!lxll: Mijt khactaco: II(U')'(x~1:=~II(U')'[U'(x)( =~II(U')' (x~In =fll(UIY(x~l~-/lxt =/iX/l:-IIXII~~llx!l:-e-m.n.II~11xllx[1=0 . =(1- e-m.n.lI~ilJlxll: =>Ilu'l!: :s; (1- e-m.n.II~II)=a <1 (voi IIU'II:la chufincuaanhx~tuyentinhtrenkh6nggian(X~,11-11:). 0"___'-- ~--~ -~' .'--- Bude4 : Giii saX la dqdophicompactKuratowskitrenIdlonggianBanach (x: ,11.11:)du<,1cdinh nghianhusau: yoi ba'tky A trongx~ leA) =inf{d>O/Adu<,1CphilbdimqtsO'hii'uh~ncact~pco duongkfnh ~d} Khi dosO'leA) conhungtlnhcha'tsail: +leA) =0A compactu'ongd6itrongX~ +A c B thlleA) <X(B) +x(A u B) :s;X(A)+x(B) +X(tA) =!tlx(A) TITcacdinhnghlav~U' va Ck'Xklanghi~mcuallknen taco: xk =U'(xk )+Ck (xk) Vk E Z Tranq 26 CwJn vanCao nc;c Tac6:xk -xo =V'(Xk -xO)+[CO(Xk)-CO(xO~+[Ck(Xk)-colxk~ (1) f)~t A ={(Xk- xo),[- r,n]: k E Z+} ~A =~Xk-xo)j[-r,n] :k E Z+} Khi d6A bi ch~ntrong(X~,11.11:).Th~tv~y,~tibu'Dc1tac6: .lIx~11~ (N +Mn)em.n+E,t E [O,n] =>IIx~- x~11~2(N +Mn)em.n+E,t E [O,n],kE Z+ =>A bi ch~ntrong(X~,11.11:)vlll.lI~-11.11:nenA bi ch~ntrong (X'n,11.11:) Tti cacgiathi6tCk compact,A bich~ntrangX~ JimCk =Co.trongX~,tac6:Ck =+Cok-+a:> X[{CJXk )-Co (xo)/k E Z+}]=0 X[{Ck(Xk)- Co(xo)/k E Z+}]=0 (vI hai t~pnay Ia compacttu'dngdoi) Theobu'Dc3:IIV'II:~a <1 tucV'la anhX(;lCllh~soaE (0,1). D~nde'nV ciingla anhX(;lk =a-cod~c. Tti d6X(V'(A))~ax(A). Tti (1) trongbu'Dc4 naytac6 : X(A)~x(V'(A)) ~ax(A) VI 0< a <1nen X(A) = 0 tuc A Ia t~pcompacttu'dngdoi trong , , * X~vDichuffnilt(VIlit -lit) Tli d6 t6n t(;liday con (xki)icua(xk)ksaccho Frnxki I =ytrong(X~,11.11') 1-+00 ,[-r.nl n Ta co Xki=V'(Xki)+Cki(Xki) Cho i ~+:o VI Ck ~ Co trongX~nentaco: y=V' (y)+Co(y) trongX;1 Tranq 27 [.wJn van CaD hqc f)i~unaychotha"y y 1affiQtnghi~fficuanotren[-[,n]. VI bailoan(IIo)co I nghi~mduynha"tXOlien: (xo) 1 =y [-r,n] Nhu' v~y miday con hQiW (Xki)d[-r,nl-~ua_~~_k)I[=r.nl--~i~u--~o_gi~ihc;J (Xo)I[-r,n] VI A 1acompact tu'ongd6i trong X~lien 1im(xk) 1 =x° I I trongdoX~"iinE N k~oo [-r,n] [-r,n] Tli dosuyra 1imxk =X°trongX . k~oo Giasa E,C,X nhu'(jph~ntru'oc(dinh1y2) ~aX~{oai t6,al: (IIIJ[X(t)-A(t)X(t-r)]' =g(t,<p(Xt);t~O L Xo =h voi h E C =C([-r,O],E) ehotru'oc g va {A(t)}th6acacdi~uki~nsau: (III. I) {A(t)}1a hcaeloanta tuye'ntinhbi chiJ.nlaE..) F ph1,1thuQclien Wctheot ~0 (III.2) g: [0,00)x En -1-E th6acacdi~uki~n(1.2),(1.3). Binhly3: Ntu {A(t)}va gth6acaedi~ukit%n (IlL 1),(III.2) thlbairoanIII conghit%mtren[-f, 00) Ch((ngminh:'- Bairoan(III) tu'ongdu'ongyoiphuongtrinh { X(t)=A(t)x(t - r) - A(O)x(-f) +h(G)+ £g(s,<p(xs))ds Xo=h ;t Tranq 28 Cuqn vanCaohqc £)~tZ,G: X ~ X =C([-r,oo),E} Xacdinhnhu'sail: Z(xXt)= { A(t)X(t-r) - A(O)x(-r)E;t ~0 0 -r~t~O G(xXI)={~(:r<p(~:j)d~+h({))-~If?:~~::---- Ta chungminhdinh1)'3quacacb6d~sailday: B6 d~1: Toantti'Z tuy€n tinhva Zk(x)(t)=0,\:it:-r ~t :::;(k - l)r ChUngminh : '\ix,Y EX, '\it~0 Ta co: =Z(x +y)(t) =A(t)(x +y)(t ~r) - A(O)(x + y)(-f) =A(t)[x(t - r) - yet- r)]- A(O)[x(-f) +y(-r)] . =A(t)x(t - r) -A(O)x(-f) +A(t)y(t - r) - A(Q)y(-f) Z(x)(t)+Z(y)(t) Tu'ongt1;1'Z(AX)(t)=AZ(X)(t), A ER V~yZ tuy€n tinh Ta chungminhZk (xXt)=0, '\it: -r:::;t ~(k -1)r B~ngqui n(,lptoanhQcnhu'sail : Vdik=l, Zk(X)(t)=O,'Vt:-r:::;t~(k-l)r dungtheodinh nghlacuaZ vdi k =2 .Ta co: Z2(XXt)=Z(Z(x)(t)= = { A(t)Z(XXt- r) - A(O)Z(xX-r) ;t ~0 0 -r~t~O = { A(t)Z(xXt-r) ;t~O 0 -r~t~O Tram] 29 Luqnvan CaD hC(JC (ViZ(x)(-r )=0 vaA(O)tuye'ntinhnenA(0)Z(x)(- r)=0) Ta l£;tico: { A (t)[Z(t - r)x(t- 2r)- A(0)x(-r)] ;t - r ~( A(t)Z{x)(t- r)=. 0 ;-r:::;t-r:::;C hay A(t)Z(xXt- r)=0; 0::;t::;r =(2-l)r V~y Z2(XXt)=0 '\It: -r::;t::;r GiasU' Zk(X)(t)=O'\Ik~2: -r::;t::;(k-l)r Ta coZk+l(xXt)=Z(Zk(x)(t) =jA(t)Zk(xXt-r)-A(O)Zk(xX-r) ;t:2:0 (.0 -r::;t::;O = { A(t)Zk(xXt-r) ;t~O 0 -r::;t::;O ( Vi rheagiathie'tquin~pZ\x)( -r)=O) Ne'u+0:::;t :::;kr -r :::;t - r :::;(k -l)r thlrheagiathietquin Zk(x)(t-r)=O suyraA(t)Zk(x)(t-r)=O; '7t:-r:::;t:::;kr V~yZk+l(x)(t)=0 '\it: -r:::;t :::;kr B6d~1chungminhxang B,,?d;, 'J.0 e-. Toanti'!Z th6acacdi~uki~ni)-iii) cuaBinh 1y2Chu'ung1 Chl'rngminh: Theabe)d~1tac6: 'v'n EN, 3kn EN: 'v'k>kn ,x E X~ : Zk (xXt)=O;-r<t<(kn-1)r <n =>p'n(Zk(x))=0.Trongd6X~ =C([-r,n],E) Voi chu{}nIIxt =sup~x(t~:-r < t ~n} p~(x)=sup~x(t~:-r ~t <n}. Tranq 30 Luqn vanCao hc;c KigmtraZ th6adi~ukit$nA (AI): \ia E X, Za(X) C X hi~nnhien , _.- - u_.- - ---- ._- (A2): \ia EX vap~,3kaEZ+voi tinhchat: \iE>0, 3roEN va(3>0:\ix,YEX . , a:n (x,y) a:n (Z:o(x),Z:o(y)) <E Taco: a:~(Z~)(x),Z:o(y))=max{p~(Z~(Z:o(x)- Z~(Z:' (y))):i, j =0, ka} (Chli yk~Ia sonho nhatsaGcho ZKa(xXt)=0\it: -r::;t::;(ka-I)r::; n) Voi mQit E [- r,nJta co: Z~(Z~)(x)Xt)=Z:o(Z~(x)Xt) \ik EZ+,\ix,y EX Ta co: Z; (x)- Z~(y)=Zk(x)- Zk(y) Th~tv~y,Z;(x)= Za(Za(x))=Z(Za(x))+a=Z(Za(x)+a.)+a =Z2(x)+Z(a)+a (vIZ tuye'ntinh) Z~(x)=Za(Z; (a))=Z(Z~(a))+a=Z(Z2(x)+Z(a)+a)+a =Z3(x) + Z2(a)+ Z(a)+ a Trant] 31 Cuqn van CaD AflC B~ngquin'.ipSuyfa: Z~(x)=Zk(x)+Zk-I(a)+...+Z(a)+a di~unaydungchomQix EX. Tli d6 Z~(x)- Z~(y)=Zk(X)- Zk(y) Z~(Z:o(x))- Z~(Z:o(y))= ~_:~_(~~i~))~_~t(Z~i0)-, ,- .---- Zro(Z~(x))- Zro(Z~(y)) ChungtachQn8=8 vafodliIonsaGcho:\:Ix Zro(xXt) =0;- f < t <n Suy fa Z ro (Z ~(x)) =Z ro (Z ~ (y))=0 Tli d6n€u a:n(x,y) <8+8 thlhi€n nhien a:~(Z:o(x),Z:o(y))<E ii) Voi ba'tky P~taco: P~(Z(x)- Z(y))=p~(Z(x - y)) (Z -tuyentinhbuGe1) , IZ(x-y)(t~ ~IA(tXx-yXt-r)-A(O)(x-y)(-r~ ::;IA(tXx - yXt - r~+IA(OXx - yX- r~ ::;IIA(t~I.(x- yXt - r)+ IIA(O~I.(x- yX- r)::;2mllx- yll~ Trangd6 m=sup~IA(t~I:0::;t::;n} Tli d6suyfa p~(Z(x- y))::;2mp~(x- y) Hay p~(Z(x)- Z(y))::;2mp~(x- y) iii) \:IxoEX, p~.La'yraEN saGcho Z[o(x)(t)=O;-r::;t::;(ra-l)r::;n Tranq 32 Luq.nvanCaohqc Khi do p~(z~o(x) - Z~oo(y))= p~(zro(x)- Zro(y)) (chungminhaphftni) =0::;Ap~(x- y) vdi0~_~~<l~,~_~~-..- - M~tkhac,chungminhtu'dngn;rnhuadinh1:91taco: G compactvath6a lim p~(G(x))=0 p~(x)-+co p~(x) Khi dotuB6 d~2 tacoZ, G th6acac di~uki~nd Binh 192ChuangI. Do do co di~mba'tdQng. f)i~mba'tdQngnayla nghi~mcuabai tminIII tren[-r,co). Tranq 33 Luqn vanCae Aqc Voi nhunggiathi~tnhuddinh1:93v~X,E,C. k EZ+taxetbairoanvoigiatridftu III { [x . (t)-A(t)x(t-r)]' =gk(t,<P(Xt)tt~O k k Xo =h Voi hk E C,chotntoc{A(t)},gkth6aca~'.d~~'u.