BÀI TOÁN GIÁ TRỊ BIÊN CHO PHƯƠNG TRÌNH VI PHÂN HÀM
NGUYỄN ĐÌNH TÙNG
Trang nhan đề
Lời cảm ơn
Lời giới thiệu
Mục lục
Chương1: Các định nghĩa và định lý sử dụng trong luận văn.
Chương2: Những bài toán của luận văn.
Tài liệu tham khảo
54 trang |
Chia sẻ: maiphuongtl | Lượt xem: 2058 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Luận án Bài toán giá trị biên cho phương trình vi phân hàm, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
CuljnvanCaohqc
CHfJdNG II
~traG> .
NHUNG BAt rOAN CUA LUA.NVAN
GiasaE 1akh6nggianBanachvdiChU~11I. I
C =C([- r,O],E)1akh6ng gian Banach cac ham lien t1,lctIeD [ - r,O]
VaGE, r ~pvdichuin IIxll=Sup~x(e)1:8 E [- r,O]}
f)~tX =C([-f,CO),E) 1akh6nggiantit cacaehamlien Wetren[-[,co)
VaGE . '\IxE X va t ~O.B~t XtE C dl.fc;1cdinh bei : .
Xt : [ -r,O] ~ E
61-7Xt (8) =x (t+9)
Cho<p: C ~ En=E x E x...XE la anhx~tuye'ntinhlientl,lc.
Taxetbailoanphuongtrinhvi phan:
{
X'(t) =f(t, cp(xt))+get,<p(Xt); t ~0
(I)
Xo =h
h E C chotrudc.
(1.1).
f: [0,cc)xEn ~ E lien t1,lC,va '\inc:N
3kn>0 saGcho:
If(t,u)-f(t,u')1~knllu-u'll
'\It E [O,n];u = (UI' U2,..., Un) E En
,
(
' , '
) E
o
u = U b U 2,...Un E
n -
IIU-U'I/=2:IUi -u~1 1achuin trenEn
i=l
(1.2)
g:[O,co)xEn ~E la anhX?Compact
NghIa1ag lien tl,lCva bienmQtt~pbi cL~ntrong[O,cc~ X En thanh t~ip
Compactu'ongd6itrongE.
V6inhlingkyhi~uvadint nghlanhu'trentaco :
Trant]4
Luqn van CClt)AClC ---------
Bini !ly 1:
Gia sU'f, g thoacaedi~uki~n(1.1), (1.2)va
lin Iget,u)l =: 0
~u~-)~ llull
(1.3) , -
deli theot trenmOlt~pbi ch~ncua[0,00),
\::11EEn, ilull=[U11+IU21+...+[Unl
Kli do bai lOan(I) co nghi~mLIen[[,00)
C!ui:ngminh "
(1).~
{
t t
- (I" x(t)=h(O)+jf(s, <p(xJ)ds-+-fg(s,<p(xs))ds, , 0 0
,xo =h
D~jXo= C ([0,00),E) la khonggianFreehetilteacaehamlienWe
tren[O,cc)VaGE vdih9lllla chu~n: Pn(x)=Sup ~ I x(t) I : t E [O,n]~ , \::IQ V8-
metric
--
ooj )
d( =2"~~:-_~_E~~__:::=_X_-
~~- 2' il 1+P (X - y)n-i d n
Voi m6i x E Xo, ci~tx: [-r,oo) -0 E
ciNc ciinhnghla nhu'sail :
-
{
Xes)+h(O)- xeD);s 2 0
)(s) =
h(s) ; --r :;;s :;;0
-
1ehido x lien t1fctren [-f,OO).
fa dinh nghlacaelOantli':
LJ: Xo-7 Xo
X t~Vex)
t
"(ii U(x)(t) =ff(s,<p(~s»ds;
0
t 2 0
-- --- -~ --------------
Trani] 5
[ucJn l7anCao n(Jc
G: Xo-7 Xo
x -7 G(x)
t
voi G(x)(t) =Jg(s,<p(~s))ds+h(O) ;
0
l20
Ta nh~ntha'yding ne'ux E Xo Hi di~mb~tdQngcua U +G tue13
U(x)(t) + G(x)(t) =x(t), Vt 2 0
!
t t
-'- x(t) =h(O)+ ff(s,<p(~s))ds+ fg(s,<p(~s))ds
r 0 0 .
x(O)=h(O)
t t
. x(t) =h(0)+Sf(s,CP(Xs))ds+ J g(s,cp(~s))ds;t 20
=>~ 0 0
-
x(t) =her) ;-r ~t ~0
-
Chungto x 1anghit%mcua(1')tren[-r,oo).
Ta sechungminhU +G e6di~mba'tdQngb~ngeachsU'd~mgdinh1.9
2Chuang1.TrudetieRtachungminhcaeb6 d~san:
B6 d~1:
Gia SiTf thoac1i~ukit%ll(1.1),U du'Qed;,nhnghT~nhutren.Khi d6:
Vn EN, Vz E Xo Ta c6:
( i i )< 2(n.kn.II<pllrPnDz(x)-Uz(Y)- OJ Pn(x-y)1.
Changminh :
Ta sechungminhr~ng-:
(1)
II
'
I
.
I . . 2(tk n. <PJ I
IU~(x)(t)-U~(y)(_t)I~ i!" Pn(x-y)
Voi ffiQit E [O,n]vaeE [~r,O]
Ta c6:
7ranq 6
LuqnvanCaohqc
- - - -
xsC8)-Ys(8) =x(s+8)-y(s-i 8)=
=
{
X(S+8)-Y(S+8)+Y(O)-X(O);S+82::0
- h(s+8)- h(s+8)=0 ;-r s s+e<0
~ !xs(8) - Y s(8)1s Ix(s+8)- yes+8)1+Ix(O)- y(O)1=
=lex - y)(s+8)1+lex- y)(O)1S 2Pn(x - y)
doPn(x-y)=supi Iex - y)(t) I : t E- [0 , n] ~
Tachungminh(1)b~ngquin:iptheoi.
Voi i =1:
'IIx , UzCx)(t)=U(x)(t) +let)
!
=ff(s,cp(xs))ds+let)"
0
Iuz(x)(t)- Uz (y)(t)1
t t I
=I ff(s,cp(~s))ds- ff(8, cp(ys ))dS
I0 0
! t t
s flies,cp(~s))ds - J f(s, cp(ys))Idss fknIlcp(~s).- CPcYs )lIds
0 0 0 -
--- !
f
-
k II (
- -
)
1, <
I
f' 11 1111
- -
II
-' ~
=0 n1I<rx s - Ys I as - 0Kn <PIlixs - ys as s:
t
<fknllCPl12Pn(x- y)ds=2kn.t.!lcpll.Pn(x- y)
0
Gilt s11(1) dungvdi i (i2::1).
Ta chungminh (1) dung vdi i +1,th~tv~y,
Trang 7
Luqnvan Cao hqc
IUz i+l(x)(t)- U zi+l(y)(t)1=luz (U / (x»(t) -- U z(U/ (y»(t)l-
=!U(Uzi (x»(t) - z(t) +U(U zi (y»(t) +z(t)!
=Iu(uzi (x»(t) - U(U zi (y»(d
I I
=I ff(S, <p[(u~(x)t1ds- J f(s,<p[(u~-(y)TPdS
I
I
0 0
~ fknll<p[(u~(x))J-<P[(u~(y))Jds
0
~ fknl!.<plr[I[(u~(x»)s]- [(u~(X»)s]!dS
0
Ma m6is E [O,n], 8 E [-r,O],taco:
(u~(x)t (8)- (u~(y»)s(8) =
--. .
=U~(x)(s+8)-U~(y)(s+e)
=
{
U;(X)(S +8) - U~(y)(s+8)+U~(y)(O)- u~(x)(O);S-I-G~0
h(s+8)- h(s+8)=0 ;- r ~s+8~a
Taco:
. .
U~(x)(O)- U~(y)(O):=0
i =1,
Vi,
Uz(x)(O)- Uz(y)(O)=U(x)(O)+zeD)- U(y)(O)- zeD)
=U(x)(O)- U(y)(O):=0- 0=a
i =2,
U;(x)(O)=Uz (Uz(x»(O)=U(U z(x»eo)+z(O)
=U[U(x)(O) +zeD)]+zeD)= U[zeo)]+zeD)
Tild6: U;(x)(O)-U;(y)(O)=O
Bangquin;;tpc6duQcU ~ (x)(O)- U ~ (y)(O)=0 ,Vi
--..-----
Tranq 8
Luqn van CaDnClc
Tild6 :
I(u~(x)t(8) - (U~(y))s(8)1~
S;lu~(x)(s+8) - U~(y)(s +8)1::;
2[(s+8).kn.11<pllr
S; .xPn(X-Y)
11 u
(Dogiathi6tquin~p)-
r
II II]
i
2l(s;kn. <P
S;- - .,?<Pn(x - y) ; \f8 E [-r,O]1.
\ \
" "
suyfa :
IU~+1(x)(t)- U~+\(y)(t)!s;
S;fkn 11<p11.11((]~(x»)s - (U~(y»)sIrs0
< tf
-
II II
2(s.kn .JI<pll)i - ,
- kn <p. ., XPn(x-YJ
0 1.
. 2(tkn .jI<pll)i+\- X P (X - 'H)
- (i + I)! Xl J
V~Y(1)dungchoIIlQilEN, tiIdochungminhdu'<;Jcb6d~1.
B6d~2:
ToantU'U thoacacdi~ukit$ni, ii, iii cuadinh1y2,ChuangI,
Chrlngminh..
. ~. ~(n,kn.II <pI I)1 A' ;, n,k ,11<v11
DochuOl~ or . hQ1 tvvee n "'"
i=\ 1.
Nen suyfa Jim 2(n.knll<pll)i
-i~oo i!--- =0
,nen ::Jin
(inph1,lthuQctheon ) saocho:
2(n.kn .1I<pII)i< 1A= "
1.
Vi >i, - n
Tild6 : Pn(U~(x)- U~(y»)S;APn(x- y)
Trang 9
Luqn vanCaonc;c -------
Vflv U thoaQi~ukieniii..1 .
Uz (x)(t)=U(x)(t) +z(t) , '\Ix E Xo
-Nen Iuz(x)(t)- V z(y)(t)1=jU(x)(t)- U(y)(t)1=
t t
=I ff(s, <p(~s»ds - ff(s, <p(ys »ds[~.
