CHỈNH HÓA MỘT SỐ BÀI TOÁN MOMENT
HUỲNH THANH LÂM
Trang nhan đề
Lời cảm ơn
Mục lục
Giới thiệu
Chương1: Một số tính chất trong không gian Hilbert
Chương2: Một số bài toán quy về bài toán Moment.
Chương3: Chỉnh hóa bài toán Moment tổng quát.
Chương4: Chỉnh hóa một số bài toán Moment.
Kết luận
Tài liệu tham khảo
30 trang |
Chia sẻ: maiphuongtl | Lượt xem: 1887 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Luận văn Chỉnh hóa một số bài toán moment, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
ChuangIV :ChinhhoamQtsobaitoaDmoment
CHU<JNG IV: CHlNH HOA IVH)TSO BAI TOA.N MOMENT
4.1Chlnhhoabai tminmomentHausdorffmOtchi~u:
- Xet bai tmlnmomentHausdortlmQtchi~u: funhamu(x)trongL2(0,1)sao
I
cho: fu(x).xkdx=,llkVaik=0,1,2...;
0
(4.1)
/.l=(/.lk)ladaybi ch~nchotntoc.
NguoitachungminhduQcbaito<ln(4.1)lakhongchlnhnghiala khong1uon
t6nt~inghi~mvatrongtruonghQpt6nt~inghi~mthlchungkhongphl,lthuQclien
tl,lCvaodaki~nchotruoc.
M1,lcdichcilachuangnayla chlnhh6abairoanmomentboiphuongphap
moment hliu h~n.Ta ap d1,lngphuong phap ch~tCl,ltachuang truoc trong vi~c
chQnhamf(t) va fl(E-1/2).
Ta sechlnhh6a(4.1)boidaymomenthliuh~n
1U(X).Xkdx=/.lk vdi k =0,1,...,n (4.2).
HQtn!cchuin se duQcchob~ngcaeda thuGLegendre.Cho Pnet)la dathuG
Legendreb~cn:
Pn(t)=:t (n+k)! (t-1t
k=o(n-k)!(k!Y' 2k
ho~ctuangduangvoi :
1 dn
Pn(t)=--(t2 -l )
n
2nn!dtn
Ta chungminhk€t quasau: L Pm(t)Pn(t)dt=0
Voi n ~ m
Nhan xet:
dk
(
) )
"
1
dk
( ) )
"
1
- x- -1 - - x- -1 - o
d k x=1- d k x=-I -X . X
voi k =0, 1,...,n -1.
Khi d6b~ngtichphantungphantaduQc:
-.\.()
ChuangIV: ChlnhhoamQtsobaitoaDmoment
tPo(X)PJX)ctx=~( 1 ,I dm(x' -1)" d'(x' -I)'\2n.n!)2m,m!)11 dxm ' dxn dx
-1 i" dm+1 ( d
n-l ( 2 )
n
= 2 m x-I
2n.n!.2m.m!I dXm+1 x-I). dxn-I dx
' ......
- (y 1 r dm+n
- -1 '2n,n!21l1.m!1ldxm+n(X2 -It.(x2 -1)ndx(4.2)
Kh6ngma'ttinht6ngqmitgiasli'm2m<ill +n. Do d6 bi~uthucduoi
da'utkh phand6ngnha't0 =>Lpn(x)Pill(x)dx=0 vdi n 7=m
.:. Chzlngminh: rP;(t)cit= 211 2n +1
Voi n =ill thl tli'ketquatrentac6 :
i P2( \r1 = (- 1)" i d211(x2 - 1)" (.2 - 1),dn XJ-lX ( )' J X X1 2n 1- 1 dx-n.n.
= (2n).(-1)"i ( 2 - 1)'" \ .( ), x ex2",n!- I
(
d'l1- 2- "_;Do ,(x 1) - (_n), daodx-11
(4.3)
ham cap 2n coa da thueboc 2nJ
Xet : In =L (x2 - l)ndx Ta tinhlnb~ngtkh phantruyh6i.
D~t:
!u~(X2-1r~ !u'~2nx(xl-1r-'
lv =1 lv=x
Khi do:
J n = ~(X2-1 Y J ~l- 2n L X2(X2-1 )"-1dx
=0 - 2n L [(x2-1)+ 11x2- 1Y-I dx
=-2nlL (X2-1)"dx+t (X2-1)"-1dxJ
=-2n(In+In-I)
--1-1
ChuangIV: Chinhh6amots5bairoanmoment"" .
=>In =-2nIn -2nIn-1
=>(2n+l)Jn =-2nIn-'
1 =- 2n I
n ? I
n-I
_n+
?
1 =-::"'11 ,,0
.J
I~ =-~l = 2.4 I .- 5 I .., ~ 0J.)
1, =-~l~ =-2.4.61
~ 7 - 3.5.7 0
..
T6ng quat:
( ) 2.4...2n I
In = -1 n 3.5...(20+1) 0
M~t khac:10=2
1 =(- I)" 2.4.6...211 ')=> .
( r-1/ 3.5...2n+11
(- I)
" 2" IJ. .n.-
- 3.5...(2n+1)'
The' (4.4) VaG(4.3) ta duQc:
(4.4)
I P2(x\r1x=(2n).(-lt. 211,n! .2I "JU 2" I 2" I ..,- 7 (2 1).n. .n. J.) n +
- (2n).2
- 3.5...(2n+1)211.n!
- [3.5...(2n-1)][2.4.6...2~]2
[3.5...(2n-1)]211.n!2n+1
2.4.6...2n 2=
2",n! 2n+1
2".n! 2--
2".n!. 2n + 1
2=
2n+1
-1-2
n =1 =>
n=2 =>
n=3 =>
ChuangIV :ChinhhoamQtsobfliroanmoment
{
Lpn (t).Pm(t)dt=o
V~ytaco: r p2(t)dt=~11 n 2n+I
ne'un:;t:m
.:. Binh nghia: 1n(x)=.J2n+1.Pil(1- 2x )
Tli chungminhtren: Lpn (t)Pm(t)dt=0 voi n =1=m
£)~t: t=1- 2x Khi d6tu:
tPn(t}Pm(t}it=o=>lpJl-2x)pJI-2x }ix=O
=> l1n (t}1k(tXlt=0 voi n :;t: k
Tuang tl;1'ta co: 11~(t)dt=1
(4.5)
(4.6)
Tli Ln la dathucb~cn va tli (4.5),(4.6)~ (Ln)la daytn!cchu5nd~ydli
?
trongL- (0,1).
