ĐÁNH GIÁ CÁC PHÉP BIẾN HÌNH Á BẢO GIÁC LÊN MẶT PHẲNG BỊ CẮT THEO CÁC CUNG TRÒN ĐỒNG TÂM
LÊ THỊ THANH NGÀ
Trang nhan đề
Mục lục
Chương1: Mở đầu và ký hiệu.
Chương2: Các công cụ.
Chương3: Các đánh giá cho lớp hàm G.
Kết luận
Tài liệu tham khảo
19 trang |
Chia sẻ: maiphuongtl | Lượt xem: 1866 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Luận văn Đánh giá các phép biến hình á bảo giác lên mặt phẳng bị cắt theo các cung tròn đồng tâm, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
12
CHUaNG 2
CAC CONG CT)
Trangchuangnay,chungtoi lieUmQts6dinhIy, b6 d~va cach~quadn
thi€t chovi~cdanhgiacacd<,tiluQnghlnhhQcd6ivdicaclOphamF va G.
2.1nilt diingthucCarleman,caeh~quavamdr{)ng
n6 d~2.1:(niltdiingthucCarleman)
Gia stt w=fez) la mQt PBHBG don di~p hlnh vanh khan
A={zl(O<)r<lzl<R«oo)}leu mQtmi~nnhi lien D khongchuadi€m 00 vdi
bien trang C1va bien ngoai C2 sancho Izl =R tuonglingvdi C2.GQi S la di~n
tich(trong)cuat~pmddo C2banbQc, s la di~ntich(ngoai)cuat~pdongdo C1
banbQc.Khi do,taco:
S2(~JS.
(2.1)
D~ngthucxayfakhivachikhif(z) =az+bvdi a,b la hlings6va a:;t:O.
w=f(z)
~
A
Or R
wz
Hlnh2.1
Chungminh: Xem [4,tr. 212].
13
H~qua2.1:(Dinhnghiamodunmi~nnhi lien)
Gia sami~nnhi lien D quacacPBHBG / va 1;l~nhiQtbie'nleuhaihlnh
vanhkhanH={wlr<lwl<R}va H]={w]h<IW11<R1}thl
R =RI
r 1J
(2.2)
Ti' s6 nay duQcgQila m6duncua mi~nnhi lien D va duQcky hi~ula
mod(D).
Chungminh:
/
~
1;
~
D HI
O~
z WI
R]
R 0
ffinh2.2
XetPBHBG j:j;-I mi~nHI leumi~nH, rheab6d~2.1,taco
ffR' ~[ ~'J ffr'
hay R RI-2-
r 1J
(2.2a)
TucJngrtf,taxetPBHBG 1;0/-]mi~nH tenmi~nH], rheab6d~2.1,taco
[ )
2
2 R 2
1rRl 2 -; 1r1J
hay
R] R-2-.
1J r
(2.2b)
Tli (2.2a)va(2.2b),suyfa(2.2).
14
H~qua2.2:(Tinh ba'tbie'ncuamodunmi~nnhflien)
Ne'umi~nnhi lien A eo caethanhphffnbienkh6ngthociiboathanhmQt
di6mdu<;1ebi 'nbaagiaedondi~plenmi~nnhilien B thl
mod(A)=mod(B). (2.3)
Chungminh:
g
~ f~
h~
~
HI
O~ Rj 0
w
Rz
Hinh2.3
GQi f la PBHBG dondi~pmi~nA lenmi~nB . X6t g la PBHBG dondi~p
mi~n A !en hlnh vanhkhan HI ={sh<Isl<RI}va h la PBHBG dondi~pmi~n
Bien hlnhvanhkhan Hz ={tlrz<ItI<Rz}.
Theah~qua2.1,taeo:
mod(A)=RI va mod(B)=Rz.
~ rz
D~tcp=hf thl cpla PBHBG dondi~pmi~nA len hlnhvanhkhanHz.