0 0
t t
I~ ff(s, <p(~s»- ff(s,<p(ys»ds ~
0 0 I
t t
~ fkn 1I<p(~s)- <p(ys )Ids=Jkn Ilcp(xs---ys
0 0 --
~ Jk,~'P!I-~6',)- (y, i ds~ Jkn 11<p11-2p,(x - y)ds
0 I 0
~(2t.kn.1I<PIIPn(x - y) ~2kn.n.II<PIIPn(x - y)
=k'Pn (x- y)
~ Pn(V(x) - U(y»)~k.pn(x - y). U thoaii)
Co th~SHYra tuB6 d~1,voi i =1
cli6i clingtachungminhU thoadi~uki~ni) tile1adi~uki~nA
V: Xo-7Xo
x t-7Vex)
t
; U(x)(t) =ff(s,<p(xs»ds
0
Z E Xo , u z : Xo -7Xo
Uz(x}=Vex) +z
AI: Vz E Xo , Uz(Xo)c Xo h";? 1.'~Jell lldlen
A2: Ta phai chungminh :Vz E Xo , Vpn, :3kz EZ +
saacha : Vs >0, :3r E N va (5>0:
Vx,y E Xo, a~(x,y) <S+(5
~ a~(u~(x)~U~(y» <S
Trang"10
[wIn van CaDh(JC
a day a~(x,y) =max{Pn(U~(x)- U~(y))i i, j =0,..., kz }---
ai(V~(x),U~(y»)=max{Pn(U~H(x)-U~+r(y))/i,j=O,...,kz}
Taco: --
Pn(U~+r(x)~ U~+r(y»)=Pn(U~(U~(x»)- U~(lJ~(y))
2(n.k .
ll
ml
ll)
r
(
. . \ °, ,-
.<
. n
.
't' V i ( )
-
U J
(..
'
(B
A a/' 1)- f - . x Pn z X - z YJ) 0 ef. .
2(n.kn .11<pllr ( )
-
( --x 8+0(8
r!
Khi r duldnva ai (x,y)(s+o.
Vf}.yU thoadi~uki~nA.
B6d~2duQc hungminhKong.
Lzl,anva n CaD ~oc
? ~B'ode3:
Gia sli'g rhea(1.2)va Gndlt<;5cdinhnghlanhusail:
Gn: Xn ~ Xn =C([O,n].E)
t
Gn(x)(t)= fg(s,<p(xs)ds+h(O)
0
0::::;t::::;n
Khi d6Gnla roantli'CompactIeDkh6nggianBanachXnvoichu~n
Ilxll=sup~x(t)1: 0 ::::;t :::;n}.
x E X n thl x:[- r,n]~ E
-
{
X(S)+h(O)-X(O);S ~0
xes)=
h(s) ;-r ::::; s ::::; 0
xs : [- r,O]~ E
eH x(s+e)
Chitngminh:
TnJ'oc tieDta c6 th§ tha'yGn(x)E Xn, th~tv~y:
Vc:)O,
. . t t' I
IG n(x)(t)-Gn(x)(t')!=I fg(s,<p(xs»ds - Jg(s,<p(xs»dSI
0 0 I
t
= I fg(s,<p(xs»ds
t'
t
::::; ~g(s,<p(xs»!ds
t'
t
::::; fMds::::;let- t')IM
t'
(Vi g la anhx<:tCompactlienhich?ntIeDt~phi ch?n)
Tild6 :
I
G. (x)(t)- G (x)(t')
I
<c:')\ 1"
E
khi It - t'1<8= M
Tranc 12
Lzi,arzvanCao ~oc
Ta chli'ngminhGn lien tl,lC:
La'y(Xk)kladaytrongXnsaccholimxk=Xo
k---j>CX) -
D~tB ={(Xk)s/s E [O,n],k E Z+}
-
Khi doB CompactrongC =C([-r,O],E).
Th~tv~y,giasa (Cxki)sJi 1aday-trongB,
Ta co th~giltsarAnglimsi =s
i---j>CX)
va limxki=x
i---j>CX)
(Chu yr~ngx coth~Iii mQttrongcacXkdacho,k E Z+va(xki)ico
th€ khongla dayconcua(Xk)k.)
Taco:
1/(Xki)Si-Xsllsll(Xki)Si -Xsill+IIXSi-xsIIS2Pn(Xki-x)+IIXSi -Xsil
vdim6ix E Xncodin:.lI,faco anhX~
[O,n]~ C =C ([-r,O],E) ; S M Xs lienwc
Th~tv~y,V E>0VI x lien tl,lCd~utren[O,n]
lien38>0: 'lit,t' E [O,n]:
!t-t'I<8 =?lx{t)-x(t')I<Eo
Khido '118E[-r,0]
'IIs,s'E[O,n]:ls-s'I<8 thl:
Ix(s+8)- x(s'+8)I<E
,
nay Ixs(8)- xs.(8)I(E
dungchom9i8 E [-r,O],dodo :
IlKs- Xs'"=sup~xs(8)- xs'(8)1:8E [- r,O])(£
Cholientuba'tding thli'c:
II(Xki)Si- xslls2Pn(xki - x)+IlxSi- xsll
Taco lim(xki)Si=xs trongC
i-to:
V~yB CompacttrongC.
Trang 13
Lt1,an17anCaohoc ---
Do cp: C ~ Entuye'ntinh, lien Wc lien cp(B) CompacttrGRgEn, nen
suyra t~p[O,n]X cp(B) Compacttrong[0,00)x En.
Vdi mQi c:> a clio trudc, VI g lien Wc trel1t~pCompact [O,n]x cp(B)
lien38 >0: V u, V E B.
t:
IIcp(ut-cp(v)IIIg(s,cp(u))- g(s,cp(v))I<-
- - - - 11
Yl- limxk =-Xo trongXn lien 3ko EN: \fk ;;:::ko
k-+oo
8
Ilx~ - xoll<21lcpll
II(x,),- (;:0 ),11:£211xk- xoll<II:11
Dftnde'n:
Suyfa 'itE [O,n].Ta co :
t t
IGn(Xk Jet) - Gn(Xo)(t),=Ifg(s,cp«~k)s))ds~ fg(s,cp((;Zo)J)ds
0 0
l
~ Ii g(s,cp«~k)s))-g(s,cp«~o)s))ds
0 -
! c:
- ~ I- ds~c:
r n -
Vk;;:::ko
(VI Vk;;:::ko,II<p(~k)J-cp(xo)sll
" II'I'II-II(:X-k), - (xo t 11<11'1'11-11:11= 8
- Tli do: 110n(xk)- GIi (x 0)11<c:, Vk 2::ko
Nghla I} Gnlien h,lc.
Bay gid tachungminh Gn13Compact.
Giasli'D 13t~pbi chi;introngXn
8~tA = {~sE C: x ED,s E [O,n]}thlA bi ch~ntrongC (d~thay).
VI g Compactlien t~pg ([O,n]x cp(An Compacttu'cJngdoi trongE
(chuy:A bi ch~ntrongC , cp: C -7Entuyentinh lien tJ,lclien cp(A) bi ch~n
trong En,Th~t v~y, Vx E A,llcp(x)11~ Ilcpllllxll~ IlcpilM)
Tram] 14
Lwin van CaD h9C ------------
Kbi dotheodinhnghla dla Gntaco Gn(O)Q~nglienh!ctre-n[O,n]
Th~tv~y,cp(A) bi ch?n trongEnnen:3 R>0 :cp(A) c B(O,R)
Do g l?tanhx~CompactnenWpg ([O,n]x B(G,
t6nt~i\1>0: Ig(s,u)~M, \:IsE [0,nJ}iuEBeG,R) :
)
/ ch?in.Suyra
Vdi m9i t,t'E [O,n],taco :_-
t t'
IG n(x)(t)- Gn (x)(t')1=If g(s,cp(~s»ds - fg(s,cp(~s))ds
0 0
- ,
t - 1-
~If g(s,cp(~s»dSI~Mlt - t'l
Tli do Gn(O)d~nglien tl,lctren[O,n].
B?t K =Co(g([O,n]xcp(A»)U{O}]
K CompactrongE.
- -
- g(s,cp(xs»E K, \:IsE [O,n], \/x E Q nensuyra \:ItE[O,n] taco:
{
t _1
- Gn (O)(t) = fg(s,cp(xs»ds+h(O)/x E n J c tK +h(O)
V~yGn(Q)(t)Compactu'dngd6itrongE.
Theodinhly Ascoli- Azela Gn(0) compactu'dngd6i trongXn.V~y
Gnl?tanhx~Compact,b6ciS3duQccblIngminh.
Tranq15
Lz(anvanCao ~oc
Ifo d~4:
Tmintu G: Xo -7 Xo
X H G(x)
t
E)inh bdi G(x)(t) = fg(s,<p(X"s))ds+h(O) lil toaD tu'compact(hoan
0 .
to~mlien tl,lc)va Pn(G(D))(+oo voiPn(D)(+oo, DcXo
Chitngminh :
- Giasu(xkhladaytrongXosaorho:
limxk=Xo nghHila limPn (Xk - xo):"':0,
k-7CC . k~"'"
\in
Vi (xkhhQitl,ld~uv~Xotrel1[O,n],Vn.
Do dotheob6d~3 Gnlien tl,lCtrenXnDenc6 :
Gn(Xkl[o,nJ)k-=tOOGn(xol[o,nJ) (*)
t
maGn(Xk Jet) = fg(s,<p(~k&,))ds+h(O)
0
-
G(x Vt\. 0<j <)
-
]- -kl,-/' _I__c..
( d"y \
\ 1-0')
Densuyfa lim Pn(G(Xk) - G(Xo))=0, \In
K-700
Th?tV?y, Pn(G(Xk)- G(XO))=sUP~G(Xk)(t)- G(XO)(t)1:0~t ~n}
Tli (*)va(**) suyra:
G(Xk)(t) -7 G(xo)(t), Vt E [0,n]
k-7OO
Do d6 Pn(G(Xk)-G(x.O))-7 0
k-7CO
Nghiala G lien tl,lctrenXo
GQi[2la t?P bi ch?ntrongXo,tachungminhG(0) Vi compactu'ang
doitrongXo.DungBinh ly 3 ChuangIta cbIc§nchungmint d.c di~usau:
G(~~)d~nglien tl,lctren[O,n],Vn.