- '. - n (n+k)! (t-It
Thay t - 1- 2x vaG. Pn(t)- L ( ) ( Y'~k=o n - k ! k! 2
Ln(x)=.J2n +1.Pn(1- 2x)
=.J2n+1I (n+k) (1- 2x- 1Y
k=o(n- k)(k!)2. 2k
=.J2n+lI(n+k) (-Iy.xk.2k
k=o(n- k)' (k!)2.2'
=.J2n+1i (n+k)!(-IY .x'
k=o(n- k) (k!)2
=>
n
Ln (x)="C XkL.. nk
k=o
Cnk=.J2n+1.(-lY. (n+k)!
(n- k)!(k!)2
Voi
Cho ~=(~k)If!daysotht,I'c.
Ta dinhnghladay:
i
Ai =Ai (~) =L Cjj ~j
j=1
k =0, 1,2, ...
-+3
ChuangIV : ChlnhhoamQtsobiliroanmoment
D~t
n
pn =pn(}.t)=I Ak(~)Lk(Lk dong vai tra ej C5chuang III)
k=O
Khi d6pnlelnghi<$mcuabai toanmomenthU'uh~n(4.2).
Truongh<;1pdli ki<$nchinhxactacoketquasail :
Dinh 1£4.1..
Cho !J.=(!J.k)leldayso thl,l'c.Di~uki<$nc~nvadud~(4.1)conghi<$m1a:
?
~(~ci;~;J <00
(4,7)
Voi CiJ' i, j =0,1, ...duQCxac dint boi C[i =(2i +1)112,(-l)J (i +i)!"
( '_' )1( '1)
2
1 )'}',
neu j ::::: i va Cij=0 neuj >i.
Neu u lelnghi~mduynhatcua(4.1)thlpn(!J.)~ u trongL2(0,1)khin' ~ 00
(pnlanghi~mcuabilltoanmomenthUi.:thi;ln(4.2) iu(x)Xkdx=jLk )
Honnilaneunghi~mulatrongHI(O,1)thlllP" (jL)- ull~ (1 )Il ull HII 2 11+1
. Y nghla: dint 1yneu leu di~uki<$nco nghi<$mcua (4.1) va ChUdgto
nghi<$mcua(4.2)hQitl;lv~nghi<$mcua(4.1)trongL2(0,1) khi n ~ 00.
Tru'ongh<;1pdffki<$nkh6ngchinhxactacoketquasail:
4.1.2 Dinh Iy 4.2:
Cha UnE L 2(0, 1)1anghi<$mcua (4.1) tu'ongling voi !J.() =(!J.~)
D~t: f(t)=sz:Js (2t +1"'.3" vdi 0< £ <1; n(£)=[CI (£ ~IJ]
([x] 1elsonguyenIonnha't:::::x).
Khi d6 t6nt?i mQthamso Yj(f:);0 <f:< 1 saGehoYj (f:)~ 0 khi f:~ 0 va
doivoi nhlingday !J.thoa:ll~- ~oL,=S~pl~k- ~~I< E
Taco: IIpn(E)(!J.)-uoll:::::Yj(f:)
44
Chu'angIV :ChlnhhoamQtsobaitoanmoment
Han nilane'uUoE HI (0,1)thl :
Vdi
Il
uo
l ! H'(a,I)
II
II? I
Ilpn.~E)(Il)-Uo ::;8-+ C(c:)
I
J
-I ( 8.Js
JC(E)=2(2ln 3+2'ln2 .Inl n12.*
.:. Ynghia: Trongtru'dnghQpdil ki~nkhongchinhxacdinh1)1dachI ra Cl;l
th€ hamfer)vason (c:)saochonghi~mcuabairoanmomenthil'uh?n
(4.2)xffpXlnghi~mcliabairoan(4.1)NgoairataconcodanhgiaduQc
saiso.
D€ chungminhdinh1)14.I , 4.2tadt1avaob6d~sail:
., ,
4.1.3 Bo de 4.1
Doi vdi m6i v trongHI (0, 1)taco:
? ~( )?' rl "26aI +~ 2k +1- ak ::;1,\'! dx
k=2
vdi ak =£V(X)Lk(x):1x
Chllng minh:
Trudehe'ttaxettru'dngh<..Jpdathuc.Ta co:
v =I AjLj; Aj =!Lj(x)v(x}:ixj=o
1\
Lffy d?ohamhaive'taduqc: v' =I AjL~
.1=0
.:. V6i 0 ::;i ::;k
I
Tli SPm(t).Pn(t)dt=o Ta co: (L'jJLk) =o
-I
vdi 0 ~j ~k (4.9)
Dod6: (V',Lk)=(~Aj Lj,L, J
=tAl (L; ,Lk)
1=0
n
= L Ai iL~.Lkd'(
l=k+1
(4.10)
k=0,L n
(Do (4.9) Hen t6ng tu k + I den n).
.+S
ChuangIV : ChlnhhoamQts6baitoanmoment
.:. VfIik <i:
Tich ph~ntUngph~ntadll<;Sc:
(Lj, Lk)~lLjLkdx
{
U=Lk
B~t: Y'=Lj
=>
{
U'=Lk
y=Lj
Khi do:
.
1
1 r.
(Lj,Lk)=Lk.Lj0-1Lk.Ljdx
=L j (l)Lk (1)- Lj (O)Lk(0)
Thay t=1-2x ta dll<;Sc:
Lj(x) =(2j +1Y/2,Pj(1- 2x)
=(2j+1)1/2~~[(1- 2X)2-1p
2J.j!dxJ
=(2j+1Y/2.-+-~(4x2 - 4xy"(
~
)
j
2J.j! dxJ 2
(Do difLtt =1- 2x va d(,loham clia ham h<;Sp)
.
