Luận văn Khảo sát phương trình sóng phi tuyến trong không gian sobolev có trọng

KHẢO SÁT PHƯƠNG TRÌNH SÓNG PHI TUYẾN TRONG KHÔNG GIAN SOBOLEV CÓ TRỌNG HUỲNH VĂN TÙNG Trang nhan đề Mục lục Chương1: Phần tổng quan. Chương2: Một số ký hiệu, các công cụ chuẩn bị. Chương3: Khảo sát chương trình utt - ( urr + 1/r*ur ) + F(u, ut) = f(r, t) với nhóm giả thuyết thứ nhất. Chương4: Khảo sát chương trình utt - ( urr + 1/r*ur ) + F(u, ut) = f(r, t) với nhóm giả thuyết thứ hai. Kết luận Tài liệu tham khảo

pdf17 trang | Chia sẻ: maiphuongtl | Lượt xem: 2021 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Luận văn Khảo sát phương trình sóng phi tuyến trong không gian sobolev có trọng, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
CHUONG 3 KHAO SAT PHUONG TRINH Uti -(u" +~u,)+F(u,u,)=f(r,t\ VOl NHOM BlED KIEN THO NHA T~. Xetbaitmin(3.1)- (3.4)sail uu-( Urr+~Ur)+F(U,Uf)=f(r,t), O<r<l,O<t<T, I lill J;ur (r,t) 1 <+00,- u,(l,t) =hou(l,t)+h(t)Uf(1,t)+g(t), r~O+ (3.1) (3.2) u(r,O)=uo(r),uJr,O) =ul(r), F(u,uf)=f;(u)+F2(Uf)=lula-l u+lufIP-lUp (3.3) (3.4) 111.1.Du'av~bili tminbitn philo Xetbaitmin(3.1)- (3.4). Til (3.1)tasuyra r I [ ] T I f fr Ull-(urr+.lur)+F(u,ul) wdrdt=f frfivdrdt,VwED(O,T;V1).(3.5) 00 r 00 ChQn w(r,t)=~(t).v(r),trongd6 ~ED(O,T), VEVp k~th<jp(2.12)va (3.2),ta vi~tl~i(3.5)nhu'sail ref!{(ul(t),v)+a(u,v)+(F( u(t),ul(t»),v;] ~(t)dt JLdt T +f[h(t)ul(l,t)+g(t)Jv(1)~(t)dt 0 (3.6) r = f(!(t), v)~(t)dt,V; E D(O,T), Vv E VI. 0 HQcvienHuynhVan Tung Trang20 Tli (3.6)tathuduQc ~\ul(t),v)+a(u(t),v)+(F(u(t),ul(t)),v) +(h(t)UI(l,t) +g(t))v(l) = (J(t), v), 'v'vE Vi' a.e.t E (O,T). (3.7) Hamu thml(3.7),(3.3)duQcgQilanghi~mye'ucuabaitmin(3.1)- (3.4). 111.2.811t6n t~iva duynha'tnghi~mye'u Ta thanhl~pnh6mgicithie'thunha'tnhusail (HI) ho>0, 1::;a <3, 1::;fJ <3, (H2) f,frEL2(0,T;Vo)' (H3) gEH\O,T), g(O)=0, (H4) hEC2(~),h(t)"20,'v't>O,h(O)=O, / vat6nti;lih~ngsO'8 E (O,ho)saDcho hI(t)"2-8, 'v't"20, (H5) Uo E V2 ' UI E VI . Chtithich3.1. hoia hangs{fduangxudthi~ntrangb6d~2.5. Saildayla dinh19ve svt6nt~ivaduynha'tnghi~mcuabailoan(3.1)- (3.4) voi nh6mgicithie'thunha't. Binhly 1. ChotruacT>Ova(HI)- (Hs) thoG.Khi d6 bai loan (3.1)- (3.4) c6duynhdtm()tnghi~myeu uEL00(0,T; VI) n L2(0,T;V2)saocho ul E