Bi~unayc6do :
Trang 16
Lz1,an17an CaD ho Co
G(X)(t)=Gn(xlxnXt); O~t~n
ma Gn(xlXnXt) lien tl.JcdSutren[0,n] (doGn compacttrenXn)
'vE>0, 38>0 : '\It,1'E [O,n]
Ie- t'I(8=>IGn(xlXnXt) ~? n(xlXnft' *~
=>IG(x)(t)-G(x)(t' )1<8
. DiSu nay dungcho mQix E Q~V~yG(Q) d~nglien tlfcireDXu.
{XCi)/ x E G(O); t E [0, I!J}compacttHongc1cfitrong E
. -
Di~unaycolado:
{x(t)/xE G(Q); t E [O,nJ}
={X(t)/xlxnEG(OnXn); tE[O,n]}
T~pnaycompactu'ongd6itrongE VIGncompactrongXn-
V?y b6 d~.4duQcchungminh-
- ..
? ;I;:Bhde5:
Voi toantll'G dinhnghlaa tr&11faco :
lim Pn(G(x))
Pn(X)-700Pn(x) =0,
\:In
Chitngn1inh :
Voi E>0ba'tky,do
. Ig(s,u)I_Ohm - ,
IIUII-7CXJ Ilull
Ig(s,u)1yM 6nll~II'
liencoso'Y>0,y>IIhl!saoeha:
'\IsE [0,n]
g compactlien:
3M>0:lg(s,u)I~M, '\IuEEn)lIull:::;y,VsE[O,n]
M E
Ch9nYl> 0 saocha -<-
Yl 2n
Trant]17
Lzi,a nvanCao hoc -_.----------- ---
Vx E Xn ma: IIxlln;:::11 chua'ntIeD Xn
Taco:
IG(x)(t)1 1
(
n - I. '\
IIxllo ::;N[ jlg(s:cp(Xs»Ids-+Ih(G)1)
. ~llxlll ( flg(s,cp(xs»ldS+flg(s,cp(xs»Ids+I n II 12
? " II =~E [O,n]:
Il
cp(Xs)
ll ::;y}0 day .- -.
--I2=[O,n]\II
Suy ra-: 'lit E [O,n]
IG(x)(t)1<M.n+ fll'l'(;:,)11(S'CP(,,~t~
!!xllo-!!xt 12 "Xlln Ilcp(Xs )11 'lIxlin
- rXeS)+h(O)- xeD); s;::0
Dc xes)=1
-Lh(s) ; -[:5;sS;O
- -
Va Xs(8)~ x(st 8)
Neil: IlKs II::;IIxL ::;2/1xlln+Ilhll
Th?tv~y,Ixs (9)1=!x(s+8)/
=
{
Ix(s+e)+h(O)- x(O)I;s ;:::0
Ih(s)1 ;;-r::;s::;O
~ 211xlln +IIhll
Suy fa :
IIcp(Xs)/I~ flcpllllxsII::;IIcpll(Lllxt+IIhl!)
- "' Ig(s,cp(xs)1 's 0
11
-
II
Ma Ilcp(xs)/1 y
(*)
Tran9 18
Lzi,an17anCao ~oc
f" x ds
- 12 Ilxl!n 11<p(~s)1I
< E
f[
Ilhll
JI
I£I"\II
- 6nll<p112 2 +IlxliuI~ds
< Ellffllfn
(
2+it
J
dS
- 6nll<p110 ' Ilxlin
.. =~
(
2+it
]
<~(2+1)=~
6 Ilx!ln 6 ,".. 2
khi Ilxlin auldntilela:
,
lp(X' )11x Igrs,<p~x,))1ds <-"-
12 Ilxnll '11<p(xs)11 2
(**)
Tli (*) va (**) suyra Jim Pn(G(x» =0, Vn
, Pn(X)~a) Pn (x)
Nhu'v~y,tli B6 d~4,5, G thoadi~uki~niv) v) cuaBinh 112 Chuang
~ , " B~ d~,.... TT G ~ d.~ bK;fA 0 ' 1 . ~ 1 .oJ. h~1va tu 0 e L, m suy ra u + co tern ,at uQng.: '~nnIy uu\:fcCll(ng
.. niinh.
Chti thich : Pn(G(D» < +00 voi PileD)<+00, D c Xo
Th~tv~y,la'yD c Xo : pnCD)<+00 ,11 E N
Ta d~tfn =sup~Pn(X): XE D r
Suyra IIXI!n~rn, '\IxE D,llt l?lchu{{ntrenC([O,n],E)
Ta CO:
Pn(G(X»)=sup~G(X)(t)l:t E[0,n]}
:0;SUP{~g(S''1'(;[,))Ids+Ih(O)I:tE[0,n]}
Do:11<p(~s)11 ~11<pIIII~sII ~1I<p11(21Ixl!n+II wO
~11<p11(2rn+I:hij)=Mn c6dinhvdincbotruck
Tram}19
"Cz1,anvan Cao 00C
\:! g compactlien:3hn>0: Ig(s,cpC;Zs»1:::;;hn
\Is E [O,n], Vx ED.' Suy ra :
Pn(G(x» :::;;hnt +Ih(O)1:::;;nhn+Ih(O)[ Vx ED
d§:nd€n Pn(G(D» <+00
rtJo*a@rtJo*a@rtJo*a@rtJo*..e.i'*a@ - ,
, . '\
- - - Gia sli'X =C([-r;-oo);E) la kh6nggianFrechetHitcacachamlien
- .
lIen [-r,co)vaoE vdihQml'achuin.
p'n(x)=sup~X(t)1:t E [-r, n]}
A(t) la mQthQcuacacroantli'tuy€n Huhbi ch?ntu En -) E ph1,1
thuQclien t1,1ctheot;:::O.
. Voi m?ikE Z+, giasagk: [0,00)x En-) E t~oacacc1i~uki~n (1.2),
k 0 . - -
(1.3)vag ~. g .
Voi day(hkhtrongC thoahmhk =ho
. k~oo,
Voi m6ik E Z+,-giasaXkla nghi~mcuabailoanvdigia trid~u:
_
{
XI(t) -
.
- A
.
(t)CP(Xt) +gk(t,cp(Xt»; t ;:::0
Ilk
Xo = hk
Voi nhtinggiathi€t a lIen tacodint 19sail:
IJ nhry 2:
Ne'uphuongtrmhlIo-!lICphuongtrlnh:
{
X' (t) =oA(t)CP(Xt)+gO(t,cp(Xt»; t ;:::0
Xo=h -
conghi~mduynha'tXO
thltaco: lim xk =Xo
k~oo
---
Tranq 20
Lz(a n17Cln Cao 00 C
Nlfanxet:
Vdi m6ik phuongtrlnhIlkluonconghi(~nL
Th~tv~y,d?tf: [0,00)x En-7E
f(t,u)=A(t)(u).
/ If(t,u)-f(t,u')1=IA(tyu)-ACtXh')1:=~!A(t)(u-u')1Ta co:
~IIA(t)l!X Ilu --:-u'll
VI hQ A(t) : En -7E tuy€ntfnh,lienWephl,lthuQclien tlfctheet,nen- .
V'n E N, :3kn : IIA(t)1I~kn, V'tE [0,11]
Tli Binh 1y1,tacophuongtrlnhIlk co
Ta chungminhDinh1y2quacacbucksail:
Bude1:
Vdi m6in E N, giasaX' n=C([-r,n],E)vdi chua'n
IIXii'n=sup~x(t)l:t E [-r,n]}
- Bn ={xkh-r,nr k E Z+}
Ta eo Bnbi ch?ntrongX' II
Chicngminhbui1c 1 :
Trucktientachungminhr~ng:
Igk(t,u)I~M+~llulln
vdi E > 0 cho trude,'v'tE [O,n],Vu E Ell.
Vdi m6ik E Z+tadfu co: I
p-k
C
<- ]1
)1. I;::' t, ,-,"hrn -, =0
liuil~oo [lull
d~utheet trenm6it~pbieh~nctJa[0,00).
~ Igk(t, u)1 E
Neil V'E>0 , :3Nk>0: Illlll <~
V'tE [O,n], V'u E Ell : Ilull>N k
Tranq 21
Lwjn win Caonqc
~lgk(t,u)I<~llulln
gk~ gO nen3ko>0: 'ifk 2::ko
V(t,u)E[O,n]xEll
Igk(t,u) - gO(t,u)!<1
Suy ra Igk(t,u)1~Igk(t,u) -gO(t,u)1+Igo(t,u)1<1+Ig0(t,u)/
V~yIgk(t,u)1<1+lgO(t,u)l;~k2::ko
- - Theo trenchungtaco: Igk(t,u)1<~IIulln
Bung chamQitE[O,n],VuEEll :llull>Nk
(N k ph\! thuQcrheak,E).
B?t N =max{N0'N 1"'" N ko}.
Khi d6'ifu:Ilull>N tacolgk(t,u)1<~IIull, Vk =0,1,...,k0n
Vi gk (k =0,1,2,...,kG) compact-m~nt~pgk([0,n]xB(O,N)
la compacttu'ongd6i trongE
nen3Mk >O:lgk(t,u)I~Mk 'iftE[O,n]
Vu:llull~N, (k= 0,1,2;...,ko)
ChQn M'= max{Mo,M1,M2,...,Mko}
Taco:
Tac6:lgk(t,u)I~M'+~llull,'iftE[O,n]n
VUE Ell, k=O,1,2,...,ko
Tli Igk(t,u)1 ko
Taco: Igk(t,u)lkon
Va hiSnnhienk =0,1,2,...,ko ba'td~ngthuGy§:ndung
V~y Igk(t,U)I<l+NI'+~llull=M+~llulln n'
D?t m=Sup~IA(t)11:t E [0,n]}
(1IA(t)lichufincuatoaDt1"1'tuye'ntinhbi ch~nACt»
Voim6ikEZ,taco VtE[O,n]:
Trang- 22
Luqn vanCao hqc
t t
IXk(t)/:5:/hk(O)/+JIIA(s)lllp(x;)llds+JlgkCS,q>(x;)/ds
0 0
t t
~ I h k (0)[+ m fllcp(x; )!~s+ f(M +~Ilcp(x; )11)ds:5:
0 0 n
t t
~Ihk (0)1+mllcpllf x; I~sj- J (M +~Ilcpliiix;il)ds~
0 0 n
t . t ..