Theoh~qua2.1,taeo:
mod(A)= Rz va Rj - Rz
r --z lj rz
V~ytaeo mod(A)=mod(B)We(2.3).
15
H~qua2.3:(Tinh dondi~ucuamodunmi~nnhi lien)
Trangm~tph&ngz chahaimi~nnhi lien A va B vdi moduntu'dngung
la R va R], coHnhcha'tAc B va A ngancachhaithanhphilobiencuaB.
r lj
Khi do,taco:
R Rl-~-.
r 1j
(2.4)
D&ngthucxayrakhivachikhi A=B.
Chungminh:
w=f(z)
~
R
Hinh2.4
VI mod(B)=RI Dent6nt!;liPBHBG ddndi~pf mi~nBIen hlnhvanh
lj
khan 11={wi'i<!wi<R1}.Khi do, quaphep bie-nhlnh f mi~n A trd thanhmi~n
nhi lien A vdi mod(A)=R cobientrongla C] va bienngaaila Cz saDcha C]r
baaquanhha~ctrungvdi !wi=1j vaIwl =Rl baaquanhha~ctrungvdi Cz. GQi S
la di~nrich(trong)cuat~pmdda Cz baabQc,s la di~nrich(ngaai)cuat~p
dongda C1baabQc.
16
Khi do,taco:
s~m/ (2.4a)
va S 5,1rR)2. (2.4b)
Vi mod(A)=R nent6nt(;liPBHBG dondi~pg mi~nA leuhlnhvanhr
khan D ={tIr 5, It15, R}.
Ap dl,mgb6d~2.1choPBHBG w=g-) (t), taco:
s~(:Js, (2.4c)
trongdod~ngthucxayrakhivachIkhi g-) (t)=at+b vOia,b la hangs6, a;t:o.
Tuc A lahlnhvanhkhan.
Ti'icack€t quatren,taco:
(~J <~(:J.
Ti'ido suyra (2.4).
f)~ngthuc(j (2.4)xay ra khi va chI khi cac d~ngthuc(j (2.4a),(2.4b)va (2.4c)
cungxayra,tucA=B hayA=B-
B6 d~2.2: (Md r{)ngbilt diingthucCarlemanbdiThao[12,tr. 521])
Gia su w=fez) la mQt PBHKABG hlnh vanh khan
A ={zl(0<)r <Izi<R(<oo)}leu mQtmi~nnhi lien D khong chua di€m 00 vdi
bien trongc) va bienngoai C2saocho Izi =R tu'onglingvdi C2.GQiS la di~n
tich (trong)cuami~ndo C2baabQc, s la di~ntich (ngoai)cua t~pdongdo C)
baabQc. Khi do, taco:
2
s~(~)K s.
(2.5)
17
D~ngthucxayrakhivachIkhi fez)=alzr~.-I+b vdi a,b la h~ngs6va a~o.
Chungminh: Xem [12,tr.521],[17,tr. 13-14].
2.2Md r{)ngcaebittdiingthucGrotzschvaKiihnau
B6 d~2.3:(BittdiingthucGrotzsch1)
Giasaw=fez) la PBHBG ddndi~phlnhvanhkhanH ={zl(O~)r<lzl<1}
leu mi~nnhi lien D vdi bienngoai Iwl=1vabientrongc, saochomi~ngidih~n
boi c luauchuahlnhtroll Iwl<s,(s<r).Ki hi~uM={MaxlwllwEC}va gia sa
, ? 2bi
rangtren C cop diem Wk =MeP ,( k=O,1,...,p-1).
Khi do,taco:
MsT(p,r,s), (2.6)
trongdod~ngthucxayrakhi va chikhi f =fo lamQtPBHBG ddndi~phlnh
vanh khan H={zl(O<)r<lzl<1} leu mi~n nhi lien
D ={wis <Iwl < 1}, (0 s s <r <1)bi c~t boi p do~n
2
thang
Lj ={w s:>!wI:>/,argw~2;j },(o:>s </ <1),j ~1,2,.--,p.
