ĐÁNH GIÁ LỚP PHÉP BIẾN HÌNH Á BẢO GIÁC LÊN HÌNH VÀNH KHĂN BỊ CẮT THEO CÁC CUNG TRÒN ĐỐI XỨNG QUAY
TRƯƠNG THUẬN
Trang nhan đề
Mục lục
Chương1: Tổng quan.
Chương2: Mở đầu và ký hiệu.
Chương3: Công cụ.
Chương4: Các đánh giá lớp hàm F.
Chương5: Các đánh giá lớp hàm G.
Chương6: kết luận.
Tài liệu tham khảo
14 trang |
Chia sẻ: maiphuongtl | Lượt xem: 2014 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Luận văn Đánh giá lớp phép biến hình á bảo giác lên hình vành khăn bị cắt theo các cung tròn đối xứng quay, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Lu(m van Th(lcsj Toan h(Jc- TntclngThu(1n 28
Chuang5
cA C DANH GIA LOP HAM G
Trangchu'angnay,chungtoidanhgiacaed£;liu'cjngd~ctru'ngchami~n
chuffnclingnhu'modulicuacaelOphamG. Vi~cdanhgia bankfnh
Q(g), 9 E G, dongm9tvai tro quailtrQngtrangvi~cdanhgiacaed£;li
lu'cjngkhac,VI the'chungWi b~tdftuvoi danhgianay.
5.1 Danh gia bankinh Q(g)
DinhIy 5.1. VcJicaegiGthiefvaky hi£luiJ ehLtdng2, V9 E G, tae6
K
(1+ S~~)r'<Q(g)</i-*,
trongd6 dangthuetraixdy ra khi B = Bovag(w)= alwIK-1w,w E
1 1
B, lal =1vadangthuephdixdyrakhiB =Bovag(w)=blwlK-W,wE
B, Ibl= 1.
(5.1)
Chungminh.Ap d\lngb6d~4.1chaPBHKABG ngu'cjcf =g-l, 9 E G,
taco
2 2
32 > 81 (Q~g)r+ps(R~9)r
2
> 81 (Q~g))K+ps (doR(g)<1).
Tli day,suyfa c~ndu'oicuaQ(g)
(5.2)
Q(g)>C2.~psrIf =(1+ S~~)rIf.
Khi B = Bovag(w)=alwIK-1w,la!= 1thld~ngthucKayfa.
M~Hkhac, ne'uf.1> 1,apd\lng[13,dinh191]choPBHKABG9 E G
tanh~ndllc;1c
2
7r12 >7rQ2(g){lK .
Suy fa
1
Q(g)<{l-K.
Tli day,nhd [14,c6ngthuc2.5],ta co d~ngthucKayfa khi B =Bo
-k-1 ~
vag(w)=blwl w, Ibl= 1, wEB.
Ne'u{l= 1thldaubgiac~ntfenIa hi~nnhienvad~ngthuckh6ng
th~Kayfa. 0
H~qua5.1.VI 8(B) 7rq2,cg,ndztcJicua Q(g) trong
(5.1) dzt(fcvief dztcJid(lng
(
P8)
-if
Q(g)>qK 1- -:; (gE G), (5.3)
suy ra
Q(g)>qK. (5.4)
Deingthac(5.3)ho(ic(5.4)xdyra {:} B =Bovag(w)=alwIK-1w,w E
B, lal= 1.
5.2 Danhgiac~ndtioibankinhR(g)
K
Vi R(g) > Q(g),\/g E G, tli dinh195.1,taco R(g) > (1+S~~))-2.
M~tkhac,taconco dinh19sail:
DinhIy 5.2.V6i caegidthiefvakyhi?u iJ chztdng2, \/9 E G va8>0,
taco caedanhgia:
R(g)>(
1- 8(B)
)
1f
82 j
R(g)>
(
p8 2
)
If .
82- 81{lKI
(5.5)
(5.6)
29
Cluingminh.Thea(5.2),voi 8>a
(
1
)
1<
(
1
)
1< -*
82>81 Q(g) +p8 R(g) >R (81+p8).
