Luận văn Cấu trúc các ideal trong vành đa thức trên miền nguyên Dedekind

CẤU TRÚC CÁC IDEAL TRONG VÀNH ĐA THỨC TRÊN MIỀN NGUYÊN DEDEKIND TRẦN THỊ PHƯỢNG Trang nhan đề Lời cảm ơn Mục lục Lời mở đầu Chương 1: Một số kiến thức cơ bản trong đại số giao hoán. Chương 2: Cấu trúc các ideal nguyên tố và tối đại trong vành đa thức trên miền nguyên Dedekind. Chương 3: Cấu trúc các ideal trong vành đa thức trên miền nguyên Dedekind . Kết luận Tài liệu tham khảo

pdf22 trang | Chia sẻ: maiphuongtl | Lượt xem: 1823 | Lượt tải: 1download
Bạn đang xem trước 20 trang tài liệu Luận văn Cấu trúc các ideal trong vành đa thức trên miền nguyên Dedekind, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
CHVdNG 3 CA"UTRUC cAC IDEAL TRONG VANH fJA THUC TREN MIEN NGUYEN DEDEKIND Trangehu'dngnay,tasem6tadiu tfl.kcLlaidealba'tkytrangvanhc1athue trenmi~nnguyenDedekindD. Vi D[x]lavanhNoethernenmoiidealtrang D[x]a~ue6s\jphantfchnguyensdehu5nhoa,dod6d~m6taea'utrueet'1a idealba'tkytrangD[x]tan~6taea'utruecaeidealnguyensd.Khi a~e~pden P, I, J, <p(x),tahi~u,P la idealnguyentokhackh6ngtrangD va I, J lacae idealkh;k kh6ngeth D[x];<p(x)E D[x]la aathueddnkhCiithoa<p(x)+P[x] ha'tkhaquytrangD[.r]!P[x]. 3.1Call true cua caeidealnguyensdtrong D[x] Truoekhi1116taea'utnk euacaeidealnguyenSd,nh~eb;ddlng,neuI la idealnguyensdelh D[x]thi theoMfnh di 1.4.5,Rad(I) nguyentotrangD[~r], vadoa6 theoehu'dng1,Rad(I)toia:;tiho~ekh6ngtoia;;li.Saudaytase11n IltQ1116tad:;tngeuaidealnguyensdI ungvoim6iRad(l)nhu'tren. 3.1.1Dinh Ij (M6tacaeidealnguyensdvoicankh6ngtoia:;ti).IdealI Clla D[x]fanguyensO'v6idin khongtaldflineuvachinlu I = In v6in nguyen du:O'ngva J faidealnguyento/khongtaldfliala D[T]. Chllngmink. TheoDinh Ij 1.6.10,D[x]la Q-vanh,nentheoDinh /j 1.6.6 111Qiideal nguyen tokh6ngtoi a:;tieuaD[x]la idealnhan. Hdn nlfa mQiideal ngllyentokh6ngtoia:;tikhaekh6ngeuaD[x]d~lle6soehi~uIanhdnkh6ng, tLta6,dungBo?di 1.1trang[1]tae6ai~llphaieh(tngminh.\? 3.1.2Hf qua. TrangD[I])m9ilugthuaala idealnguyento'd~unguyensO', 18 De m6 t~td~lngcLb ide:llnguyenso \'6'jcan t6i c.1~titadn Ixi c.12sau 3.1.3Blf dl. IdealI ala D[x]tanguyensdValdin tal'd9ineuvachineuton t9iidealngllyento'P -#0alaD,dathucdonkhdiip(x)E D[:c]thodip(x)+P[:r] be/tkhdquy!rongD[xJ/P[x]vak, l nguyenduongsaochok(x)]1.:E I, pi C I. Hdnmia,khzd6Rad(I)=. Chungminh.(==?)GiasuI nguyensovoicantoid~tihlRad(I)=, trangd6 ip(x).P nhudaquyuoc.Do ip(x) E Rad(I), P c Rad(I) Denc6 k, l nguyendltongsaocho [;:(x)]1.:E I, pi C I. (~) Gia Slt c6 k, I nguyendltong sao cho [<p(.r]1.:E I, pi C I, thl ip(x)E Rad(I). P c Rad(I). Do d6, c RadJ). Theo Bo?di 2.4, tojd?i trangD[x]DenRad(I)=ho?cRad(I)=D[x].VI I -:JD[x]DenrheaM~nhdi 1.4.1ii), Rad(I) -:JD[x],do d6Rad(I) = toi d?i trangD[.r].TheoAl~nhdi 1.4.6,Q nguyenso rrangD[x]. \? 