Chungminh:Xem[6,tr.372]hay[19,tr.18-20].
B6 d~2.4:(Md r{)ngbittdiingthucGrotzsch1bdiThao[13,tr. 63])
Gia sa A la hlnhvanhkhanR<lzl<1vdi pn,(p=1,2,...;n=O,1,2,...)nhat
- hi
c~tcungtrolld6ngtam0 saochoA trungvdi chinhnoboiphepquayz=zeP .
GQi f la PBHKABG mi~nA leumi~nB n~mtrong0<Iwl<1 saochodliong
troll Iz1=R tlidngling vdi bien trongC giOih~nmQtt~pdongchuag6ctQadQ,
du'ongtroll Iz1=1tu'dngling bien ngoai C cua B . Hdn nii'agia thi€t B trling
2~i
vdi chinhno boi phepquay;:;:'=weP .
18
Khi do,taco:
M~T(p,R*,m), (2.7)
vdi M =max{lwl,WEc}, m=min{lwl,WEc}, 0~m~M <1.
Ding thucxay ra khi va ChIkhi w=f(z)=ah(u),lal=l,u=bzlzlt-I,lbl=l, h
la PBHBG don di<$phlnhvanhkhan R*<lul<1 ten miennhi lie~saocho
lul=ltu'onglingvdi bienngoaiC={wllw\=I}, conlul =R* tu'ongling vdi bien
trong c ~{~I+m}u{~m,;H,;M,argw~2;j,j ~1,...,+
Chungminh:Xem[13,tr.63]hay[19,tr.33- 35].
Nhophepbiend6i z =Q va W=ml , b6de2.4trdthanhz w
H~qua2.4:
GiasaA lahlnhvanhkhanQ<lzl<Rbic~tbdipn,(p=1,2,...;n=0,1,2,...)
2/T'
cungtrolld6ngtam0 saochoA trungvdichinhnobdiphepquay; =zeP . Gia
saf la PBHKABG mienA tenmienB namtrong0<Iwl<00 sao cho Iz I =Q
tu'ongling vdi bien trong C] baag6ctQadQ,du'ongtroll Iz1=R tu'ongling bien
ngoai C2 cua B. Hon nua gia thiet B trungvdi chinhno bdi phepquay
2/T'
P
w=we .
Khi do,taco:
m2 2::
[ (
;1
)
*,!!!L
J
'
T p, R M2
(2.8)
vdi M2 =max{lwl,WE C2}, mj =min{lwl,WE Cj},j =1,2.
19
B~ngthucxayfa khi va chikhi w=f(z) =ah(u),Ial=I,u=bzlzlt-),Ibl=1, hla
PBHBG hlnhvanhkhan Qt <lul<Rt len mi~nnhi lien E saDcho lul=Qttu'ong
ling voi c] ={wllwl=m)} va lul=Rt tu'ong ling voi
c,~ {wI1wi ~ M,}u{wllwl ~ m, ,; w,; M"argw ~ 2;j ,j ~1,...,P}.
Chungminh:Xem[13,tr.64]hay[19,IT.35- 36].
Be}d~2.5:(Ba'tdiingthucGrotzsch2)
Giasa w=fez) la PBHBGdondi~phlnhvanhkhanA={zl(O<)r <Izi<I}
lenmi~nnhilienB n~mtronghlnhtroll Iwl =1,c6bienngoaiC2Ia du'ongtroll
Iwl =1 vabientrongc) saDchoIzl =1tu'ongling voi C2.
Khi d6, du'ongkinhD cuac) thoa
D::; Do =2T(2,r,O), (2.9)
trongd6 D=Dokhivachikhi c) la do~nth~ngnh~nw=0 lamtrungdi~m.
Chungminh:Xem [8,tr. 220].