~Ihk(O)!+mllcpllfllx;l~s+nM + J~llcp""x;llds~
0 on
t
<(N +Mn)+(mll<p11+~11<p11)~Ix~Irs
- n 0
N =max{hk(0)1:k E Z +}
Tli d6rheab§td~ngthlicGronwalltaco :
n
mIIIpII ,-+E
Ilx ~11.<::;(N + Mil )e II<pll=(N +Mn )emn+s
\7'tE [O,n] ,Vk E Z+
Suy ra B n bi eh~ntrongX n (xong bu'oc1)
Bu'oc2:
Vdi m6i k E Z +' tadinhnghiacaeroantU'
U'va Ck : X -+ X =C([-r,co),E) nhu'sail :
{
fACS)<P(XS)dS;t;::::0
D' (x)(t) = 0
0 ;-r.<::;t.<::;O
!
}gk(S,<P(XJdS+hk(O) ; t;::::0
Ck(x)(t) = 0
hk(t) ;-r.<::;t.<::;O
~
vi gk -+g° va limhk =h° trongC =C([-r,O)],E)k~co
lien ta c6 (C kh hQi tl,l d~uv~Co tren X' n=C([-r,n], E)
-
(
fgO(S,<PCXJdS+hkCO) ;t;::::0
Co(x)(t) = 0
ho(t) :- r::; t::; 0
Trant;! 23
Lwjn van CaD h(JC
Vi {A(t)}la tuye-nHnb, bi ch~ntu En-7 ~ lien U' clingla tmlnttr
tuye-ntinh va hon mla
11(0')'11',,;(mono!I<pII)'\fiEN1.
* Chung minh U' tuye'nHnh:
Vx, Y EX, Vt 2:0
t t
U' (x +y)(t)=fA(s)cp[(x+y)s]ds=fA(s)cp(xs+ys)ds
0 0
t t
=fA(s)cp(xs)ds + fA(s)cp(ys )ds =U' (x)(t) + u'(y)(t)
0 0
/
Tu'ong tl1 U'(ax)(t)=aU(x)(t)
Chuy: x:[-r,CX)~E ;t2:0,xt :[-r,O]~E ;
Taco (x+Y)t=Xt+Yr va (ax)t=axt
Th~tv~yV8E[-r,O]
(X+Y\ (8)=(x+y)(t+8)=x(t+8)+y(t+8)
=Xt(8)+Yr(8)=(Xt +Yt)(8)
(ax\ (8)=(axXt+8)=a.x(t+8)=axt(8)
8H x(t+8)
Voi phgnchliynaytadtichungminhU' tuye-ntinh:
Ta chungminh: 'v'iE N thi
1(U'r(x)(t)- (U')'(y)(t)l-:;(m.II~II.t)iIlx- yll'n1.
'v'x,yE X~,'v'tE [O,n] i =1:
t t I
iU' (x)(t) - U' (y)(t)1=If A(s)cp(xs)ds- fA(s)<p(ys)dS
Iu 0
t t I
=lfA(s)l<p(xs)-<p(ys)!ds=fA(s)cp[(xs)-(ys)]ds!
() iO I
t ,
~ fIIA(s)II.II<pil.llxs- ysllds~m.llcpl/.t.llx- ylln
()
,
(dol-r.O]c[-r.nlnen x\-Ys!l~ilx-yl'n)
Tranq 24
LU{jnvanCaDhqc
Gia sadi~ukh~ngdinhtrendUligyoi i :2:1
(1U')i+1(x)(t) - (U')i+l (y)(t)1 =1U'[(U')i(x)](t) - U,[(U')i (y)](tJI
I I
IjA(S)<P(((U')i(x),)]ds - jA(S)<P[((U')i(y),)]dS ,',
I
~ ~IA(s)!I.II<plll(U')i(x», - ((U')i (y)~llds
0
Ta c6: 1((U')i(X)\(8)-((U')i(y»,(8)1 =
I
.
I
[m.II<pII.(s +8)]'
II II
' /
(U')I(x»(s+8)-(U')'(y»(s+8) ~ " . X -y n (gia thiet qui nc:).p)
1.
(m.II<plj.s)i
II II
'
~ .x- y n.,l.
Suyra: II((U')'(x», - ((U,)i(y»,/I~(m."~".s;;.IIX- d"
. I (mII II S)i ,
Tli d6:1(U')'+I(X)(t)_(U')'+I(y)(t)I~m.II<pII,f 'I~I' ,IIX-ylln,ds
0 1.
(m.II<pII.S)i+1.IIX - II'"
(i+1)! y
V~ybatd~ngthuctrenduQcchungminh.Tli d6suyra:
/I(U')i(X)_(U')i(y)l(n ~ (m.n.-!'<pll), .IIx-yl(n1.
/ . ' (m.n.II<pII)',
VI U' tuyen tlnh nen: II(U')'(X)IIn ~ " .!lxll nl.
D~n de'n:II(U');/I'" ~(m.n..!!<pllr1.
(Thu h~pVI trenX~ '-.C([-r,n],E)
Bu'oc3 :
Tren kh6nggian X~=C([-r, n],E)
..:r. I
xetchin moi Ilxli n = 2:11(0' Y(x~1n, '\Ix E X~
i=O
Chuoi ('jvephai hQitl,lVI theobuGe2 taco :
Trang 25
CuqnvanCaDhqc
11(U')'(x~ln~ (mo~o:I<pIf)iollxll~
nensuyfa i: II(U')' (x ~I' ~ Ilx/L i: (mono!lcpllJ'=emnll.II.llxll~i=O n i=O 1.
~--- --Hi~nnhle-n-Ilxt:s;!lxll:
Mijt khactaco: II(U')'(x~1:=~II(U')'[U'(x)( =~II(U')' (x~In
=fll(UIY(x~l~-/lxt =/iX/l:-IIXII~~llx!l:-e-m.n.II~11xllx[1=0 .
=(1- e-m.n.lI~ilJlxll:
=>Ilu'l!: :s; (1- e-m.n.II~II)=a <1
(voi IIU'II:la chufincuaanhx~tuyentinhtrenkh6nggian(X~,11-11:).
0"___'-- ~--~ -~' .'---
Bude4 :
Giii saX la dqdophicompactKuratowskitrenIdlonggianBanach
(x: ,11.11:)du<,1cdinh nghianhusau: yoi ba'tky A trongx~
leA) =inf{d>O/Adu<,1CphilbdimqtsO'hii'uh~ncact~pco duongkfnh
~d}
Khi dosO'leA) conhungtlnhcha'tsail:
+leA) =0A compactu'ongd6itrongX~
+A c B thlleA) <X(B)
+x(A u B) :s;X(A)+x(B)
+X(tA) =!tlx(A)
TITcacdinhnghlav~U' va Ck'Xklanghi~mcuallknen taco:
xk =U'(xk )+Ck (xk) Vk E Z
Tranq 26
CwJn vanCao nc;c
Tac6:xk -xo =V'(Xk -xO)+[CO(Xk)-CO(xO~+[Ck(Xk)-colxk~ (1)
f)~t A ={(Xk- xo),[- r,n]: k E Z+}
~A =~Xk-xo)j[-r,n] :k E Z+}
Khi d6A bi ch~ntrong(X~,11.11:).Th~tv~y,~tibu'Dc1tac6:
.lIx~11~ (N +Mn)em.n+E,t E [O,n]
=>IIx~- x~11~2(N +Mn)em.n+E,t E [O,n],kE Z+
=>A bi ch~ntrong(X~,11.11:)vlll.lI~-11.11:nenA bi ch~ntrong (X'n,11.11:)
Tti cacgiathi6tCk compact,A bich~ntrangX~
JimCk =Co.trongX~,tac6:Ck =+Cok-+a:>
X[{CJXk )-Co (xo)/k E Z+}]=0
X[{Ck(Xk)- Co(xo)/k E Z+}]=0
(vI hai t~pnay Ia compacttu'dngdoi)
Theobu'Dc3:IIV'II:~a <1
tucV'la anhX(;lCllh~soaE (0,1).
D~nde'nV ciingla anhX(;lk =a-cod~c.
Tti d6X(V'(A))~ax(A).
Tti (1) trongbu'Dc4 naytac6 :
X(A)~x(V'(A)) ~ax(A)
VI 0< a <1nen X(A) = 0 tuc A Ia t~pcompacttu'dngdoi trong
, , *
X~vDichuffnilt(VIlit -lit)
Tli d6 t6n t(;liday con (xki)icua(xk)ksaccho
Frnxki I =ytrong(X~,11.11')
1-+00 ,[-r.nl n
Ta co Xki=V'(Xki)+Cki(Xki)
Cho i ~+:o VI Ck ~ Co trongX~nentaco:
y=V' (y)+Co(y) trongX;1
Tranq 27
[.wJn van CaD hqc
f)i~unaychotha"y y 1affiQtnghi~fficuanotren[-[,n].
VI bailoan(IIo)co I nghi~mduynha"tXOlien:
(xo)
1
=y
[-r,n]
Nhu' v~y miday con hQiW (Xki)d[-r,nl-~ua_~~_k)I[=r.nl--~i~u--~o_gi~ihc;J
(Xo)I[-r,n]
VI A 1acompact tu'ongd6i trong X~lien
1im(xk)
1
=x°
I
I trongdoX~"iinE N
k~oo [-r,n] [-r,n]
Tli dosuyra 1imxk =X°trongX .
k~oo
Giasa E,C,X nhu'(jph~ntru'oc(dinh1y2)
~aX~{oai t6,al:
(IIIJ[X(t)-A(t)X(t-r)]' =g(t,<p(Xt);t~O
L Xo =h
voi h E C =C([-r,O],E) ehotru'oc
g va {A(t)}th6acacdi~uki~nsau:
(III. I) {A(t)}1a hcaeloanta tuye'ntinhbi chiJ.nlaE..) F
ph1,1thuQclien Wctheot ~0
(III.2) g: [0,00)x En -1-E th6acacdi~uki~n(1.2),(1.3).
Binhly3:
Ntu {A(t)}va gth6acaedi~ukit%n
(IlL 1),(III.2) thlbairoanIII conghit%mtren[-f, 00)
Ch((ngminh:'-
Bairoan(III) tu'ongdu'ongyoiphuongtrinh
{
X(t)=A(t)x(t - r) - A(O)x(-f) +h(G)+ £g(s,<p(xs))ds
Xo=h
;t
Tranq 28
Cuqn vanCaohqc
£)~tZ,G: X ~ X =C([-r,oo),E}
Xacdinhnhu'sail:
Z(xXt)=
{
A(t)X(t-r) - A(O)x(-r)E;t ~0
0 -r~t~O
G(xXI)={~(:r<p(~:j)d~+h({))-~If?:~~::----
Ta chungminhdinh1)'3quacacb6d~sailday:
B6 d~1:
Toantti'Z tuy€n tinhva Zk(x)(t)=0,\:it:-r ~t :::;(k - l)r
ChUngminh :
'\ix,Y EX, '\it~0 Ta co:
=Z(x +y)(t) =A(t)(x +y)(t ~r) - A(O)(x + y)(-f)
=A(t)[x(t - r) - yet- r)]- A(O)[x(-f) +y(-r)] .
