Luận văn Các bất đẳng thức tích phân thuộc loại Ostrowski và các áp dụng của nó

CÁC BẤT ĐẲNG THỨC TÍCH PHÂN THUỘC LOẠI OSTROWSKI VÀ CÁC ÁP DỤNG CỦA NÓ NGUYỄN HỮU DŨNG Trang nhan đề Chương0: Phần tổng quát Chương1: Các đẳng thức tích phân. Chương2: Các bất đẳng thức tích phân. Chương3: Sự hội tụ của công thức cầu phương tổng quát. Kết luận Phụ lục Tài liệu tham khảo Mục lục

pdf12 trang | Chia sẻ: maiphuongtl | Lượt xem: 1990 | Lượt tải: 2download
Bạn đang xem nội dung tài liệu Luận văn Các bất đẳng thức tích phân thuộc loại Ostrowski và các áp dụng của nó, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
f!lJaldrb(? flutefk./'jtluiu h,i (j)~t~()rtOki Trang5 CIIUdNG I CAC DANG THUC TicH PHAN Mt,lcdkh cuachlidngngyla tr'inhbaymQts6cacd~ngthuctkh phanbi~udi~ntheogiatrjhamvacacdC;lOhamcuanotrencackhming tlidngung.C6ngct,lchuye'"ula vi~csadt,lngchungminhquinl,lpva mQt . s6c6ngthuctrongpheptinhvi tkh phan. Tnioc he'"t,ke'"tqua sauday. })jnh IX 1.1. Cho Ik :a =Xo < XI < ",Xk-I < Xk =b lamQtphepplulnho{Zeheuado{Zn ~ [a,b], aj (i=O,...,k+l) La "k +2" .diemsaG eho ao =a,a; E[X;_"X;] (i=l,...,k) vaak+1 =b. Ntu /: [a,b]~ IR c() d{Zoham dtn dip 11-I va /(11-1)lien t1;le tuy~t di;'itrerl [a,b].Khi de)ta'eeldang tlu/e: (1.1) b Jf( t) dt+~(-l)f~f (X -a ) .I f U-]) ( x ) - (x-a )J f U-I)(X )}~ .,~~/"'I 1+1 1+] 11+1. I a .;=1 }. ;=0 b =(-1)" JK,;,k(t)/(II)(t)dt, a trongdonluln PeanodU:(/ehob(Ji: (t-alr, t E [a,x,), 11! (t-a2r, tEfxl,X2)' 11! (1.2) KII,k(t)= (/-ak_,)" , t E [Xk-2,Xk-I)' 11! (f-akr IE[Xk-),b],-, . 11! vcJin,k E IN va f(°>Cx)=lex). Chung minh. Ta chungminhb~ngquin(;lptoaDhQC. Vc3i11p-1, chungtocancht1ngminhdangtl1l1c .~. (1.3) h k-I ff(l)dt - L[(X;+I- a;+1)f(X;+I) - (x; - a;+1)f(xj)] a ;=0 h =- JKI,k (t)/I (t)dl, a trong do (I - al), (t-a2), IE [O,XI)' IE[X"X2)' K1,k(I) = (I-ak-I)' IE[Xk-2,Xk-')' (I -ak). {E Ixk-I,bl. D~chungminh(1.3),tadungtich phantUngphfinnhtl'sau h k-P", fK1,k (/)( (/)dt==L f K1,k (t).t (I)dl a ;=0x; k-Ix'+1 =L J (t -a;+I)f (t)dl ;=0x; =*i [ (t- al+1 )/(t) Ix;'1 - xJ . :l<I)dl ]1=0 x, x, ~ ~[(x", - a",)[ (x"')- (x,-a",)[(x, ) - '[f(t)dt] k-l k-I x,+, =I [(X;+I-a,+I)/(x;+I)-(x;-a;+I)/(x;)]- I Jf(t)dl ~ ~~ k-I h =L [(X'+I- a,+1)/(X;+I) - (XI - a,+1)f(x;)] - Jf(t)dl ~ a Dodo I> I> k.