( )
j
1/2 1 dJ . -1
=(2j+1) .--:-:--,-[-4x(1-x)f.-
2J.]! dxJ. 2
=(2j+1Y/2.(-1Y .4jdj[x(1-x)f (-1Y2J"1 ..-.J. dxJ 2j
=(2j +-1Y/2.*. dj[x(x~1)f.J. dxJ
~ Lj(x) =(2j+1Y/2..!.dj[x(1-x)fj! dxj
~ Lj(o) =(2j +q/2 (4.12)
(VI [x(1- x)]j=(x- x2yco56 mnnhonha'tla xj ~ d~ohamde'nca'pj co M s6
tl!doHij!, caesf)conl(,lic-ochuaXknenthe-x =0 VaGta chi con l(,lij! ~
L/o) = (2j +1Y/2.\.j!= (2j +1)1/2J.
46
ChuangIV :Chinhh6amQtsobflitoaDmoment
TudngWtaco: Lj(I)=(-I)1.(2j+1Y/l
Tli (4.10),(4.11),(4.12),(4.13) taauQc:
(4.13)
n "
(v',Lk)= LA/2k+1Y/2.(2j+1Y/2.[(-I}'+k-1]
j=k+1
(4.14)
Do (4.14)vado(Lk)lahQtnlcchu§nDen:
11-1
Ilvf=I(v',LkY
k=o
=~[itAi (Zk+1)1/2.(Z j +1)'12(1 - (-1 y")J
(kh6ngphl,lthuQCj Denaua 2k + 1fa ngoaiauQc)
=%(2k+{t,A.j(zj+l)"'~ - (-It' J]'
11-1
=>llvf=I(2k+l)S;
k=o
(4.15)
Voi: Sk= IA.j(2j+lY/2[1-(-1)J+k]
j=k+1
(4.16)
Tli (4.15) taco :
0-1
IIvf=I (2k +1:;S~
k=O
0-1
=s~+3S~+I (2k+1:;S~
K=2
0-1 0-3
=S~ +3S~+4I S~+I (2k+1)s~+2
K=2 K=o
M~t khac :
n-l
Ilv'112= I (2k +l)s;
k=o
0-3 0-1
=I (2k+1:;S~+ I (2k+1)s~
k=o k=n-l
n-3
=:L)2k+l)s; +[2(n-2)+Ils'Ll+[2(n-l)+1ls'LI
k=o
0-3
=I (2k+l)s~+(2n- 3)s~-1+(2n-1)s~-1
k=O
47
Chu'ongJY: CrunhhoamQtsO'baitoaDmoment
Tli hai ketquatrentadu'QC:
0-3 0-1
211v'II=I (2k+lXS~+s~+J+s~+3S~+4LS~ +(2n- 3}s~-2+(2n-l}s~-l
k=o k=2
0-3
=I (2k+3XS~+S~+2)+2(S~+s;)+ 5(S~+sn+ s~+s; +(2n-1}s~-2+(2n+1)s~-1
k=2 .
Tli (4.16)taco :
S k - Sk+2= 2Ak+l(2k +3)1/2 vdi k =0,1,2,...,n- 2 (4) 7)
Th:HV?y :
Sk - Sk+2 = i)"j(2j +lY/2[1-(-ltk]- I Aj(2j+1)1/2[1- (-ltk+2]
j=k+1 j=k+3
= IAj(2j +1)1/2[1-( lY+k]- IAJ2j +1)1/2[1-( lY+k]
j=k+1 j=k+3
k+2 [
]= LAj(2j +1Y/2l1-(-lY+k
j=k+l
=Ak+I(2k+3Y/2l1-(-vlt+1J- Ak+2(2k+SY/2l1-(-v1Yk+2J
2 0
(
.
)
1/2
= 2Ak+12k +3
Khi dotU(4.17)taco:
2(S;+SLJ~lsk -Sk+l ~4(2k+3)./L~+I (4.18)
M?t khactli (4.16):
So-2= IAj(2j+l)'/2[1-(-I)j+0-2]
j=o-l
=An-I[2(n-1) +1r/211-(-lY-I+n-2j+An(2n+1Y/2[1- (-"l?n-zj
2 0
=2An-1(2n-1)1/2
=>Sn-2=2An-1(2n-lY/2 (4.19)
Tu'ongtl,l'ta co :
( )1/2Sn-I = 2An 2n +1 . (4.20)
Tli (4.18),(4.19),(4.20)tadu'Qc:
48
ChuangIV :ChinhhoamQtsobfliroanmoment
n-l
211v'1122 L2(2k+3y'A ~+I + 12'A ~ + 50'A ~
k-2 '---v--:-'
( )
'---v-:--'
( )- '2 2' 2Vng v(fi 2 S,,+S2 Vng vdi 5 SI +S~
.. n
=>Ilvf ~6A~+I (2k+1)2.At
k=2
(4.21)
Mi[ltkhactUke'tquad ph§nd§u chungminhtac6 :
n
v=IAJLJ ' Ai = iL,(x)v(x~
J=O
=> Ak= lLk(x}v(x)ix= lLk(x).IAJLjdx
j=O
n
=I AI iLk (x)Lj{x)ix
J=O
=0(voi k >n)
Do d6 tu(4.21)tac6thSmdrQngfa VOcling.
=>Ilvf ~6A~+f (2k+lYA2k
k=2
(4.22)
V~ytadachungminhdU<;1Cbatc1Jngthuccuab6d~trongtruongh<;1pv la
dathuc.
.:. Xet trztdnghdpv E Hi (0,1)
Pmla daydathucsaochoPm~ VtrongHI (0, 1).
Do (Pm)la dayc1athucnenapdl,lng(4.22)tac1U<;1c:
'"
IIp,~1I~ 6A~m +I(2k +lYA~m
k=2
(4.23)
Voi AkIn= lPm(x)LJx)ix
Ak= lv(x)Lk(x)ix (dod ph§nd§ucuachungrninh)
Khi Pm~ v trongHI (0, 1) thl P'~l~ vi.
Th~tv~y: doPm~ v trongHI (0, 1)nen:
Ilpm-vIIHI(o,l) ~O khi m ~CX).
49
ChuangIV: Chinhh6amQtsf)bairoanmoment
Ma c;>Ilpm- vll~I(OI)= !{(Pm- vr +[(Pm- V)']2}dx:2:i[(Pm- v)']2dx
= i[(p'm-v'Wdx
=IIp':l- vf
=> Ilp~- v'II~ ° khi m ~ 00 hay P,:,~ v'
M~tkhacdo tint lien Wccuarichvohuangtaco :
(Pm,Lk)~(v,Lk)khi Pm~V trong H'(O,I} Tucla Akm~Ak khim~oo. Tli'
haiketquatrenva tIT(4.23)taduQC:
Ilvf :2:6a; +I (2k+lr a~
k~2
Vai
ak = iv(x)Lk (xjix =Ak
V~ytadffchungmint xongb6d~.