Suy fa
--k 82R <-
81+p8
Vi 81+ p8 =82- 8(B), taco (5.5).
M~itkhac,tli (5.7)va (5.1),taco
2
(
1
)
1<
82>81 (1'*)K +p8 R(g) .
Tli day suy fa (5.6).
5.3 CaedanhgiakhaeehoQ(g),R(g)va Ig(w)1
Blob Iy 5.3. VJi caegia thittva ky hi£1u(J chZlcJng2, 'l/gE G, taco
1
-x
Q(g) < J-L
)
,
RK(p,Iwl,q)< Ig(w)1< RK (p, 1~I,q)- RK (p, 1;I,q-K
Q(g) < f-l ,
(qK<)RK(p,d,q)<R(g)<RK (p,~,q)- RK (p,~,q)
RK(p,d,q)RK(p,~,q)<Q(g).
(5.7)
D
(5.8)
(5.9)
(5.10)
Cluingminh.Ap d\lngbfftd~ngthucphai cua (4.20)cha PBHKABG
w = j(z), z E A, hamngu'Qccuaz = g(w),wEB, voi 9 E G, taco
Iwl < t voi t = T [v,Ig(w)I*",q] .
Do do, theodinhnghlacuahai hamsf{ph\!T(p, r, 8) va R(p,t,8),
E G va Vw E B, taco
1
Ig(w)IK=R(p,t,q)
30
varheatinhdondi~u(3.11)cuahamR(p,t,s),taco
R(p,t,q)> R(p, Iwl,q).
Tli do suy ra c~nduoi cua Ig(w) I trong(5.8).
M~t khac, ta nh~nduQctli ba'td~ngthlic trai cua (4.20), \:/gE G va
\:/wE B,
Iw I >;v6it'=T [p,C~~i I) k ,q] .
Tli do tu'dngt1/nhu'tren,\:/gE G va \:/wE B, taco
( )
-k
(
.
)
Q(g) I q
Ig(w)1 =R(p,t, q)>R p,~, q ,
Ke'thcjpvoi (5.1),suyra cacc~ntrencua Ig(w)i trong(5.8).
Tu'ongt1/,nhoba'td~ngthlic(4.22),tacoth~chira cacba'td~ngthlic
(5.9).
f)anhgiac~ndu'oi(5.10)d6i voi Q(g)duQcsuyra tr1/ctie'pt11(5.9).
D
H~qua5.2. Tit (3.24),tanh(mdu(lccacdanhgiaddngilln.
vfii cacgill thiefva ky hi~uiJ chuang2, \:/gE G, taco
4-*lwIK < Ig(w)1< 4{fQ(g) C~I) K <4*p-k C~I)K,
K K
( )
K K 1
( )
K
4-P dK < R(g) <4PQ(g) ~ <4P jL-K ~ '
4-~(CJ )K < Q(g)< 1c R(g) ,
4_2f,' (q:r<Q(g).
(5.11)
(5.12)
(5.13)
(5.14)
Tit (3.12)va (3.16),tathflyrlingcach~slf chiphl:lthuQcvaaK vap
trang(5.11)-(5.14)la totnh{{t.
Chzly 1. Truonghcjpcacthanhph~nbieno-jthoaihoathanhp di~m
roi r(;lc,hi~nnhiendanhgia (5.11)vftncondungne'utathaycacda'u<
bdi <. Nhu'v~y, bAngcach thactri~nlien t\lCham z =9(w) t(;lip di~m
31
biendfinell,tathffy(5.11)v~ncondungchoPBHKABG d6ixungquay
p lfinz =g(w) mi~nnhilienB nQitie'ptfonghlnhvanhkhanq < Iwl < 1
leDhlnhvanhkhanQ < Izi < 1.