~ki~~Tili:i),(III.2 Tli nhunggia thi~tnayrheaDinh 1:93phuongtrlnhInk conghi~mxk tren[-r,00),'v'kE Z+ Dinh ly4 : Voi nhunggiathi~trenvane'u(gk)khQitl,ld~uvago'hk hQitl,lv~h° phuongtrlnhIlloconghi~mduynhatx0.Thi taco: lim xk =XO trongX =C([-r,00),E) k~CXJ Chungminh: Ta chungminhdinh1:94quacacbuocsail: Buoc1: Voi bat ky a~0,d~tX a =C([-r, a],E) la kh6nggianBanachvoichua'n Ilxll;=sup~x(t~:t E [- r,a]} Za :Xa ~ Xa Za(x)(t)= { A(t)x(t- r)- A(O)x(i- rt 0~t ~a 0 -r~t~O Theab6d€ 1dinh193tasuyfac6se;ka E Z+nhonha'tsaDcha[Za(x)]ka=0 Trang 34 Cuf!nvanCaeh(Jc TadinhnghiachufintuangduangII.II~trenXa bdi: ~ ka IIxll~=I"z~(x~1 =I"z~(x~1 ,VXEXa i=O a i=O a ka Khido: Ilxlia~llxll~~Illz~II.IIxlia =Aallxlla ,(*) --- i=O (ChtiY za tuye"ntfnh,rheab6d~1,dinhIy3) ka Aa = IIIZ~II~l i=O IIZa (x~l~ =tllz~(Za(x)~1=tjlz~(x~1=IIxll~-llxt ~(1- A~lJlx[ i=O a i=l a ~llxll~-IIZa(x~l:~A~l.lIxt ~ IIx --Z~(x~l~~A~I .lIxt X E Xa (**) Buck2: Wi m6in EN, dij.tB~: kI [-c,nJ:k E Z.) Ta coB~bi ch~ntrongX~ =C([-r,n],E) voichufinIIxt =sup~X(t~:tE[-r,n]} Voim6iE>O,3M>O:lgk(t,u~~M+~.llulln citingchoyoi mqi t E [O,n],u E En, k E Z~ - (Chungminhdi~unaygi6ngnhubuoc1,dinhIy 2, chuangIII). Voi m6ik E Z+, (Ink)tuangduang: Tranq 35 LUeJnvan Cao h(Jc { X(I)- ~(I)x(1- r)+ A(O)x(- r)~ hk (0)+.( gk (I, <p(X,))d1; t -" 0 Xo =h VI xk la nghit%meuaphuongtrinhtrennenco: J x k(t)- A(t)Xk (t~r)+A(O)xk(-;)~-hk-(O)~1~-k(s,~(;f )~~;O~t ~ n ---- lX~=hk \it E[0,n],taco: Ixk(t) - A(t)xk (t- r) +A(O)xk(- r~ ~ Ihk (0~ + £Ig k (s,cp(x~ )~sl ~ Ih k(O~+ i(M +: Ilcp(xnl}s~Ihk(O~+Mn +: IlcpHllx~l~s ~Mn +N +~11cpll.£ IIx~I~sn N =sup {hk(0~ :k E Z + } D~nd€n : ~~~~{Xk(0)- A(s)xk(s- r)+A(O)Xk(- r~} ~Mn+N +~llcpll.£llx~l~s,\iSE[O,t]n Tli (*) va (**) dbuDe1taco : \ik E Z+ , A~2l1xkllt~ A~2l1xkllt , ~A~lllxk _ZtCXk)I! t ~ Ilxk - Zt (x k)t II t ~(Mn+N)+~llcpllfllx~llds ;tE[O,nl, n 0 t Suyra:\\xk\\\ ~A~(Mn+N)+A~ ~\\<p\\J\\X~\\ds0 ;tEl 0,n\. k E Z + Trang- 36 Cwjn van CaD hc;c Giasa kn Ia sOnguyendl1dngnhonha'tsaocho: [Zn(x)]kn=O/x E Xn =c([-r,n],E) Khi,-J6k >k k IasOnguyen~ElH'ona-benha't--n- t' t /::) saocho[Zt(x)]kt=0 0::;t ::;n kn kt An =L/lZ~/I ~At =L IIZ ~ II 0::;t ::;n i=O n i=O t Tli do:llxk/lt::;A~(Mn+N)+A~.~.llcpll£llx;l~s :::? I!x~/I~A~(Mn+N)+ A~.~.llcpll£/Ix;I~sn Theo ba'td~ngthlicGronwall taco: t E [0,n],k E Z+ Ilx k /I ~ A~(Mn + N)e E.A~.11<p1!t , t E [0,n], k E Z+ ChungtoB~bich~ntrongX'n=C([-r,n],E) Bu'dc3: Vdi m6i k E Z+,tadinhnghlacaeroantu Z va Ck :X ~ X =C([-r,co),E)nhu'sau: Z(xXt)= { A(t)x(t-r)-A(O)x(-r) ;t~O 0 -r::;t~O ( X )- { 1 gk(s,cp(xJ)cis +hk(0) ;t ~0CK X t - hk(t) ;-r~t~O -7. ~ VI gk~go va hk ~ hO lien coCk ~O trenX~=C([-r,n],E), vdillxt =sup~x(q;-r~t~n} ( )( - { £go(s,cp(XJ)ciS+hO(O);t~OCo x t- hO(t) ;-r~t~O Theobu'dc1,t6nt~ikn Ii songuyendu'dngbenhat k .,.1( ) , saocho: Z n X =0, X E X n Tranq 37 Luqn vanCaohc;c D?t chua:nmoitrenX~nhu'sail: kn ' \ix E X~, Ilxll:=~=J(zy(x~ln Taco: Ilxll~~llxll~(1+IIZII+/lz211+...