.:. Chllng minh dinh IV4.1:
'l:
Do (Lk)la h~tn,tcchuinnenu=L AkLk vai u E e(0,1)(Lk dongvai tra
k~O
nhu ek; (1, X, X2,...)dong vai tra nhuaChuangIII).
- Chungminttuangtl;1'nhuaChuangIII tacoulanghi~mcua(4.1).
Taco:
n
pn =pn(I1)=LAkLk
k~O
(pnla nghi~mcua(4.2))
00
u =LAkLk
k~O
(4.24)
V~ytaduQcpn~ u trongL2(0,1) khin ~ 00,
.:. D€ chung mint Ilpn(11)- till ::; 1 Ilull, n =1,2,... ta dl,l'avao b6 d~4.1.2(n+1) H
Ta co: 6a~+I(2k+lY a~::;!Ivfdxk~2
=>I4k2A2k ::; !juf dxk~O
50
ChuangIV: ChlnhhoamQtsobairoanmoment
M~tkhac: !Iur dx::;llull~I().I)
I 4k2A2k ~ Ilull~I(O,I)'
k"O
=:>
Tli (4.23)va (4.24)tac6: u - P"(~L)=L AkLk
k>11
=:>
lip11(~) - ul12 =L At
k>11
(4.25)
(Do (Lk)1aco s6tn,tcchwln).
Ma k >n ~ 4k2~4(n+lY (4.26)
Tli (4.25)taduQc:
(n+ly.llp"(~)- ul12=(n+lYLA"k
k>11
- 4(n + 1)2LA2k
- 4 bn
1
~- L4el;
4bl1
(do 4.26)
~~f 4k"At4 bo
1 7
~ 41Iull~i(O,1)
11
2 1 7
V~y: (n+1)2.llpn(!l)- u ::;41Iull~i().I)
=> lip" (11)- ul12 :0 4(11 ~I )21Iull~,(nl)
=:>
IIpn(u)-ull ~ 2(nl+l)'"uIIHi(OII
vai n =1 '), -, ...
Ta dii chungminhxongdinh194.1
51
ChuangIV: Chinhh6amQtsobairoanmoment
.:. Chz?ngminh dinh IV 4.2:
Theotinhchatcuachu:1ntaco:
Ilpn~)-uoll~Ilpn~)-pn~o)I+llpn~o)-uoll
n n ,
Tli pn =pn~)=:LA, (Il)L,=:L:L C,pllpta co:
k=O ,=0p=o
pn~)-pn(llo)=fic,p~p -1l~)Lp
,=0p=O
(Voi Ckp=0 ne'uk <p)
M~tkhac(Lp)Ia cdsatn;1'cchu<1nnen :
IIp"0)- P"~"11'=~(~Ck"~lp - ~;)J2~g2.~(~iCkPI)2
(Do giii thuye'tIIIl - Il 0II", = S~plll, - Il~I < E)
, 1/2 k (n+k)!
TuCnk =(2n+1) (-1), 2 tadude:
(n - k)!(k!) ,
Cm)=(2m+lY/2(-1)j, (m+j)
(j!y.(m- j)
M~tkhacapdl:mgcongthuc:
(a +b +C)n = "" ~,ai, bJ c'L.. "" kli+j+k=n1.J, .
Voi a=b=c=1;n=m+j; i =j ;j =j ;k =ill - j ,
=> . \m+j). ~(1+1+It+)
U)- .(m- J)
(m+j) 3m+J=> ~
(j!Y.(m- J)
=>ICijl~.J2i+l,3i+j
i i
=>:LICijl ~.J2i +1.:L3i+j
j=O j=O
i
=.J2i+l,3i:LY
J=O
52
ChuangIV: Chinhh6amQt56bili lOanmoment
- ~2
' 3i (3
i+1
)- '\,ILl +1. - 1
3-1
.J 3 -.2i, ::; 2n +1.-..J .
. 2
Tli Ckp=0 voik <ptaco:
00 k
I Ckp =I Ckp
p=o p=o
V?y :
(f ICkPI)2 =(i iCkPIJ 2 ~(
3
)
2.34k(2k +1)
p=O p=o 2
Tli ket quatrentaduQC:
~(~lc"lr,; (~)'(2n+If~3"
_
(
3
J
2 I34(n+l)-1]
- - .(2n+1). 42 3 -1
(VI k ~n nen2k +1:::;2n+1)
(t6ngcuac1psonhann+1soh<;lngyoi: q=34 ,Ul =1).
J
~
(
3
)-.(2n+1)~. 34n2 80
f)~t: f(t)=(~X:~f'(2t +1)'/'3"
=~(2t +1)1/2.321
815
Khi do tItchungrninhd dinh19(3.4)taduQc:
Ilpn(E)(Il)- pn(e)~0)1~ 81/2
.:. Chungrninhtu'dngt1!d dinh193.4taduQc:
IIpn(e)~o)-uoll=( f (fCiJIl~)2)1/2
j=n(e)+li=1
f)~t: T1(E)=EI/2+
(
I
(
fCkPIl~
)
2
]
1/2
k=n(e)+1P=o
Tli (4.29),(4.30)taduQc:
(4)7)
(4.28)
(4.29)
(4.30)
--.Jj
ChuangIV: ChlnhhoamQtsobaitoaDmoment
Ilpn(E)(Il)- uoll~11(8)
Khi 8 ~ 0 thi8-112~ 00=> [1(8-1/2)~ 00
Ma n (8)=[[1(8-112)]Denn(8)~ 00
M~t kh';C tii' gia fuuy"t ~(~C'~jr <00
1
Ta duQC: f
(f CkP~~) - -j> 0 khi 8 ~ 0 tuc la n (8) ~ 00 (chungminhk=~l P=o
bangphanchung).
.:. Cu6i clingtachoUoE HI (0, 1).
Do dinhIy 4.1taduQc:
Ilpn(E)(llo)-uoll~2(n(:)+1rlluollHI(u.l)
.:. BG-nh giG-n( E):
TiY djnhnghlan(E)=[CI(0-~)]=:> n(o)+1>[-I (0-lf2)(dinhnghlaph~n
nguyen).