Chuj 2. (5.14)coth~s~chon(5.4)khiq -+ 0, C -+ 0 vdi di~uki~n
d " q=canstva - =canst.
c
H~qua5.3. TruiJnghC;pC1, C2 va cac CJj lan ll1c;tla cacdl1(Jngtran
Iwl = Qt,Iwl =1vacacnhatcdttrenduiJngtranIwl= R', tacocac
danhgiasau ~
, 1
Q'K <Q <QK, (5.15)
,1
RK (p,R',Q')<R < K (Q~, ')
.
R p,R" Q
Trang(5.15)dlingthactraixayra{::}B =Bo, g(w)=alwIK-1w,w E
1 1
B, lal =1vadlingthacphaixayra{::}B =Bo,g(w)=blwlK-w, w E
B, Ibl=1.
(5.16)
Changminh.Th~tv~y,khi do q = M1 = Q', C = d = R', J.t= J"
S(B) = 7r(1- Q'2), 81= 7rQ'2,8= O.
Do do,apd1;lngdinh195.1,tanh~ndu'Qc(5.15),clingvdi di~uki~n
xayfa ding thuc.
Tu (5.9)va (5.15),nh~ndu'Qc(5.16). D
H~qua5.4. Ktt hC;p(5.2)vai (5.9),tatiml(Ii c(lndualcilaQ(g) co thi
sdch(Jn(5.1)nhusau
(
1
)
1<
(
1
)
1<
82 > 81 Q(g) +p8 R(g)
(
1
)
1<
( K (
q ) -k)
-k
> 81 Q(g) +p8 R p,~,q J.t .
Suy ra
Q(g)>
(
82- p8.R2(p,~,q) J.t~
)
-~
81 .
32
H~qua5.5. Tit (5.9)va (5.10),tanh(mdLt(le,nhiJ (3.12)va (3.17),cae
danhgia sauday ddi vai Ided{jh{jiI¥ ctlaR(g), ~i~ivaQ(g)lrongeae
tntiJngh(lpgifJi h(ln
K1f2
1- R(g) <1- RK(p,d,O) ~ K[l- R(p,d,O)] ~ 1 82p n p(l-d)
khi d -+1,tllela R(g) -+ 1khi d -+ 1.
1- Q(9) < 1- RK ( CJ 0)R(g) P, c'
~ !{
[1- R (p,~,O)] ~ K1f28
C 2p In p(l-~)
khi ~ -; I, tlic fa ~i:i -; 1khi ~-; 1.
1-Q(g) < 1-RK(p,d,0)RK(p,~,0)
~ K [(1- R(p,d,0))+(1- R (p,~,0))]
!{1f2 K 1f2
~ 8 + 8
2pInp(l-d) 2pInp(l-~)
khi d -+1 va ~-+ 1.
e
FJanh giG(5.19)n6i r2ingQ(g) ddntdi 1ntu d -+ 1va:l. -+ 1.c
5.4 Danhgiag6cmdj3(g)
(5.17)
(5.18)
(5.19)
R5 rangtaluanco0 <{3(g)<21f,9 E G, tuynhientamu6ncodanhgia
p
t6thdntrongnhfi'ngtru'onghejpnaodo. Mu6nv~ytadungphu'dngphap
dQd~li-di~ntichhaycongQiIa dQdaiQtctri doAhlforsvaBeurling[1]
d~xu'ongnam1950,giupgiiHquye'tnhi~ubaitoant6iu'utrongPBHBG.
Md rQngphu'dngphapdo choPBHKABG, taco b6d~sau:
B6 d~5.1. Trongm(ltphdngz ehohlnhehilnh~t
D = {z= x + iyl 0 <x < a, 0 <y < b}.
33
Gia sa ham so'W = j(z) th1!chi~nmQtPBHKABG hlnh chTlnh(ltD
ZenmQtta giac GongH cila m(itphdngW saDcho cac dlnh 0, a, a + ib
va ib cila D ztmZuffttu(jngang V(ji cac dlnh WI, W2,W3va W4cila H.
GQi r ZahQcac cungr trongH noi cc;mhWIW2wJi c(;mhW3W4cila H.