-1 ff(l)dl +fK1,k(I)f (t)dl=2](X;+1- a;+1)f(x;+I) - (X; - a;+J)f(xJ] a a ;=0 V~yd~ngthuc(1.3)dtl<Jc~!lngminh. (j). 'f,- olZ - ,if "fIJ ,JU,!n {/an ,H/(!(' ');'/.,(Jan .7If)(' 'If'- ::- 'fIJ"., (1),-.J ?U,,/'!JI, .7(,(H( ::.l/((1'fI (11(11dd!1,?11t(f'cIklt .la'trill, UJq;;CMt()l~ti Trang7 Gielsli'r~ng(1.1)dungvdi "n" vatac~nchungminhr~ng(1.1)dungvdi "n+1",tucla, tachungminhd£ngthucsaudaydung: (1.4) " k-I //+.1 '} J/ ' ( )d ",,(-I) f( )1rU-I) ( ) ( )1f U-') ( )} , t t+~ ~ ~~ X;+I-ai+I, X;+I - X; -a;+1 X; a ;=0 }=I J, " = (-1)"+1JKI1+I,k(t)f(n+I)(t)dt, a trongdo nhan Peano Kn+l,k(t) du'<;1ccho bdi: (t - al )"+1 (n+l)! ' tE[a,xl)' (t - a2)"+1 (11+1)1' tE[XpX2)' K n+l,k(t) = (t-a ) "+1 k-l (n+l)! ' tE[Xk-2,Xk-I)' (t -a ) /1+1 k (n+1)!' tElXk-j,bj. Xet tichphan It k-I X,+, JKI1+I,k(t)f"+1\t)dt =I J KI1+I,k(t)f(I1+1)(t)dt a ;=0 Xi =I xJ (t~a;+t)"+1f(n+')(t)dt ;=0 x, (n+l)! sau dodungtichphantUngph~ntadu'<;1c: It J K//+I,k(t)P/HI) (t)dt a k-I [( I ) //+1 Xi>l (t ) // ] =I -a;+I. f(//)(t) IX'" - J -a;+1 f(I1)(t)dt ;=() (11+1)! x, 11!Xi k-l [( ) //+1 ( ) "+1 ] =I X;+t-ai+\ f(I1)(Xi+I)- x;-a;+I, f(I1)(x;);=0 (11+1). (n+l), - IxJ (t -a;+I)" f(I1)(t)dt ;=0Xi n, k-t [( ) '1+1 ( ) "+1 ] =L , Xi+l-ai+" j(I1)(XJ+I)- Xi-ai+l, j(I1)(X,)'=0 (n+1). (n+1). , I i i i " - J K (I) (I1) (t)dt.I1.k '. (1 Ta vie'tl~id~ngthuc ri§y I " 'k..1 [( ),,+1 ( ' ) ,,->1 ] fK (t)j (I1) (t)dt='," Xi+l-tXi+1 j (I1) (x ) - X,-ai+1 j (")(X )l1ok ,L.. ( 1)' 1+1 ( 1)1 ''1=0 n+. n+ . (1.5) 0 I" - JKI1+lok(t)/,,+1)(t)dt. ,0 Theogiathie'tquin~p,taco: " 11 ( 1)1k-I Jj(t)dt+ 2::~2::{<Xi+l-ai+I)JfU-I)(Xi+l)-(x,-ai+I)J jU-I) (xJ} (1 ./=I.J. i=O " =(-1)"JKl1ok(t)f(I1)(t)dt. 0 hay (1.6) " " fK".k(t)j(I1)(t)dt=(-1)"Jj(t)dt 0 a " ( 1)./ k-I ( 1)/1" - " f( )./ j U-I) ( ) ( )1j U-1)( )}+ - .L..~ I L.. ~X'+I-a'+1 Xi+1- Xi -ai+1 X,I ./," .1 'IOn Tir (1.5)va (1.6),taco: (-1)" fj(t)dt +(-lrI (-?