Loo(0,T; VI), Ull E LOO(O,T;Vo)' 1 1 ra+lu E Loo(O,T;La+l(Q»), rfJ+lul E LfJ+l(QT), u(l,.) E W1,00(0,T). Chung minh. Vi~cchungminhdinh191duQcchialamnhi€u buoc. Bu'ocl. Xa'pXlGalerkin w. ? Xet {Wj =A}lacdsdtrvcchuantrongkhonggianVIvai tichvo huangla a(.,.) nhutrongb6de2.6. TaHmnghi~mxa'pxi cuabailoanbie'nphan(3.7)duaid~ng m um(r,t)=L>mj(t)Wj(r), j=l (3.8) HQcvienHuynhVan Tung Trang21 trongdocachams6cmJt),j =1,m thmlh~phuongtrlnhviphanthuong (u~(t),WI)+a(um(t),WI)+(F( Um(t),u~(t)),Wi) + (h(t) U~(1,t) + g(t) ) WI(1) =(f(t),wJ,l'!;}'!;m, (3.9) clingvdi di€u ki~nd~u m um(O)=UOm=Lamiwi ~ Uo mqnhtrang V2,khi m ~ 00, J=I (3.10)m u~(O)=Ulm =LPmJwJ ~ UI mqnhtrang~, khi m ~ 00. J=I Vdi m6i T >0 cho trudc,ta se sttdl;lngdinh ly diem ba'td9ngSchauderde chungminhh~(3.9),(3.10)conghi~mcm=(cm!"'"cmm)tren[O,Tm]c [O,T]. Ta cob6d€ saildayv€ slft6nt(;linghi~mcuah~(3.9),(3.10). B6 d~3.1. ChotneucT >o va (HI) - (Hs)thoa.Khi do hf (3.9),(3.10)co nghifm cm=(cml"'" cmm)tren[O,Tm]c[O,T]. Chungminhb6d~3.1. H~(3.9),(3.10)duQcvie'tl(;linhusau c~/t) +AJCmJ(t) =II ~\2 [(F( um(t),u~(t)),wJ)+(h(t)u~(1,t)+g(t))WJ(1)-(f(t),Wi)J1 Cm/O) =amJ' C~/O)=PmJ' I'!; j '!;m, hay cm;(t)=amicostA t)+Jx; sin(At) (3.11) 1 II sinA (t-T) -II Wi W 0 jx; [(F(Um(T),U~(T)), WJ)+ h(T)U~(1,T)Wi(l) JdT - 1 II sinA (t-T) IlwJW 0 A [g(T)w/l)-(f(T),wJ)]dT,l'!;j'!;m. BoquachIs6m,khidoh~(3.11)duQcvie'tl(;linhusail c=Uc, (3.12) HQcvienHuynhVanTung Trang22 trongdo c=(cp...,cm),UC=(U c\,...,(Uc)m)' (3.13) t (U e)/t) =G/t)+ fN;U-r)(Ve)/r)dr, 0 (3.14) 1 t GU) =aNI (t)+ f3N(t)- 2 fNU-r) [g(r)w,(l)_1 fer), Wj)J dr, 1 11 II Ilw.11 1 . \1 0 (3.15) (Ve)/t) =- 1 2 [ /F [ i>iU)wpIe:U)Wi ] ,W; ) +h(t)Ie:(t)w;(1)Wj(1) } , (3.16) Ilwj II \ 1=1 1=1 1=1 sin(At) 1~j ~m. N;U) A' (3.17) Voi m6i 00, tad~t S={CEC1([O,Tm];IRm):IleI11~M}, Ilelll=llcllo+lle/llo' m Ilello=supleU)I\' leU)11=Ile;(t)I. O<;t<;Tm i=1 Thl S Ia t~pcon16idongvabi ch~ncua y =C1([o,Tm];IRm). Sa dl;mgdinhly diembcftdQngSchauder,chungtase chungminhr~nganhX(;l u: S --+Y duQcdinhnghiabdi (3.12)- (3.17)comQtdiembcftdQng.Biembcft dQngnaychinhIanghi~mcuah~(3.9),(3.10). a) ChungminhU(S)cS. Taco GIU)=-XaN. (t)+f3N/(t)1 III 11 (3.18) 1 t - 2 fN;U-r) [g(r)w/l)- ] dr, II Wj II 0 t (U e)~(t)=G~U)+fN;U-r)(Ve);(r)dr , 1~j ~m. 0 (3.19) Tli (3.14)- (3.19)tasuyra anhX(;lU: Y --+Y xacdinh. Cho eE S, tli (3.14) - (3.19) ta suy ra HQcvienHuynhVanTung Trang23 1 t T I(Ue)(tH~IG(t)11+ f1 fl(Ve)('Hd'~IIGllo+ ~IIVello v~ 0 v~ (3.20) m 1 m 1 T ~I . . 