CẤU TRÚC CÁC IDEAL TRONG VÀNH ĐA THỨC TRÊN MIỀN NGUYÊN DEDEKIND
TRẦN THỊ PHƯỢNG
Trang nhan đề
Lời cảm ơn
Mục lục
Lời mở đầu
Chương 1: Một số kiến thức cơ bản trong đại số giao hoán.
Chương 2: Cấu trúc các ideal nguyên tố và tối đại trong vành đa thức trên miền nguyên Dedekind.
Chương 3: Cấu trúc các ideal trong vành đa thức trên miền nguyên Dedekind .
Kết luận
Tài liệu tham khảo
22 trang |
Chia sẻ: maiphuongtl | Lượt xem: 1840 | Lượt tải: 1
Bạn đang xem trước 20 trang tài liệu Luận văn Cấu trúc các ideal trong vành đa thức trên miền nguyên Dedekind, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
CHVdNG 3
CA"UTRUC cAC IDEAL TRONG VANH fJA THUC
TREN MIEN NGUYEN DEDEKIND
Trangehu'dngnay,tasem6tadiu tfl.kcLlaidealba'tkytrangvanhc1athue
trenmi~nnguyenDedekindD. Vi D[x]lavanhNoethernenmoiidealtrang
D[x]a~ue6s\jphantfchnguyensdehu5nhoa,dod6d~m6taea'utrueet'1a
idealba'tkytrangD[x]tan~6taea'utruecaeidealnguyensd.Khi a~e~pden
P, I, J, <p(x),tahi~u,P la idealnguyentokhackh6ngtrangD va I, J lacae
idealkh;k kh6ngeth D[x];<p(x)E D[x]la aathueddnkhCiithoa<p(x)+P[x]
ha'tkhaquytrangD[.r]!P[x].
3.1Call true cua caeidealnguyensdtrong D[x]
Truoekhi1116taea'utnk euacaeidealnguyenSd,nh~eb;ddlng,neuI la
idealnguyensdelh D[x]thi theoMfnh di 1.4.5,Rad(I) nguyentotrangD[~r],
vadoa6 theoehu'dng1,Rad(I)toia:;tiho~ekh6ngtoia;;li.Saudaytase11n
IltQ1116tad:;tngeuaidealnguyensdI ungvoim6iRad(l)nhu'tren.
3.1.1Dinh Ij (M6tacaeidealnguyensdvoicankh6ngtoia:;ti).IdealI Clla
D[x]fanguyensO'v6idin khongtaldflineuvachinlu I = In v6in nguyen
du:O'ngva J faidealnguyento/khongtaldfliala D[T].
Chllngmink. TheoDinh Ij 1.6.10,D[x]la Q-vanh,nentheoDinh /j 1.6.6
111Qiideal nguyen tokh6ngtoi a:;tieuaD[x]la idealnhan. Hdn nlfa mQiideal
ngllyentokh6ngtoia:;tikhaekh6ngeuaD[x]d~lle6soehi~uIanhdnkh6ng,
tLta6,dungBo?di 1.1trang[1]tae6ai~llphaieh(tngminh.\?
3.1.2Hf qua. TrangD[I])m9ilugthuaala idealnguyento'd~unguyensO',
18
De m6 t~td~lngcLb ide:llnguyenso \'6'jcan t6i c.1~titadn Ixi c.12sau
3.1.3Blf dl. IdealI ala D[x]tanguyensdValdin tal'd9ineuvachineuton
t9iidealngllyento'P -#0alaD,dathucdonkhdiip(x)E D[:c]thodip(x)+P[:r]
be/tkhdquy!rongD[xJ/P[x]vak, l nguyenduongsaochok(x)]1.:E I, pi C I.
Hdnmia,khzd6Rad(I)=.
Chungminh.(==?)GiasuI nguyensovoicantoid~tihlRad(I)=,
trangd6 ip(x).P nhudaquyuoc.Do ip(x) E Rad(I), P c Rad(I) Denc6 k, l
nguyendltongsaocho [;:(x)]1.:E I, pi C I.
(~) Gia Slt c6 k, I nguyendltong sao cho [<p(.r]1.:E I, pi C I, thl
ip(x)E Rad(I). P c Rad(I). Do d6, c RadJ). Theo Bo?di 2.4,
tojd?i trangD[x]DenRad(I)=ho?cRad(I)=D[x].VI
I -:JD[x]DenrheaM~nhdi 1.4.1ii), Rad(I) -:JD[x],do d6Rad(I) =
toi d?i trangD[.r].TheoAl~nhdi 1.4.6,Q nguyenso rrangD[x]. \?
3.1.4Binh If (M6rac:k idealnguyensovoi cantoid~li).IdealI ala D[x]ta
nguyensdv6ldin tald9ineuvachineuI c6dflng
,
!rongd6m,n nguyenduong,t kh6ngam,hi(x) ("1::;i ::;t) thwjcD[x],Pi(x) (1::;
i ::;t) thu(JcP[x].Hon mJa,khzd6 Rad(I)=z:dtac6thi ch9nhi(x),
Pi(x) thoadeg[hi(x)]::;(Tn- l)deg[ip(x)],deg[Pi(x)]::;Tndeg~;(x)].