3.1.4Binh If (M6rac:k idealnguyensovoi cantoid~li).IdealI ala D[x]ta nguyensdv6ldin tald9ineuvachineuI c6dflng , !rongd6m,n nguyenduong,t kh6ngam,hi(x) ("1::;i ::;t) thwjcD[x],Pi(x) (1::; i ::;t) thu(JcP[x].Hon mJa,khzd6 Rad(I)=z:dtac6thi ch9nhi(x), Pi(x) thoadeg[hi(x)]::;(Tn- l)deg[ip(x)],deg[Pi(x)]::;Tndeg~;(x)]. Chungminh.(==?)GiasuI nguyensovoicantoid?ithiRad(I)=, trangd6ip(x),P nhuda quyuoc.Khi d6t<snt?i Tn,n ngllyenduongsaocho [ip(x)]mE I, pn c I. Do D[x]lavanhNoethernen I hUllh?nsinh 1=, trangd6 ii(X) (1 ::;i ::;t) thuQcD[x]. 19 Do I chClatrongRud(I) = nen Ill') E, Suyfa Ji(x) =:p(x)hi(:r)+p;(l'), trangdo h;(x)E D[x],Pi(X)E P[x], V~y 1= , ({=)TruoctientachungminhIi- D[x].Giasl'iI =D[x]thl1E I vadodo 1 = [,,(:r)!mu(x)+llV(X)+t[\O(X)hi(X)+P,(X)]g:.r) (pE Po) t t = [cp(x)]rnu(x)+;;(x)L h;(.r)gi(X)+pu(:r)+L Pi(:r)g;(x) k=l i=1 t t = 'P(x)(['P(x)]m-Iu(x)+{; hi(x)9i(X)) + (PU(X)+~/i(X )9i(X)). D~t t r(x) = [:p(x)]m-1u(x)+L h;(X)g,(l'), k=l t s(x) = pv(x)+LPi(X)gi(X) E Pix:, ;=1 thl 1=cp(x)r(x)+s(x), Suyfa 1+P[x]= :p(x)r(x)+P[x], hay 1+P[:r]= (y{r)+P[x])(r(x)+P[.r} Tli ding thuc\'1:iathu dliQ'cta suyfa :p(x)+ P[x] kh?lnghichtrangD[x]jP[x], mall thu~n.V~yI i- D[x]. Do [:p(x)]mE I, pn c 1 nen theoBo"dl 3.1.3,taco I nguyensavoi cantoi cl~i va Rad(1)=. 20 Hqnlilia,do;(.r)Gonkhdilien['P(x)]m-I,[<p(£)]'"Gonkhdi.Bangeachchia hi(x) cho [:;(£)]"'-1vaPi(X) cho[ip(x)]m,ta nh~ndliQ'Ccaephandu tliong.ling Ia1li(X) Vat';(x). V~y 1 =, trang do u;(x), L'i(x)(l ::; i ::; t) thuQcD[x] thaa degui(x)::; deg[<p(x)]m-l, degv;(x) ::; deg[.;(x)]m.D(it hi(x) +- Ui(X) va Pi(X) +- Ci(X), ta codi~uphai changminh.\? 3.1.5Bif di. ChoD ldmiennguyenDedekind,P ldidealnguyent6'khdckh6ng cuaD. Khi do, 1)pn[x]= (P[x]t,Valm9in nguyendu:ang. 2) C6 PoE P saDchop[x]+pn[x]= . Chlcngminh. Kha don gi~lnlien dliQ'Cba qua. Tv fJtnh Ii 3.1.4,tac6 hai m~nhd~sau 3.1.6M~nhdl. ChoI ldidealcuaD[x]chua;p(x)vagidszlRad(I)=. Khid6I nguyensava1=Valn nguyendl1ang. Chungminh. Do Rad(I)=la idealtoid~i(fJtnh/f 2.6)lienI nguyenso. Do P C Rad(I) lien co n nguyenduongthoapn C I va gia Slr n la s6 nhanh?lthoadi~uki~nnay. D~th?lyc I. NgvQ'cl;,li, tase changminhI C, di~unay tliong QUangvoi chang minh J c trangD[x]=D[x]jpn[x]. Ta co Rad(J)=. VI D la mi~nnguyenDedekindliencoPoE p thoaP[x]=. Voi f(x) E J, tasechangminhbangqui n;,lptheoi (1::;i ::;n), f(x) bi~udi~n duQ'cdvoi d;,lng f(x) =<P(X)gi(X)+pbhi(x), trangdogi(:r).hi(x)E D[x]. 21 Do f(x) E I nen Tr0E RllIl(I) =, suy fa c6 91(X),III(x) E D[x] sao cho f(x) = ';(1')gl(:r)+pl,hI(J;), V~yphatbieudungvaii =1.Giasuphatbieu aCingvai i =k (1::;k ::;11- 1),nghialacog.,(x),hd:r)E D[x]saGcho M =f(X)gk(X) +p~hdx), Suyfap~hk(x)= f(x) - f(X)gk(X)E7.Neup~E 7thlpk[:r]C 7,d{lndenpkc I, mall thu{'in\'6i k < n. \)y p~~7. Do I nguyenso nen hk(x)E Rad(l) =< .;(x),Po >, suy fa c6 u(x). dx) E D[x]saGcho hdx) =.;{x)u(x)+pov(x).V~y f(x) = rp(x)gdx)+p~hk(:r) = <p(X)gk(X)+p~(cp(X)u(X)+podX)) = f(X)(~ +p~U[;))+p~+IV(X) V~yf(x) =';(X)gk+l(x) +p~+lhk+l(x) vai gk+l(x) =gdx) +p~u(x)va hk+l(x) = v(x). V~yphatbieu