+llznll)lxt IIxll~ IIxll:~Anllxll~ VOiAn=1+lIzII+IIZ211+...+/lZn/l2:1 M?t khac * k". "kn+l. ' IIZ(x~ln=IllZi (Z(x)~1= IliZi (Z(x)~1i=O n i=\ n =IIxl!: -llxll~~IIxl!:-A~lllx[ =(1-A-~Jlxll:=allxll:~ IIZII:~a <1 (XemZ:(X~,II.":)~(X~,II.II:)) Bu'oc4: Hoantoangi6ngnhu'bu'oc4,djnhly2chuongII vachungnllnhduQcxk~xO Trang 38 Cuqn van CaD nqc Voi nhunggiathie'tnhliddinhly '. v~X, E, C Voi m6i k E Z+,xet baitoan v~giatri d~u (IV) [X(I)- ~(I)c(t;--r)]' =gk(I, 'Pk(x,)); t"' 0 lxo =h hk E C.--chotrlioc {A(t)},.gkthOa.cacd.i~lLki~IL.(III.l),~III.2) TiI caegiathie'tnayrheadinhly 3phlidngtrinhIV k co nghi~mx k lien [-r, 00),'v'kE Z+ Binh ly 5 : Voi nhunggia thie'tlien va ne'u(gk)khQit1,ld~uv~go va go lien U:IC d~urheabie'nthu 2, hkhQit1,1v~ho trongC, <PkhQit\1v~<Potrongol(c,En ~phlidngtrinhIVo conghi~mduy nha'tx0.Thl taco: lim Xk =XO trongX =C([-r,oo),E)k-->oo Chungminh: Ta chungminhdinhly5quacaebliocsail: Blioc1: Voi ba'tky a~0,d~tXa =C([-r,a,E]) thonggianBanachvoichua:n Ilxlla=sup~X(t~:tE[-r,a]} Za : Xa ~ Xa Z (x)(t)= { A(t)x(t-r)-"-A(O)x(-r);0:::;t:::;a ,I 0 ;-r :::;t :::;0 Nhu(jbuGC1dinh1:94chuangIII, cochuffntu'angduangtrenX a nhu sail : ,'" k" Ilxlla=2]Z:(x~la=IIIZ~ (x~la,x E Xa ;=0 ;=0 ka la songuyenduangbenhathoaZ~~I(x)=0 Tadaco: k Ilxll" :::;Ilxll~ :::;2]Z: II"!Ixlla=A"IIxlla i=O Ilx - Z"(xl ;::i.~1.llxll.. ' Vx E x" Tranq 39 Cuqn van CaD hc;c Budc2: Wi m6inEN co'dinh,d~tB~=klh",]: kE Z+) Clingnhubudc2,dinhly4,chuangII chang - minhdu<;$cB ~ bi ch~ntrongX~~=:=~c{D=-('J)lEL ---- vdichu~nIlxt=sup~x(t~: E [-r,n]} ChicffnchtiY k~ 0trong oC(C,E-n)nen ~IkID bi ch~n Blidc 3: Vdi m6i k E Z+, tadinhnghlacaeloan tli'Z va Ck :X-+X=C([-r,n),E)nhusau: ( X \ - { A(t)x(t - r) - A(0)x(- r) ;t ~0 Z x tJ- 0 ;-r~t ~0 ( X )- { 1 gk(s,k(xJ)cIs + hk(0~ t ~0 Ck X t - I hk(t). ;-r~t~O Khidodilbie'tcos6kn nguyenduangnh6nha't k +\( ) , saochoZ n X =0, '\Ix E Xn X6t chu~n11.11:trenX~khacnhaunhusail: . OJ ,kn - . "xII:=~"(zY (x~fn=~."(zY(x~ln Taco "Z[ ~a<1 Ta changminhCk=;Co trenX~=c([-r,n],E) ,. ( X ) { 1g0(S,CPO(XJ)cIS+hO(OXt~OVal Cox t = hO(t) ;-r~t~O ~ Th~tv~y,'\IE>0 chotrudcvi gk-+gO nen3k1EN: '\Ik~k I' '\I(s,u) E [0,n]x En Igk(S,U)-go(s,u~<~30 Tranq 40 Lu~nvan Cao hQc V'x E X~,'\ft E [O,n] Ta co: ICk(xXt)- Co(xXt~~s:Igk(S'k(xJ)- go(S,o(xJYps + +[hk (0)-h0(O~~ f~/gk(s,~~~~))~~_?Ql?~<Pk~~~~))ld~ +f~Igo(s,<Pk(Xs))- go(s,<Po(Xs)~ds+ihk(0)- h0(0)/ VI go lienWed6utheabie'ntha 2nen38>0 :Vu,v EEn: Ilu-vllE Igo(s,u)-go(s, v)1<~ n 3n VI <Pk--+CPotrang ,:,t(C,En )nen 3k2 EN: Vk 2::k 2 II<pk(XJ-- <PO(xJII< 8 dungehamQix E X~ Vs E [0,11: Tu dolgo (s,<Pk(xs))- go(s,<Po(xs))1< 3: Vk 2::k2 h k ~ h 0 trang C =ctl- r,O],E), nen3k:>E N Vk 2::k 3 I hk (0)- h0(0~ <~ Khi do : Vk 2::k 0 =max{kI ' k 2 ' k 3}taeo ICk(x)(t)-Co(x)(t)1~rt~ds +rt~ds +~~~+~+~=8Jo3n - Jo3n 3 3 3 3 dungchomQix E Xn, mQit E (O,nJ SoyraliCk(x)-CO(X)I:1~E, V'k~ko,V'xE X;l -7 . Tile 1aCk ~()tren XI!' Bu'oc4: Hoanroangi6ngbu'oc4d djnh1y2ehu'dngII ' h ' , h A k ()va c ling mIll uu'Qcx ~ x Trang 41 Lu~nvan Cao hQe X6t phu'dngtrlnh: V { xt(t)=A(t)cp(xt)+get,cp(xt));t ~0 Xo=h vdi hE C =C([-r,O],E) V.I V.2 cp: C ~ Entuyfuidnh lien fijc~---'---'-'---'" ~._,_. A(t) la hQcaeroantU'tuye'ntinh, bi eh~ntitEn -7E ph1,lthuQc lien tl,letheot, tu~nhoanehuky cotheot. g : [O,co)x En ~ E tu~nhoanvdi ehuky COtheot va thoacae dieu ki<$n1.2,1.3. V.3 VA Voim6i h E C clIotru'dephu'dngtdnh Va trene6nhi~ul~m la m(>tnghi<$mx(h)tren[-r,co)thoaxo(h)=h. Vdi nhungdi~uki~n V.l de'nVA, rheadinhly 2,Chu'dngII, phu'dng tdnhV e6 nghi<$mduy nh3'tx(h) tren [-r,co) thoaxo(h)=h. va anhX<;1 hH x(h) la lien tl,1e. Gia sa Vet,s),s ~0, t ~ -r la h9 caeloanta tuye'ntinh, bi ch$ntuE vaoE' lientl,lem<;1nhrhea(t,s)vathoaphu'dngtdnhsailday: 8 - Vet,s)=A(t)cp(Vt(.,s));t ~s~08t { I ; t=s Vcr,s)= 0 ; s-r::;t<s ( V(t,S)=fA(u)cp(Vu(,.s))du+I ;Hay s Vet,s)=0 Vt(.,5)(6)=Vet+6,s) Vt(.,s):E~C t~s~O s-r::;t<s Trangd6 6 E [-r,O] Vdi s~t~O,clIoSet,s):C -7 C lahQcaeroantatuye'ntinh, bich~n xacdinhhdiS(t,s)(h)=Yt(h),trangd6yell)la nghit';mduynh§teuaphlMng tdnh. { yl(t) =A(t)cp(yt) Y =h. s ; t;::::s ~0 Trang 42 Lu~nvan Cao hc Set,s)dinhnghlanhutrendungla mQtlOantU'tuye'ntinhvabich~n. Th~tv~y,Vh,k E C, tachungminh: S(t,s)(h+k)=S(t,s)(h)+S(t,s)(k) Q Yt(h+k)=Yt(h)+Yt(k) y(h+k)(t+8)=y(h)(t+8) +y(k)(f+8),--- V8-E [::r,O] .Q Voi m6i h E C phuongtrInh : { yl(t)=A(t)q>(Yt) Vo Ys =h conghit$mduy nha"ty(h)nentaco : ; t2::s2::0 . t y(h)(t)=h(O)+fA(u)q>(yu(h»du ;t2::s2::0 Voi kE C phuongtrInhVoco nghit$mduynha"tnen : t y(k)(t)=k(O)+fA(u)q>(yu(k»du :t2::s2::0 Va h +k E C nenco : t y(h+k)(t)=(h +k)(O)+fA(u)q>(yu(h+k»du Taco: .. '., t. t y(h)(t)+y(k)(t)=h(O)-+k(O)+fA(u)q>[yu(h)}iu+fA(u)q>[yu(k)}iu s t =h(O)+k(O)+fA(u)q>[yu(h)+yn(k)}iu s t =h(O)+k(O)+j'A(u)q>[(y(h)+y(k»)u}iu s Chung toy(h)+y(k)dIng la nghit$mciiaphuongldnh : { yl . (t) =A(t)q>(Yt) Ys =h+k ; l2::s2::0 Trang 43 Lu?n van Ca(! hQc VI phu'dngtrinh~6nghit$mduynha'tlien : yell)+y(k) =y(h-:.k). Tu'dngtl,ichungminhGttQcyeAh)=Ay(h),AE R Tli do sur fa Set,s)tuy€n tinh . -_.- t M?t khac: yet)=h(O)-j-J A(u)(j')(Yll)d~ t => ly(t)1 ~ Ih(o)I"+ JIIA(u)lI.[[cpll.IIYulldu t s;Ih(O)1+n./lcpll.Jllyulid'] mt 1 K 2 th'~ G 11 'u:-":'::O0 : (.(..ng uC fOnWa ta co : Ily II (11)11:::;Ih(O)le 1l1114>11(t-S) :::>Ily II (h)11~[Ihlle~il4>iin =>IIS(t,S)(h)ll:::;ell1ii<piinllhll t,s E [O,n] Set,S)bi ch?n tfen C voi t,s E [O,n] ; nchotnioc, t,SE[O,ll] n clIo t:Lfocco din!1. M~l1J) d'~1 : S(t+co,O)=S(t,O). S«(o,O) Ch«l1gmint: \1hE:C : S(t+co,O)(h)::::Yt-;-0)(11)S(tO)[S(lO,O)(l1)]:S(t,O)[yO)(h)]=Yt(yw(h») Ta cLen;;m~nn: Yw-j(h)::::Yt(yw(h» Tll~tv~.y,S(~-H.v,O~(k)==Yt+o~(h)vo: y(h)1:\fBhi~mcua p'::":JhgL:nh : { y'(t'; CD)::":AU +C0)(p(Yt+OJ) ; t -: u:?:0 Yo =h hay tu'dngc1l(OL~: { y' (t + CD)=A(t)cp(y t+<,J Yo =h ,.