1 a; 1+f1 II /3;1+ f1 rT + f1 /3(M,T), FI v~ ;=1 VAl VAl t I(Ue)/(tH~ IG/(tH + fl(Ve)('Hd,~ IIG1 110+TmIIVello 0 (3.21) m m ~KII a;l+II /3;1+rT+Tm/3(M,T), 1=1 ;=1 trongdo m 1 T rT =~II wi W l(lg(t)w/l)l+I\i(t)'Wi)1)dt, (3.22) ~/3;CM,T) IIVello~/3(M,T)=L. 2' ;=1 II Wi II /3;(M,T)=SUP { /F (teiWi,td/Wi ) ,Wj ) :llelllRm~M'lldlllRm~M }\ I I I I (3.24) +K,'II Wi 11,11h1I,"(onsup{tlc, III w,II,:IIell,. s; M}. Ch1ithich3.2. Titb6di 2.20.itasuyrarling F( ~e,(t)w"~e:(t)W,)EVo, 'IeES. (3.23) Do d6 (3.24)luontbntc;zi. Tli (3.20)va(3.21)tasuyra II [Ie II, <; lOT + Tm(l +k)P(M,T) , (3.25) trongdo OJ, =(1+A Jtlaj 1+[1+~)(r, +tl PjI} (3.26) va /3(M,T)du'QCxacdinhbdi(3.23)va(3.24). ChonM va 0<1~<T saochoM?:2"" va To(I +J;., ]P(M,T)'; ~. Tli (3.25)tathudu'QcII UeIII ~M, voimQieE S. HQcvienHuynhVan Tung Trang24 b) Chungminh U lien tl,lCtrenS . Cho C E S, {Ck}C S va Ck~ C trong Y, ta co t (U Ck);(t) - (U c)/t) = fN;(t-T)[(VCk)/T)-(VC)/T)]dT, 0 t (U Ck)~(t)- (U c)~(t)= fN;(t- T)[(VCk)/T)-(V C)/T) ]dT, 0 Tm IIUCk - Ucllo::; JX: IIVCk - Vcllo, II(UCk)/ - (Uci 110::;TmIIVCk - Vcllo, IWe, - Uell,'; Tm(l+~Juve, -Veil,. m m Iw(1)1 I(VCk)(t)- (Vc)(tn::; h(t)II(c~i(t)-c:(t))w,(1)1 I J 2 . 1=1 J=I II Wi II +f~ /F (fck;(t)w;,fc~;(t)W; ) -F (fc/t)w;,fc:(t)w; )'Wj)j=1 II Wj II \ ;=1 ;=1 ;=1 ;=1 ( ~ )[ ~lw/l)I J / / ::;llhllr,w(o,T) f:1lw;(1)1 7:1llwjW IIck-c 110 ( ( m ) ( m ) m IwjI ) + F; LCk;(t)W; -F; LC/t)W;,L 2 1=1 1=1 J=1 II Wj II ( ( m / ) ( m / ) m IWjl ) + F; LCk;(t)W; -F; LC;(t)W;,L 2. ;=1 ;=1 j=1II Wj II m Di.itR=MIll w,III'Khi dotli(3.28)vab6d€ 2.20.iii,tadu'QC 1=1 I (V c, )(1) - (V c)(t) I,S K,' IIhilL"I'T) (tII w, "l~IIII :~II:; J II c~ - C'II, + (fIIWIIII )( f 1 2 J [ ~KR(a)llck-cllo+~KR(j3)llc~-c/lloJ.;=1 J=l IIwi II Tli (3.27)va (3.29)tasuyra U lien tl,lCtrenS. (3.27) (3.28) (3.29) HQcvienHuynhVan Tung Trang25 c) Chungminh US compactrongCI ([O,Tm];IRm). Do USc S, nenhQcacham us ={Ue:eE S}bi ch~nd€u theochu~n11.111trong CI([O,Tm];IRm).Ta chI c~nchungminh hQcac ham US={Ue:eES} Ia lien t1,lC d6ngb~cd6ivoichu~n11.111trongkhonggianCI([O,Tm];IRm). Cho eES, t,tlE[O,TmLtaco (Ue)j(t)-(Ue)/tl) , ( ( (3 30) =G/t)-Gj(t/)+ IN/t-r)(Vc)lr)dr- INj(tl-r)(Vc)/r)dr . a a ( =G/t)-G/tl)+ I[N/t-r)-N/tl -r)]cVC)/r)d~(, a - IN/tl -r)(Vc)j(r)dr, ( G(t)-G(t/) =a. [NI (t)-NI (tl) J +{3.