dungvaii =k +1. Theo nguyenly quy nq.p,vai mQi i (1::;i ::;n), Hi) =CP(~)gi(X)+pbhi(x),trongd6gi(X),hi(x)E D[x].Vai i =n, taco f(x) = .;(x)gn(x)+Pohn(x)=cp(x)gn(x)E. Do d6 7chuatrong hay I C. V~yI =. c::; Hoanroantl1angtv m~nhd~tren,taco 3.1.7M~nhdi. ChoI zaidealcuaD[x]chuap vagiGszlRad(I)=. Khi doI nguyens6va1=v{jimnguyenduong. Nhl1v~ytadam6taxongCalltruccuaidealnguyensotrongD[x].Tuy nhiendq.ngcuaidealnguyensotrongBinh ii 3.1.4chl1agQn,hannuarhea Binh ii 1.5.6mQiidealnguyensotrongD[x]la giaoclh hUllhq.ncacideal kh6ngthe rutgQnc6 Clingcan,nentier rheata se016radq.ngclla ideal kh6ngtherutgQn. 22 3.2Cliu trueeuacaeidealkhongthi rzltgQIltrollg D[l:] Trangnwc nay,tase m6tac1cidealkh6ngth~rutgQncua D[:!;].Do trang r , vanhNoetherI11Qiidealkh6ngth~rutgQndellnguyensaHenl11Qiidealkh6ng nguyensodellcoth~rutgQn.VI the,trangnwcnaytachIc:lnxettrangt?P dc idealnguyenso thayVIt~ptatcacacidealcuaD[x]. Calltruccuacacidealkh6ngth~rutgQnvaicantoi ti~uduQ'cm6taqua dinhly sau 3.2.1DinhIi. ChoI taidealczlaD[x].Khi do,neuI nguyensavaidin kh6ng t6ldC;ZithiI kh6ngthe'nitg9n. Chungmink.Gia Sll I nguyensavai cankh6ngtoi d?i co Rad(I)=J vaI coth~rutgQn.Do I nguyensonS'icankh6ngtoid?i HenrheaDinhIi 3.1.1 1= Y. Do I coth~rutgQnHenrheaM4nhdi 1.4.8,taco Ii, 12nguyensa, I] =II =I12thoa I = I] n h vaRad(I1)=Rad(I2)=J. TheoDinhIi 3.1.1,co 1.:],k2nguyendliangsaocho Ii =Jkl va 12=Jk2.Kh6ngmattinht6ngquat, taco th~giasuk1~1.:2,khi do I] ~ 12,Sur ra I = h, mallthuan.Do do I kh6ngth~rutgQn.Q Nhuv~y,rheaDinh Ii 3.2.1,mQiidealnguyensavai cankh6ngtoi d?i d~ukh6ngth~flItgQn.Tuynhien,mQtidealnguyensovo1cantoid?ikh6ng nhatthietla idealkh6ngth~flit gQn;ch~ngh?n,xetD =Z va trangZ[x], ideal=n nguyensovai cantoi d?i va co th~ rutgQn.f)~m6taCalltrucdb cacidealkh6ngth~rutgQnvai cantoi d?i, ta c:1nmQtso be)d~sau 3.2.2Bfl d€. Cho I ta idealczlaD[x], I = vai T,s nguyen dl1o'ng.Khi doT,s taeaes6~nguyendl1angnhonh{[{thoG[<p(xWE I, ps c I. 23 Chung minh. Giii Sl(T kh6nglaso nguyendl(cfngnhonhatthoa['P(:r)j"E I, nghla la co k nguyendl(ang,k < T sao cho ['P(xW E J. Do dot6n t~t'if(x), g(:r) E D[:r:],Ps E ps saocho [<p(X)]k= [<p(x)tf(x) +Psg(x), sur fa [<p(X)]k+P[x]= ['P(x)tf(x) +P[x]. t((cla ([<p(x)]+ p[X])k=«p(x)+P[x]Y(J(x) +P[x]), nen 1+P[x]= «p(x)+p[x])r-k(J(x)+P[.rJ, hay 1+P[x]= «p(x)+P[x])[«p(x)+p[X]y-k-l(J(l') +P[x])]. Sur fa <p(x)+P[x]khii nghichtrongD[x]/P[x],mauthu~n.V?y T la so nguyen duangnho nhatsaocho [<P(xWE I. Gia su s kh6ngla so nguyenduangnhonhatthO3ps C I, t((cla co I nguyenduong,I < s saocho pi C I. Xet I trangD[x]= D[xJlPS[x].Ta co I =. TheoEo?dl 3.1.5,coPoE P thoa pi[x]=. Vi pi C I nen Pb=[<p(x)]rh(x).M~tkh,k do pI[x]nguyensava [<p(x)]r"tf-PrxJ= Rad(pI[x]))nenh(x)E pI[x],sur fah(x)=Pbk(x).DodoPb=P&[<p(x)]r"k(x)hay Pb(1- [<p(X)]rk(X))= O. Ma I < s nen Pbi=0, sur fa I - [<p(x)]rk(x)E P (do 0 nguyensa,oaRad(O)=F). Do do 