/ I (<Xi+1-ai+lf jU-I\Xi+') a 1=1 .J. i=O -(Xi'-ai+I)'/ fU-')(X;)} k-I [( ) /+1 ( ) /+1 ] =2::Xi+l-a'+I, f(I1)(Xi+I)- x,-ai+l, f(/1)(xJ,=0 (n+l). (n+l). " - J K (t)f (I/+') (t)dt11+I.k , a hay " k-I 11 ( 1)1 S r ( )d "" - f( )./ f'U-') ( ) ( )1f U-') ( )}J t {+L..L.. ~~ X'+I -ai+1 0 X'+I - Xi -ai+1 Xi a ,=0./=1 J. (fl. .,'- 'j7/ - Ijl' '{/} If"qll NTlI ./Tlqr '),r .1'(JfT.1I.-nfll'. ,A:9'-"J/%n,m«, 9/!r'hlfl (j7J _1 J.2 //, /, / Ii / - / . 41 / / .,7,Ja. a-aJ'fl ",ute "~JI. l/tan waf W,jr,lm!ijh't Trang9 k-I [( ) '1+1 ( ' , ) '1+1 ]=(-1)"2: xi+l-ai+\ f(II)(Xi+I)- x;-a;+I, l")(X,)i=O (n+l). (n+l). h - (-1)/1JK,1f1,k(l)f(II+I)(l)dt a hay h k-I II ( 1);fr()d "" - . f( )1f (;-')( ) ( )J f (;-I) ( )}. t t+ ~~~1Xi+l-ai+1 Xi+1- xi-ai+1 Xi a i=O1=1 J. k-I [( ) '1+1 ( ) '1+1 ] + (_1)"+! L xi+,-a/+1 j(II)(Xi+1)- Xi -ai+1 j(II)(Xi) i=O (n+l)! (n+l)!- h =(-1)"+1 J KII+l.k (I )j(I1+I) (t)dl a hay. (1.7) h k-I II ( 1); Jr( )d "" - . f( )J f (;-I) ( ) ( )1f (;-I) ( )}. 1 1+~~ ~t Xi+1 - ai+l. Xi+1 - Xi - ai+1 Xi a ,=01=1'/' +(-l)"!'~ [(x -a ) "+' f (/I) (x )-(x-a )"+If (II) (X )] ( 1)'£..i Ii" 1...1 1+1 1 1+1 1n+ . i=O h =(_1)11+1J K (I) f (II+I) (I)dlII! l,k. .. a sO'hc:lllgthuhaiva thubacuav~tnii vi~tgoml~ithanhmOtsO'he.mg,do do tathuduQc: (1.8) h k-lll+1 ( 1)1 Jj()d "" - f( )1 f (;-I) ( ) ( )1f (;-I) ( )}t t+ ~~~tXi+l-ai+l. Xi+1- xi-ai+1 Xi a i=O}=1./. h = (-1)"+1f~:11+1,k(1)/(11+1)(t)dl, a nghlala, d~ngthuc(1.1)la dungva Dinhly 1.1duQcchungminh.- H~quasaudaychomOtd~ngthuctichphankhacvdi (1.1)seheru ichtrongcacph§nsau. ryMTdr/,,//-1/,,(('Iff-/'A/'rln f(J(d(il.}t;(J(t)k; Tran~lQ Htimi 1.1. VdiClJnggid thiefcuadjnh(v 1.1,taco : ff({)d{+~(-;n~tx,- a,)J - (x, -a",)J }f(j-I) (X,)](1.9) b =(_1)11JKn,k(l)f(l1) (I)di. a Chung minh. Tli (1.1) taxet s6 hC;lngthil hai va vie'tno thanhtc5ngcua hai s6 hC;lng n ( I)J k-I8 8 -" - "I ( )/ f u-IJ ( ) ( )J f U-') ( )}. 