Chungminh.(==?)GiasuI nguyensovoicantoid?ithiRad(I)=,
trangd6ip(x),P nhuda quyuoc.Khi d6t<snt?i Tn,n ngllyenduongsaocho
[ip(x)]mE I, pn c I. Do D[x]lavanhNoethernen I hUllh?nsinh
1=,
trangd6 ii(X) (1 ::;i ::;t) thuQcD[x].
19
Do I chClatrongRud(I) = nen Ill') E, Suyfa
Ji(x) =:p(x)hi(:r)+p;(l'),
trangdo h;(x)E D[x],Pi(X)E P[x], V~y
1= ,
({=)TruoctientachungminhIi- D[x].Giasl'iI =D[x]thl1E I vadodo
1 = [,,(:r)!mu(x)+llV(X)+t[\O(X)hi(X)+P,(X)]g:.r) (pE Po)
t t
= [cp(x)]rnu(x)+;;(x)L h;(.r)gi(X)+pu(:r)+L Pi(:r)g;(x)
k=l i=1
t t
= 'P(x)(['P(x)]m-Iu(x)+{; hi(x)9i(X)) + (PU(X)+~/i(X )9i(X)).
D~t
t
r(x) = [:p(x)]m-1u(x)+L h;(X)g,(l'),
k=l
t
s(x) = pv(x)+LPi(X)gi(X) E Pix:,
;=1
thl
1=cp(x)r(x)+s(x),
Suyfa
1+P[x]= :p(x)r(x)+P[x],
hay
1+P[:r]= (y{r)+P[x])(r(x)+P[.r}
Tli ding thuc\'1:iathu dliQ'cta suyfa :p(x)+ P[x] kh?lnghichtrangD[x]jP[x],
mall thu~n.V~yI i- D[x].
Do [:p(x)]mE I, pn c 1 nen theoBo"dl 3.1.3,taco I nguyensavoi cantoi cl~i
va Rad(1)=.
20
Hqnlilia,do;(.r)Gonkhdilien['P(x)]m-I,[<p(£)]'"Gonkhdi.Bangeachchia
hi(x) cho [:;(£)]"'-1vaPi(X) cho[ip(x)]m,ta nh~ndliQ'Ccaephandu tliong.ling
Ia1li(X) Vat';(x). V~y
1 =,
trang do u;(x), L'i(x)(l ::; i ::; t) thuQcD[x] thaa degui(x)::; deg[<p(x)]m-l,
degv;(x) ::; deg[.;(x)]m.D(it hi(x) +- Ui(X) va Pi(X) +- Ci(X), ta codi~uphai
changminh.\?
3.1.5Bif di. ChoD ldmiennguyenDedekind,P ldidealnguyent6'khdckh6ng
cuaD. Khi do,
1)pn[x]= (P[x]t,Valm9in nguyendu:ang.
2) C6 PoE P saDchop[x]+pn[x]= .
Chlcngminh. Kha don gi~lnlien dliQ'Cba qua.
Tv fJtnh Ii 3.1.4,tac6 hai m~nhd~sau
3.1.6M~nhdl. ChoI ldidealcuaD[x]chua;p(x)vagidszlRad(I)=.
Khid6I nguyensava1=Valn nguyendl1ang.
Chungminh. Do Rad(I)=la idealtoid~i(fJtnh/f 2.6)lienI
nguyenso. Do P C Rad(I) lien co n nguyenduongthoapn C I va gia Slr
n la s6 nhanh?lthoadi~uki~nnay. D~th?lyc I. NgvQ'cl;,li,
tase changminhI C, di~unay tliong QUangvoi chang minh
J c trangD[x]=D[x]jpn[x].
Ta co Rad(J)=. VI D la mi~nnguyenDedekindliencoPoE p
thoaP[x]=.
Voi f(x) E J, tasechangminhbangqui n;,lptheoi (1::;i ::;n), f(x) bi~udi~n
duQ'cdvoi d;,lng
f(x) =<P(X)gi(X)+pbhi(x),
trangdogi(:r).hi(x)E D[x].
21
Do f(x) E I nen Tr0E RllIl(I) =, suy fa c6 91(X),III(x) E D[x] sao
cho f(x) = ';(1')gl(:r)+pl,hI(J;), V~yphatbieudungvaii =1.Giasuphatbieu
aCingvai i =k (1::;k ::;11- 1),nghialacog.,(x),hd:r)E D[x]saGcho
M =f(X)gk(X) +p~hdx),
Suyfap~hk(x)= f(x) - f(X)gk(X)E7.Neup~E 7thlpk[:r]C 7,d{lndenpkc I,
mall thu{'in\'6i k < n. \)y p~~7. Do I nguyenso nen hk(x)E Rad(l) =<
.;(x),Po >, suy fa c6 u(x). dx) E D[x]saGcho hdx) =.;{x)u(x)+pov(x).V~y
f(x) = rp(x)gdx)+p~hk(:r)
= <p(X)gk(X)+p~(cp(X)u(X)+podX))
= f(X)(~ +p~U[;))+p~+IV(X)
V~yf(x) =';(X)gk+l(x) +p~+lhk+l(x) vai gk+l(x) =gdx) +p~u(x)va hk+l(x) =
v(x). V~yphatbieu dungvaii =k +1. Theo nguyenly quy nq.p,vai mQi
i (1::;i ::;n), Hi) =CP(~)gi(X)+pbhi(x),trongd6gi(X),hi(x)E D[x].Vai i =n,
taco f(x) = .;(x)gn(x)+Pohn(x)=cp(x)gn(x)E. Do d6 7chuatrong
hay I C. V~yI =. c::;
Hoanroantl1angtv m~nhd~tren,taco
3.1.7M~nhdi. ChoI zaidealcuaD[x]chuap vagiGszlRad(I)=.