1+P[x]= (['P(xW+P[xJ) (k(X)+P[x]) hay[<p(xW+P[:r]khanghichtrongD[xJlP[x],mallthu~n.V?ys la songuyen dt(angnhonhatsaochops c I. Q 3.2.3Eo?dl. ChoI ld idealnguyenSrJc6din tOldr;1icuaD[x]vaiRad(I)=< . Gr;;im,'n ld ale 56nguyendZ1rJngnhdnh6.tsaGcho[<p(x)]mE I, 24 P" c I. Khz'd6c6 k, I nguyenduong,k ::;II vaI ::;rn,(hoa 1: = . I:pn-l[x] = . Chung minh. Ta chungminhd~ngthCrcthu nhat. Neu Tn= 1thl 1: = I: R = I. Mi;itkhacdo [y(xWE I nenrheaM~nhdi 3.1.6,taco I =v6'ir ngllyendLio'ng.Ho'nmia,rheaBo?di 3.2.2,T 1a 56 nguyendlro'ngnho nhat thoap,.c I nenr =n. \)y b6dedlfQ'chungminhv6'iTn=1. Neu Tn> 1, ta co [ip(x)]rn= [. Do [ nguyenSo'co Rad(I :. TheoH~ qua3.1.6,taco 1:=, trangdo k nguyenduo'ng. TheoBo?di 3.2.2,k 1asonguyendLio'ngnho nhatthoapk c. Mi;it khac pn C I nen pn C I :=. V~yk ::;n va d~ngthuc thC£nhatdlfQ'Cchungminhxong. Hoan roantLio'ngt\j, taco d~ngthC£cthC£hai, nghia1aco I nguyenduo'ng, I <Tn saccho I: pn-l[x]=.v 3.2.4Btfdi. ChoI lil idealczlaD[x]{hoa[<p(x)YE I, ps c I, (rangd6T,s lilale 56/nguyenduang;hannaG,1:= ho?fcI: ps-l[X]=< [ip(x)]",P >. Khi do 1= . Chzlngminh. Do [ip(xWE I, ps c I nen ~ I. Ta se chC£ng minh I ~. 25 Xet tnianghQ'p[ :=. Trang D[x]= D[x]!PS[x],ta se chCtngminh [ =. Voi mQif(x) E [, ta c6 T(X) E [ : cp(X)"-1=< ~ >. Suy fa t6n t~i~ E ~ thoa f(x) =CP(X)Ul(X).Gia Slt f(x) = cpk(X)Uk(X),k < f, khi d6 .pk(x)udx)E [, do d6 udx) E [ : cp(x)k.Do k <l' nen [: <.p(X)kC [: p(X)r-l. Suy ra c6 Uk+l(X)E D[x] thoa ~ =<.p(X)Uk+1(X), V?y f(x) =<.pk+l(X)Uk+l(X),Theo nguyenIy qui n<;lp,f(x) = <.pi(X)Ui(X),voi mQi - - 1 ::;i ::;T. Voi i =T tac6 f(x) =cpr(x)ur(x)E. V?y tada chungminh du'Q'cI chay[ c. Xet tru'ang hQ'p [ : ps-l [x] =. Trang D[x] = D[x]1PS[x],ta sechungminh[ =. Voi mQif(x) E I, ta c6 f(x) E [ : PS-l[X]=< - - ~ , [:p(xW,P[x]>=,trongd6 P[x]= "oi PoE P (doBo de 3.1.5).Suyra f(x) =[cp(xWhdx)+pok1(x) Bang qui n<;lptheo i(l ::; i ::;B), ta chung minh du'Q'c f(x) =[;;(xWhi(x)+pbki(x) Voi i =s ta du'Q'c f(x) = [<p(xWhs(x)+Poks(x) = [<p(xWhs(x) V?yI chayI c. T6mIvab6d~du'Q'Cch{jngminhxong.\7 3.2.5Bo?dl. V6'im9in nguyenduCJng,ideal[=kh6ngthl rutg9n trangD[x]. Chungminh.GiaSlt[ =coth~rutgQntrangD[x],nghialac6 Jr, [2Ia c:k idealcuaD[x]saocho [ = Jrnh (1) 26 v6'i It 1= I 1= 12. Ta c6 ';7(.£)E I, pn c I nen f(x) Ell, 12,pn ell, h. TheaBtf di 3.1.3,tac6 11.12ngllyenSdva Rad(Id==Rad(I2)'TheaM4nhdi 3.1.5,t6n t~linl,n2ngllyendltdngsaacha II = , 12 = . (2) Ttt(1)va(2)tac6 = n . Da vai fro cua nl va n2nhv nhallnen ta xem nl 2:n2.Khi d6 chuatrang nen = n . V~y =, hay II =I, mall thu~nv6'idi~ugia SUoT6m l la idealkh6ngth~rut gQnclla D[x].Q 3.2.6B6?di. Valm91m,n nguyendl1(jng,idealI =kh6ngthl rUtg9ntrangD[x]. Chlingminh.Ne'um=1,rheaB6di 3.2.5,tac6di~llphaichungminh. XettrLtanghQ'pm > 1. TheaB6?di 3.2.2,m,n la cacso ngllyendvdng nho nhatthoa[.p(x)]mE I, pn C I. TheaB6?di 3.2.3,tac6 1:= (3) 27 VCJih::::;n. Tier theo,U se cht'tngminh h:= n, nghia I~chang rninh7 :< [-;(X)]IIL-I>=trangD[x]= D[x]/P"[x]. Dt?thayc 7 :< I [~(x)]m-l>. :'\gu'Q'cl~ti,v6'imQif(x) E 7 :, tac6 f(x)[<p(x)]m-lE 7 =. Suy fa c6 g(x) E D[x] sao cho M[c;(x)]m-l = [<p(x)]mg(x) hay ['P(.r)]m-l(f(X) - 'P(X19(X))= O. M;;U khac [<p(x)]m-lf/.