GiGsa co hamdQdo p = p(w) >0 lien tf:lCtrong H saD cho
0 < Ip(r) = lp,dW,<00, V"{ E r
va
0<SetH)=JJ HP2dudv<00, W = u +iv.
lJ(it
lp = inf lp(r ).
fEr
Khi do, ta co
1 a 2
Sp(H) >K blpo
Ddng thac (j (5.20) co thl xay ra.
(5.20)
W4
D ,Dx
WI
W3
ib a + ib
0 x a W2
Hinh5.1:PBHKABG hlnhchunh?tD JentugiaccongH.
Changminh. *Tru'dngh<jpK =1
D~t
5x=Dn{zl~z=x}varx=j(5x), O<x<a.
Theagiiithie't,taco
a
Sp(H) =JJ Dp21f'(zWdxdy= J dx1.p21f'(z)12Idyl.
0
34
Theoba'td~ngthucSchwarzI, tanh~ndu'QC\Ix E (0,a)
L pV(zWldyll, Idyl>(L pl!'(z)lIdyl)2,
vadofoxIdyl=b>0Denco
l p21f'(zWldvl > ~ (l plf'(zJ[[dvl)2 .
Do do,d€ y1xE f, taco
a 2 a 2
SetH) > i J (l plf'(z)lIdYI)dx= i J (1. pldwl) dx0 0
a
12
J
a2
> y;lp dx =y;lp.
0
*Tru'onghQpK > 1.
Xet T/=h(w) la PBHBGtugiacH leDhlnhchii'nh~t
D' = {'TJ= S+it I 0<s <a', 0<t <b'}
saochocacdlnhWI, W2,W3va W4cuaH l~nhiQttu'ongumgvdi cac
dlnh0, a',a'+ib'vaib'cuaD'.
Apdvngchungminhtrenchoanhx~ngu'Qch-I, taco
a'
Sp(H)> bll~.
M~tkhac,anhx~h0 f la PBHKABGhlnhchii'nh~tD leDhlnhchii'
nh~t D' Denco
a' 1 a
->--
b' - K b.
IBilt dAngthucco d~ng
!<g(X))'dx!<h(X))'dx;' Ug(x)h(x)dx) ,
trongdogiii thie'tg(x),h(x) lient\lcteendo~n[Xl,X2]vadAngthucxiiyfakhivachikhig(x)=Ch(x),
X E [Xl,X2],C = canst.
35
Tli doco(5.20).
f)~ngthuc(j (5,20)co th€ xayfa, ch~ngh~nkhi H tIlingvoi D',
( ) 1
'- a K
a'
Th" " kh' d' 1 al2 1 a(b')2 'b'
P W = vab = b" ~t v~y, 1 0 K bP = K b =a =
Sp(H). D
B6d~5.2.Trangm(itphangz ehomiin
E = {zl rl < Izi < r2, 'PI < argz < 'P2}.
Gia sithamsa W= j(z) thl;tehi<fnmQtPBHKABG mi€n E Zen~Qt
ta giac GongH cila m(itphangw sao chocaedlnhZl = rl ei'P2, Z2 =
ei'Pl, Z3 = r2ei<plva Z4=r2ei'P2cila E tanZuqtuangringvdi caedlnh
WI, 'W2,W3vaW4cilaH. GQir fahQcaecung"( trong H m5'iC(mhWIW2
vdi qmhW3W4cilaH.
Vai caeky hi<fup, lp("(),"(E f, lp,Sp(H) nhutrongb6d€ 5.1,taco
Sp(H) > ~'P2-r:ll~, (5.21)In-
rI
Dangthric(j (5,21)co thi xay ra.
Z4
~r2!r) A'f)1/'?2 Z 3
01"\ 1'9, Z2
/67 W4 W,
H '"'II{>WI
W2
i In r2
rl
~-!.pi +i In r2
rl
~6x
0 -x
~ -\PI
Hinh5,2:PBHKABG mi~nE Jentti'giaccongH.