Do f Ia hamdondi<%utangDentUketquatIeDsuyfa :
r[n(E)+1];'{C'( E.i J]
I
=>f[n(8)+1]~8-2 ~~~ I
8-15 2t8 +1.321,~ E-2
(4.31)
voi tE=n(8)+1
M~t khac to+1~2" '\IteE R
Th~tv~y: xethamso'get)=2t - t - 1voi t E R
g'(t)=2t -1
g'(t)=0~ 2t -1 =0~ t=0
Bangbienthien
(4.32)
54
t '-00
0 +00
- 0 +g'(t)
+00 +00
get) I ------..
0
ChuangIV: ChinhhoamQts~baitoanmoment
D1favaobangbienthientac6:
2t -t-1~O V'tER
~2t~t+1
Tli 2tE+1::;2tE+2
=>,j2t[ +1~,j2(to+1)~.fi.-Jy (do4.32)
=F2.2 tole
IE
=>,j2t c +1~.fi.22 (4.33)
Tli (4.31)va (4.33)taduQc:
27 t<
8- 0- .J2.22
321< -~
-..jS . >8 2
1 8J5~3
21 "" r
~ 2. - 27-..j2-..jf,
t,
=> eln22 In32t< 8 0-
5
.e > -..jJ
- 27J2F£ (do a =elna)
2In3.tE+~ln2 s.J5
2 >
=>e - 27J2...Jr.
(21n3+~.ln2}c> sJ5
=>e - 27J2'[;
L1YIn haivetaduQc:
1
J (
8-15
J(21n3+21n2 tE~ln 27J2Fs
)
-1
(
sJS
J=>tc ~(21n3+~In2 .In 27.fi.,J;
(4.34)
M~t khac tE=neE)+1
ss
ChuangIV: Chinhh6amQts6baitoanmoment
)
-1
(
8Fs
J::::>2(n(&)+1)=2tc~2(21n3+~ln2 xln 27J2F&
The'vaoike'tqua lipn(E) (/l 0) - u0 II
,; [( \ ].lluaIIH' ta dli<!c:2 n 8 + 1 (01)
IIpO(&)(IlO)-uoll~ C~8).IIUoIIHI(O'I)
)
-1
(
8-15
JVdi C(E)=2( 2103+~102 .10 n.fiF&
J
-I
(
8.J5
JM~tkhactir t, ,,( 21n3+~In2 .In 27../2.fo
)
-1
(
8-15
J=> n(o)=t,+1<0(21n3+~In2 .In 27.fi..r. +]
Tli bat d~ngthuctrenchopheptau6c1uQngduQcs6 neE).
V~ytadachungminhxongdinh194.2
4.2 Chinhhoa bid toon momentcua bh~nd6i Laplacenglidc:
Bilitoan
TIm ham uEL2(0,oo)saocho:
ru(x).e-kxdx=flk k =1,2,....
f)~t t=e-x khidobaitmlntrdthanhiw(t)tkdt =Ilk+1
V6i k =0,1,2....
w(t)=tu(-Int)
O~t~l
(dachungminhd chuangI)
2 1
Ta co: !lw(t)1dt= !Itu(-In t)1dt.
= re-2xlu(xf .e-xdx
7
= [Iu(xf.e -3xdx
(do4.34)
(4.35)
56
ChuangIV: ChinhhoaffiQtsob:tiloanmoment
Do done'uuEL2(O,co)=>flu(xldX <00
Ma x~0=>e-3x ::;1
-, 2
=>[Ju(x)1 .e-3xdx::;r iu(xf dx<-co
Tlidotaco:ne'u UEe(O,X) thl \FEL2(OJ)
,
Ta vie'tl<;1i:llw(tf ell=r:1I(x)12e-;'dx
Tli (4.36)vaapdlfngdinh19(4.:2)tadu'QC:
(4.36)
DinhIi 4.3
Ch L? ( ) I
' -h'~ ., (4 3
~
)
, ,. n
(
n n
) 10 UnE - 0,00 ang l~mcua /..) tu'ongU'ngvol: /1 = /1,,/12"" E OC)
£)~tf(/) = 2~(21+l))~.3"/8"5
Voi 0 < £ < I; n(E)=[r-'( E-~J]
Khi do t6n t<;1imQthamsC;ll(E) (0 <£<1) saocho 11(£)~ 0 khi £~ 0
vadoivoimQiday ~L=(~L,,~l2,...)th()aII,U-,Li"!/,,:::;E;taco:
Ilq"(l:)(,u)-u"t :;//(1;)
(4.37)
Voi q"(C)(,u)=eXp"(C)(Ji).e-r (4.38)
jI=(/12,/13"")
IIIII:= [II(x)12e-:'c£'\ (4.39)
va pn(E)(/1) nhu'trungl!inh 194.:2
Han nua ne'u UoE HI (0,:1'..)thl:
Il
qn(&)(J.!)- u
II
::; f)< -+-311Uo11H'(0, co)
0 P C(E)
Voi C(£) nhu'trongc1inhI)' 4.2
Y nghia:
Bai roantim hamu khi bierbien d6i Laplacecuano t<;1icac di€m nguyen
du'Qcqui v~bai roanmomentHausdorffmQtchi~u.Tli nghi~mpn(E)(/1)cua bai
roanmonenthii'uh<;1ntaxayd~(ngqn(&)(J.!)=ex.pn(&)(jI).(e-X)va qn(E)xapXl nghi~m
Uncuabai roanbangeacheh';r~lhamfer)va so neE)Clfth€.