~ = Rad(O)nen f(x) - . V~y 7 :=. V~yk =n vatu (3)tac6 1:= . (4) Bay gi6',ta cht'tngminh I kh6ngth~rutgQn. Gia SlTngLtQ'cI~ti,tltcla c6 cae ideal II. h db D[x]saocho 1=it n12 v6'i it =1= I =1= h. Suy fa I : = (II n12): = (it:< [cp(X)]m-l» n (I2 :< [;P(X)]m-l». (5) Tu (4)va (5)tac6 (II :. Theo Bli di 3.2.5, kh6ng th~rut gQnnen (it : ) = ho?c (h :. Hdn nua [<p(x)]mE it,I2, pn c it. h nenrheaB6di 3.2.4,tac6it =ho?c12=< [. tlTcla 11= I ho?c12= I, mau thu:1n.V~yI = kh6ngth~rutgQntrangD[x].Q Tu B6?di 3.2.6,li~uc6 phaimQiidealkh6ngth~rutgQnc6 canla < a~uc6dhaykh6ng? Cautral6'ila kh£ngainh vatacanmQtsob6a~sau 28 3.2.7Rti dl. Xel vanhdiGphllorzgRAIlvaiR =D[x]va/vl=.Khi d6 « [cp(X)Jk,pI »M =« [Ct/(x)]k',pt' >hI nlu vachinlu k =k' val =L'. Chung minh. (~) Hi~nnhien. (==::;,)Gia si't« [cp(x)]k.pl»M =« [cp(xW',p/>h/' Do \'ai tfOclb k va k' nhu nhaunen taco th~gia si'tk ~ k'. Ta chungminh, k = k'. Th?t \'?y,gia si'tk > k'. Ta co [cp(~)]k E « [cp(X)]k',pt' >hl = « [cp(x)]\pi >hI nen co f(x), g(x)E D[x],PI E pi va m(x),n(x) E D[x]\ M sao cho [;(r)]k' [;(X}]kf(x) PI g(x)- = +-- I 1 m(x) 1n(x)' Suyfa m(x)n(x)[;(x)t'= [f(x)]kf(x)n(x)+PIg(x)m(x), nen m(x)n(r):;(X)]k'+P[x]= [cp(X)]kf(x)n(x) +P[x]. Gian lu'Q'cn(x)+P[x].[;(x)]k'+P[x]( do n(x)+P[x],[;(x)]k'+P[x]=I-0+P[x]) haiv~clladangthuc\-uathudu'Q'c,taco , m(x)+P[x]= [cp(x)]k-kf(x) + P[x], suyfa m(x)E=AI, mallthu1n.V?y k = k', Do vai tfOclh l va [' nhltnhaunen taco th~gia si'tl ~ z'. Ta chungmini) , l = ['. Gia si'tl > ['. D~tI =, J' = [, Khi do, trong D[x]= D[x]/pl[rJ, ta co Y= l' =, trongdo =P[x]vaiPoE P (doRd dl 3.1.5), , - - -- VI I = I nenI =1'. Dod6 I M =l'M 7 7 [( )]k- Ta co Po E.\1nen Po = <px ~ voi f(x) E D[x]M'm(x) E 1 1 1 m(x) 29 D[x]\ A{.Dodo co s(x)E D[.r]\ 1\1saocho P~m(x)s(x) = [cp(X)]kf(x)s(x).( *) - - I - I SHYfa [cp(x)]kf(x)s(x)E. M?t khac [cp(X)]krt p = Rad(< P~ » nen , ,- - - f(x)s(x) E, SHY fa f(x)s(x) = p~h(x),h(x) E D[.r]. Ket hQ'pv&i (*) ta dLtQ'C , ,- p~m(x)s(x)=[cp(X)]kp~h(x). SHY fa ~(m(x)s(x) - [cp(x)]kh(X)) =O. M~itkhacP~i=0 nen m(:r)s(x)- [;(x)]kh(x)E Rad(O)=P. SHYfa m(x)s(x)E< [cp(X)]k.P >c -'I. Mauthuc1ndom(x)s(x)rt!vI.V~Yl =I'.r;) 3.2.8Blf die Cho1 la idealala D[x],1=v6it,snguyendurJng. Khi do 1: P[x] = . 1: = . HrJn mIa,voiAI la h? nhdnczlaD[x],fa co 1M : (P[xDA! = « [cp(x)t,ps-l >)M, hI: « cp(x) »M = « [cp(X)t-l,p$ »AI. Chung minh. Trangvanh D[x]=D[x]jPS[x],taco 1= . Bautien [a ch:"tngminh 1: P[x] = hay I :=, tfOng d6 P[x]= v6'iPoE P (doRlf di 3.1.5).Do PflJ50=Po =0nenp~-lE I :. Hdnmla [cp(xWE I c I : nen c I :. NguQ'cl~ineuf(x) E I :,b~ngquin~ptheoi (1:::;i :::;s- 1),tasechung minh f(x) = [<p(x)]rh(x)+phki(x),(*) 30 --- trangdoh(x), J.;i(:r)E D[x]. VI f(1:) E I : nenpof(x) E I, dodopof(:r)=[:p(x)]rg(x).M~Hkhk [cp(xWttnen~ E(donguyento), dodo g(x)= Puh(x). Suyfa pof(.c)=[.p(xWpoh(x)hay Po(7(X)- [~(:~Wh(X))=0(**). Ma Po=1= 0 nenf(x) - [-;(x)]rh(x)E Rad(O)=. Suyfa f(x) = [cp(x)]rh(x)+ P6g1(X),v~y (*) dung yO'ii =1. Gia su (*) dung v6'ii = k < s - 1, nghiala f(x) =[cp(x)]rh(x)+P§9k\X).Ta co f(.r) - [cp(x)]rh(x)=p~9dx),ket hQ'pv6'i (**) ta dltQ'cP~+19k(X)=O.