36
Changminh. Quaphepbie"nd6i
z =x+iff=rp2+i In~ = (rp2 - rp)+i In~, z =reirp,
rl rl
mi~nE sebie"nthanhhlnhchITnh~t
D ={z=x+iYI 0 <x< 'P2 - 'p" 0 <y <In~:} ,
d' , d? h
-
0
- - .1 r2 ,,- .1 ,r2tfong 0 cac m Zl = , Z2= rp2-rpl,Z3= rp2-rpl+1,n - va Z4= 1,n-
rl rl
IftnhtCjttu'ongling vdi Zl, Z2,Z3va Z4,va cac cling Arp,6x,1rptu'ongling
vdi nhaunhu'tfonghlnh 5.2.
Tli b6 d~5.1, suy fa (5.21). D
Dinh Iy 5.4. VcJieaegiGthilt va ky hi<fuiJ ehu(Jng2, V9 E G, wEB va
0 < q < M1 < C < d < m2 < M2 = 1,taco eaebatdangthue:
21r- p{3I 2 m2 + p{3I 2~ + p{3I 2 m2 <Ks (B)1 nM RnM Ind- Po'In - 1 In- 1 In-
Q Q R
21r- p{3 In2m2+ p{3 In2~ + p{3 In2m2 <K2S (B).
In (4~qCd) M1 In (4~~) M1 In (4~~) d Po
trongdo
(5.22)
(5.23)
fi dudv .Spa(B) = 2 2' W=U+'lV.BU +V
Dangthac(j (5.22)co thl xay ra.
Changminh.f)~t
Arp=A n {zI argz =rp}
vavdim6ij (j =0,...,p- 1),d~t
Qlj = {z
Q2j = {z
Q3j = {z
Q<lzl<l, -a+(2j+1)7r <argz<a+(2j+1)7r }
,
p p
Q <Izi <R, ex+ (2j - 1)7r<argz <-0: +(2j + 1)7r}
,
P P
R < Izi <1, ex+ (2j - 1)7r<argz < -a + (2j+1)7r}
.
P P
37
1Hinh5.3:PBHKABG mi~nchuffnA lenmi~nB lingvdi (p=2).
PBHKABG ngu<;1cf=g-1 bie'nmi~nA leu mi~nB, trongdo Qlj
bie'nthanhH1j comQtc~nhtrenC1vamQtc~nhtrenc2, Q2jbie'nthanh
H2j co mQtqmhn~mtrenC1va mQtc~nhn~mtrenO"j,Q3jbie'nthanh
H3j co ffiQtqlllh namtren(J"jva mQtc~nhnamtrenc2.
Giasufk lftn1u'<;1tla hQcaccling1ktrongHkj (k =1,2,3) lftnhi<;1t
n6i C1vdi C2,n6i C1voi O"j,n6i O"jvoi C2va gia sa co p = p(w) > 0
lien t\1CtrongB saocho
0 < lp(1k)=1 pldwl<00, 'V1k E fk (k =1,2,3)"fk
va
0 <Sp(Hkj)=jf p2dudv<00 (k= 1,2,3),w =u+iv.Hkj
£)~t
lkp= inf Ip(1k) (k = 1,2,3).
"fkEfk
D~dangtha"y rang
f1::) U f(A<p)vdi f1 = U A<p
'\pEfi -£1+(2j+1)~::;<p::;a+(2j+l)~
Tit do, ap dvngb6 d.; 5.2 cho mi.;nQ'j, yiJi p(w) = I~I'wEB, co
1 20: 2
!{---yllp < Sp(H1j).In-
Q
vdi
m2
hp = inf lp(11)=J -
1
1
1
1dwl = InMm2,"fiEfi W 1
fvh
38
tucHi
2'if- p{3In2m2 <pKSp(HI),1 M1In-
Q
(5.24)
VI 2po;=2'if - p{3.