1 + 2 - ~ -:--, ~ ~Xi+1 - ai+1 < Xi+1 - Xi - ai+1 Xi /=1 J. i=O k-l =L{-(Xi+'-a'+I)f(Xi+I)+(Xi-ai+l)f(Xi)} 1=0 (1.10) II ( I) J k-I ,,- ,, {( ) / f U-J) ( ) ( )J f U-IJ ( )}+~ -:--, ~ Xi+) - ai+1 < Xi+l - Xi<- ai+1 Xi /=2 } . i=O k-I =:L {-(X'+I - £Xl"!)f(Xi-l') + (x, - £x/<tt)/(x/)} 1=0< . ¥ k-I /I ( I)'"" - . f( )/ f U-') ( ) ( )J f U-') ( )}+L..L..~~X1+1-ai'l. xi+l-x,-ai+1 X;.i=OJ=2 J. Baygio81du'<Jcvi€t l,;ti .. k-I 81=(a-a,)f(a)+ L(xi -a'+I)f(xi) i=1 k-2 +2)~(Xi+l -ai+,)f(x,+,)}-(b-ak)f(b) i=O k-I =(a-a)f(a)+ L(x; -ai+,)f(xi) ;=1 k-I +L{-(xi -aJf(xi)}-(b-ak)f(b) ;=1 . k-I =(a-a,)f(a)- L(ai+1 -aJf(xi)-(b-ak)f(b). . 1=1 Cling v~yvoi 82du'<Jcvi€t lC;li k-I /I ( 1)' .<; ,,- f( ); [ (/-I) ( ) ( );f U~')( )} L 2 =L..JL..J --=--,tXi+1 -a,+1 ..' X;+I - X, -a;+1 . X; 1=0/=2 J. k-I /I (-1)/ =II --=--,{(Xi+1-a;+YfU-I)(Xi+I)} i=0)=2 J. . - II (-~r {ex;-al+YfU-l)(xJ}i=O)=2 J. =I (-~r{(Xk-ak)/ fU-I)(Xk)}+II (-~r(cXi+1-a;+,»)jU-I)(X'+I)} )=2 J. i=O)=2 J. - ~(-;({(XU-aYIU-I)(xU)}- ~~(-Jr {(Xi-a'~I)'IU-I)(x,)} =I(-~r{(Xk-ak»)fU-I)(Xk)}+II(-~r (eX,-a,»)fU-I)(Xi)})=2 J. ,=1)=2 J. - I (-~r{(Xu-al») fU-I) (Xo)}- II (-~r {(Xi-ai+I»)fU-') (X;)} )=2 J. ;=1)=2 J. =I (-~r {(Xk-ak») fU-')(Xk)}- I (-~r (exo-a,») fU-l)(xo)} 1=2 j. /=2 J. . +~[~(-X {(x,~a,)i~(x,~a",)j IF"IX,)] =t(-?/ {(Xk-ak»)fU-I)(Xk)-(XO -al») fU-')(XO)} )=2 J. +~[~(~;t{<x,-ay -(x, -aH,Y V"-l) (X,)] =I (-~r {(b-akYfU-I)(b)-(a-a,y fU-')(a)} )=2 J. +I [I (-~r{(X;-aY -(X; -a,+I») }JU-I) (X;)] .'=1 )=2 J. Tli (1.10),taco k-I 8, +S2=(a-a,).!(a)- I(a,~,-a,).!(x;)-(h-ak).!(h) . ;=1 +I (-~r{(b-ak») fU-')(b) - (a -al») j<)-I)(a)} )=2 J. r ..------- '1:)~.kH.T(JN~IEN THLT\lIEN - OOO~86 J [1M1rlrt/Ift(/",,('(fr/'Ji/uin !.Jai @.)b(J,~t,,: Trang 12 +%[~(ii' kx,-a,J' - (x,-a",dfU-"(x,)] I ~ -{(a, -a)f(a) +~(a", -a,)f(x,) +(b-a,)f(b)} +I (-?l [-(a-a,)} fCj-I) (a) 1=2 J. +I (eXi~a,)} -(Xi -ai+I)}}JU-I)(xJ+(b-akf fU-')(b)] ,=1 Chli Y r~ngXo=a, ao=a,Xk=b Vaak+1 =b taco th€ vie"t { k-I }8,+82=- (al-a)/(a)+ t;(a,+,-a,)/(xJ+(b-ak)f(b) +I(-?i [-(a-al)}/C!