57
ChuangIV: Chlnhh6amQtsobairoanmoment
Chungminh
Tli dinh1;'4.2tadu'<;jc:
lipn(E)(II) - w0 II ::;T\(e) voi II =(1l2'1l3,...) (4.40)
Tac6: wo(t)=t.uo(-Int)
M~tkhac: Ilpn(E}(II)-wof
dn 7
ilpn(E) (lI)(t)- wo(tfdt
7
=flr'(C)(]7)(e-X)-e-x.uo(xfe-Xctc
(do co(}(t)=e-x,uo(x))
=flpll(£)(]7)(e-X)ex.e-x-e-x.uo(xf.e-Xctc
=fle'p"(E)(}l)(e-X)-uo(xf.e-3xdx
fl ole) 1 2 -3x= I q (,u)-uo(x).e dx
(dogill thuyetqn(E)(Il)=eXpn(E)(}l)(e-'))
= Ilql1(E)(Il)-uoll:
=>Ilpn(L)(]7)- woll=Ilq/(C)(,u)- uot
Tli (4.40)va (4.41)=>Ilqn(E)(Il)- uot ::;T\(e)
(do (4.39))
(4.41)
V~ytadachungrninhxang(4.37)
Bay giCitaxet Uo E H1(O,oo).Khi d6:
w'(t)=u(-Int)- u'(-Int)}.tt
=u(-In t)- u'.(-In t)
=>W'D =uo(-Int)-u'O(-Int)
TheadinhnghlachuffntrongHI (0,1)tac6:
IlwoIIHI(O.l)=\!(w~+w~~tr
S8
ChuangIV: Chinh h6amQtsf)bfli toanmoment
=(1W;dt+ !W ~2dt('
(
r )
x
(
r 2
)
x
::; !w~dt +!w ~dt
(do~a+b ~.Ja+-Jb voi a;::0,b;::0)
,,;(iII.U" (-In nl' dtr+(i[u"(-In t) - u'" (-1n t)]'dt
)
11
(
,
)
1<
( )
1/
? /2 - /2 , /2
~(l!t.u,,(-,nt)l-dt + iluo(-,nt)!dt + l!u'o(-lntWdt
(4.42)
M~tkhactli' llw(tfdt= [lu(x)j".e-1xdxva w(t)=t.u(-lnt)
=>flLuo(-In nl2dt=[Iuo (x)!2.e-3xdx
flu'o(-Int)ldt= [u'o(x).e-xdx
Thayvao (4.42)tadu'<;5c:
IlwoIIHl(O.I)~(!luo(x)12e-3XdXr
+([IUo(x)\2.e-Xdxf +([lu'(x)12e-Xdxf
~31IuoIIHI(O,OO)
(do IluI12HJ(O.OO)=[(U2+U'2~X;::llul12va IIUI12Hl(O.oo);::lluf, x;:: 0 =>e-3x~1)
V~y : IlwoIIH"(O,I) ::;31IUoIIH'(O.OO) (4.43)
M~tkbic tli'dinhIy4.2taco:
IlpO(E)(iI)- w011 ~EYz +IlwoIIH'(O,I)C(E)
(4.44)
(dothay Uobai wJ
Tli' (4.41),(4.43),(4.44)tadu'<;5c:
II
OrE) -
II
< Yz 3I1uoIIH'(O,oo)q Uo - E +
P C(E)
V~y ta dff chungminhxongdint1y.
59
ChuangIV: Chlnhh6amQtsobfliroanmoment
4.3 CblnbboabaitoaDnbH~tngu'dctbOigian
Tli bai roannguQctimv(x,y)(nhi~tGQt~it =0) ne'ubiet
(X-;)2 +(Y-'1) 2
[ [) v(~,l1)e- 4 d~dll=4nu(x,y,l)
Ta xettruonghQpv(x,y)=Ov6ix<0,y<O.Khi dod&ngthuctrencoth~
vietthanh:
(X-;)2 +(Y-'1) 2
r rv(~,l1)e 4 d~dll=4nu(x,y,l)
Voi
{
X =-2m
y =-2n
m,n = 1,2...
taGuQc:
" ,
C;-+'1-
e-(m2+n2) r rv(;,ll)e-~ .e-(I11~_n'1)d;dll= fmn (4.45)
voi lOIn=4;ru(-2m,-2n,l)
{
s=e-;
Bang cachd6ibie'n ta GlroC:
t =e-'1
rr ( ) ij dd - ""- 01 ;l) J, cos,t S.t s t - /-lij VOl 1,J - , ,-... (4.46)
J J
ln~ ,+In~ t----
V6i co(s,t)=v(-lns,-lnt).e 4
f-lij = 47Z'.e(i+l)2+U+I)2u(-2i - 2,-2j - 2,1) (vi m=i + 1,n =j + 1)
EHiyla bairoanmomentHausdorffhaichi~u,tacoth~dungphuongphapd
ChuangIII d~chlnhhoano.
Ta nh<1cl~ivaikyhi~u:
Cho m,n =0,1,2,...taG~t:
v 1 dm
1,11(s)=(2m+1Y2.- - (?(l-sf)
m!d?
Ll11n(s,t) =Lm(s).Ln(t)
Theake'tquadml,lc4.1taco(L I11n) la cosdtn;1'cchucfntrongL2(I)
voi I =(0,1)x (0,1)
B6i v6i m6i day s6 thvc /-l=(Ili) 1, J =0,1,2,... ta xac dinh day
A=A(/-l)=(Ai) nhusau:
60
ChuangIV: Chlnhh6amQtsobairoanmoment
i j
IIe e I' . ( +
'
)1..=.. = .." Y, J mJ,
AIJ AI/~) IP' Jq'~pq' VOl Cmj =(2m+1) -(-1), "" 'I
p=oq=o (J.) ,(m-j).
O::::j::::ri
n
D;Ittpn =pn(~)=I Ai/~)Lij
i.j=O
;2 "HI2
qn(~,l1) =e~.pn(e-;,e-q)
GQiL~1akhonggiancachamf saGcho:
-7 ,
c+rr
-(c; +'7)--=--
JP.f E L"(R+xRJ voip(C;,17) = e 2
4.3.1Dinh Iy 4.4
Cho (fmn)1adays6th1!c.Neu(4.45)c6 mQtnghi~mV trangL2 (R+,R+)
h' n L?t 1q ---) V trang ~
Hon nuaneunghi~mV 1atrangWi,:(R+,R+)thi co mQth~ngsO'C dQcl~pvoi
Vvan saocho:
II
11 - V
II :::: C ,llvllw'Jq L; 2(n+1)
voi (theos1,I'xacdinhcuakhonggian L~)
II~t,= IIJP ~IL
?
v~E L~
ChU'ngminh
Tli VEL"'(R+,RJsuyfahamsO'
w(s,t) =v(-Ins,-In t).e
In: s+ln2t
4
thuQc L 2(1)
Do (4.46)w thoabai toanmometnHausdorffhai chieuneBtli'dinh 1"9(4.1)
taduQc:
Ilpl1 - wllLl(1) ~ 0
khi n ~ CfJ (4.47)
(Nghi~mcua bai toanmomentHausdorff hai chieu hUll h~nhQi tl,lden
nghi~mcuabai roanmomentHausdorffhai chieuvoh~n),
6)
ChuangIV: Chinhh6amQtsobaitoanmoment
M~tkhac:
Ilpn - wl12 L2(I) =i ilpn(s,t) - w(s,t)12dsdt.