+CD2:0 (Vi A tuftnho~l:1voi dIu ky CD) Trang 44 Lu~nvanCaohQc Suyra : { yl(h)(t +co)=A(t)<p(yt+ro(h)) Yo=h ;t+co;:::O M~t khacvdih E C phltdngtrlnh: {Y'(~=A(t)<p(Yt) LYo - h . . co nghi<$mduy nhffty(h). Do do taco : y(h)(t)=y(h)(Hro) hay: Yt+ro(h)=Yt(h) Cho t=0 co : Yro(h)=yo(h)=h Til do: Yt(Yro(h))= Yt(h) = Yt+ro(h)Tuc Ia : S(t,O)S(co,O)(h)=S(t+co,O)(h) V?y S(t+ro,O)== S(t,O)S(co,O) Menh d~2 : ;t;:::0 x(h)la mQtnghi<$mcuaphu'dngtrlnh: , \x'(t)=A(t)q>(xt)+get,q>(Xt»;t ~0 1Xo=h NK , h~ K (h) h ? euva C 1neux t oa : t Xt (h) =S(t,O)(h)+fVt (.,s)g(s,<p(xs(h)))ds 0 Chung minh : t ~Ne'u Xt(h) =S(t,O)(h)+fVt (.,s)g(s,<p(xs(h)))ds 0 Suy ra : t x(h)(t) =S(t,n)h(O)+fVet, s)g(s,<p(Xs(h)))ds 0 ~ [x(h)(t) J. ~ [S(t,O)h(O)J, +([V(t,s)g(s,'p(x, (h)»dS). . ! 0 =A(t)<p(yt (h))+f -(vet, s)g(s,<p(Xs(h) Xis+ Vet, t)g(t, (p(xs (h») 0 at Trang 45 Lu~nvan Cao hQc Dftnden: t x'(h)(t)=A(t)<p(yt (h»+fA(t)<p[Vt(.,s)g(s,<p(xs(h»)}is+get,<p(xt(h») 0 . t =A(t)<p(yt (h» +A(t)f<p[Vt(.,s)g(s,<p(Xs(h))}is +get,<p(xt(h») 0 - =A(t{<p(y,(h))+I <p[v,(0,s)g(s,<p(x,(h)))};IS]+g(t,<p(x,(h))) =A(t)({(x,(h)))dS]+g(t,q>(xI (h))) [ t l =A(t)<pS(t,O)(h)+fvt(.,s)g(s,<p(xs(h»)dsj+g(t,Q)(xt(h»)0 ~ =A(t)<p(xt(h» +g(t,<p(xt(h») V~yx'(h)(t) =A(t)<p(xt(h» +get,<p(xt(h») Bay lfl di~uphaichungminh. =>Neux(h)Ia nghi~mcuaphu'dngtdnh: { X'(t) =A(t)<p(xt(h)+get,<p(Xt(h») Xo=h Ta phaichungminh: . t X t (h) =S(t,O)(h)+f Vt(.,s)g(s,<r(xs(h»)ds 0 , Tac6: [S(t,O)(h(O»+[V(t,S)g(S,<P(X,(h»)dS] =A(t)<P[y,(h)+[v, (.,s)g(s,<p(xJh))dS] +g(t,<p(x, (h)) , Suyra: [X(h)(t)- S(t,O)h(O)- [V(t, s)g(s,<p(x,(h)))] =A(t)q>rXI (h)-Yt (h)-IV! (.,S)g(S,CP(Xs(h»)dS ]L 0 (*) Trang 46 Lu~n van Lao hQc L~ico : 0 KoCh)- Yo(h) - fVo(.,s)g(s,q>(xs(h»)ds 0 (**) =h-h-O=O va vi phridngtrinh {:~(~~A(t)q>(:L _;_I:~ - n - co nghi<$mduynhfftz=O.Nen tu(*) va(**) taco : t Xt (h) =S(t,O)(h)+fVt(.,s)g(s,q>(xs(t»)ds 0 M<$nhde 2 du'<;1cchungminh Kong. M<$nhde3saildaylah<$quacuaM<$nhde2 . Menh d~3 : co xco(h) =S(co,O)(h)+fVco(.,s)g(s,q>(xs(h»)ds 0 Voi x(h)la nghi<$mcuaphu'dnEtdnl.: { X1(t)=A(t)q>(Xt)+g(t,K(Xt» ; t~O ~xo=h Lu~nvanCaa hQc Vdi t~0 Bi[ttT(t) : C-7C h H T(t)(h) =Xt (h) Trangdo x(h) la nghi~mcuaphu'dngtrinhV, hayphu'dngtrinhvila neud tren. Menh d~4 : -------- T(t+co)=T(t)T(co) ; t~0 ChT1ngminh: Cachchungminhgi6ngnhu'cachchungminhm~nhd~2 . Th~tv~y,\1hE C taco : T(t+co)(h)=Xt+rotrongdox(h)Ia nghi~mcuaphu'dngtrlnh: { X r (t + co) =A (t + co)<p(x t +co) + g( t + co, <pCX t +0) ) ) Xo =h VI A(t),g tu~nhaanvdi chuky corheat nenphu'dngtrlnhtrentu'dngGltdng { X'(t + co)=A(t)<p(xt+co)+ get,<p(Xt+ro) Xo =h ' ~ { X'(h)(t +co).=A(t)<p[xt+oJh)]+get,<p[Xt+O)(h)b Xo=h VI vdim6ih phu'dngtrlnhV coduynha'tmQtnghi~mla x(h)nensuyfa : Xt(h)=Xt+ro(h) La'y t =0co: xro(h)=xo(h)=h T(t)T(co)(h)=T(t)[T(co)(h)] =T(t)[xro(h)]=T(t)(h)=xt(h)=xt+(r)(h) =T(t+co)(h) \1hE C. V~yco : T(t+co)=T(t)T(co) Trang 48 Lu~nvan Cao hQc 8~t F C-7C ro hH F(h) =fvro(.,s)g(s,<p(xs(h)))ds 0 s C-7C hH S(h).