[N.(t)-N.(tl) J1 1 1 j j 1 j j 1 ( - 2 I[N.(t-r)-N.(tl -r) J [g(r)w,.(1)_1f(r),w j. )J dr Ilwjllo 1 1 . \ (' +II W: 112fNj(t1 -r) [g(r)w/l)-\f(r), Wj)Jdr. (3.31) M~tkhactaco f INj(t)- N/tl) I:::;It- tl I, lIN~(t)-N~(t/)1:::;[X:lt-tll, Vt,tl E[O,Tm],l:::;j:::;m. (2.32) Tli (3.23),(3.30)- (3.32),tasuyra m I(Ue)(t)- (Ue)(tl) II=LI (Ue),(t) - (Ue)/tl) I j=1 (3.33) ,;[tlaj 1+F.tIP, I+r,}-tll+p(M,r{r. +.k )It-tl Danhgiatu'dngtt,I'nhu'(3.33),taco m I(Uei (t)-(Ue)1(t/)11=LI(Ue)~(t)-(Ue)~(t/)1 j=1 (3.34) ,; K[ Ktl aj 1+~Ilij I+r,] 1t-t' 1+1i(M,T)(KTm +1)1I-I' I. HQcvienHuynhVanTung Trang26 Tli (3.33)va(3.34)tasuyrahQcachamus Ia lient1;lCd6ngb~cd6ivoi chuffn11.111trongkhonggianC\[O,Tm];IRm).V~ytheodinhly Arzela- Ascolithl US compact.Tli cacketquaa),b),c)vadinhly di€m beltdQngSchauder,U co di€m beltdQngtrongS. Nhuv~ybaitoan(3.9),(3.10)t6nt(;linghi<$mUmtren[O,Tm].V~yb6d~ 3.1duQcchungminhxong. Cacdanhgiatiennghi<$msandaychopheptalelyTm=T,Vm. Chli thich 3.3. TrangchangminhSl! tbn tf;linghi~mxfipxl Galerkincua bili loan bifn phan (3.7) chung ta co thi thay cae gid thift yfu han so vrJi (HI)-(Hs) nhusau ~ { hO>0, 0<a<3, 0<{J<3, fEL\O,T;Vo), gEL\O,T), hECo(IR), UOEVI' ul EVo' V6'igid thift UoEVI, UIEVo thi (3.10) du(fcthaythf bili m um(O)=uom=IamjWj ~uo mf;lnhtrang~, khi m~oo, j=1 (3.35)m u~(0)=Ulm=I PmjWj ~ UI mf;lnhtrang ~p khi m ~ 00. j=1 Bu'oc2. Danh gia tit~nnghi~m Danh gia 1. Nhanphuongtrlnhthu j cuah<$(3.9)voi C~j(t)va lelyt6ngtheoj tli 1denm,taduQc Id [ ] 1 d J I -- lIu~(t)112+a(um(t),um(t))+-- rlum(t)la+ldr 2 dt a +1dt0 (3.36) 1 +frlu~(t)IJJ+l dr+h(t)lu~(1,t)12 +g(t)u~(1,t) 0 =(f(t),u~(t)). f)~t t Xm(t)=Ilu~(t)W+a(um(t),um(t))+2fh(r)lu~(1,r)12dr 0 2 1 t 1 +- fr Ium(t)Ia+ldr+2 f fr Iu~(r)IJJ+ldrdr. a+lo 00 (3.37) HQcvienHuynhVanTung Trang27 La'ytichphanhaivfS(3.36)theo t tu0 dfSnt, tadu(jc I I Xm(t)=Xm(0)+2f(J('l"),u~(r»)dr- 2fg(r)u~(l,r)dr 0 0 I I ~Xm(O)+fIIJ(r)112dr+fllu~(r)112dr 0 0 I +21g(t)um(l,t)I+2IiI (r)um(l,r) Idr 0 (vi g(O)=0) I ~Xm(O)+II J 11~2(o,T;Vo)+fXm(r)dr 0 2 h 1 I I +-l(t)+-.JLu~(l,t)+ - fll(r)12 dr+ hofu~(l,r)dr. ho 2 hOD 0 2 I Xm(O)=II Ulm W +a(uom'uom)+- SriuomIa+ldr a+1o 2 I I-a2 2 f 2 ( I ) a+1 ~ II u1m II +CI II Uom III +- r -Vr IUom I dr a+10 2Ka+1 I I-a ~ II Ulm W +CI II UOm II~ + 2 IIUOmII~+Ifr 2 dr a+1 0 4Ka+1 ~ II Ulm W + CI II UOmII~+ 2 II UOmII~+I. (a +1)(3-a) Tu (3.10),va(3.39)tasuyra Xm(O)~M?),'\1m, trongdo Mil) dQcl~pvdi ffi.Tu (3.38)- (3.40)tasuyra 1 I X (t)~gl(t)+-X (t)+2fX (r)dr,m 2 m m0 hay I Xm(t)~2g,(t)+4fXm(r)dr, 0 , (I) 2 2 21/2 trong do gj (t) =MT +II f IIL2(O,T;Vo)+-,;-1 g(t) I +-,;-11 g IIL2(o,T).0 0 Tu giii thifSt(H3)vado H'(O,T) c.Co([O,T])Dentasuyra gl (t)~Mi2) a.e.t E[0,T] . Ap dl;lngb6d€ Gronwallvao(3.41),tadu(jc Xm(t)S 2M?)e41~M?) , a.e.t E [O,T]. (3.38) (3.39) (3.40) (3.41) (3.42) (3.43) HQcvienHuynhVanTung Trang28 Ch6 thich3.4. Trangdanhgia 1, tachuasitdf:lnghtt nhomgid thitt thrinh{{t, thq.mchi co thi thaym(Jts{;'gid thitt bJi cacgid thittytu hantuangring,ch~ng hqn (Hi) dur;cthaybJi ho>0, 0<a <3, 0<fJ <3; (H3) dur;cthaybJi gEHi(O,T). Trang tru(jnghr;pnay, ta chi vifc c(Jng themVaGvt phdicua(3.38)dqi lur;ng 21g(O)Uom(1) I hichq.n;. . . \ Nhomgid thitt thrinh{[tnayth1;lcs1;lcandentrangdanhgia 2 sauday"vatrang cacburJcsaudb. Danhgia2. L1yd<;lohamhaiv€ cuaphuongtrlnhthuj cuah~(3.9)d6ivoi t, tadu<;lc (u:;(t),Wj)+a(u~(t),Wj)+(:tF(Um(t),U~(t)),Wj) +(hi (t)UI (1,t) +h(t)UII(l,t) +gl (t))w/l) (3.44) =(Ir(t),Wj)'l~j~m. Nhanphuongtrlnhthuj cuah~(3.44)vOi c~/t) va l1y t6ngtheoj tit 1d€n m, tadu<;lc 1 d 1 2dt[llu~(t)W+a(u~(t),U~(t))J+PJrlu~(t)IP-llu~(t)12dr0 (3.45) 1 d +-hl (t)-I u~(l,t) 12+h(t) Iu~(1,t)122 dt +l (t)U~(1,t)+(:tF;(um(t)),U~(t)) =(Ir(t),u~(t)), l~j~m. Bi;it Ym(t) = II u~(t) W +a(u~(t),u~(t))+(hi(t)+e) Iu~(1,t) 12 (3.46) t t 1 +2 fh(T) 1 u~(1,T) 12 dT +2fJ f fr IU~(T)113-11U~(T)12drdT. 0 0 0 L1y tichphan(3.45)theot tit0 d€n t, tadu<;lc HQcvieDHuynhVan Tung Trang29 tYm(t)=Ym(o)+elu~(1,T)121~:;)+ fhll(T)lu~(1,T)12dT 0 (3.47) t t ( d ) t +2f\ft(T),U~(T))dT-2f -F; (Um(T)),U~(T)dT-2 fl(T)U~(1,T)dT 0 0 dT 0 t ::;;ym(o)+eKj21Iulm II~+elu~(1,t)12 +llhll Ilc'(O,T)flu~(1,T)12dT 0 I t t' +2fllft(T)llllu~(T)lldT+2 fll~F;(Um&))IIIIU~(T)lldT 