(
, ,
J
2
=rr q"(e-"e-")-v(~.T\)e-'-:"- e-("")d~dT\
(dod6ibie'ns =e-1;, t =e-11va dint nghlap",q")
=r r (qn (e-~,e-q)- v(~,TJ)Y p(~,TJ)d~dTJ
=IIq"- vl12L~(dodint nghlachuifntrongL~)
=>Ilpn- wll\2(I)=Ilqn- v112,L" (4.48)
Tli (4.47)va (4.48)tadu<;1C: qn ~ vtrongL~
Ne'uv E W1""(R+,RJ taxet:.
In's+ln' t-----
w(s,t) =v(-Ins,-Int),e -!
Ap dl,lngc6ng thuc d,~l0ham cth ham h<;1ptadU<;1c:
~=-G.~+v~:sJe - '0'';'0' I .
aw
=>11- :::;Collvllwv
as L2(I)
Ttiongtl;! !Iaw
l!
:::; ColivllwlJ
at L2(I)
Tli dint nghlachuifntrongHI(l) tasuyfa:
IlwIIHI(J):::;Cllvllw1.x (4.49)
Tli dint ly 4.1taco:
lip"(11)- wIIL'I') .,; 2(n1+1)IIwIlH'I').
TU (4.48),(4.49),(4.50)tac6: Ilq" - viiI; ,; 2(nC+I) Ilvllw"
(4.50)
62
ChuangN: ChinhhoamQtsobairoanmoment
V~ytadachungminhxongdinh1'1.
TruonghQpdukil$nkh6ngchinhxactacoke'tquasail:
4.3.2 £>inhIi 4.5:
Cho VoELa:>(R+x RJ la nghil$mcua (4.45)tu'angung vdi fO =(f,~n)trongve'
phaicua (4.45).
Cho F(8)=729(28+1).348va 0 <8 <1;8 ;:::1320
f)~tn(8)=[F-l(8-X)] ([x]1aso nguyenIOnnhat ::';x)
Khi do t6n tqi mQt ham so' 11(8)(0 <8 <1) saGcho 11(8) -)00 khi 8 -)00 va
vdi mQiday f =(fmn)thoa:
suplem2+n2(fmn-f;n)l< E taco: Ilqn(E)-voll!" ~T](E)1l1,n -p
(vo la nghil$mchinhxac, qn(E)la nghil$mungvdi bai roanmonenthuuhqn)
Hannuane'uV() E wl,a:>(R+, R+)thi:
Ilqn(&)-vollz :::;8X+ Cilvollw'x
Lp C(8)
1 I
(
s-f5
Jvdi C(8)= 2(21n3+2In2t .In 27-fi.Vr.
Chungminh:
Theotinhcha'tcuachu~ntaco:
lipn (J1)- W0" :::;lip n (J1) - p n (J1() )11 + lipn (J10) - w0 II (4.51)
n
f)~t pn =pn(J1)= I Ak,kz(J1)Lk,k,
kl,k2=0
(4.52)
n
V di Ln(x)=I CnkXk
k=O
63
huangIV: Chinhh6amQtsobairoanmoment
Cnk =(2n+l)Yz.(-1)k. (n+k)!
(n-k)!(k!)2
Lk,k!(Xl'XJ =Lk,(xt).Lk!(x:).
kl k!
Aklk! =Ak,k!(~)=I ICkIPICk!P!~PIP!
p,=o P2=O
Tli (4,52) ta c6:
00 YO
( )n - n 0 = C.C - 0 LP (Jl) P (Jl) L I kiP, k2P2 JlPIP2 JlPIP2 P,P2
kl,k2=O P"P2=O
Voi C =0 ne'ui <J ',I}
Tud6:
lip"(~)- p' (~O)11~ .t(J.:"" c,.,.(,..""- ~:",)J'
(dogiathuyetI ~- ~l) I <E)
Tli ket qua (] ffil;lC4,1 ta c6:
C =(2m+1)~.(-1)j.(m+j)!111)
(,,)2( _' )1J. m J.
Mat khac (m+j)! ~(1+1+1)"1+.1= 3111+)..
(,,)
2
( -' )1J. ,m J,
=>ICjjl ~ .J2i +1.311l+j
V~yII Cijl~(2i+1)~,:t31+)
j=O )=0
,
~ 1 "',"'1=v2n+1. .J ~.J
.j=!
~ .,i(",,+1 )=v2n+1 . .J.J - 1
3-1
~'i,32i.J2n+1.
2
Do Cij =0 v6'ii <j ta co:
(4.53)
64
ChuangIV: Chlnhh6amQtsobaitminmoment
p,tJCk'P,Ck'P' I =(,~,ICk'P'I) (,t,lCk'" IJ
(4.54)
Tli (4.53)va(4.54)taco:
( IJCk,p,Ck2PPJIJ
2 :::;;
( ~J
-I.(2kl + 1)(2k2+ 1).3-1(kli-k2)
P"P2-0
La'y t6ng ke'tqua trenta du'QC:
JJJtCk",Ck",I)'~(~r(2n+1)2{~34Jr
( J
2 7
n 00 ",)-1 -,-1(17+1) 1-~I I Ick,p, Ck2P2 I :::;;(~) .(2n+l)2.[ J ",-I- - ]'l,k,=O P"P2=0 - J 1
(t6ngcuaca'ps6nhancon+1s6hang,q=34)
~(%)'C2n +1)2G~]'3""
D~tf(t)=(~rG~ )e2t+1)3"'
=
(
E-(2t +l)~ .32t
J
2
815
Ta co: IIp*\u) - p*\uO)11s;Eli (4.55)
(chungminhtu'dngtvd dinh1y3,4)
M~tkhactli dinh1y3,4taco:
[ J
2 \ 2
00 ex;
n(E) 0 - W = C.C 0
lip (1-1) 011 k'.k2~*)+1 p,~=(J KIP, k2P21-1P,P2
(4.56)
(
'\~
~ 00 Y: 0 I
D~t: 11(8)=8 2 + ..~ (
LCk,p,Ck~p~1-L P'P2
] )k"k2-n(E)+1 PI'P:=O
Tli (4.51),(4.55),(4.56)taco:
Ilpn(E)(Il)- wallS;11(8) (4.57)
(,5
ChuangIV: Chlnhh6amQts6bairoanmoment
voi wo(s,t)=vo(-Ins,-Int).e
In2s+ln2t
4
Chung minh tudngt1,1'd dinhly 4.2taco 11(8)~ 0khi 8~ 0
Tu (4.48)va(4.57)taco:Ilqn(E)(Jl)- vollL2 :::;11(8)"
Neu Vo E WI""(R~)thl tu (4.49) ta co:
IlwollH'(I) :::;c.llvollwl.~
(4.58)
Tu danhgiasai56d dinhly (4.2)taco:
'
I
11C. w i I
Il
n(E) () -w
ll
:::;s+ IO<lH(I)
P Jl 0 L2(I) C(s)
J
-I
(
815 '\
VOiC(£)=2(21n3+~ln2 .In 27.J2.;J£j
Tu (4.48),(4.57),(4.58)tadu'Qc:
Il
qn(E) -v
II
:::;s~ + Cilvollw'0
0 L~ C(S)
Voi C(8)tadu'Qcxacdinhnhu'tren
V~ytadachungminhxongdinhly.