=A(t)x(t - r) -A(O)x(-f) +A(t)y(t - r) - A(Q)y(-f)
Z(x)(t)+Z(y)(t)
Tu'ongt1;1'Z(AX)(t)=AZ(X)(t), A ER
V~yZ tuy€n tinh
Ta chungminhZk (xXt)=0, '\it: -r:::;t ~(k -1)r
B~ngqui n(,lptoanhQcnhu'sail :
Vdik=l, Zk(X)(t)=O,'Vt:-r:::;t~(k-l)r
dungtheodinh nghlacuaZ
vdi k =2 .Ta co:
Z2(XXt)=Z(Z(x)(t)=
=
{
A(t)Z(XXt- r) - A(O)Z(xX-r) ;t ~0
0 -r~t~O
=
{
A(t)Z(xXt-r) ;t~O
0 -r~t~O
Tram] 29
Luqnvan CaD hC(JC
(ViZ(x)(-r )=0 vaA(O)tuye'ntinhnenA(0)Z(x)(- r)=0)
Ta l£;tico:
{
A (t)[Z(t - r)x(t- 2r)- A(0)x(-r)] ;t - r ~(
A(t)Z{x)(t- r)=.
0 ;-r:::;t-r:::;C
hay A(t)Z(xXt- r)=0; 0::;t::;r =(2-l)r
V~y Z2(XXt)=0 '\It: -r::;t::;r
GiasU' Zk(X)(t)=O'\Ik~2: -r::;t::;(k-l)r
Ta coZk+l(xXt)=Z(Zk(x)(t)
=jA(t)Zk(xXt-r)-A(O)Zk(xX-r) ;t:2:0
(.0 -r::;t::;O
=
{
A(t)Zk(xXt-r) ;t~O
0 -r::;t::;O
( Vi rheagiathie'tquin~pZ\x)( -r)=O)
Ne'u+0:::;t :::;kr -r :::;t - r :::;(k -l)r thlrheagiathietquin
Zk(x)(t-r)=O suyraA(t)Zk(x)(t-r)=O; '7t:-r:::;t:::;kr
V~yZk+l(x)(t)=0 '\it: -r:::;t :::;kr
B6d~1chungminhxang
B,,?d;, 'J.0 e-.
Toanti'!Z th6acacdi~uki~ni)-iii) cuaBinh 1y2Chu'ung1
Chl'rngminh:
Theabe)d~1tac6: 'v'n EN, 3kn EN:
'v'k>kn ,x E X~ : Zk (xXt)=O;-r<t<(kn-1)r <n
=>p'n(Zk(x))=0.Trongd6X~ =C([-r,n],E)
Voi chu{}nIIxt =sup~x(t~:-r < t ~n}
p~(x)=sup~x(t~:-r ~t <n}.
Tranq 30
Luqn vanCao hc;c
KigmtraZ th6adi~ukit$nA
(AI): \ia E X, Za(X) C X hi~nnhien ,
_.- - u_.- - ---- ._-
(A2): \ia EX vap~,3kaEZ+voi tinhchat:
\iE>0, 3roEN va(3>0:\ix,YEX
. ,
a:n (x,y) a:n (Z:o(x),Z:o(y)) <E
Taco:
a:~(Z~)(x),Z:o(y))=max{p~(Z~(Z:o(x)- Z~(Z:' (y))):i, j =0, ka}
(Chli yk~Ia sonho nhatsaGcho
ZKa(xXt)=0\it: -r::;t::;(ka-I)r::; n)
Voi mQit E [- r,nJta co: Z~(Z~)(x)Xt)=Z:o(Z~(x)Xt)
\ik EZ+,\ix,y EX Ta co:
Z; (x)- Z~(y)=Zk(x)- Zk(y)
Th~tv~y,Z;(x)= Za(Za(x))=Z(Za(x))+a=Z(Za(x)+a.)+a
=Z2(x)+Z(a)+a (vIZ tuye'ntinh)
Z~(x)=Za(Z; (a))=Z(Z~(a))+a=Z(Z2(x)+Z(a)+a)+a
=Z3(x) + Z2(a)+ Z(a)+ a
Trant] 31
Cuqn van CaD AflC
B~ngquin'.ipSuyfa: Z~(x)=Zk(x)+Zk-I(a)+...+Z(a)+a
di~unaydungchomQix EX.
Tli d6 Z~(x)- Z~(y)=Zk(X)- Zk(y)
Z~(Z:o(x))- Z~(Z:o(y))= ~_:~_(~~i~))~_~t(Z~i0)-, ,- .----
Zro(Z~(x))- Zro(Z~(y))
ChungtachQn8=8 vafodliIonsaGcho:\:Ix
Zro(xXt) =0;- f < t <n
Suy fa Z ro (Z ~(x)) =Z ro (Z ~ (y))=0
Tli d6n€u a:n(x,y) <8+8 thlhi€n nhien
a:~(Z:o(x),Z:o(y))<E
ii) Voi ba'tky P~taco:
P~(Z(x)- Z(y))=p~(Z(x - y)) (Z -tuyentinhbuGe1)
, IZ(x-y)(t~ ~IA(tXx-yXt-r)-A(O)(x-y)(-r~
::;IA(tXx - yXt - r~+IA(OXx - yX- r~
::;IIA(t~I.(x- yXt - r)+ IIA(O~I.(x- yX- r)::;2mllx- yll~
Trangd6 m=sup~IA(t~I:0::;t::;n}
Tli d6suyfa p~(Z(x- y))::;2mp~(x- y)
Hay p~(Z(x)- Z(y))::;2mp~(x- y)
iii) \:IxoEX, p~.La'yraEN saGcho
Z[o(x)(t)=O;-r::;t::;(ra-l)r::;n
Tranq 32
Luq.nvanCaohqc
Khi do p~(z~o(x) - Z~oo(y))= p~(zro(x)- Zro(y))
(chungminhaphftni)
=0::;Ap~(x- y) vdi0~_~~<l~,~_~~-..- -
M~tkhac,chungminhtu'dngn;rnhuadinh1:91taco:
G compactvath6a
lim p~(G(x))=0
p~(x)-+co p~(x)
Khi dotuB6 d~2 tacoZ, G th6acac di~uki~nd Binh 192ChuangI.
Do do co di~mba'tdQng. f)i~mba'tdQngnayla nghi~mcuabai tminIII
tren[-r,co).
Tranq 33
Luqn vanCae Aqc
Voi nhunggiathi~tnhuddinh1:93v~X,E,C.
k EZ+taxetbairoanvoigiatridftu
III
{
[x
.
(t)-A(t)x(t-r)]' =gk(t,<P(Xt)tt~O
k k
Xo =h
Voi hk E C,chotntoc{A(t)},gkth6aca~'.d~~'u.~ki~~Tili:i),(III.2
Tli nhunggia thi~tnayrheaDinh 1:93phuongtrlnhInk
conghi~mxk tren[-r,00),'v'kE Z+
Dinh ly4 :
Voi nhunggiathi~trenvane'u(gk)khQitl,ld~uvago'hk hQitl,lv~h°
phuongtrlnhIlloconghi~mduynhatx0.Thi taco:
lim xk =XO trongX =C([-r,00),E)
k~CXJ
Chungminh:
Ta chungminhdinh1:94quacacbuocsail:
Buoc1:
Voi bat ky a~0,d~tX a =C([-r, a],E) la kh6nggianBanachvoichua'n
Ilxll;=sup~x(t~:t E [- r,a]}
Za :Xa ~ Xa
Za(x)(t)=
{
A(t)x(t- r)- A(O)x(i- rt 0~t ~a
0 -r~t~O
Theab6d€ 1dinh193tasuyfac6se;ka E Z+nhonha'tsaDcha[Za(x)]ka=0
Trang 34
Cuf!nvanCaeh(Jc
TadinhnghiachufintuangduangII.II~trenXa bdi:
~ ka
IIxll~=I"z~(x~1 =I"z~(x~1 ,VXEXa
i=O a i=O a
ka
Khido: Ilxlia~llxll~~Illz~II.IIxlia =Aallxlla ,(*)
--- i=O
(ChtiY za tuye"ntfnh,rheab6d~1,dinhIy3)
ka
Aa = IIIZ~II~l
i=O
IIZa (x~l~ =tllz~(Za(x)~1=tjlz~(x~1=IIxll~-llxt ~(1- A~lJlx[
i=O a i=l a
~llxll~-IIZa(x~l:~A~l.lIxt
~ IIx --Z~(x~l~~A~I .lIxt X E Xa (**)
Buck2:
Wi m6in EN, dij.tB~: kI [-c,nJ:k E Z.)
Ta coB~bi ch~ntrongX~ =C([-r,n],E)
voichufinIIxt =sup~X(t~:tE[-r,n]}
Voim6iE>O,3M>O:lgk(t,u~~M+~.llulln
citingchoyoi mqi t E [O,n],u E En, k E Z~
-
(Chungminhdi~unaygi6ngnhubuoc1,dinhIy 2, chuangIII).