-I)(a)}=2 J. +I {(x,-aJi -(x, -a1+,)}}fU-')(x,)+(b-ak)}fU-')(h)} i=1 k =-I(a'+1 -a,Jf(x,J i=O +I (-~r [-(a-at)} fU-')(a)}=2 J. k-I +I {(x;-ai)} -(Xi -ai+I)}}/U-I)(x;)+(b-ak)} fU-1) (b)] ;=1 k =-I(ai+1 -a;)f(xi) ;=0 +I(-~r [-(xo-a,YfCH)(xo)i=2 J. k-I +I (ex,-aJ/-(x, -aj+,y}rU-')(x;)+(Xk-akYfi-I)(xd] ,=1 k ' = - I(aj+1 -aj)f(x;) ,=0 11( 1)i [ k ]+I~ I {(Xj-aJl -(x; -a;+,f}fu-')(xJ1=2 J. ,=0. ,, [1],;-1tUfJ~rIluf-clicit./tltalt kat (lM~()(':-)/{i Trang 13 ~t(-;:J [tkx,-a,)' - (x,-a", Ji}J"O"(X,)} Thay 8,+82vaoso'h~lOgthU'haicua(1.1)tathoduQcd~ngthU'c(1.9). Bay gio tagia Sltrangcacdi~mchiaXi cuaphanho~chlk laceSdinh, ta tho duQc h<$qua gall. He !loa 1.2. Cho lk :a=xo <XI <",Xk-I<Xk=b La meltphiin ho(}chcua do(}n[a,b]. Ne'u f: [a,b]--+IR gi(fngnhll tron!?dinh Ly1.1.Khi d6 ta c6 &lng thac: (1.11) hill [ k ]ff(t)dt+ ~2Jj! ~{-h/ +(-l)Jh/-I}rU-I)(x;) h =(-1)"fKII,k (t)f(lI) (t)dt, a trong d6 hi =X'+I- x" h_1=0 Va hk=O. Chung minh. Chncac di~ma; U=O,...,k+l)nht!sau: , a+xl Xi-I +X, . ao=a,al=-,a;= , (z=l,...,k),2 2 Xk-I +Xk ' ak = va ak+'=b. 2 D~ngthU'c(1.9)vi€t l~i (1.12) h h ff(t)dt+81 +82 =(-1)" fK",k(t)f(II)(t)dt, a a vdi 8, +82=f (- ?J [ i:kXi - ai)/ - (Xi - ai+I)/ }fU-'J (Xi ) ] . /=1 }! i=O Ta chia so'h~ngthil hai 81+82cua (1.9) thanh3 so'h~ngnhugall: ~Jnlitj{( 'uoAl1I!iJJ&ui.f1JlI}(L(~ . - "",,-," "'-~ 11 (]) ./ [ k k } ] - , , (-I) SI+82=~-j!~ xi-a;)./-,(Xi-ai+t)./fJ (X;) k ' =-2: {(Xi -a;)-(Xi -ai+I)}[(Xi) ;=0 + f (-?} kb-adJ fU-')(b)-(a-aj)} fU-I)(a)} ./=2 .1. +~[t I-~:j ¥X; - aY - (X; - a;+I)' Ir(JI)(X;) J sO'h~ng thil nha't 8, +82 cua (1.9) vdi 0 ~ i ~ k, .i =1: k (i) :L{(x,-a,)-(x,-a,+,)}f(xJ '=0 k-I =-(a-a,)f(a)+(b-ak)f(h)+ I{(i,-a,)-(x,-a/+,)}f(x,) 1=1 - 1 f k-I }- 2lhof(a) + ~(hi + h,-,)f(x,) + hk-J(b) . S6h~ngthuhai 81+52cua(1.9)vdi i=O,i=k,j~2: (ii) I(-~r (cb-ak)}fU-')(b)-(a-a,)J fU-I)(a)}}=2 .1. =~(_])I {hl- rU-I) (b) - (-I )JhllU-I)(a )}.L. 'I2J k I. O.J=2.1. S6h~ng thil ba 8,+52cua (1.9)vdi ]~i~k-l, 2~.i~n: (iii) ~[~(-;r {(x,-aY - (x,- a,.,)'}Iii"(x,)] =I [ i: , (~!'21)ijh~1-(-I)J h/lrCH) (XI)] ' I~' 1~2.1 f)~tbasO'h~ng(i ), (ii ) va (iii ) vaa 81+52ta thu du'Qc: (Ll3) S,+S, =~(-;n~«X;-a,J' -(X, -a",)' }/U"'(X,J] k =- I {(x,-aJ - (x,-a;+,)}f(x;) ,=0 _.Imugjj iYJril rI,j:'~11/ut('lid" j'/uiu (wi f~JIt()r(;jt; Trang15 +i (-?J {(b-adlf(l-I)(b)-(a-al)J fU-') (a)} J=2 ./. k-I [ n ( 1)J { } ] - J J (j-I) +~~fl(Xi-ai) -(xi-ai+i) / (Xi) 1 { k-I , }=-2 ho/(a) +~(hi+hi-I).I (x;)+hk-d(b) +~(-l)J {hJ- fU-I)(b)-(-l)JhJ fU-') (a) }L. '12l k 1 0,J=2./. +I [i (~;:{h;~~1 - (-l)Jh/ lr(j-1)(x/)]1=1l=2 J. =~ [ ~(-l)l {h~ -(-l)J hJ }jU-1)(X) ] L. L. 'I2l /1 1 /1=0 J=I J. =~(-1)J ~ {h~-(-l)JhJ }rU-1)(x). L."2lL.11 I. IJ=I J. 1=0 Cu6i cling ta thudt(Qc(1.11)b~ngcach thay 81+82vao (1.12).. Tn(ong hop talay cacdi~mehiax-eua I cachd~utatlmduoeheqUa. 1 k , .. salt: He qua1.3.Cho (1.14) Ik : Xi =a+:{b~a).i =0,...,k lamQtphfin hOi;lChd~ucua doi;ln[a,b]Va f: [a,b]~ IR sao cho In-I) li@nt\,lctl1yi$td6i tr~n[a,b].Khi d6tac6dAngthd'c: (1.15) J/(t)dt+t(b-a ) .I 0 .I~I 2k x;,[ - Iu "(0)+~I(b)] h = (-1)" J KII,k(t).T(II)(t)dt. 11 . Chu yr~ngsO'hi;lngthli hai cua(1.15)chI chliacacdi;lohamcffpIe ti;li tfftcacacdiemtrongXi' i =1,...,k-1. Chung minh. Sa d\,lng(1.14),tachuy r~ng :YM1d(j,~1(I"f'(' (ir-/' .;'/,(j,J/ !oa; (iM~()fr:Jt; TranR-16 b-a b-a ho=x!-x() =-, hi =xi+!-x/:::::- k k va b-a hi! =Xi -XI-I ""k,(i=t,...,k-l) (1.16) vathe'vao(1.11),taco: " II ( b . ) .1 fI(t)dt +I ~ (1 .1=1 2k . x ;![-f'HI(a)+ ~k-l)' -1)I'HI(x,)+(-I)J fU-"(b)] " =(-1)" fKII,k(t)f(II)(t)dt. a Tinh tacindongian,tUdaytasuytud~ngthuc(1.15).8 Congthucgi6ngTaylorsaildayvoi phfindutichphanclingdung. He gmi 1.4. Cho X :[a,y]~ 1ROJ d~whelmdin clip n sao cho g(lI)lien t~lCtuy~t at)'ltren ju,y]. Khl d6, wYimql XiE [a,y) fa c6 dilng tlllJC: (1.17) g(y) ~ g(a)- ~[t(-;r (lx",- a",)'g"'(x",)- (x,- a,.,)'g(j)(X,)}] y +(~1)"fKII,k(y,t)g(II+I)(t)dt (1 hay (1.18) II (-1).1 [ k ]g(y)=g(a)- ~fl t=o{(Xi- aJ1 - (Xi -ai+l)l }g(J)(xJ y +(-1)" JKII,k(y,t)g(II+)(f)dt. a Chung minh cua(1.17)va(1.18)dlivcsuytn!ctie'ptu(1.1)va(1.9)Hin luvtb~ngeachclwn f =gl, b:::::y..

Các file đính kèm theo tài liệu này:

  • pdf2.pdf
  • pdf0.pdf
  • pdf1.pdf
  • pdf3.pdf
  • pdf4.pdf
  • pdf5.pdf
  • pdf6.pdf
  • pdf7.pdf
  • pdf8.pdf
Tài liệu liên quan