Khi doI nguyens6va1=v{jimnguyenduong.
Nhl1v~ytadam6taxongCalltruccuaidealnguyensotrongD[x].Tuy
nhiendq.ngcuaidealnguyensotrongBinh ii 3.1.4chl1agQn,hannuarhea
Binh ii 1.5.6mQiidealnguyensotrongD[x]la giaoclh hUllhq.ncacideal
kh6ngthe rutgQnc6 Clingcan,nentier rheata se016radq.ngclla ideal
kh6ngtherutgQn.
22
3.2Cliu trueeuacaeidealkhongthi rzltgQIltrollg D[l:]
Trangnwc nay,tase m6tac1cidealkh6ngth~rutgQncua D[:!;].Do trang
r ,
vanhNoetherI11Qiidealkh6ngth~rutgQndellnguyensaHenl11Qiidealkh6ng
nguyensodellcoth~rutgQn.VI the,trangnwcnaytachIc:lnxettrangt?P
dc idealnguyenso thayVIt~ptatcacacidealcuaD[x].
Calltruccuacacidealkh6ngth~rutgQnvaicantoi ti~uduQ'cm6taqua
dinhly sau
3.2.1DinhIi. ChoI taidealczlaD[x].Khi do,neuI nguyensavaidin kh6ng
t6ldC;ZithiI kh6ngthe'nitg9n.
Chungmink.Gia Sll I nguyensavai cankh6ngtoi d?i co Rad(I)=J vaI
coth~rutgQn.Do I nguyensonS'icankh6ngtoid?i HenrheaDinhIi 3.1.1
1= Y. Do I coth~rutgQnHenrheaM4nhdi 1.4.8,taco Ii, 12nguyensa,
I] =II =I12thoa I = I] n h vaRad(I1)=Rad(I2)=J. TheoDinhIi 3.1.1,co
1.:],k2nguyendliangsaocho Ii =Jkl va 12=Jk2.Kh6ngmattinht6ngquat,
taco th~giasuk1~1.:2,khi do I] ~ 12,Sur ra I = h, mallthuan.Do do I
kh6ngth~rutgQn.Q
Nhuv~y,rheaDinh Ii 3.2.1,mQiidealnguyensavai cankh6ngtoi d?i
d~ukh6ngth~flItgQn.Tuynhien,mQtidealnguyensovo1cantoid?ikh6ng
nhatthietla idealkh6ngth~flit gQn;ch~ngh?n,xetD =Z va trangZ[x],
ideal=n nguyensovai cantoi d?i va co th~
rutgQn.f)~m6taCalltrucdb cacidealkh6ngth~rutgQnvai cantoi d?i, ta
c:1nmQtso be)d~sau
3.2.2Bfl d€. Cho I ta idealczlaD[x], I = vai T,s nguyen
dl1o'ng.Khi doT,s taeaes6~nguyendl1angnhonh{[{thoG[<p(xWE I, ps c I.
23
Chung minh. Giii Sl(T kh6nglaso nguyendl(cfngnhonhatthoa['P(:r)j"E I,
nghla la co k nguyendl(ang,k < T sao cho ['P(xW E J. Do dot6n t~t'if(x),
g(:r) E D[:r:],Ps E ps saocho
[<p(X)]k= [<p(x)tf(x) +Psg(x),
sur fa
[<p(X)]k+P[x]= ['P(x)tf(x) +P[x].
t((cla
([<p(x)]+ p[X])k=«p(x)+P[x]Y(J(x) +P[x]),
nen
1+P[x]= «p(x)+p[x])r-k(J(x)+P[.rJ,
hay
1+P[x]= «p(x)+P[x])[«p(x)+p[X]y-k-l(J(l') +P[x])].
Sur fa <p(x)+P[x]khii nghichtrongD[x]/P[x],mauthu~n.V?y T la so nguyen
duangnho nhatsaocho [<P(xWE I.
Gia su s kh6ngla so nguyenduangnhonhatthO3ps C I, t((cla co I
nguyenduong,I < s saocho pi C I. Xet I trangD[x]= D[xJlPS[x].Ta
co I =. TheoEo?dl 3.1.5,coPoE P thoa pi[x]=. Vi
pi C I nen Pb=[<p(x)]rh(x).M~tkh,k do pI[x]nguyensava [<p(x)]r"tf-PrxJ=
Rad(pI[x]))nenh(x)E pI[x],sur fah(x)=Pbk(x).DodoPb=P&[<p(x)]r"k(x)hay
Pb(1- [<p(X)]rk(X))= O. Ma I < s nen Pbi=0, sur fa I - [<p(x)]rk(x)E P (do
0 nguyensa,oaRad(O)=F). Do do 1+P[x]= (['P(xW+P[xJ) (k(X)+P[x])
hay[<p(xW+P[:r]khanghichtrongD[xJlP[x],mallthu~n.V?ys la songuyen
dt(angnhonhatsaochops c I. Q
3.2.3Eo?dl. ChoI ld idealnguyenSrJc6din tOldr;1icuaD[x]vaiRad(I)=<
. Gr;;im,'n ld ale 56nguyendZ1rJngnhdnh6.tsaGcho[<p(x)]mE I,
24
P" c I. Khz'd6c6 k, I nguyenduong,k ::;II vaI ::;rn,(hoa
1: = .