Voi m6ik E Z+, (Ink)tuangduang:
Tranq 35
LUeJnvan Cao h(Jc
{
X(I)- ~(I)x(1- r)+ A(O)x(- r)~ hk (0)+.( gk (I, <p(X,))d1; t -" 0
Xo =h
VI xk la nghit%meuaphuongtrinhtrennenco:
J x k(t)- A(t)Xk (t~r)+A(O)xk(-;)~-hk-(O)~1~-k(s,~(;f )~~;O~t ~ n ----
lX~=hk
\it E[0,n],taco:
Ixk(t) - A(t)xk (t- r) +A(O)xk(- r~ ~ Ihk (0~ + £Ig k (s,cp(x~ )~sl
~ Ih k(O~+ i(M +: Ilcp(xnl}s~Ihk(O~+Mn +: IlcpHllx~l~s
~Mn +N +~11cpll.£ IIx~I~sn
N =sup {hk(0~ :k E Z + }
D~nd€n :
~~~~{Xk(0)- A(s)xk(s- r)+A(O)Xk(- r~}
~Mn+N +~llcpll.£llx~l~s,\iSE[O,t]n
Tli (*) va (**) dbuDe1taco :
\ik E Z+
,
A~2l1xkllt~ A~2l1xkllt
,
~A~lllxk _ZtCXk)I! t
~ Ilxk - Zt (x k)t II
t
~(Mn+N)+~llcpllfllx~llds ;tE[O,nl,
n 0
t
Suyra:\\xk\\\ ~A~(Mn+N)+A~ ~\\<p\\J\\X~\\ds0
;tEl 0,n\. k E Z +
Trang- 36
Cwjn van CaD hc;c
Giasa kn Ia sOnguyendl1dngnhonha'tsaocho:
[Zn(x)]kn=O/x E Xn =c([-r,n],E)
Khi,-J6k >k k IasOnguyen~ElH'ona-benha't--n- t' t /::)
saocho[Zt(x)]kt=0 0::;t ::;n
kn kt
An =L/lZ~/I ~At =L IIZ ~ II 0::;t ::;n
i=O n i=O t
Tli do:llxk/lt::;A~(Mn+N)+A~.~.llcpll£llx;l~s
:::? I!x~/I~A~(Mn+N)+ A~.~.llcpll£/Ix;I~sn
Theo ba'td~ngthlicGronwall taco:
t E [0,n],k E Z+
Ilx k /I ~ A~(Mn + N)e E.A~.11<p1!t , t E [0,n], k E Z+
ChungtoB~bich~ntrongX'n=C([-r,n],E)
Bu'dc3:
Vdi m6i k E Z+,tadinhnghlacaeroantu Z va Ck
:X ~ X =C([-r,co),E)nhu'sau:
Z(xXt)=
{
A(t)x(t-r)-A(O)x(-r) ;t~O
0 -r::;t~O
( X )-
{
1 gk(s,cp(xJ)cis +hk(0) ;t ~0CK X t -
hk(t) ;-r~t~O
-7. ~
VI gk~go va hk ~ hO lien coCk ~O
trenX~=C([-r,n],E), vdillxt =sup~x(q;-r~t~n}
( )( -
{
£go(s,cp(XJ)ciS+hO(O);t~OCo x t-
hO(t) ;-r~t~O
Theobu'dc1,t6nt~ikn Ii songuyendu'dngbenhat
k .,.1( )
,
saocho: Z n X =0, X E X n
Tranq 37
Luqn vanCaohc;c
D?t chua:nmoitrenX~nhu'sail:
kn '
\ix E X~, Ilxll:=~=J(zy(x~ln
Taco: Ilxll~~llxll~(1+IIZII+/lz211+...+llznll)lxt
IIxll~ IIxll:~Anllxll~
VOiAn=1+lIzII+IIZ211+...+/lZn/l2:1
M?t khac
* k". "kn+l. '
IIZ(x~ln=IllZi (Z(x)~1= IliZi (Z(x)~1i=O n i=\ n
=IIxl!: -llxll~~IIxl!:-A~lllx[
=(1-A-~Jlxll:=allxll:~ IIZII:~a <1
(XemZ:(X~,II.":)~(X~,II.II:))
Bu'oc4:
Hoantoangi6ngnhu'bu'oc4,djnhly2chuongII
vachungnllnhduQcxk~xO
Trang 38
Cuqn van CaD nqc
Voi nhunggiathie'tnhliddinhly '. v~X, E, C
Voi m6i k E Z+,xet baitoan v~giatri d~u
(IV) [X(I)- ~(I)c(t;--r)]' =gk(I, 'Pk(x,)); t"' 0
lxo =h
hk E C.--chotrlioc {A(t)},.gkthOa.cacd.i~lLki~IL.(III.l),~III.2)
TiI caegiathie'tnayrheadinhly 3phlidngtrinhIV k
co nghi~mx k lien [-r, 00),'v'kE Z+
Binh ly 5 :
Voi nhunggia thie'tlien va ne'u(gk)khQit1,ld~uv~go va go lien U:IC
d~urheabie'nthu 2, hkhQit1,1v~ho trongC,
<PkhQit\1v~<Potrongol(c,En ~phlidngtrinhIVo conghi~mduy
nha'tx0.Thl taco:
lim Xk =XO trongX =C([-r,oo),E)k-->oo
Chungminh:
Ta chungminhdinhly5quacaebliocsail:
Blioc1:
Voi ba'tky a~0,d~tXa =C([-r,a,E]) thonggianBanachvoichua:n
Ilxlla=sup~X(t~:tE[-r,a]}
Za : Xa ~ Xa
Z (x)(t)=
{
A(t)x(t-r)-"-A(O)x(-r);0:::;t:::;a
,I 0 ;-r :::;t :::;0
Nhu(jbuGC1dinh1:94chuangIII, cochuffntu'angduangtrenX a nhu sail :
,'" k"
Ilxlla=2]Z:(x~la=IIIZ~ (x~la,x E Xa
;=0 ;=0
ka la songuyenduangbenhathoaZ~~I(x)=0
Tadaco:
k
Ilxll" :::;Ilxll~ :::;2]Z: II"!Ixlla=A"IIxlla
i=O
Ilx - Z"(xl ;::i.~1.llxll.. ' Vx E x"
Tranq 39
Cuqn van CaD hc;c
Budc2:
Wi m6inEN co'dinh,d~tB~=klh",]: kE Z+)
Clingnhubudc2,dinhly4,chuangII chang
- minhdu<;$cB ~ bi ch~ntrongX~~=:=~c{D=-('J)lEL ----
vdichu~nIlxt=sup~x(t~: E [-r,n]}
ChicffnchtiY k~ 0trong oC(C,E-n)nen ~IkID bi ch~n
Blidc 3:
Vdi m6i k E Z+, tadinhnghlacaeloan tli'Z va
Ck :X-+X=C([-r,n),E)nhusau:
( X \ -
{
A(t)x(t - r) - A(0)x(- r) ;t ~0
Z x tJ-
0 ;-r~t ~0
( X )-
{
1 gk(s,k(xJ)cIs + hk(0~ t ~0
Ck X t -
I hk(t). ;-r~t~O
Khidodilbie'tcos6kn nguyenduangnh6nha't
k +\( )
,
saochoZ n X =0, '\Ix E Xn
X6t chu~n11.11:trenX~khacnhaunhusail:
. OJ ,kn - .
"xII:=~"(zY (x~fn=~."(zY(x~ln
Taco "Z[ ~a<1
Ta changminhCk=;Co trenX~=c([-r,n],E)
,.
( X )
{
1g0(S,CPO(XJ)cIS+hO(OXt~OVal Cox t =
hO(t) ;-r~t~O
~
Th~tv~y,'\IE>0 chotrudcvi gk-+gO
nen3k1EN: '\Ik~k I' '\I(s,u) E [0,n]x En
Igk(S,U)-go(s,u~<~30
Tranq 40
Lu~nvan Cao hQc
V'x E X~,'\ft E [O,n] Ta co:
ICk(xXt)- Co(xXt~~s:Igk(S'k(xJ)- go(S,o(xJYps +
+[hk (0)-h0(O~~ f~/gk(s,~~~~))~~_?Ql?~<Pk~~~~))ld~
+f~Igo(s,<Pk(Xs))- go(s,<Po(Xs)~ds+ihk(0)- h0(0)/
VI go lienWed6utheabie'ntha 2nen38>0 :Vu,v EEn:
Ilu-vllE Igo(s,u)-go(s, v)1<~
n 3n
VI <Pk--+CPotrang ,:,t(C,En )nen 3k2 EN: Vk 2::k 2
II<pk(XJ-- <PO(xJII< 8 dungehamQix E X~ Vs E [0,11:
Tu dolgo (s,<Pk(xs))- go(s,<Po(xs))1< 3: Vk 2::k2
h k ~ h 0 trang C =ctl- r,O],E), nen3k:>E N
Vk 2::k 3 I hk (0)- h0(0~ <~
Khi do : Vk 2::k 0 =max{kI ' k 2 ' k 3}taeo
ICk(x)(t)-Co(x)(t)1~rt~ds +rt~ds +~~~+~+~=8Jo3n - Jo3n 3 3 3 3
dungchomQix E Xn,
mQit E (O,nJ
SoyraliCk(x)-CO(X)I:1~E, V'k~ko,V'xE X;l
-7 .
Tile 1aCk ~()tren XI!'
Bu'oc4:
Hoanroangi6ngbu'oc4d djnh1y2ehu'dngII
' h ' , h A k ()va c ling mIll uu'Qcx ~ x
Trang 41
Lu~nvan Cao hQe
X6t phu'dngtrlnh:
V
{
xt(t)=A(t)cp(xt)+get,cp(xt));t ~0
Xo=h
vdi hE C =C([-r,O],E)
V.I
V.2
cp: C ~ Entuyfuidnh lien fijc~---'---'-'---'" ~._,_.
A(t) la hQcaeroantU'tuye'ntinh, bi eh~ntitEn -7E ph1,lthuQc
lien tl,letheot, tu~nhoanehuky cotheot.
g : [O,co)x En ~ E tu~nhoanvdi ehuky COtheot va thoacae
dieu ki<$n1.2,1.3.
V.3
VA Voim6i h E C clIotru'dephu'dngtdnh Va trene6nhi~ul~m
la m(>tnghi<$mx(h)tren[-r,co)thoaxo(h)=h.
Vdi nhungdi~uki~n V.l de'nVA, rheadinhly 2,Chu'dngII, phu'dng
tdnhV e6 nghi<$mduy nh3'tx(h) tren [-r,co) thoaxo(h)=h. va anhX<;1
hH x(h) la lien tl,1e.
Gia sa Vet,s),s ~0, t ~ -r la h9 caeloanta tuye'ntinh, bi ch$ntuE
vaoE' lientl,lem<;1nhrhea(t,s)vathoaphu'dngtdnhsailday:
8
- Vet,s)=A(t)cp(Vt(.,s));t ~s~08t
{
I ; t=s
Vcr,s)=
0 ; s-r::;t<s
(
V(t,S)=fA(u)cp(Vu(,.s))du+I ;Hay s
Vet,s)=0
Vt(.,5)(6)=Vet+6,s)
Vt(.,s):E~C
t~s~O
s-r::;t<s
Trangd6
6 E [-r,O]
Vdi s~t~O,clIoSet,s):C -7 C lahQcaeroantatuye'ntinh, bich~n
xacdinhhdiS(t,s)(h)=Yt(h),trangd6yell)la nghit';mduynh§teuaphlMng
tdnh.