Be}d~2.6:(Ba'tdiing thuc Grotzsch2 md rQng)
Gia sa w=f(z) la PBHKABG hlnhvanhkhan A={zl(O<)r<lzl<R}len
mi~nnhi lien B c6 bienngoai C2va bientrongc) saDcho Izl =R tu'onglingvoi
C2. B~t M =max{IwllWE C2}.Khi d6, du'ongkinhD cuac) thoa
D';Do~2MTH~rol
(2.10)
trongd6 D=Dokhiva chikhi w=fo(;) voi;=azlzl-t-],Ial=1 vafo laPBHBG
dondi~phlnhvanhkhan A=FIr-t<1;1<R-t} len hlnh troll Iwl<M bi ciit dQc
do~nth~ngnh~nw=0 lamtrungdi~msaDcho 1;1=R-t tu'ongling voi Iwl=M .
20
Chungminh:
.:. Tru'onghQp1: K =1, C2 trung voi du'ongtron Iwl=M
w=j(z)
~
R
B
(]
Bo
M 0 M
w w
------ w=fo(z) ~
Hinh2.5
Chi dn thljchi~ncacphepco dan ; =~ va; =; , d~dangdu'atru'ong
h<,Jpnayve tru'onghQpcuab6 de2.5voi mien A thaybdi A={;I~ <1;1<I} va
B thaybdi l3 nQitie'ptronghihtron1;1<1.Trd vecacbie'nz va w tathudu'Qc
(2.10)vdi K =1clingke'tlu?nchoD =Do'
.:. Tru'onghQp2 : K =1,C2Ia bienngoaiba'tkl cuaB
GQil3lamiennhilienchuaB cobienngoaila !wi =M, bientrongHi C].
Do tinhdondi~ucuam6dunmiennhilien (xemh~qua2.3), taco:
mod(B)~mod(B).
Theoh~qua2.2, taco:
mod(B)=R.r
M~tkhac,giasa l3comodun
mod(l3)=~ .r
21
V~y
r r-<-
l?- R'
Theatinhchfftdondi~u(1.17)cuahamph\)T(p,r,s), taco:
T[2,~,O)~T(2,~,O}
~
(2.lOa)
A ,,' B
,/
O. "MI .. I' I
I I
:
C Cz,'I I
\ 1 I
\ ,\ ,\ ,' ,' -' -' -'--------
R
Or
CIG
Hinh 2.6
Ap d\)ngtfu'onghQp1,taco:
DQMT(2, ~,oJ
Ke'thQpvoi (2.lOa), suyfa
D:; Do=2MT(2,~,0).
Tuc (2.10)vOiK =1.
w
M
B
22
.:. Tru'ongh<;lp3 : K ~1, C2 la bienngoaiba'tld cua B
~
A
R
~,
" B '-' \,/
G \MI II I ~
r I
:
C c2,'\ ,
'- J "
\ ,
"""' ~~----
Or
u~g(w)I
" '\ l»I
O~
u
Hinh2.7
Mi~nnhi lien B co th~bie"nbaagiacddndi~pbdi u=g(w)lenhlnhvanh
khan BI={ulo<fJ <lul<Rj} saocho C2tu'dngungvoi lul=RI'
Ap dl;mgtru'ongh<;lp2 cho PBHBO .w=g-I (u) hlnhvanhkhanB( leumi~n
B , taco:
DSlMT( 2,~,0).
(2.lOb)
M~tkhac,hlnhvanhkhanBj coth~xemla anhcuahlnhvanhkhanA qua
phepbie"nhlnhh<;lpcuaPBHKABO f voi PBHBO g, tucquaPBHKABO gof.
Do do,theo(1.2),taco:
~
(
r
)
*
-< -
RJ - R .
Hdnnii'a,theoHnhcha'tddndi~u(1.17)cuahamphl,lT(p,r,s), taco:
24
B6 d~2.8: (Ba'tdiingthucKiihnaumdrQng)
Trangm~t ph&ngz chomQthlnhv~lllhkhanA={zl(0i
w=f( z) Ia PBHKABG bie'nmi€n A Ien mi€n nhi lien B co bienngoaiC va
bientrangcsaocho Izl =R tlidnglingvdi C. GiS Ia di~nrich(trong)cuami€n
dobienngoaiC baobcva D la Quangkinhcuabientrongc.