1
Tu'dngttf,d6ivdimi~nQ2j,vdip(w)= Iwl'wEB, co
f2 ~ U f(A'P)voi r2= U 1'1"
A.pEfz (X+(2j-l)~:::;'P:::;-(X+(2j+l)~
(
'if
)
2 -0;
1 P Z2 <Sp(H2j).- R 2p-
!( In -
Q
vdi
c
.
J
1 C
l2p = Inf lp(12)= _
I I
idwi =In M 'bEG w 1
Ml
tile IiI
p{3In2~ <pKSp(H2j).
R M1-In-
Q
(5.25)
Tu'dngtif, d6i vdi mii\n Q3j, vdi p(w) =I~I'WEB, co
f3 ~ U f(A'P) vdi r3= U 1'1"
A<pEf3 (X+(2j-l)~:::;'P:::;-(X+(2j+l)~
(
'if
)
2 -0;
1 P Z2 <Sp(H3j).- 1 3p-
!( In -
R
vdi
mz
l3p = inf lp(13)=J -I
l
lldwi=Inmd2,I'3Ef3 w
d
39
tucIa
PP 2m2
~In d <pKSp(H3j).In-
R
Tli (5.24),(5.25)va(5.26),VOlchu9
pK(Sp(H1j)+Sp(H2j)+Sp(H3j))=KSpo(B)
(5.26)
tanh~nduqc(5.22).
Danhgia(5.23)duqcSuyfatu(5.22)vah~qua5.2.
Ne'uB = Bo,tucml = M1 = q,C= d = r, m2= M2= 1 vane'u
1 1 1
Z = g(w)= IwIK-w, tucIzl = IwlK hayIwl= IzIK,q = QK, r = RK,
thl
K t ". (522) - 21r- PP12 1+
PP 12r + PP 12 1ve ral . n - - n - - n -
In~ q In R q In~ r
Q Q R
- 21r- PP12~ PP 12 RK PP 1 2~
- 1 n QK + R n QK + 1 n RKIn - In - In -
Q Q R
1 R 1
= I{2(21r- pp)In Q + I{2p{3InQ + K2p{3lnR
1 1 1
= 21rK2 In Q = 21rK In QK = 21r!{Inq'
K ? . 5 J
dudv
ve phal( .22) = K 2 2U +v
q<lwl<l
27f 1 27f 1
- K J J ~d:2de= K J deJ ~~=27rKln~.
0 q 0 q
V~y,taco dAngthuc(j (5.22). 0
Chl1j 3. CacbfttdAngthuc(5.22)va(5.23)v~ncondungkhim2<M1
ho~cC <M1 ho~cm2<d ne'uta IftnIuqtd~tIn :~=0ho~cIn;1 =0
ho~cIn:2 =0,d6ngnghIaVOlvi<$ctakhongd~9de'ns1;id6ngg6pcua
di~nHchcaet~pconcuaB khongthoagia thie'tdinh195.4.
40
H~qua5.6. Vlii caegidthiefvaky hi~uiJ chu(Jflg2, V9 E G, wEB va
0 < q < M1< C< d < m2< M2= 1,kef h(Jp(5.23)vlii biftdang
27r
thachiln nhien0 <{3(g)< -, taco danhgia cho{3(g),VgE G:
p
( [
(
2
)] }
K 2I 1 I 415c27r n- n d 27r
max 0,- 1 - q 2 q <{3(g)<-.p In ~ pM1
Chuy 4.Khim2 = 1,M1=q,taxet
27r
[
J(2In.! In (4~s..)
]
- 1 - q qd
P In2rn2 =M1
27r
[
K2InlIn (4js..
)]
- 1 - q qd
P In21q
- 27r
[
1- K21n(4~q'J)
]
p Inl.q
(
2
)K2 In 411s..
D~tC = I 1 qd , trongtru'onghQpd=canst,choq---+0,C ---+0n-
q
saGcho~=canst,hlC ---+O. V~y27r>{3(g)> 27r(1- C), tilec~n
q p p
du'dicua{3(g)trongh~qua5.6Ia ffiQtdaubgias~c,it rachotru'onghQp
daneUe
41