{
yl(t) =A(t)cp(yt)
Y =h. s
; t;::::s ~0
Trang 42
Lu~nvan Cao hc
Set,s)dinhnghlanhutrendungla mQtlOantU'tuye'ntinhvabich~n.
Th~tv~y,Vh,k E C, tachungminh:
S(t,s)(h+k)=S(t,s)(h)+S(t,s)(k)
Q Yt(h+k)=Yt(h)+Yt(k)
y(h+k)(t+8)=y(h)(t+8) +y(k)(f+8),--- V8-E [::r,O] .Q
Voi m6i h E C phuongtrInh :
{
yl(t)=A(t)q>(Yt)
Vo
Ys =h
conghit$mduy nha"ty(h)nentaco :
; t2::s2::0
. t
y(h)(t)=h(O)+fA(u)q>(yu(h»du ;t2::s2::0
Voi kE C phuongtrInhVoco nghit$mduynha"tnen :
t
y(k)(t)=k(O)+fA(u)q>(yu(k»du :t2::s2::0
Va h +k E C nenco :
t
y(h+k)(t)=(h +k)(O)+fA(u)q>(yu(h+k»du
Taco:
.. '., t. t
y(h)(t)+y(k)(t)=h(O)-+k(O)+fA(u)q>[yu(h)}iu+fA(u)q>[yu(k)}iu
s
t
=h(O)+k(O)+fA(u)q>[yu(h)+yn(k)}iu
s
t
=h(O)+k(O)+j'A(u)q>[(y(h)+y(k»)u}iu
s
Chung toy(h)+y(k)dIng la nghit$mciiaphuongldnh :
{
yl
.
(t) =A(t)q>(Yt)
Ys =h+k
; l2::s2::0
Trang 43
Lu?n van Ca(! hQc
VI phu'dngtrinh~6nghit$mduynha'tlien :
yell)+y(k) =y(h-:.k).
Tu'dngtl,ichungminhGttQcyeAh)=Ay(h),AE R
Tli do sur fa Set,s)tuy€n tinh .
-_.- t
M?t khac: yet)=h(O)-j-J A(u)(j')(Yll)d~
t
=> ly(t)1 ~ Ih(o)I"+ JIIA(u)lI.[[cpll.IIYulldu
t
s;Ih(O)1+n./lcpll.Jllyulid']
mt 1 K 2 th'~ G 11 'u:-":'::O0 : (.(..ng uC fOnWa ta co :
Ily II (11)11:::;Ih(O)le 1l1114>11(t-S)
:::>Ily II (h)11~[Ihlle~il4>iin
=>IIS(t,S)(h)ll:::;ell1ii<piinllhll
t,s E [O,n]
Set,S)bi ch?n tfen C voi t,s E [O,n]
; nchotnioc, t,SE[O,ll]
n clIo t:Lfocco din!1.
M~l1J) d'~1 : S(t+co,O)=S(t,O). S«(o,O)
Ch«l1gmint: \1hE:C :
S(t+co,O)(h)::::Yt-;-0)(11)S(tO)[S(lO,O)(l1)]:S(t,O)[yO)(h)]=Yt(yw(h»)
Ta cLen;;m~nn: Yw-j(h)::::Yt(yw(h»
Tll~tv~.y,S(~-H.v,O~(k)==Yt+o~(h)vo: y(h)1:\fBhi~mcua p'::":JhgL:nh :
{
y'(t'; CD)::":AU +C0)(p(Yt+OJ) ; t -: u:?:0
Yo =h
hay tu'dngc1l(OL~:
{
y' (t + CD)=A(t)cp(y t+<,J
Yo =h
,.+CD2:0
(Vi A tuftnho~l:1voi dIu ky CD)
Trang 44
Lu~nvanCaohQc
Suyra :
{
yl(h)(t +co)=A(t)<p(yt+ro(h))
Yo=h
;t+co;:::O
M~t khacvdih E C phltdngtrlnh:
{Y'(~=A(t)<p(Yt)
LYo - h . .
co nghi<$mduy nhffty(h). Do do taco :
y(h)(t)=y(h)(Hro)
hay: Yt+ro(h)=Yt(h) Cho t=0 co :
Yro(h)=yo(h)=h Til do:
Yt(Yro(h))= Yt(h) = Yt+ro(h)Tuc Ia :
S(t,O)S(co,O)(h)=S(t+co,O)(h)
V?y S(t+ro,O)== S(t,O)S(co,O)
Menh d~2 :
;t;:::0
x(h)la mQtnghi<$mcuaphu'dngtrlnh:
, \x'(t)=A(t)q>(xt)+get,q>(Xt»;t ~0
1Xo=h
NK , h~ K (h) h
?
euva C 1neux t oa :
t
Xt (h) =S(t,O)(h)+fVt (.,s)g(s,<p(xs(h)))ds
0
Chung minh :
t
~Ne'u Xt(h) =S(t,O)(h)+fVt (.,s)g(s,<p(xs(h)))ds
0
Suy ra :
t
x(h)(t) =S(t,n)h(O)+fVet, s)g(s,<p(Xs(h)))ds
0
~ [x(h)(t) J. ~ [S(t,O)h(O)J, +([V(t,s)g(s,'p(x, (h)»dS).
. ! 0
=A(t)<p(yt (h))+f -(vet, s)g(s,<p(Xs(h) Xis+ Vet, t)g(t, (p(xs (h»)
0 at
Trang 45
Lu~nvan Cao hQc
Dftnden:
t
x'(h)(t)=A(t)<p(yt (h»+fA(t)<p[Vt(.,s)g(s,<p(xs(h»)}is+get,<p(xt(h»)
0 .
t
=A(t)<p(yt (h» +A(t)f<p[Vt(.,s)g(s,<p(Xs(h))}is +get,<p(xt(h»)
0 -
=A(t{<p(y,(h))+I <p[v,(0,s)g(s,<p(x,(h)))};IS]+g(t,<p(x,(h)))
=A(t)({(x,(h)))dS]+g(t,q>(xI (h)))
[
t l
=A(t)<pS(t,O)(h)+fvt(.,s)g(s,<p(xs(h»)dsj+g(t,Q)(xt(h»)0 ~
=A(t)<p(xt(h» +g(t,<p(xt(h»)
V~yx'(h)(t) =A(t)<p(xt(h» +get,<p(xt(h»)
Bay lfl di~uphaichungminh.
=>Neux(h)Ia nghi~mcuaphu'dngtdnh:
{
X'(t) =A(t)<p(xt(h)+get,<p(Xt(h»)
Xo=h
Ta phaichungminh:
. t
X t (h) =S(t,O)(h)+f Vt(.,s)g(s,<r(xs(h»)ds
0
,
Tac6: [S(t,O)(h(O»+[V(t,S)g(S,<P(X,(h»)dS]
=A(t)<P[y,(h)+[v, (.,s)g(s,<p(xJh))dS] +g(t,<p(x, (h))
,
Suyra: [X(h)(t)- S(t,O)h(O)- [V(t, s)g(s,<p(x,(h)))]
=A(t)q>rXI (h)-Yt (h)-IV! (.,S)g(S,CP(Xs(h»)dS
]L 0
(*)
Trang 46
Lu~n van Lao hQc
L~ico :
0
KoCh)- Yo(h) - fVo(.,s)g(s,q>(xs(h»)ds
0
(**)
=h-h-O=O
va vi phridngtrinh {:~(~~A(t)q>(:L _;_I:~ - n -
co nghi<$mduynhfftz=O.Nen tu(*) va(**) taco :
t
Xt (h) =S(t,O)(h)+fVt(.,s)g(s,q>(xs(t»)ds
0
M<$nhde 2 du'<;1cchungminh Kong.
M<$nhde3saildaylah<$quacuaM<$nhde2 .
Menh d~3 :
co
xco(h) =S(co,O)(h)+fVco(.,s)g(s,q>(xs(h»)ds
0
Voi x(h)la nghi<$mcuaphu'dnEtdnl.:
{
X1(t)=A(t)q>(Xt)+g(t,K(Xt» ; t~O
~xo=h
Lu~nvanCaa hQc
Vdi t~0 Bi[ttT(t) : C-7C
h H T(t)(h) =Xt (h)
Trangdo x(h) la nghi~mcuaphu'dngtrinhV, hayphu'dngtrinhvila
neud tren.
Menh d~4 :
--------
T(t+co)=T(t)T(co) ; t~0
ChT1ngminh:
Cachchungminhgi6ngnhu'cachchungminhm~nhd~2 .
Th~tv~y,\1hE C taco :
T(t+co)(h)=Xt+rotrongdox(h)Ia nghi~mcuaphu'dngtrlnh:
{
X r (t + co) =A (t + co)<p(x t +co) + g( t + co, <pCX t +0) ) )
Xo =h
VI A(t),g tu~nhaanvdi chuky corheat nenphu'dngtrlnhtrentu'dngGltdng
{
X'(t + co)=A(t)<p(xt+co)+ get,<p(Xt+ro)
Xo =h '
~
{
X'(h)(t +co).=A(t)<p[xt+oJh)]+get,<p[Xt+O)(h)b
Xo=h
VI vdim6ih phu'dngtrlnhV coduynha'tmQtnghi~mla x(h)nensuyfa :
Xt(h)=Xt+ro(h) La'y t =0co:
xro(h)=xo(h)=h
T(t)T(co)(h)=T(t)[T(co)(h)] =T(t)[xro(h)]=T(t)(h)=xt(h)=xt+(r)(h)
=T(t+co)(h) \1hE C.
V~yco : T(t+co)=T(t)T(co)
Trang 48
Lu~nvan Cao hQc
8~t F C-7C
ro
hH F(h) =fvro(.,s)g(s,<p(xs(h)))ds
0
s C-7C
hH S(h).=S(co,O)(h)=Y(J)(h)
T =T(co)
Taco: T ==S +F.
NSu T co diemba'tdQngh E C thix(h)Ia nghi~mtugnhofmchuky
cocua V. Th~tv~y,T(h) == h =>T(co)(h) ==h -
=>T(t+co)(h)==T(t)T(co)(h)==T(t)(h)
=>xt+w(h)==xt(h)
V~Y x(h) tugn hofm chu ky co
[,u~nva'nCao J1Qc
HQ {A(t)}du'O,b>O
saocho:
IIV(t,s)":::;be -a(t-s)
j
"i1t~s~O
- --
DjnhIf 6:
Xetphu'dngtrlnhva trenclingvoicacdieuki~nV.I, V.2, V.3,VA
vahQ{A(t)}la5ndinhti~mc~ndeli.