=S(co,O)(h)=Y(J)(h) T =T(co) Taco: T ==S +F. NSu T co diemba'tdQngh E C thix(h)Ia nghi~mtugnhofmchuky cocua V. Th~tv~y,T(h) == h =>T(co)(h) ==h - =>T(t+co)(h)==T(t)T(co)(h)==T(t)(h) =>xt+w(h)==xt(h) V~Y x(h) tugn hofm chu ky co [,u~nva'nCao J1Qc HQ {A(t)}du'O,b>O saocho: IIV(t,s)":::;be -a(t-s) j "i1t~s~O - -- DjnhIf 6: Xetphu'dngtrlnhva trenclingvoicacdieuki~nV.I, V.2, V.3,VA vahQ{A(t)}la5ndinhti~mc~ndeli. Khi dophu'dngtrinhV conghi~mtu~nhoanchuky co. Voi di~uki~nvilanh~nxetatrentaChIc~nchungminh T =S +F codi~mbit dQnghE C . . Changminh: Bu'oc1 : Qua cac bu'ocsail TmintU'F xacdinha trenla compact. Gia sa (hn)nE C saochohn >ho.Khi do,rheaBinh ly 2 Ph~n1 limx(hn)=x(ho)trongC([-r,co],E)rheaChlj~T1,nghIc.la day (x(hn))nn~ao hQi tl;1deli v~x(ho)trendo~n[-r,co]. 'T~p B={xs(hk)/sE[O,co],kEZ+yla t~pcompact trang C (chung minhnhu'trongB5 de3 , dinh ly 1). Vi <plien tt,lCnen<p(B)={<p(xs(hk))/sE[O,co],kE Z+} compacttrang En.Suy ra day (g(s,<p(xs(h0)))khQi t1,1deli v6 g(s,<p(xs(ho)))tren [O,co]. Tildo lir~lF(hn)=F (h0)n~ao V~yF lien t1;c. Gia sa Q la t~pbich~ntrangC. Khi do t~pA ={xs(h)/sE[O,CO],h E O} la t~pbich~ntrangC. Tli do <peA)la t~pbich~ntrangEn(Vi <p:C -7'Entuye'nttnhlient1,lc: nen 11<p(xs(h)11:::;11<pllllxs(h)11) Trang50 Lu~nvan Cao hc VI g compactIH~nt~pg([O,co]x <peA))compactu'dngd6itrongE. d~n de-nt~p D=Co{VO)(.,s)g(s,<p(xs(h)))/sE[O,CD];hEO)la t~pcompact trongC. VI VO)(., s)g(s,<p(xs(h))) E D, \is E [0,co]hE 0 Taco: (» F(h) =fV0) (.,s)g(s,~(xs(h)))dsE coD dungchomih E Q 0 ChungtoF(O) compactu'dngd6itrongC. v~yF compact. Lu~nvan CaDhQC Bu'oc2 : ? I/F(h)1/ Tlfa chuan IF/ = Jim sup 1/ 1/ =0IIhll~oo h Changminh: ~ -. ~ ~-- ---._--- \iE >0,tli cachchungminh(j dinh1:92, ph~n1,t6ntOsaDcho: [get,U)[~N +EllUl/,\it E [O,m],\iU E En Bat m =sup~IV(t,s)lI,t E [-r,m],sE [0,0)]~ . M =sup~IS(t,s)ll,t E [-r,m],s E [O,m]} t Tli Xt(h)=S(t,O)(h)+fVt (.,s)g(s,cp(x~(h)))ds 0 Taco: t I/Xt (h)11~Mllhl/+mfllg(s,cp(xs(h)))l/ds 0 t ~ Mllh!1 +mf{N+ EI/cpllllxs(h)l/~s a t t ~MI/hl/+mf Ndt +mEl/cpl/fI/xs(h)I/ds ~ a a . t ~Ml/hl/+m.N.m+mEllcpl/fllxs(h)llds, \it E [O,m] 0 Theaba'td~ngthucGronwalItaco : Trang52- Lu~n van Cao hQc IIXt(h)1I~(Mllhll+m.N.co~m.s.tlq>lloo Taco: 00 . IIF(h)1I~f/lVoo(.,s)g(s,<p(xs(h»)llds 0 00 ~mfllg(s,<p(xs(h»llds 0 -- . 00 ~ mf(N +811<pllllxs(h)II}is 0 00 ~m.co.N+m.8.1I<pllf/lxs(h)llds 0 00 < ' N + ~II Ilf (Mllhll N \_m.s.;;q>llood- m.w. m'~'II<P\ +m. .coIV s 0 ~m.co.N+m.8.11lloo Chung to r~ng: IFI ~ m.8.11lIoo = (mllcpllMcoeITLSiiq>ilw} diSunaydungchomQi8> 0 nenlFI=0 Bu'oc3 : Ta bi€t r~nghQ {A(t)} 6n dinh ti~mc~nkhi va chi khi co cac s6 a,b>OsaGcho IIS(t,O)(h)1I~bllhlle-at vdi mQih E C va t 2:0 Suy ra IIS(n.co,O)11=Ilsn(CO,o)/i~IISIlII~be-anw '\inE N Ta chungminh S thoacacdiSu ki~ni,ii"iii cua dinh ly 2, chu'dng1. Iisn(h)II~/lsn1!llh"~be-aI1h" '\inEN, '\ihE C E>~t A =be-anW jno saGcho A=be-an~l E>iSunay cho tha'ydiSuki~niii) duQcthoa. M~tkhac, '\itt'E