0 0 dT t +21l (O)Ulm(1)I+21l (t)u~(1,t) I+2fill (T)U~(1,T) IdT. 0 Ta co hoIu~(1,t)12::;;a( u~(t),u~(t))::;;Ym(t), (3.48) 2 h -£I ( )21l (t)u~(1,t)1::;;-I gl(t)12+~ hoIu~(1,t)12 ho-£I 2hO (3.49) 2 h -£I ::;; - lgI(t) 1 2 +~Y (t) h - £I 2h m '0 0 t t 2fll/(T)U~(1,T)ldT::;;~llgIIWL2 T +fYm(T)dT,h (0, )0 0 0 (3.50) II U~(t)II~::;;~a( u~(t),u~(t))::;;~ Ym(t). Co Co (3.51) Til (3.37),(3.43),(3.51),vab6d€ 2.20.ii,taduQc 1 II ~FJum(t))112=a2 frlum(t)12a-2Iu~(t)12dr 0 (3.52) 1 ::;;a2 K; II U~(t) II~ fl Um(t) 12a-2dr::;; a2 K; Ym(t) k\(a) II Um(t)ll~a-2 0 Co a2K2K (a) ( M(3) ) a-l a2 K2 K(a)(M(3) ) a-l < 2 I ~ Y (t) - 2 1 T- C C m - a Ym(t). 0 0 Co Til (3.47)- (3.50),(3.52)tathuduQc Ym(t) s Ym(0)+8KJz II uJm II~ +: Ym(t) +II it IIL2(0,T;Vo)0 t II hIt II. t + fYmCr)dT+ L"'(O,T)fYm(T)dT 0 ~ 0 - ( (3) )a-l t I aZK;K1(a) MT fYm(T)dT+ fYm(T)dT + a 0 0Co +Il (0)IZ +KJZII UJm II~ +~ Igl (t) IZ ho-8 h - 8 II gll 11~2 T f l +~Ym(t)+ (0, ) + Ym(T)dT, 2ho ho 0 hay t Ym(t)sgzm(t)+Mi4) fYm(T)dT, 0 (3.53) trangdo gZm(t)=h2~)8[Ym(0)+KIZ(8+1)IIUlmII~+llit 1I~2(O,T;Vo)J0 +~ [ ll(O)IZ +2Il(t)lz +llglllI~2(0'T) ] , ho-8 ho-8 ho (3.54) Mi4)=~ [ 3+ IIhIIIILoo(O,T)+aZK;KJ(a)(M?)r-l ] ho-8 h a.0 Co // (3.55) Nhan phuongtrlnhthlij cuah~(3.9)vOi c~(t) va la"yt6ngtheoj tli'1 de"nm,J taduQc Ilu~(t)IIZ+(Aum(t),u~(t»)+(F(um(t),U~(t»),u~(t») +(h(t)u~(1,t)+get)u~(1,t) = (J(t), u~(t»). Trang(3.56),chot=0,vachuyding g(O)=h(O)=0, taduQc Ilu~(O)llz+(Auom'u~(O»)+(F(uom,uJm)'u~(O»)= (J(O),u~(O»). (3.56) Suyra Ilu~(O)11s IIAum(O)II+11 F{uom,uJm)II+IIJ(O)II. Ap d\lngb6d€ 2.20.i,taduQc IIF(uOm'u1m)II s II I\(uom) II +II F;(uJm) II sK(a)II UOm II~ +K (,8)II U1mIii. (3.57) (3.58) HQcvienHuynhVan Tung Trang31 Tli (3.46),(3.57)va(3.58),tathudu'Qc Ym(O)=Ilu~(O)W+a(Ulm'ulm)+(h/(O)+B)u~m(1) ~ (II Aum(0) II+ IIF(uorn'Ulrn)II+11f(O) 11)2 (3.59) +[CI +KI2(e+llhIIICo(O,TJJllulrn II~ ~3(II UOrnII; +2k2(a) II UOrnII~a+2k2(fJ) II Ulrn 11~j3+11f(O) W) +[CI+KI2(e+II hi Ilco(o,TJJllulrnII~. Tli (3.10),(3.54),(3.59),gii thi€t (H3),vado HI (0,T) C.CO([0,Tn nentasuyra g2rn(t)~Mi5),a.e.tE[O,T]. (3.60) Tli (3.53),(3.60)vab6d~Gronwall,tadu'Qc (5) M(4)( (6) Yrn(t)~MT e T ~MT, a.e. tE[O,T]. (3.61) Tu'dngtlj (3.58),tacodu'Qc IIF(um(t),u~(t))II:S;K(a) IIum(t)lit +K(jJ)llu~(t)llf ( M(3) J ~ ( M(6) J ~ :s;K(a) ~ + K(jJ) ~ . (3.62) Tli (3.62),tasuyra IIF(urn,u~)lloo. ) ~Mr),a.e.tE[O,T],L (O,T,Vo (3.63) va I 1I"r;.F(u., u~)II"(Q,) ~ 01F (um(r),u~(r»)II' drr ,;JT M!') (3.64) Bu'oc3. Qua gioi h~n Tli (3.37),(3.43),(3.46),(3.61),va (3.64)ta co th€ trichtli day {urn}mQtday conv~nkyhi~ula {urn}'saocho Urn~ u trong D$J(O,T;VI)y€u *, u~~ul trong DJ(O,T;VI) y€u *, uti~Ull trong L"' (OT V ) Y€u *rn , , 0 , (3.65) (3.66) urn(l,t) ~ u(l,t) trong WI""(O,T)y€u *, (3.67) (3.68) HQcvienHuynhVan Tung Trang32 1 1 ra+IUm~ ra+lu trong LOO(O,T;La+l(o.)) ye'u *, (3.69) 1 1 rfJ+I U~ ~ rfJ+I Ul trong LfJ+I (QT) ye'u, (3.70) (3.71)FrF(um'u~)~X trongL2(QT)ye'u. Ap dl;lngb6 d€ v€ tinh compactcua Lions vao (3.65)- (3.68),va dophep nhungWI,OO(O,T)c.Co([O,T])lacompactnentacoth~trichtuday{um}mQtday conv§nkyhi~ula {um},saocho um~ u m(;lnhtrongL2(0,T;Vo), U~~ UI m(;lnhtrong L2(0,T;Vo), (3.72) (3.73) Um(1,t) ~ u(l, t) m(;lnhtrong CO([0,T]) . (3.74) Theodinhly Riesz- Fischertacoth~trichtuday{um}trong(3.72)va(3.73) mQtdayconv§nkyhi~uIa {um},saocho um(r,t)~ u(r,t), a.e.(r,t)EQT' ~. u~(r,t)~ ul(r,t), a.e.(r,t)EQT' (3.75) (3.76) Do F(u,ut)=IuIa-I U+1Ut113-1Ut lien tl;lc,nen tu (3.75)va (3.76) ta suy ra F(um(t),u~(t))~F(u(t),ul(t)),a.e.(r,t) E QT' (3.77) Ap dl;lngb6 d€ 2.15vOi q=n=2, Q=Qp Gm=FrF(um,u~),G=FrF(u,ul), tu (3.64)va (3.77),tadu'Qc FrF(um,u~)~FrF(u,ul) trongL2(QT)ye'u. (3.78) Tu (3.71)va(3.78)tasuyra F(um,u~)~ F(u,uJ trongL2(0,T;Vo)ye'u. (3.79) Nhan(3.9)voi rpED(O,T) tuyy, r6i lfiy tichphantheot tuOde'nT, tadu'Qc r T f(u~(t),w/)rp(t)dt + fa(um(t),wJrp(t)dt o o r T + f(F (um(t), u~(t) ), WI)rp(t)dt+ f(h(t) u~(1,t) +get) )wi (1)rp(t)dt o o T =f(f(t),wJrp(t)dt,VI o (3.80) HQcvienHuynhVanTung Trang33 Do(3.67)taco T T f(u~(t),wJqy(t)dt~f(UII(t),Wj)qy(t)dt,khim~+oo. 0 0 (3.81) Qua giOih(;lnkhi m~ +00trang(3.80)bdi (3.65),(3.68),(3.79)va (3.81),ta duQc [(Ull(t),Wi)+a(u(t),Wj)+(F( u(t),ul(t)), Wi)Jqy(t)dt T + f( h(t)ul (l,t)+ get))WJ(l)qy(t)dt 0 T = f(f(t)'Wj)qy(t)dt,Vi, VqyED(O,T). 