Khi dophu'dngtrinhV conghi~mtu~nhoanchuky co.
Voi di~uki~nvilanh~nxetatrentaChIc~nchungminh T =S +F
codi~mbit dQnghE C . .
Changminh:
Bu'oc1 :
Qua cac bu'ocsail
TmintU'F xacdinha trenla compact.
Gia sa (hn)nE C saochohn >ho.Khi do,rheaBinh ly 2 Ph~n1
limx(hn)=x(ho)trongC([-r,co],E)rheaChlj~T1,nghIc.la day (x(hn))nn~ao
hQi tl;1deli v~x(ho)trendo~n[-r,co].
'T~p B={xs(hk)/sE[O,co],kEZ+yla t~pcompact trang C (chung
minhnhu'trongB5 de3 , dinh ly 1).
Vi <plien tt,lCnen<p(B)={<p(xs(hk))/sE[O,co],kE Z+} compacttrang
En.Suy ra day (g(s,<p(xs(h0)))khQi t1,1deli v6 g(s,<p(xs(ho)))tren [O,co].
Tildo lir~lF(hn)=F (h0)n~ao V~yF lien t1;c.
Gia sa Q la t~pbich~ntrangC.
Khi do t~pA ={xs(h)/sE[O,CO],h E O} la t~pbich~ntrangC.
Tli do <peA)la t~pbich~ntrangEn(Vi <p:C -7'Entuye'nttnhlient1,lc:
nen 11<p(xs(h)11:::;11<pllllxs(h)11)
Trang50
Lu~nvan Cao hc
VI g compactIH~nt~pg([O,co]x <peA))compactu'dngd6itrongE. d~n
de-nt~p D=Co{VO)(.,s)g(s,<p(xs(h)))/sE[O,CD];hEO)la t~pcompact
trongC.
VI VO)(., s)g(s,<p(xs(h))) E D, \is E [0,co]hE 0 Taco:
(»
F(h) =fV0) (.,s)g(s,~(xs(h)))dsE coD dungchomih E Q
0
ChungtoF(O) compactu'dngd6itrongC. v~yF compact.
Lu~nvan CaDhQC
Bu'oc2 :
? I/F(h)1/
Tlfa chuan IF/ = Jim sup 1/ 1/ =0IIhll~oo h
Changminh:
~ -. ~ ~-- ---._---
\iE >0,tli cachchungminh(j dinh1:92, ph~n1,t6ntOsaDcho:
[get,U)[~N +EllUl/,\it E [O,m],\iU E En
Bat m =sup~IV(t,s)lI,t E [-r,m],sE [0,0)]~
. M =sup~IS(t,s)ll,t E [-r,m],s E [O,m]}
t
Tli Xt(h)=S(t,O)(h)+fVt (.,s)g(s,cp(x~(h)))ds
0
Taco:
t
I/Xt (h)11~Mllhl/+mfllg(s,cp(xs(h)))l/ds
0
t
~ Mllh!1 +mf{N+ EI/cpllllxs(h)l/~s
a
t t
~MI/hl/+mf Ndt +mEl/cpl/fI/xs(h)I/ds
~ a a
. t
~Ml/hl/+m.N.m+mEllcpl/fllxs(h)llds, \it E [O,m]
0
Theaba'td~ngthucGronwalItaco :
Trang52-
Lu~n van Cao hQc
IIXt(h)1I~(Mllhll+m.N.co~m.s.tlq>lloo
Taco:
00 .
IIF(h)1I~f/lVoo(.,s)g(s,<p(xs(h»)llds
0
00
~mfllg(s,<p(xs(h»llds
0
-- .
00
~ mf(N +811<pllllxs(h)II}is
0
00
~m.co.N+m.8.1I<pllf/lxs(h)llds
0
00
< ' N + ~II Ilf
(Mllhll N
\_m.s.;;q>llood- m.w. m'~'II<P\ +m. .coIV s
0
~m.co.N+m.8.11lloo
Chung to r~ng: IFI ~ m.8.11lIoo
= (mllcpllMcoeITLSiiq>ilw}
diSunaydungchomQi8> 0 nenlFI=0
Bu'oc3 :
Ta bi€t r~nghQ {A(t)} 6n dinh ti~mc~nkhi va chi khi co cac s6
a,b>OsaGcho IIS(t,O)(h)1I~bllhlle-at vdi mQih E C va t 2:0
Suy ra IIS(n.co,O)11=Ilsn(CO,o)/i~IISIlII~be-anw '\inE N
Ta chungminh S thoacacdiSu ki~ni,ii"iii cua dinh ly 2, chu'dng1.
Iisn(h)II~/lsn1!llh"~be-aI1h" '\inEN, '\ihE C
E>~t A =be-anW jno saGcho A=be-an~l
E>iSunay cho tha'ydiSuki~niii) duQcthoa.
M~tkhac, '\itt'E C va vdi ffiQi8>0,taco :
IIS:~(h)-S:~(k)"=lis11(h)-SIl(k)1I ~Ilsllllllh-kll
Trang 53
Lu?n van Cao hQc
Suy ra :Ils~v(h) - S~(k)11~be-an~h- kll
Ta phai chQnr EN va 8 >0saGcho lib- kll<£+8
=>b.e-an~h- kll<£ khi lIb- kll<£+8
=>b.e-anlfh- kll<b.e-an~£+8) Taco:
b.e-an~£+8) <£Q £+8 <£.eanw~
. b
(
an"'"
JQ8<£ eb -1
arw
Ta co thS chon r saG cho ~ -1 >0 va do do ta chon
. . b .
( "rw \
a<8<eleb -1j dieunaychUngtoS thOadieu ki~n A , tue dieu ki~ni)
cua dinh ly 1.
IIS(h)- S(k)1I:s;Ilsll.llh- kll ~ be -atfth- kll,\ih, k E C S thoaii)
Tom l(;li,S,F thoacaedi~uki~ncua 8inh 1y2, Chu'dng1.
Suy ra , T co diSmba'tdQng h E C.
Lu~nvan Cao hQc
Xet phtidngtrinh :
VI
{
[X(t)- A(t)x(t - r)]' =get,cp(xt»;t ~o
Xo =h
h E C chotru'oc
VI.l cp:C -7 Entuye"ntinh lien tvc
VI.2 {A(t)}la hQcac to<:lntU'tuye"ntlnhbi ch?n tli'E -7 E phlf thuQc
lien tvc theot, tu~nhoanvoi chuky corheat.
VI.3 g: [O,co)x En-7 E thoacacdi6uki~n(1.2),(1.3)vatugnho~m
chuky CDrheat.
VIA Voi m6ih E echo tru'oc, phlTdngtrinhVI co nhi6ul~mla ffiQt
nghi~mx(h) lIen [-r,co)thOC'xo(h)=h
Vdi cae diSu ki~n tU VI.l de"nVL3, rhea Dinh 194 Chu'dngII VOl
m6i h E C cho tru'ocphu'dngtrinh VI co duy nha'tmQtnghi~mx(h) lIen [-
r,co) thoaxo(h)=h vaanhx~ht-7x(h)la lien tLJc.
Gia SltWet,s):E -7 E la mQthQcacloantlttuy€n
t ~-r lien tvcm~nhrhea(t,s)vathoaphu'dngtrinh:
r~[Wet,s)- A(t)W(t - r,s)]=-0
1
-
{
o ;s-r::;;t<s
Wet,s)=
I ;s=t
Hay:
{
[Wet,s)- A(t)W(t- r,s)]=I
Wet,s)=0 s-r ::;;t <s
>ch~m,s ~ 0,
;0::;;s::;;t
;0::;;S ::;;t
VOl 0::;;s ::;;t, gia sa'i'o(t,s): C -7 C la mQthQcac loan at tuye"ntinh
bi ch~nau'QcdinhnghIanhu'sail :
To(t,s)(h)=Yt(h)voi yell)la nghi~mcua :
{
[yet)- A(t)y(t - r)J =o
Ys=h
(ChungminhTo(t,s)tuye'ntlnh, bich~ngic3ngnhu'ph§ntruoc)
O::;;s::;;t
Trang55
Lu~nvan Cao hQc
;:;Menh de5 :
To(t+co,O)=To(t,O).To(co,O)
Chungrninhnhu'm~nhd~1.
Menh d~6 :
,x(h)la mQtnghi~mcuaphu'dngtrinh
{
[X(t)- A(t)x(t- r)J =get,<p(xt)) t ?:0
Xo =h
neuvachineux(h)thoa:
t
Xt (h)=To(t,O)(h)+fWt(.,s)g(s,<p(xs(11)))ds
0
Chungrninhnhu'm~nh062.
Voi t?:0,d~tT1(t):C -7 C voi
T1(t)(h)=xt(h) 'dh E C
Voi x(h)la nghi~mcuaphu'dngtdnhVI
Menh d~7:
T](t+ co)=T1(t)T1(co)
Chung rninhgi6ngm~llhd6 4.
£)~tFl : C-7C
0)
h H F] (h) =fw,0)(., s)g(s, Xs(h))ds
0
C-7C
h H 5] (h) =To (co,O)(h) = YO)(11)
Tl =Tdw)
5] :
Taco: TI =51 + FI
NeuTI co di€m ba'tdQngh EC thlx(h)Ia nghi~mtugnboanchuky
cocua VI. To(lll tU'D(t,h) =h(O)- A(t)(h) du'QcgQi Ia 6n GirthlieUnghi~m
zerocuaphu'dngtdnh D(t,Yt)=0 ]a6ndinhti(;mc~no0.u,tue]3:
3a,b>0: IIW(t,s)!1~be-a(l-s) voi mQi t?: s ?:0
Trang56
Lu~nvanCao hQc
Dinh Iv 7 :
Xet phuongtrinh VI (j tren cling vdi cac di~uki~nVI. J . '11.2.'11.3.
VIA va roantii' D(t,h) la 6n dinh. Khi do phuongtrinh VI co m(>tnghi~m
tu~nhoanvdi chuky co.
Changminh:
Hoanroangi6ngvdicachchungminh(j Dinh 196.
if:y>*~ if:y>*~if:y>..~~