\1 k+ 1, - - hay9dx) =PO9k+l(X),9k-l(X)E D[x].V~y f(.r) = [:p(x)]rh(x)+P~+19k+l(x) Theo giil thietqui n:;1p f(x) =[:p(x)]rh(x)+pb9i(X), v6'imQi 1 :::;i :::;s - 1. V6'i i = s - 1 ta duQ'c f(x) = [.;(x)]rh(x)+pg-19s-1(X)E V~ytada chungminhdltQ'cI: PIT] =. Tiep theota se changminh I :=, hay chungminh 1:=. D~tha'yc I :. NguQ'c l<,liv6'i mQi 7[X) E I :< cp(x)>, ta co f(x)y?(x)E I =, sur fa f(x)cp(x)= [y?(x)]rh(x), h(1') E D]Xj, hay :p(X) (1(1) -1<P(X)]'-lh(X)) =0. Ma ",(x)rtRad(O)= Plx[nen f(x) - [Y?(x)]r-lh(x)=0 vadodo f(x) E. Sur fa I :c< [Y?(x)]r-l>.V~ytaetachltngminhdltQ'c1:=. 31 TheoM~nhdi 1.4.9),(! : P[:r;])M = hf : (P[:r:]hf va (I :< cp(x)»M = hI : « y(:r) >Lu va do do ta thu dltQ'Chai d5ng tht'tccon l~li.Q Hai b6 d~sauduQ'ctrichtu[9](Dinh if 34vaDinh if 35 ctlachlldng 4). 3.2.9Bil di. ChoR ldl)(lnhdiaphuongNoethergiaohoancodonvivaf ld idealnguyensrJcuaR co Rad(1)t6ldc;zi.Khi d6neuf kh6ngthe'rUtg9nthi f: (f : J) =J vaim9idealJ chuaf. 3.2.10Bil di. ChoR ldvanhdiaphuongNoethergiaohoancodonvi va f ld idealkh6ngthe'rUtg9n CllaR, J ld idealcuaR chuaf. Khi d6 J kh6ngthe'rUt g9nneuvachineuf : J chinhmodulof. 136d~saul;)chi~ungltQ'ccuaBo?di 3.2.6 3.2.11Bo?di. Chof ld idealkh6ngthe'rUtg9ntrongD[x]vai Rad(I) =< -p(:r),P >=JI. Khi d6,fontflim,n nguyendurJngsaGcho f =. Chung minh. D?t S = { Q I Q kh6ngth~nit gQntrangD[x], Rad(Q) =, Q i-< [cp(x)]a,pb > voi mQia,bnguyen dltdng } Ta se chang minh S = 0 b~ng phan chung. Gia su S i- 0. VI. D[x] la v~mh Noether nen S c6 ph~n ttt toi d?i la fa. VI. Rad(Io) = nen c6 m,n nguyen dvdng saDcho [,p(x)]mE fa, pn C fa va ta c6 th~xem m,n la cae so nguyen dltO'ngnho nh{{thoa tinh chat nay. Ne'um = 1,rheaM~nhdi 3.1.6,fa=, mall thuKn VI fa thuQc S. 32 l\i2\1f/, = 1,theoM41llzdf 3.1.7,fo= [;(J,,)]TII,P >, mf1LlthLl~n. Nell Tn> 1 \':1n > 1, rhea Blf df 3.2.3, ta co 10: = , fo : = , (6) (7) trongc161::;k ::;n va 1::;l ::;117. Neu k = n ha?c l =m, rheaBo?df 3.2.4,10=, mall thuan. Giastfk <n va l <m. D?t S' = { hI 1 hI kh6ng th~n.'1tgQntrang (D[x])Ju,Rad(I1\1)= « ip(:r),P > );\1./." =1=« [ipCrW. pb >~,'J voi mQia.b nguyen cllfo'ng}. Ta co (Io)Julaph:lntv toid~ici.'taS'. Th~tv~y,ghiSlfco (It)M thuQcS' saGcha (Iohl chuatrang(IdA/. TnJoc lien, tachUngminh II thuQCS. VI (IdM kh6ng th~flit gQnnenIt kh6ngth~rutgQnva II ~ M. Sur fa RadIt ~ AI; m;)tkhac, Rad((It)M)= (Rad(It)).u= « ~(x),p »M vaRad(Id nguyentonenrheaBinh /f 1.4.10,tacoRad(I1J=. Ho'nnuaII =1= vCJimQi a,bnguyendVa'ng,VIneucoao,bonguyendvo'ngthoaIt =thl (It)M = « [r.p(x)]ao,pbo>L\1,mall thuan. V~y It thuQcS. Tiep thea,ta chungmint 10~ II. Gia sv 10:l It; ta co u E 10\ It. Sur fa '!.:E (IO)M;va da do '!.:E (IdA! nen co 9 E It,h rt !v!saGcha '!.:= -hg. Sur fa1 1 - 1 uh = 9 E II. VI It kh6ngth~rut gQn,da do nguyenso',va h rt AI = Rad(1d nen u E It, mallthuan.V~y10~ It. VI 10la ph:ln tlf t6i d~icuaS nen10= It. Sur fa (IO)M= (Idlvl. V~y(10)1>1la ph:ln tlf t6i d;;1icuaS'. Tiep thea,tase chungminh co T,s,U,v la c:k 56nguyendvo'ngsaGcha (f0: P[X])lvI = « [~(xW,pS »A/, (Io :hI. (8) (9) TrVCJclien, dam,n la ck 56nguyendvo'ngnho nhatthoa[~(x)]mE 10,pn c 10 33 V~l 11/.I/. >1nen (10)M ~ (10:P[x]),\!. (/O)M =I (/0 : P[.T])AJ, (10) (11)(1ohJ ~ (fo:< :p(x)»M, (/O)M=I(/0:< ;p(:£)»M. Do (fa)M kh6ngth2 rutg()nnen rheaDinh Ii 3.2.9 (/0);\1: [(/oh! : (10+P[X])M] =(/0+P[x])A! hay (foh! : : fo).\! : (fa -+-P[X])M] =(fO)M +(P[x]h! M<;itkhclcdo P;.r]la idealnhannen (P[X])iV!chinh,tudayrheaDinh Ii 3.2.10, (fO).\1: (fo +P[l'])M kh6ng th~ [(it gQn . M<;itkhac (fOi.\! : (fo:- P[l'DAf = (10)M:[(/oh!+(P[X])Al] = [(10)M:(1ohrJn [(fohl : (P[X])M] = (10)1\11:(P[X])M nen (fohI : (P[.r])Mkh6ngth~nIt gQn. DoRnd(foh!=« :p(x). P »M nenRad((10)AI: (P[X]hI)=« y(x). P >)M. V?y (fo: P[:T])Afkh6ngth~rLItgQntrong(D[X])M,Rad(1o:P[x])J',1= « :p(x),P >hI. Ho'nnCta,(10).\[,ph~ntlTtoi d?i ct'Ia5', chuatrongva khac (fa : P[X])AInen t6nt?i T,S nguyendtTongsaGcho (10: P[xDA[=« [rp(x)t, ps >)Af. V?y taco (8). Hoanroantuongt\T,tathuduQ'c(9). B~ngquy n?p rheai(l :::;i :::;n - 1),ta sechungminh (10:pi[X])M=« [tp(x)t,ps-i+l »Af. 34 Voi 'i = 1,tu(8),ta co di~l1phai chungminh. Gi!l Sli ding thlic Cling voi i =j(1 :::; j :::; 11- 2),nghiala (10: pJ [J;])M =« [:p(x)]'", ps-j+L »Al. Suy fa (ps-j+1[X])M(Pj[X])M = (ps+L[X])MC (10)M do do pHI C 10.Soy fa 8+ 1;::n. Do 1 :::;j :::;n - 2 nen (8+ 1) - j =8 - j +1;::2. Ta co (10:ph-I[X])Al = [(10:pj[x]) :P[x]Lu = (10:pJ[.r]Lu : (P[x])Al = « [<;(~.W,ps-j+l »M : (P[X])M = « [:p(xW,ps-j »M CtheoB(f di 3.2.8). V?y d:1ngthuc dung ,"oi i = j + 1. TheonguyenIy quy n?p, d:1ngthuc (10: Pi[xDA! = ~< [<p(x)(ps-i+l)Al Cling voi ffiQi i, trong do 1 :::;i :::;n - 1. Voi i =n - 1,taco (10: pn-l [xDA! = « [tp(xW,ps-n+2 >)M. (12) Tu'o'ngtv, tlt \9)va bangquyn?p taco (10:).\f = « [tp(x)t-m+2, PV >)M. (13) Tu (6)va (7)faco (10:pn-l[X])M = «[hI, (10:< [tp(x)]m-l»M = « <p(x),pk)M. (14) (15) 35 Tli (12),(14)vaBlf di 3.2.7taco T =1..'3- n +2= 1, hay T=l,s=n-l. Tu'o'ngtIj, tv (13)va(15),taco u- m+2=1,v=k, hay u=m- 1,v=k. Tv (8),(9),(16).(17)taco (fo : P[X])M = « [tp(X)]l, pn-l >)M, (10:)M. Tv (18),(19)vaBII di 3.2.8,taco (10:P[X])M: « tp(x)»M = « [tp(x)]l-l,pn-l »M, (fo :hI : (P[X])M = « [tp(X)]m-l, pk-l >)M. Ho'nnU'a (10: P[X]);\I : « hI = (10:P[X]<tp(X)»M = (10: P[X])M = (10:<tp(X)»M : (P[X])Mo Tti (20),(21)va (22)taco « [tp(x)]l-l.pn-l ».