I:pn-l[x] = .
Chung minh. Ta chungminhd~ngthCrcthu nhat. Neu Tn= 1thl
1: = I: R
= I.
Mi;itkhacdo [y(xWE I nenrheaM~nhdi 3.1.6,taco I =v6'ir
ngllyendLio'ng.Ho'nmia,rheaBo?di 3.2.2,T 1a 56 nguyendlro'ngnho nhat
thoap,.c I nenr =n. \)y b6dedlfQ'chungminhv6'iTn=1.
Neu Tn> 1, ta co [ip(x)]rn= [.
Do [ nguyenSo'co
Rad(I :. TheoH~ qua3.1.6,taco
1:=,
trangdo k nguyenduo'ng.
TheoBo?di 3.2.2,k 1asonguyendLio'ngnho nhatthoapk c. Mi;it
khac pn C I nen pn C I :=. V~yk ::;n va d~ngthuc
thC£nhatdlfQ'Cchungminhxong.
Hoan roantLio'ngt\j, taco d~ngthC£cthC£hai, nghia1aco I nguyenduo'ng,
I <Tn saccho
I: pn-l[x]=.v
3.2.4Btfdi. ChoI lil idealczlaD[x]{hoa[<p(x)YE I, ps c I, (rangd6T,s lilale
56/nguyenduang;hannaG,1:= ho?fcI: ps-l[X]=<
[ip(x)]",P >. Khi do
1= .
Chzlngminh. Do [ip(xWE I, ps c I nen ~ I. Ta se chC£ng
minh I ~.
25
Xet tnianghQ'p[ :=. Trang D[x]= D[x]!PS[x],ta
se chCtngminh [ =. Voi mQif(x) E [, ta c6 T(X) E [ : cp(X)"-1=<
~ >. Suy fa t6n t~i~ E ~ thoa f(x) =CP(X)Ul(X).Gia Slt f(x) =
cpk(X)Uk(X),k < f, khi d6 .pk(x)udx)E [, do d6 udx) E [ : cp(x)k.Do k <l'
nen [: <.p(X)kC [: p(X)r-l. Suy ra c6 Uk+l(X)E D[x] thoa ~ =<.p(X)Uk+1(X),
V?y f(x) =<.pk+l(X)Uk+l(X),Theo nguyenIy qui n<;lp,f(x) = <.pi(X)Ui(X),voi mQi
- -
1 ::;i ::;T. Voi i =T tac6 f(x) =cpr(x)ur(x)E. V?y tada chungminh
du'Q'cI chay[ c.
Xet tru'ang hQ'p [ : ps-l [x] =. Trang D[x] = D[x]1PS[x],ta
sechungminh[ =. Voi mQif(x) E I, ta c6 f(x) E [ : PS-l[X]=<
- - ~ ,
[:p(xW,P[x]>=,trongd6 P[x]= "oi PoE P (doBo de
3.1.5).Suyra
f(x) =[cp(xWhdx)+pok1(x)
Bang qui n<;lptheo i(l ::; i ::;B), ta chung minh du'Q'c
f(x) =[;;(xWhi(x)+pbki(x)
Voi i =s ta du'Q'c
f(x) = [<p(xWhs(x)+Poks(x)
= [<p(xWhs(x)
V?yI chayI c.
T6mIvab6d~du'Q'Cch{jngminhxong.\7
3.2.5Bo?dl. V6'im9in nguyenduCJng,ideal[=kh6ngthl rutg9n
trangD[x].
Chungminh.GiaSlt[ =coth~rutgQntrangD[x],nghialac6
Jr, [2Ia c:k idealcuaD[x]saocho
[ = Jrnh (1)
26
v6'i It 1= I 1= 12.
Ta c6 ';7(.£)E I, pn c I nen f(x) Ell, 12,pn ell, h. TheaBtf di 3.1.3,tac6
11.12ngllyenSdva Rad(Id==Rad(I2)'TheaM4nhdi 3.1.5,t6n
t~linl,n2ngllyendltdngsaacha
II = ,
12 = . (2)
Ttt(1)va(2)tac6
= n .
Da vai fro cua nl va n2nhv nhallnen ta xem nl 2:n2.Khi d6
chuatrang nen
= n .
V~y
=,
hay
II =I,
mall thu~nv6'idi~ugia SUoT6m l la idealkh6ngth~rut
gQnclla D[x].Q
3.2.6B6?di. Valm91m,n nguyendl1(jng,idealI =kh6ngthl
rUtg9ntrangD[x].
Chlingminh.Ne'um=1,rheaB6di 3.2.5,tac6di~llphaichungminh.
XettrLtanghQ'pm > 1. TheaB6?di 3.2.2,m,n la cacso ngllyendvdng
nho nhatthoa[.p(x)]mE I, pn C I. TheaB6?di 3.2.3,tac6
1:= (3)
27
VCJih::::;n. Tier theo,U se cht'tngminh h:= n, nghia I~chang rninh7 :<
[-;(X)]IIL-I>=trangD[x]= D[x]/P"[x]. Dt?thayc 7 :<
I [~(x)]m-l>. :'\gu'Q'cl~ti,v6'imQif(x) E 7 :, tac6 f(x)[<p(x)]m-lE
7 =. Suy fa c6 g(x) E D[x] sao cho M[c;(x)]m-l = [<p(x)]mg(x)
hay ['P(.r)]m-l(f(X) - 'P(X19(X))= O. M;;U khac [<p(x)]m-lf/.~ = Rad(O)nen
f(x) - . V~y 7 :=.