0 (3.82) Tu (3.82)tathuduQc(3.7). D€ chungminh u la nghi<%myeu cua bai tmin(3.1)- (3.4)taconph,Uchung minh u(O)=u(pui(O)=u]' a) Chungminh u(O)=uo' Taco i f t I '\ urn(t)=uOrn+ urn(s)ds. 0 (3.83) Nhan(3.83)voi r Wi r6i l§y tichphantheor tu0 den1,taduQc t (urn(t),wJ=(uorn,wi)+f(u~(s),wJ)ds. 0 (3.84) L§y tichphantheot tu0 denT trang(3.84),taduQc T T f(urn(t),Wj)dt =T(uorn,wj)+f(u~(s),(T-s)wj)ds. 0 0 (3.85) Qua gioi h(;lnkhi m ~ 00 trang(3.85)bdi(3.10),(3.65)va(3.66)taduQc T T f(u(t),Wi)dt=T(uo,wj)+f(u\s),(T-s)wj)ds, Vi=1,2,... 0 0 (3.86) Trang(3.85)thayUrn bdi u, taduQc T T f(u(t),wi)dt=T(u(O),Wj)+f(UI(S),(T-s)wj)ds,Vj=1,2,... 0 0 (3.87) Sosanh(3.86)va(3.87)taduQc (u(O),v) =(uo,v), VvEVI' nghlala u(O)=UO' HQcvienHuynhVanTung Trang34 b) Chungminhul(O)=Ul' Tit (3.10),(3.66),(3.67)va ly lu~ntu'dngtv nhu'ph:1na) ta cling thu du'Qc Ul (0)=Ul ' M~itkhactU(3.67),(3.79)vagiathi€t (Hz), tasuyrarflng Au =f -uti -F(u,ut) E LZCO,T;Vo),nghla Ia u E Lz(O,T;Vz)' V~y sv t6n t<;linghi<%mdu'Qcchungminh . Bu'O'c4. Chung minh sl!duynha'tnghi~m Giasa Up Uz la hainghi<%my€u cuabaitoan(3.1)-(3.4)nhu'trongdinhly 1. Khi dow=Ul - Uz langhi<%my€u cuabaitoan (Wll(t),v)+a(wet),v)+h(t)Wi(l,t)v(1) +(F( Ul(t),u{(t))- F( uz(t),ui(I)),v)=0,\IvEVI' a.e.tE (O,T), WE LOO(O,T;V1)nLz(O,T;Vz)' wi E LOO(0,T;V1),WllE LOO(O,T;Vo),w(1,.)E W1,OO(O,T), (3.88) 1- ~ ra+lwE LOO(O,T;La+l(Q)),r,B+lwlE L,B+l(Qr), w(r,O)=wi(r,O)=0, VI WiELOO(O,T;V1),nenl1yv=wl, tit(3.88)tadu'Qc t 111wi (I) W +la( wet),w(t)) + fh(T) Iwi(1,T) IzdT 2 2 0 t =- f(F(Ul(T),U{(T))- F( uz(T),ui(T)), wi (T)}dT. 0 (3.89) f)~t t O"(t)=II wi (t) W +a(w(t),w(t))+2fh(T) IWi (1,T) Iz dT. 0 (3.90) Tit (3.89)tasuyra t O"(t)=-2 f\F(Ul(T),U{(T)) - F( uz(T),ui(T)), Wi(T)}dT 0 t =-2 f(~(Ul(T)) -~(Uz(T)),WI(T))dT 0 (3.91) t -2 f(lu{(T)I,B-l U{(T)-lui(T)I,B-l Ui(T))(U{(T)-ui(T))dT 0 HQcvienHuynhVan Tung Trang35 t~ -2 f\F; (Ul (T») - F; (uz (T) ), Wi (T ))dT 0 t t ~ fllF;(u,(T») -F;(Uz(T»)W dT +fiiwl(T)W dr. 0 0 Ap d\:mgb6d€ 2.20.iiitaduQc IIF; (UI(t»)- F; (uzU») III ~KR (a)11wU) II~~ KR(a) aU), Co (3.92) trongd6 R =~nII Ui II C (O,T;VI). Til (3.91)va(3.92),tathuduQc aU)~ ( 1+KR(a) ] fa(T)dT. Co 0 (3.93) Ap dt,mgb6d€ Gronwallvao(3.93),taduQc aU)=0, nghla1a UI=uz. V~ydinh1y1dffduQcchungminh. HQcvienHuynhVanTung Trang36

Các file đính kèm theo tài liệu này:

  • pdf4.pdf
  • pdf0.pdf
  • pdf1.pdf
  • pdf2.pdf
  • pdf3.pdf
  • pdf5.pdf
  • pdf6.pdf
  • pdf7.pdf