\1 =« [<p(x)]m-l,pk-l »,'v/o 36 (16) (17) (18) (19) (20) (21) (22) (23) Tv (23)va Bd dl 3.2.7,ta co I - 1 = m - 1,n - 1 = Ie- 1 tlie la I = m, n = k, mall thufin voi tru'O'nghQ'pdang xet. V;;ly, trang mQi tnlO'nghQ'p,ta dell co mall thufin. Do do S = 0, nghia la, neLl I la ideal kh6ng th~[(It gQn clla D[x]voi Rad(I) = th1,tcSnt<;li m,n nguyen dvo'ngsao cho I = , C/ Tv Bif dl 3.2.6,Bo?dl 3.2.11"J Bo?dl 3.2.2,taco 3.2.12Dink Ii (M6 racacidealkh6ngth~rutgQnvoi cantoi d<;li).IdealI Clla D[:r]fakhangthinitg9nvaidintaldr;zinlu vachinlu tontr;ziidealnguyenta/ PolO CllaD, da thucdonkhrJi-p(.r)E"D[x]thod<p(x)+P[x] batkhdquytrang D[xJlP[x]vak, 1nguyenduringsaocho 1=, trongd6 m,n nguyenduring, Honnaa,khzd6Rad(I)=vam,nfacacsa/nguyenduringnhonhdt thoa[<p(x)]mE I, pn c I, Nhu'V?y,tada m6tadIu trueclla caeidealkh6ngth~[(itgQntrangvanh da th{TCD[x],trangdo D la mi~nnguyen.Dedekind. Tv s1jm6 ta nay, ideal nguyenso'vCiican toi ti~uchinh li idealkh6ngth~flit gQnvai can toi ti~u. Tuy nhien, idealnguyenso'voi cantoi d<;likh6ng nha'tthiet la idealkh6ng th~rutgQnvo-icantoid<;li.DungDink Ii 1.5.6vaDink Ii 3.2.12ta co mQt s1jm6ra khacvoiDinh Ii 3.1.4v~d<;lngcih idealnguyensovoi cantoid<;li nhlTsaD 3.2.13H~qua. IdealI cuaD[x]fanguyensrivaicantaldr;zinlu va chi nlu 37 J = n.trongdo i chC;ZYhau hc;zn,Tni,fli ld cacs6'nguyen duo'ng. I Ho'nnaa,khidoRad(I)=. 3.3 Ci{lltruc cac idealtrollg vanhda th,lCtrill miln ngllyen Dedekind Trongnwcnay,tasekhaasatcalltrucclb m(>tidealbfitkycllaD[x].Thea M~nhdi 1.5.1.mQiideald~ulagiaoheluh?n cllacacidealkh6ngth~rutgQn. Ttl day,kethQ'pvai dc dinhly m6tac:1utflk clb cacidealkh6ngth~nit gQn trongD[x],calltruccuaI1l(>tidealbfltkytrongD[x]dllQ'Cm6taquadinhlysau 3.3.1Dinh if. iVf9idealI cdaD[.r]dell du(jcbie'udienduoidc;zng r S 1=(nJ;"') n(n< [<pj(x)]mJ,P?», i=1 j=1 trang doT, s, ki (1 ::;i :::;T), mj' nj (1 ::;j ::;s) ld cacs6'nguyendl1fJng,Ji ld idealnguyent6'kh6ngt61dC;ZicdaD[x],Pj faidealnguyent6'khackh6ngtrong D, Zpj(x)E D[x]thodyj(x)+Pj[x]bit khdquytrangD[.rJ/Pj[x], Bi~udi~ncuaideal1 trongBinh if 3.3.1co th~kh6ngduynhat. Tuy nhien,do D[x]la Q-\'anhnenthea [3],idealbatky cuaD[x]co duynh:1tS\f phantichtichnguyensochu:1nhaa.Lu'uydingneu1=h..,Invai Ii la ideal Pi-nguyenso thlS\lphantichthanhtichnayclla1 OllQ'CgQilas~(phanlith lith nguyensd chua?nhod neu P; =I-Pj vai mQi i =I-j ya I =I-I1...Ji-lli+l...In vai I11Qi(1 ::;i ::;n). Dinh l~'sau ouQ'ctrich d~n tu [3] 3.3.2Dinh if. M9i idealI cda D[x]dell co duy nhrltSljphantfchtfchnguyen s(jchudnhoa. 38 Vi d~lXet [([:1'.U]v6'i K IJ tntong.VI K[.1:]Ij PID \'~tdo do la mi~nnguyen Dedekind nen [([x, V] l~tq-vanh. Do do mQi ideal du'Q'cphan tlch duy nhat thanhtlchdic idealnguyenso.Tacoideal=n ,cE [(, conhi~uhanmOtphantlchnguyensochu5nhoa,nhltngcoduynh{lt mOtphan tlchtlch nguyensochu:lnhoa=.

Các file đính kèm theo tài liệu này:

  • pdf6.pdf
  • pdf0.pdf
  • pdf1.pdf
  • pdf2.pdf
  • pdf3.pdf
  • pdf4.pdf
  • pdf5.pdf
  • pdf7.pdf
  • pdf8.pdf
Tài liệu liên quan