V~yk =n vatu (3)tac6
1:= . (4)
Bay gi6',ta cht'tngminh I kh6ngth~rutgQn. Gia SlTngLtQ'cI~ti,tltcla c6 cae
ideal II. h db D[x]saocho
1=it n12
v6'i it =1= I =1= h. Suy fa
I : = (II n12):
= (it:< [cp(X)]m-l» n (I2 :< [;P(X)]m-l». (5)
Tu (4)va (5)tac6
(II :.
Theo Bli di 3.2.5, kh6ng th~rut gQnnen (it :
) = ho?c (h :. Hdn nua [<p(x)]mE
it,I2, pn c it. h nenrheaB6di 3.2.4,tac6it =ho?c12=<
[. tlTcla 11= I ho?c12= I, mau thu:1n.V~yI =
kh6ngth~rutgQntrangD[x].Q
Tu B6?di 3.2.6,li~uc6 phaimQiidealkh6ngth~rutgQnc6 canla <
a~uc6dhaykh6ng? Cautral6'ila kh£ngainh
vatacanmQtsob6a~sau
28
3.2.7Rti dl. Xel vanhdiGphllorzgRAIlvaiR =D[x]va/vl=.Khi
d6 « [cp(X)Jk,pI »M =« [Ct/(x)]k',pt' >hI nlu vachinlu k =k' val =L'.
Chung minh. (~) Hi~nnhien.
(==::;,)Gia si't« [cp(x)]k.pl»M =« [cp(xW',p/>h/'
Do \'ai tfOclb k va k' nhu nhaunen taco th~gia si'tk ~ k'. Ta chungminh,
k = k'. Th?t \'?y,gia si'tk > k'. Ta co [cp(~)]k E « [cp(X)]k',pt' >hl = «
[cp(x)]\pi >hI nen co f(x), g(x)E D[x],PI E pi va m(x),n(x) E D[x]\ M sao
cho
[;(r)]k' [;(X}]kf(x) PI g(x)- = +--
I 1 m(x) 1n(x)'
Suyfa
m(x)n(x)[;(x)t'= [f(x)]kf(x)n(x)+PIg(x)m(x),
nen
m(x)n(r):;(X)]k'+P[x]= [cp(X)]kf(x)n(x) +P[x].
Gian lu'Q'cn(x)+P[x].[;(x)]k'+P[x]( do n(x)+P[x],[;(x)]k'+P[x]=I-0+P[x])
haiv~clladangthuc\-uathudu'Q'c,taco
,
m(x)+P[x]= [cp(x)]k-kf(x) + P[x],
suyfa m(x)E=AI, mallthu1n.V?y k = k',
Do vai tfOclh l va [' nhltnhaunen taco th~gia si'tl ~ z'. Ta chungmini)
,
l = ['. Gia si'tl > ['. D~tI =, J' = [, Khi do, trong
D[x]= D[x]/pl[rJ, ta co
Y=
l' =,
trongdo =P[x]vaiPoE P (doRd dl 3.1.5),
, - - --
VI I = I nenI =1'. Dod6 I M =l'M
7 7 [( )]k-
Ta co Po E.\1nen Po = <px ~ voi f(x) E D[x]M'm(x) E
1 1 1 m(x)
29
D[x]\ A{.Dodo co s(x)E D[.r]\ 1\1saocho
P~m(x)s(x) = [cp(X)]kf(x)s(x).( *)
- -
I - I
SHYfa [cp(x)]kf(x)s(x)E. M?t khac [cp(X)]krt p = Rad(< P~ » nen
, ,- - -
f(x)s(x) E, SHY fa f(x)s(x) = p~h(x),h(x) E D[.r]. Ket hQ'pv&i (*) ta
dLtQ'C
, ,-
p~m(x)s(x)=[cp(X)]kp~h(x).
SHY fa
~(m(x)s(x) - [cp(x)]kh(X)) =O.
M~itkhacP~i=0 nen m(:r)s(x)- [;(x)]kh(x)E Rad(O)=P. SHYfa m(x)s(x)E<
[cp(X)]k.P >c -'I. Mauthuc1ndom(x)s(x)rt!vI.V~Yl =I'.r;)
3.2.8Blf die Cho1 la idealala D[x],1=v6it,snguyendurJng.
Khi do
1: P[x] = .
1: = .
HrJn mIa,voiAI la h? nhdnczlaD[x],fa co
1M : (P[xDA! = « [cp(x)t,ps-l >)M,
hI: « cp(x) »M = « [cp(X)t-l,p$ »AI.
Chung minh. Trangvanh D[x]=D[x]jPS[x],taco 1= . Bautien
[a ch:"tngminh 1: P[x] = hay I :=, tfOng
d6 P[x]= v6'iPoE P (doRlf di 3.1.5).Do PflJ50=Po =0nenp~-lE
I :. Hdnmla [cp(xWE I c I : nen c I :.