C va vdi ffiQi8>0,taco : IIS:~(h)-S:~(k)"=lis11(h)-SIl(k)1I ~Ilsllllllh-kll Trang 53 Lu?n van Cao hQc Suy ra :Ils~v(h) - S~(k)11~be-an~h- kll Ta phai chQnr EN va 8 >0saGcho lib- kll<£+8 =>b.e-an~h- kll<£ khi lIb- kll<£+8 =>b.e-anlfh- kll<b.e-an~£+8) Taco: b.e-an~£+8) <£Q £+8 <£.eanw~ . b ( an"'" JQ8<£ eb -1 arw Ta co thS chon r saG cho ~ -1 >0 va do do ta chon . . b . ( "rw \ a<8<eleb -1j dieunaychUngtoS thOadieu ki~n A , tue dieu ki~ni) cua dinh ly 1. IIS(h)- S(k)1I:s;Ilsll.llh- kll ~ be -atfth- kll,\ih, k E C S thoaii) Tom l(;li,S,F thoacaedi~uki~ncua 8inh 1y2, Chu'dng1. Suy ra , T co diSmba'tdQng h E C. Lu~nvan Cao hQc Xet phtidngtrinh : VI { [X(t)- A(t)x(t - r)]' =get,cp(xt»;t ~o Xo =h h E C chotru'oc VI.l cp:C -7 Entuye"ntinh lien tvc VI.2 {A(t)}la hQcac to<:lntU'tuye"ntlnhbi ch?n tli'E -7 E phlf thuQc lien tvc theot, tu~nhoanvoi chuky corheat. VI.3 g: [O,co)x En-7 E thoacacdi6uki~n(1.2),(1.3)vatugnho~m chuky CDrheat. VIA Voi m6ih E echo tru'oc, phlTdngtrinhVI co nhi6ul~mla ffiQt nghi~mx(h) lIen [-r,co)thOC'xo(h)=h Vdi cae diSu ki~n tU VI.l de"nVL3, rhea Dinh 194 Chu'dngII VOl m6i h E C cho tru'ocphu'dngtrinh VI co duy nha'tmQtnghi~mx(h) lIen [- r,co) thoaxo(h)=h vaanhx~ht-7x(h)la lien tLJc. Gia SltWet,s):E -7 E la mQthQcacloantlttuy€n t ~-r lien tvcm~nhrhea(t,s)vathoaphu'dngtrinh: r~[Wet,s)- A(t)W(t - r,s)]=-0 1 - { o ;s-r::;;t<s Wet,s)= I ;s=t Hay: { [Wet,s)- A(t)W(t- r,s)]=I Wet,s)=0 s-r ::;;t <s >ch~m,s ~ 0, ;0::;;s::;;t ;0::;;S ::;;t VOl 0::;;s ::;;t, gia sa'i'o(t,s): C -7 C la mQthQcac loan at tuye"ntinh bi ch~nau'QcdinhnghIanhu'sail : To(t,s)(h)=Yt(h)voi yell)la nghi~mcua : { [yet)- A(t)y(t - r)J =o Ys=h (ChungminhTo(t,s)tuye'ntlnh, bich~ngic3ngnhu'ph§ntruoc) O::;;s::;;t Trang55 Lu~nvan Cao hQc ;:;Menh de5 : To(t+co,O)=To(t,O).To(co,O) Chungrninhnhu'm~nhd~1. Menh d~6 : ,x(h)la mQtnghi~mcuaphu'dngtrinh { [X(t)- A(t)x(t- r)J =get,<p(xt)) t ?:0 Xo =h neuvachineux(h)thoa: t Xt (h)=To(t,O)(h)+fWt(.,s)g(s,<p(xs(11)))ds 0 Chungrninhnhu'm~nh062. Voi t?:0,d~tT1(t):C -7 C voi T1(t)(h)=xt(h) 'dh E C Voi x(h)la nghi~mcuaphu'dngtdnhVI Menh d~7: T](t+ co)=T1(t)T1(co) Chung rninhgi6ngm~llhd6 4. £)~tFl : C-7C 0) h H F] (h) =fw,0)(., s)g(s, Xs(h))ds 0 C-7C h H 5] (h) =To (co,O)(h) = YO)(11) Tl =Tdw) 5] : Taco: TI =51 + FI NeuTI co di€m ba'tdQngh EC thlx(h)Ia nghi~mtugnboanchuky cocua VI. To(lll tU'D(t,h) =h(O)- A(t)(h) du'QcgQi Ia 6n GirthlieUnghi~m zerocuaphu'dngtdnh D(t,Yt)=0 ]a6ndinhti(;mc~no0.u,tue]3: 3a,b>0: IIW(t,s)!1~be-a(l-s) voi mQi t?: s ?:0 Trang56 Lu~nvanCao hQc Dinh Iv 7 : Xet phuongtrinh VI (j tren cling vdi cac di~uki~nVI. J . '11.2.'11.3. VIA va roantii' D(t,h) la 6n dinh. Khi do phuongtrinh VI co m(>tnghi~m tu~nhoanvdi chuky co. Changminh: Hoanroangi6ngvdicachchungminh(j Dinh 196. if:y>*~ if:y>*~if:y>..~~

Các file đính kèm theo tài liệu này:

  • pdf5.pdf
  • pdf0.pdf
  • pdf1.pdf
  • pdf2.pdf
  • pdf3.pdf
  • pdf4.pdf
  • pdf6.pdf
Tài liệu liên quan