Khi do,taco:
SIn(1- (2 ) , .
( (
r
)
t
)D s;1/ -i( , VOl (=T 1, R ,0.
(2.13)
D&ng thuc xay ra khi va chi khi f(z)=fo(~)=bln(1-(~)+c,lbl=1vdi
In(l- ( )
11
-1..
~=a~zK-'
RR ,lal=1.
Chungminh:
w=f(z)
----------.
z
R deAOr
w
s=g(w)
Q'i 1
B,
1
s
~
Hlnh2.9
25
D§u lien,bi€n baagiacddndi~pmi€n B boi s=g(w) leuhlnhvanhkhan
BJ ={sl0 < fj < Isl <I} .
Sando,th\lchi~nPBHBG u=h(s) hlnhvanhkhanBJ leumi€n nhilien B2
gioi h~nboi du'ongtroll lul=1va nh£itc~tL(t)={uIO<lul~t,argu=O},<t<l,
saDcho Isl=1 tu'dngung voi /u/=1. Theo dinhnghlahamph1,1ta co fj =R"(I,t,O)
hay t =T(l,fj,O).
Ap d1,1ngb6 d€ 2.7choph6pbi€n hlnhhQpg-Joh-Jmi€n B2leumi€n B, taco:
Sln(1-t2) ".
D ~~I , VOl t=T(1,fj,0).-1( (2.13a)
M~t khac, BJ co th6xemla anhcua A quaPBHKABG f.g la hQpcua
PBHKABG f vaPBHBG g.
Dodo,taco:
~~(~r.
Theo (1.17)v€ tinhddndi~ucuahamph1,1T(p,r,s), ta suyra
T(l,~,O)';TH~r ,0).
(2.13b)
K€t hQp(2.13a)va(2.13b)taco(2.13)voiphatbi6uv€ tru'onghQpd£ngthuc8
2.3Ba'tdiingthuctheoIy thuye'tde)daictfctri
Ly thuy€tdQdai c\lctrib~tngu6ntumQts6cacba"td£ngthuclien h~
giii'amoduncuamQttugiachaymi€n nhilien,di~ntichmi€n dovadQdaing~n
nha"tcuadu'ongcongthuQcmQthQdu'ongtraitrongmi€n dotinhtheomQtdQdo
ba"tkydu'QcAhlforsvaBeurling[l]d€ xu'ongnam1950dfftrothanhcongC1;1huu
hi~ud6giainhi€u bailoant6iu'utrongIy thuy€thlnhhQchambi€n phuc.
26
Trangm~tph~ngz=x+iy,chotugiaccongQ cocacdinhlfinIu'Qtla A, B,
C va D. QuaPBHBG dondit%pw=f(z)=u+iv, Q du'Qcbi€n tenhlnhchunh~t
Q'={w=u+ivIO~u~a,O~v~b}co dinhtu'dngling lfin Iu'QtIa A', B', C', D' sao
choA'B'=a;B'C'=b.
GQir Ia hQcacdu'ongcongr n6ihaicanhd6idit%nAB vaCD cuatugiac
cong Q, do p=p(Z)~O,ZEQ saochodit%ntichcua tu giac -
congQ theode>dop lahuuh~n,nghiaIa
Sp(Q)=Hp2(z}iS<+oo.
Q
(2.14)
De>dai cuacacdu'ongcong r theode>dop du'Qctinhb~ngcongthuc
lp(r)= Jp(z)ldzl(~+oo),rEr,pE<D.
y
(2.15)
B6 d~2.9:
Vdi cackyhit%unhu'tren,taco:
Sp(Q)~al~vdi lp=inflp(r),b yer (2.16)
d~ngthucxayrakhivachikhi p(z) =kif (z)l,zEQ,k=canst.