NguQ'cl~ineuf(x) E I :,b~ngquin~ptheoi (1:::;i :::;s- 1),tasechung
minh
f(x) = [<p(x)]rh(x)+phki(x),(*)
30
---
trangdoh(x), J.;i(:r)E D[x].
VI f(1:) E I : nenpof(x) E I, dodopof(:r)=[:p(x)]rg(x).M~Hkhk
[cp(xWttnen~ E(donguyento), dodo g(x)= Puh(x).
Suyfa pof(.c)=[.p(xWpoh(x)hay
Po(7(X)- [~(:~Wh(X))=0(**).
Ma Po=1= 0 nenf(x) - [-;(x)]rh(x)E Rad(O)=. Suyfa f(x) = [cp(x)]rh(x)+
P6g1(X),v~y (*) dung yO'ii =1. Gia su (*) dung v6'ii = k < s - 1, nghiala
f(x) =[cp(x)]rh(x)+P§9k\X).Ta co f(.r) - [cp(x)]rh(x)=p~9dx),ket hQ'pv6'i (**)
ta dltQ'cP~+19k(X)=O.\1 k+ 1,
- -
hay9dx) =PO9k+l(X),9k-l(X)E D[x].V~y
f(.r) = [:p(x)]rh(x)+P~+19k+l(x)
Theo giil thietqui n:;1p
f(x) =[:p(x)]rh(x)+pb9i(X),
v6'imQi 1 :::;i :::;s - 1.
V6'i i = s - 1 ta duQ'c
f(x) = [.;(x)]rh(x)+pg-19s-1(X)E
V~ytada chungminhdltQ'cI: PIT] =.
Tiep theota se changminh I :=, hay chungminh
1:=.
D~tha'yc I :. NguQ'c l<,liv6'i mQi 7[X) E I :<
cp(x)>, ta co f(x)y?(x)E I =, sur fa f(x)cp(x)= [y?(x)]rh(x),
h(1') E D]Xj, hay :p(X) (1(1) -1<P(X)]'-lh(X)) =0. Ma ",(x)rtRad(O)= Plx[nen
f(x) - [Y?(x)]r-lh(x)=0 vadodo f(x) E. Sur fa I :c<
[Y?(x)]r-l>.V~ytaetachltngminhdltQ'c1:=.
31
TheoM~nhdi 1.4.9),(! : P[:r;])M = hf : (P[:r:]hf va (I :< cp(x)»M = hI : «
y(:r) >Lu va do do ta thu dltQ'Chai d5ng tht'tccon l~li.Q
Hai b6 d~sauduQ'ctrichtu[9](Dinh if 34vaDinh if 35 ctlachlldng 4).
3.2.9Bil di. ChoR ldl)(lnhdiaphuongNoethergiaohoancodonvivaf ld
idealnguyensrJcuaR co Rad(1)t6ldc;zi.Khi d6neuf kh6ngthe'rUtg9nthi
f: (f : J) =J vaim9idealJ chuaf.
3.2.10Bil di. ChoR ldvanhdiaphuongNoethergiaohoancodonvi va f ld
idealkh6ngthe'rUtg9n CllaR, J ld idealcuaR chuaf. Khi d6 J kh6ngthe'rUt
g9nneuvachineuf : J chinhmodulof.
136d~saul;)chi~ungltQ'ccuaBo?di 3.2.6
3.2.11Bo?di. Chof ld idealkh6ngthe'rUtg9ntrongD[x]vai Rad(I) =<
-p(:r),P >=JI. Khi d6,fontflim,n nguyendurJngsaGcho
f =.
Chung minh. D?t
S = { Q I Q kh6ngth~nit gQntrangD[x], Rad(Q) =, Q i-<
[cp(x)]a,pb > voi mQia,bnguyen dltdng }
Ta se chang minh S = 0 b~ng phan chung. Gia su S i- 0. VI. D[x] la v~mh
Noether nen S c6 ph~n ttt toi d?i la fa. VI. Rad(Io) = nen c6 m,n
nguyen dvdng saDcho [,p(x)]mE fa, pn C fa va ta c6 th~xem m,n la cae so
nguyen dltO'ngnho nh{{thoa tinh chat nay.
Ne'um = 1,rheaM~nhdi 3.1.6,fa=, mall thuKn VI fa thuQc
S.
32
l\i2\1f/, = 1,theoM41llzdf 3.1.7,fo= [;(J,,)]TII,P >, mf1LlthLl~n.
Nell Tn> 1 \':1n > 1, rhea Blf df 3.2.3, ta co
10: = ,
fo : = ,
(6)
(7)
trongc161::;k ::;n va 1::;l ::;117.
Neu k = n ha?c l =m, rheaBo?df 3.2.4,10=, mall thuan.
Giastfk <n va l <m.
D?t S' = { hI 1 hI kh6ng th~n.'1tgQntrang (D[x])Ju,Rad(I1\1)= « ip(:r),P >
);\1./." =1=« [ipCrW. pb >~,'J voi mQia.b nguyen cllfo'ng}.