* TubairoannguQcHmv(x,y)tavietl~i:
(X-~)2 +(Y-l1)2
[) fo v(~,l1).e 4 d~dll=g(x,y) (4.59)
voig(x,y)=4nu(x,y,l)
tHy laphuongtrlnhtichch~pd6ivoihamchu'abierv(~,11)
_(Xl+yl )
. Tu(4.59)taco:h* v=g voih(x,y)=e 4
Laybiend6iFourierhaivetadu'Qc:
1\ , -, ~.
( ) -(w-+~-)- ( )v w,~.e - 2TCg w,~. (4.60)
66
ChuangIV: ChinhhoamQtso'b~lioanmoment
voi
1\ ~ i(x(v+.\'.;)
h(w,~)= jh(x,y).e dxdy
R2
: 1 /\ ,
h(x,y)=(I )2 fh(w,~).e-'(Xw+Y;)dwd~-'IT 'R-
Tli (4,60) ta thay neLll1ghi~mv t(~nt~ithl ~ dllQCchobCii:
A , ' ,',
v(w,~) = 2TI:,el\-~~-,g(w, ~),
Laybiend6iFourierngl()chaivetadUdc:
1 . 1\' ~" A
v(x,y) = - je ". g(w, ~),e-l(m+Y~)dwd~/'TT .
-IC R-
Trang thl,l'cte takh6ngC(')clCi'ki~nchlnhxacma chi co dCi'ki~ndo duQcco
sai so,Ta sexay dl,l'ngnghiC'm\.hlnhboa6ndinhd6i voi nhungthayd6icuag,
Cho go nhuCi(4,59)cl) nghi~m Vo E e (R 2)Wonglingcivephaisaocho
Jig - got:(R ') < E
Ta xaydl,l'ngham Y (~ndinh l16ivdi s1/thayd6i trongg, Neu Yola dutrail ta
co th~danhgiasai sogiCi'aV(}V:lv.
4.3.3DinhIi 4.6
Ch bK dJ h '
II
CT - CJ
II
<8 O'? ?0 at angtl1c ~ ~lJL2(R2)- . lasu:
1
fe2(W2+~2)lgo(w,~l.(\V2 + ~2)2dwd~ S E2
R2
(4.61)
IT .,
I II Ii A
£)~tv(x,y)=- r re\\'+~'g(w,~).e-i(;m+Y;)dwd~2TI: "- "- d - i'C
h
voi h2 =
{
E 2
(
TI'E
,
f
}
In- In~.)E v
Kh
'
d' " E / / I ' K1 0 VOl 8 < - taco ~((jc uQngsal so:
e
(,7
ChuangIV: ChinhhoamQtsobflitoanmoment
E.Ji
IIvo -vIIL"; In{ ~{In ~n1
Chum!minh
Tudinh1:9Planchereltaco:
,,21 /\ /\
11
2 -- vo-v
IIva- V L2(R2)- 4;r2 IIL2(R2)
~ fe2(aJ2+~2).
I
go- g2dwd~+ fe2(W'+<'JlgJ dwd;
aJ2+~2~R; \112+~2~R;
(4.62)
/\ 2 ,/\
(do v(w,~)=21t.ew+t;-.g(w,~))
vdiR;~In{~{In~n
~
2
I 1
2
2 2/\/\ 1 ,,/\
~ IIVa- vIIL(R2) ~e2Re g- ga dwd~+4 fe2(m-+,;-)ga (w2+~2)2dwd~
R2 R" R2
(do w 2+~2 ~R 2 va w 2 + ~2 ~ R 2 => 1 ~~)
E '? E (W2+~2)2 R:
Taco:
2R2
(
R2
)
2.
e E =e E
~'em[~ln~r'r
~{~{ln~rr
E2 1
=7" In2(~)
68
ChuangIV: ChinhhoamQt56bairoanmoment
M~tkhacrheagia thuye'tjig - goIIL'(R') ~ G
1 I
"" "
,,1 1\ 1\ - E- 1 " E-
~ e-R& fg- go dwd~ ~ 2""". l )
.8- = -
( )
R1 E In1 E In2 ~
E E
The- (4.61), (4.63) VaG(4.62) ta duQC:
(4.63)
1 1
11
7 E 7
1
+-
h-V;'(R')~ - In2(!) R:
(4.64)
M - kh' ,. E ,~t ac YOl : 8<- taco
e
EEl
->e~ In->I~-< 1
£ E In E
£
E I E
~-.-<-
£ In E E
E
)
{
E( E
)
-I
}
E
~ R~=In-; lln-; < In-;
E
=>R;<In-
E
I
=>-4>-
(
E
)
2
Rg In-;
CQngVaG2 ve'batding thuccho ~4 taduQC:g
1 1 2
-+-<-
In2(~) R:-R:
Tli (4.64)va(4.65)taduQC:
2 2E2 2E2
Ilvo-vIIL2(Rl)~y=
{ ( )
-I
}
8 In2 E. In E
G G
(4.65)
69