Chungminh:
Taco
Sp(Q)=Hp2(z}iS=Hp2(z)dxdy
Q Q
2 dudv atb p2 (Z) 1;/
=[fp (Z)jf'(zt =II !If'(z)12dvJu
~
b p2(Z) b
J
du 1
~
b p2(Z) b
}= J 2dvJdv ~=- J 2dvJdv u0 olf'(z)1 0 Jdv bo olf'(z)1 0
0
27
<: 7; A J I;'~~Idv J' du (Do apd\lngBDT tichphiinSchwarztchohaiham
p(z) va 1trendOc;ln[O,b])
If'(z)1
1oJ
J
2
=bdlJp(z)ldzl du
(ruIa nghichanhcuadoc;lnth~ngu=canst,~
0~u ~a,0~v~b ).
1 a
=b JI~(ru)du~a120 b p'
Ding !hac a(2.15)xaY fa khi va chi khi II I~gifta hai ham I;'~;)IvaI lahang
sf),d6ngthai Ip(ru)=lpvoimQiru,(O~u~a)p(z)=kl/(z)l,k=const,zEQ,
vi khid6 Ip(ru)=Jp(z)ldzl=kJI/(z)lldzl=kb=lpvoimQiuE[O,a].
Yu Yu
B6 d~2.10:
Trangm~tph~ngw chomQttu giaccongBoc6 haicc;lnhn~mtrenhai
duangtroll Iwl=cvaIwl=d,O<c<d.B~t O<O(r)=Jldlpl~Oo(~2Jl"),trongd6
c,
<p=argw,Cr=Bon{wllwl=r}vagiasa O(r)khatichtrendoc;ln[c,d].
Giasa z=g(w)la PBHKABG mi6nBo lenmi6n.40cuam~tph~ngz .
Ta d~tCr =g(Cr) , 0<c ~r ~d <+00.
Hon mIa, gia sa p =p(z)~0 duQc xac dinh trong .40 saD cho
1p (Cr) =fp(z)Idz I~ 00, c ~ r ~ d
c,
va Sp(.40)=Hp2(z)dxdy<oo,Z=x+iy t6n tc;li
A
theonghlaLebesgue.Ngoaira Ip(Cr) ~I~,c~r ~d.
28
Khi do, taco:
1 2d
J
dr
Sp(Ao)~K(l~) crO(r)"
(2.17)
Chungminh:
GQi dS la vi phancua Sp(Ao) tu'dngling voi [r,r +dr]c [c,d] , tuc dS xa'p
"
Xl dt theodQdo p(z) cuaanhmi€n D =Bon{wlr <Iwl<r +dr}bdi z=g(w).Do
dr(>0) ra'tbe va O(r) khatichtren [c,d]coth€ thayD bdi
15=Bon{wlr<Iwl<r+dr,a<arg(w)<a+O(r)}voi a la argumencuamQtdlnhtu
giaccong15n~mtrenIwl =r
Hamt =Inw bie"nmi€n 15lenhlnhchii'nh~tvoicacq.nh
I
r +dr
I
(
dr
)
dr 'n ( ) V
," d ? / ./ D
-
I 'n-= n 1+- ~- va,!,,!;r. lv(;J.ymouncuatuglaccong ar r r
dr
dr
mod(15)=O(r) =r.O(r).
Theo [ 3, tr. 19], taco:
1 dr 2 1 dr
(
0
)
2
d/ (
~
)
/ .
dS~ ( )Ip ~ ( ) Ip , trong 0 Ip =Ip Cx VOl r <x <r +drK rO r K rO r
La'ytichphanhaive"tren[c,d]tadu'cjc(2.17).
2.4Caeb6d~khae
B6 d~2.11:(Bie'nhaidu'ongtroDl~chtamthanhhaidu'ongtroDd6ngtam)
Ne"uA lami€n nhiliengioih(;J.nbdihaidu'ongtroll Izi=1va Iz- hi=lj voi
0<h<1, 0<lj <(1-h) du'cjcbie"nbaa giacddndi~plen hlnhvanhkhan r <Iwl<1
thl
r =r(r),h)= 1- h2+r)2-~(1- h2- r/ Y -4h2r)2
2r .)