Ta co (Io)Julaph:lntv toid~ici.'taS'. Th~tv~y,ghiSlfco (It)M thuQcS' saGcha
(Iohl chuatrang(IdA/. TnJoc lien, tachUngminh II thuQCS. VI (IdM kh6ng
th~flit gQnnenIt kh6ngth~rutgQnva II ~ M. Sur fa RadIt ~ AI; m;)tkhac,
Rad((It)M)= (Rad(It)).u= « ~(x),p »M vaRad(Id nguyentonenrheaBinh
/f 1.4.10,tacoRad(I1J=. Ho'nnuaII =1= vCJimQi
a,bnguyendVa'ng,VIneucoao,bonguyendvo'ngthoaIt =thl
(It)M = « [r.p(x)]ao,pbo>L\1,mall thuan. V~y It thuQcS.
Tiep thea,ta chungmint 10~ II. Gia sv 10:l It; ta co u E 10\ It. Sur fa
'!.:E (IO)M;va da do '!.:E (IdA! nen co 9 E It,h rt !v!saGcha '!.:= -hg. Sur fa1 1 - 1
uh = 9 E II. VI It kh6ngth~rut gQn,da do nguyenso',va h rt AI = Rad(1d
nen u E It, mallthuan.V~y10~ It.
VI 10la ph:ln tlf t6i d~icuaS nen10= It. Sur fa (IO)M= (Idlvl. V~y(10)1>1la
ph:ln tlf t6i d;;1icuaS'.
Tiep thea,tase chungminh co T,s,U,v la c:k 56nguyendvo'ngsaGcha
(f0: P[X])lvI = « [~(xW,pS »A/,
(Io :hI.
(8)
(9)
TrVCJclien, dam,n la ck 56nguyendvo'ngnho nhatthoa[~(x)]mE 10,pn c 10
33
V~l 11/.I/. >1nen
(10)M ~ (10:P[x]),\!. (/O)M =I (/0 : P[.T])AJ, (10)
(11)(1ohJ ~ (fo:< :p(x)»M, (/O)M=I(/0:< ;p(:£)»M.
Do (fa)M kh6ngth2 rutg()nnen rheaDinh Ii 3.2.9
(/0);\1: [(/oh! : (10+P[X])M] =(/0+P[x])A!
hay
(foh! : : fo).\! : (fa -+-P[X])M] =(fO)M +(P[x]h!
M<;itkhclcdo P;.r]la idealnhannen (P[X])iV!chinh,tudayrheaDinh Ii 3.2.10,
(fO).\1: (fo +P[l'])M kh6ng th~ [(it gQn .
M<;itkhac
(fOi.\! : (fo:- P[l'DAf = (10)M:[(/oh!+(P[X])Al]
= [(10)M:(1ohrJn [(fohl : (P[X])M]
= (10)1\11:(P[X])M
nen (fohI : (P[.r])Mkh6ngth~nIt gQn.
DoRnd(foh!=« :p(x). P »M nenRad((10)AI: (P[X]hI)=« y(x). P >)M. V?y
(fo: P[:T])Afkh6ngth~rLItgQntrong(D[X])M,Rad(1o:P[x])J',1= « :p(x),P >hI.
Ho'nnCta,(10).\[,ph~ntlTtoi d?i ct'Ia5', chuatrongva khac (fa : P[X])AInen
t6nt?i T,S nguyendtTongsaGcho
(10: P[xDA[=« [rp(x)t, ps >)Af.
V?y taco (8).
Hoanroantuongt\T,tathuduQ'c(9).
B~ngquy n?p rheai(l :::;i :::;n - 1),ta sechungminh
(10:pi[X])M=« [tp(x)t,ps-i+l »Af.
34
Voi 'i = 1,tu(8),ta co di~l1phai chungminh. Gi!l Sli ding thlic Cling voi
i =j(1 :::; j :::; 11- 2),nghiala
(10: pJ [J;])M =« [:p(x)]'", ps-j+L »Al.
Suy fa
(ps-j+1[X])M(Pj[X])M = (ps+L[X])MC (10)M
do do pHI C 10.Soy fa 8+ 1;::n.
Do 1 :::;j :::;n - 2 nen (8+ 1) - j =8 - j +1;::2.
Ta co
(10:ph-I[X])Al = [(10:pj[x]) :P[x]Lu
= (10:pJ[.r]Lu : (P[x])Al
= « [<;(~.W,ps-j+l »M : (P[X])M
= « [:p(xW,ps-j »M CtheoB(f di 3.2.8).
V?y d:1ngthuc dung ,"oi i = j + 1. TheonguyenIy quy n?p, d:1ngthuc
(10: Pi[xDA! = ~< [<p(x)(ps-i+l)Al Cling voi ffiQi i, trong do 1 :::;i :::;n - 1. Voi
i =n - 1,taco
(10: pn-l [xDA! = « [tp(xW,ps-n+2 >)M. (12)
Tu'o'ngtv, tlt \9)va bangquyn?p taco
(10:).\f = « [tp(x)t-m+2, PV >)M. (13)
Tu (6)va (7)faco
(10:pn-l[X])M = «[hI,
(10:< [tp(x)]m-l»M = « <p(x),pk)M.
(14)
(15)
35
Tli (12),(14)vaBlf di 3.2.7taco
T =1..'3- n +2= 1,
hay
T=l,s=n-l.
Tu'o'ngtIj, tv (13)va(15),taco
u- m+2=1,v=k,
hay
u=m- 1,v=k.
Tv (8),(9),(16).(17)taco
(fo : P[X])M = « [tp(X)]l, pn-l >)M,
(10:)M.
Tv (18),(19)vaBII di 3.2.8,taco
(10:P[X])M: « tp(x)»M = « [tp(x)]l-l,pn-l »M,
(fo :hI : (P[X])M = « [tp(X)]m-l, pk-l >)M.
Ho'nnU'a
(10: P[X]);\I : « hI = (10:P[X]<tp(X)»M
= (10: P[X])M
= (10:<tp(X)»M : (P[X])Mo
Tti (20),(21)va (22)taco
« [tp(x)]l-l.pn-l ».\1 =« [<p(x)]m-l,pk-l »,'v/o
36
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
Tv (23)va Bd dl 3.2.7,ta co I - 1 = m - 1,n - 1 = Ie- 1 tlie la I = m, n = k,
mall thufin voi tru'O'nghQ'pdang xet.
V;;ly, trang mQi tnlO'nghQ'p,ta dell co mall thufin. Do do S = 0, nghia la,
neLl I la ideal kh6ng th~[(It gQn clla D[x]voi Rad(I) = th1,tcSnt<;li
m,n nguyen dvo'ngsao cho
I = , C/
Tv Bif dl 3.2.6,Bo?dl 3.2.11"J Bo?dl 3.2.2,taco
3.2.12Dink Ii (M6 racacidealkh6ngth~rutgQnvoi cantoi d<;li).IdealI Clla
D[:r]fakhangthinitg9nvaidintaldr;zinlu vachinlu tontr;ziidealnguyenta/
PolO CllaD, da thucdonkhrJi-p(.r)E"D[x]thod<p(x)+P[x] batkhdquytrang
D[xJlP[x]vak, 1nguyenduringsaocho
1=,
trongd6 m,n nguyenduring,
Honnaa,khzd6Rad(I)=vam,nfacacsa/nguyenduringnhonhdt
thoa[<p(x)]mE I, pn c I,
Nhu'V?y,tada m6tadIu trueclla caeidealkh6ngth~[(itgQntrangvanh
da th{TCD[x],trangdo D la mi~nnguyen.Dedekind. Tv s1jm6 ta nay, ideal
nguyenso'vCiican toi ti~uchinh li idealkh6ngth~flit gQnvai can toi ti~u.
Tuy nhien, idealnguyenso'voi cantoi d<;likh6ng nha'tthiet la idealkh6ng
th~rutgQnvo-icantoid<;li.DungDink Ii 1.5.6vaDink Ii 3.2.12ta co mQt
s1jm6ra khacvoiDinh Ii 3.1.4v~d<;lngcih idealnguyensovoi cantoid<;li
nhlTsaD
3.2.13H~qua. IdealI cuaD[x]fanguyensrivaicantaldr;zinlu va chi nlu
37
J = n.trongdo i chC;ZYhau hc;zn,Tni,fli ld cacs6'nguyen duo'ng.
I
Ho'nnaa,khidoRad(I)=.
3.3 Ci{lltruc cac idealtrollg vanhda th,lCtrill miln ngllyen
Dedekind
Trongnwcnay,tasekhaasatcalltrucclb m(>tidealbfitkycllaD[x].Thea
M~nhdi 1.5.1.mQiideald~ulagiaoheluh?n cllacacidealkh6ngth~rutgQn.
Ttl day,kethQ'pvai dc dinhly m6tac:1utflk clb cacidealkh6ngth~nit gQn
trongD[x],calltruccuaI1l(>tidealbfltkytrongD[x]dllQ'Cm6taquadinhlysau
3.3.1Dinh if. iVf9idealI cdaD[.r]dell du(jcbie'udienduoidc;zng
r S
1=(nJ;"') n(n< [<pj(x)]mJ,P?»,
i=1 j=1
trang doT, s, ki (1 ::;i :::;T), mj' nj (1 ::;j ::;s) ld cacs6'nguyendl1fJng,Ji ld
idealnguyent6'kh6ngt61dC;ZicdaD[x],Pj faidealnguyent6'khackh6ngtrong
D, Zpj(x)E D[x]thodyj(x)+Pj[x]bit khdquytrangD[.rJ/Pj[x],
Bi~udi~ncuaideal1 trongBinh if 3.3.1co th~kh6ngduynhat. Tuy
nhien,do D[x]la Q-\'anhnenthea [3],idealbatky cuaD[x]co duynh:1tS\f
phantichtichnguyensochu:1nhaa.Lu'uydingneu1=h..,Invai Ii la ideal
Pi-nguyenso thlS\lphantichthanhtichnayclla1 OllQ'CgQilas~(phanlith
lith nguyensd chua?nhod neu P; =I-Pj vai mQi i =I-j ya I =I-I1...Ji-lli+l...In vai
I11Qi(1 ::;i ::;n). Dinh l~'sau ouQ'ctrich d~n tu [3]
3.3.2Dinh if. M9i idealI cda D[x]dell co duy nhrltSljphantfchtfchnguyen
s(jchudnhoa.
38
Vi d~lXet [([:1'.U]v6'i K IJ tntong.VI K[.1:]Ij PID \'~tdo do la mi~nnguyen
Dedekind nen [([x, V] l~tq-vanh. Do do mQi ideal du'Q'cphan tlch duy nhat
thanhtlchdic idealnguyenso.Tacoideal=n
,cE [(, conhi~uhanmOtphantlchnguyensochu5nhoa,nhltngcoduynh{lt
mOtphan tlchtlch nguyensochu:lnhoa=.