(2.18)
29
Truong hQp A la mien nhi lien gioi h~n bdi Izl=r2 va Iz- hi=r) voi
0<h<r2,0<rl <r2-h thi
r =r(rl'r2,h)=r22-h2 +r/ -~(r22-h2 -r/Y -4h2r12
2r)r2
(2.19)
Chungminh:Xem [18,tr.20-22].
B6 d~2.12:("D~oham" cuahamngtiqcchoPBHKABG)
Voi caeki hi~ud phfin1.2,giiisa W =f (z)laPBHKABG cuamienchua
z=Ovoi f(O)=Ova m'(O,f»O.
f)~tg=I-I , taco:
I
m'(0,f) =M*(o,gfX,
I
M'(O,f) =m*(o,gfX.
(2.20)
(2.21)
Chungminh:
Lfty R>O du be , d~t CR={zllzl=R}va C~=/(CR), r6 rang t6n t~i
WIE C~va z) E CRsaD cho
m(R,f)=lw)I=lf(z))I=r, r>O.
f)~tLr ={wllwl=r}va Lr=g(Lr)
Vi Lrn~mtrongIzl~R,taco M(r,g)=lg(w))I=lzII=R.
Dodo
I
'
(0 1) =1" m(R,f) =1" r =1
.
[
M(r,g)
]
-X =M*(O )
-t
m, 1m I 1m ) 1m K ,g.r->O - r->O
( )
- r->O r
RK M r,g K
Tudngtlf, lfty R>O du be , d~tCR={zllzl=R}vaC~=f(CR), r6 rangt6n
t~i W2E C~va Z2E CR saD cho
M(R,f)=lw21=lf(z2)I=r, r>O.
30
B~t L, ={wllwl=r}va I, =g (L,).
VI Izl=R nflm trong t~pdong gioi h(;lnbdi I" ta co:
m(r,g) =lg(wz)1=lz21=R.
I
Dodo M'(O,f)=limM(R;f)=lim r -'- =lim
[
m(r;g)
]
-K =m*(O,gft.
,~O RK ,~Om(r,g)K ,~O r
H~qua2.5:
Cho K =1, ta co m'(O,f)=If'(o)1 va M*(O,g)=lg'(O)I. Luc do
m'(O,f)=M* (O,gft trdthanhcongthilcquellthuQcIf'(O)1=lg'(OfI. (2.22)
2.5Cae daub gia eholop ham F
BS xay d1!ngcac danhgia cho lOpham G ta c~ncac danhgia duoi day
cholOpham F , tilc lOphamnguQccualOpham G .
DfnhIy 2.1:
Duoi cac ky hi~uva giii thie"td ph~n1.2,voi mQi f EF, zEA,z *-0,z *-00 ,
0<R <00 , taco:
S'(O,f)~l,
PSI ~(l-S'(O,f))1Z"Rt,
2 2
S'(O,f)1Z"RK~S(R,f) ~1Z"RK,
(2.23)
(2.24)
1
m(R,f)~RK ,
M(R,f) ~Rt~S'(O,f),
(2.25)
(2.26)
(2.27)
m(R,f) ~4-;m'(O,f)Rt , (2.28)
1 -'-
M(R,f)~4P RK, (2.29)
.l -'-
D(R,f) ~2APRK, (2.30)
31
4-im'(O,J)lzlt~IJ(z)I~4ilzlt, (2.31)
4-im'(O,J)Rt~c(R,J)~d(R,J)~4i Rt .(2.32)
M6i d£ngthuctu(2.23)d€n (2.21)xayfakhivachikhi J(z) =azlzlt-lvoi lal=1.
Chungminh:Xem[19,tr.54- 56].