KHẢO SÁT PHƯƠNG TRÌNH SÓNG PHI TUYẾN TRONG KHÔNG GIAN SOBOLEV CÓ TRỌNG
HUỲNH VĂN TÙNG
Trang nhan đề
Mục lục
Chương1: Phần tổng quan.
Chương2: Một số ký hiệu, các công cụ chuẩn bị.
Chương3: Khảo sát chương trình utt - ( urr + 1/r*ur ) + F(u, ut) = f(r, t) với nhóm giả thuyết thứ nhất.
Chương4: Khảo sát chương trình utt - ( urr + 1/r*ur ) + F(u, ut) = f(r, t) với nhóm giả thuyết thứ hai.
Kết luận
Tài liệu tham khảo
17 trang |
Chia sẻ: maiphuongtl | Lượt xem: 2076 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Luận văn Khảo sát phương trình sóng phi tuyến trong không gian sobolev có trọng, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
CHUONG 3
KHAO SAT PHUONG TRINH
Uti -(u" +~u,)+F(u,u,)=f(r,t\
VOl NHOM BlED KIEN THO NHA T~.
Xetbaitmin(3.1)- (3.4)sail
uu-( Urr+~Ur)+F(U,Uf)=f(r,t), O<r<l,O<t<T,
I
lill J;ur (r,t)
1
<+00,- u,(l,t) =hou(l,t)+h(t)Uf(1,t)+g(t),
r~O+
(3.1)
(3.2)
u(r,O)=uo(r),uJr,O) =ul(r),
F(u,uf)=f;(u)+F2(Uf)=lula-l u+lufIP-lUp
(3.3)
(3.4)
111.1.Du'av~bili tminbitn philo
Xetbaitmin(3.1)- (3.4).
Til (3.1)tasuyra
r I
[ ]
T I
f fr Ull-(urr+.lur)+F(u,ul) wdrdt=f frfivdrdt,VwED(O,T;V1).(3.5)
00 r 00
ChQn w(r,t)=~(t).v(r),trongd6 ~ED(O,T), VEVp k~th<jp(2.12)va (3.2),ta
vi~tl~i(3.5)nhu'sail
ref!{(ul(t),v)+a(u,v)+(F( u(t),ul(t»),v;]
~(t)dt
JLdt
T
+f[h(t)ul(l,t)+g(t)Jv(1)~(t)dt
0
(3.6)
r
= f(!(t), v)~(t)dt,V; E D(O,T), Vv E VI.
0
HQcvienHuynhVan Tung Trang20
Tli (3.6)tathuduQc
~\ul(t),v)+a(u(t),v)+(F(u(t),ul(t)),v) +(h(t)UI(l,t) +g(t))v(l)
= (J(t), v), 'v'vE Vi' a.e.t E (O,T).
(3.7)
Hamu thml(3.7),(3.3)duQcgQilanghi~mye'ucuabaitmin(3.1)- (3.4).
111.2.811t6n t~iva duynha'tnghi~mye'u
Ta thanhl~pnh6mgicithie'thunha'tnhusail
(HI) ho>0, 1::;a <3, 1::;fJ <3,
(H2) f,frEL2(0,T;Vo)'
(H3) gEH\O,T), g(O)=0,
(H4) hEC2(~),h(t)"20,'v't>O,h(O)=O,
/
vat6nti;lih~ngsO'8 E (O,ho)saDcho hI(t)"2-8, 'v't"20,
(H5) Uo E V2 ' UI E VI .
Chtithich3.1. hoia hangs{fduangxudthi~ntrangb6d~2.5.
Saildayla dinh19ve svt6nt~ivaduynha'tnghi~mcuabailoan(3.1)- (3.4)
voi nh6mgicithie'thunha't.
Binhly 1. ChotruacT>Ova(HI)- (Hs) thoG.Khi d6 bai loan (3.1)- (3.4)
c6duynhdtm()tnghi~myeu uEL00(0,T; VI) n L2(0,T;V2)saocho
ul E Loo(0,T; VI), Ull E LOO(O,T;Vo)'
1 1
ra+lu E Loo(O,T;La+l(Q»), rfJ+lul E LfJ+l(QT), u(l,.) E W1,00(0,T).
Chung minh. Vi~cchungminhdinh191duQcchialamnhi€u buoc.
Bu'ocl. Xa'pXlGalerkin
w. ?
Xet {Wj =A}lacdsdtrvcchuantrongkhonggianVIvai tichvo huangla
a(.,.) nhutrongb6de2.6.
TaHmnghi~mxa'pxi cuabailoanbie'nphan(3.7)duaid~ng
m
um(r,t)=L>mj(t)Wj(r),
j=l
(3.8)
HQcvienHuynhVan Tung Trang21
trongdocachams6cmJt),j =1,m thmlh~phuongtrlnhviphanthuong
(u~(t),WI)+a(um(t),WI)+(F( Um(t),u~(t)),Wi)
+ (h(t) U~(1,t) + g(t) ) WI(1)
=(f(t),wJ,l'!;}'!;m,
(3.9)
clingvdi di€u ki~nd~u
m
um(O)=UOm=Lamiwi ~ Uo mqnhtrang V2,khi m ~ 00,
J=I
(3.10)m
u~(O)=Ulm =LPmJwJ ~ UI mqnhtrang~, khi m ~ 00.
J=I
Vdi m6i T >0 cho trudc,ta se sttdl;lngdinh ly diem ba'td9ngSchauderde
chungminhh~(3.9),(3.10)conghi~mcm=(cm!"'"cmm)tren[O,Tm]c [O,T].
Ta cob6d€ saildayv€ slft6nt(;linghi~mcuah~(3.9),(3.10).
B6 d~3.1. ChotneucT >o va (HI) - (Hs)thoa.Khi do hf (3.9),(3.10)co
nghifm cm=(cml"'" cmm)tren[O,Tm]c[O,T].
Chungminhb6d~3.1.
H~(3.9),(3.10)duQcvie'tl(;linhusau
c~/t) +AJCmJ(t)
=II ~\2 [(F( um(t),u~(t)),wJ)+(h(t)u~(1,t)+g(t))WJ(1)-(f(t),Wi)J1
Cm/O) =amJ' C~/O)=PmJ' I'!; j '!;m,
hay
cm;(t)=amicostA t)+Jx; sin(At) (3.11)
1 II sinA (t-T)
-II Wi W 0 jx; [(F(Um(T),U~(T)), WJ)+ h(T)U~(1,T)Wi(l) JdT
- 1 II sinA (t-T)
IlwJW 0 A [g(T)w/l)-(f(T),wJ)]dT,l'!;j'!;m.
BoquachIs6m,khidoh~(3.11)duQcvie'tl(;linhusail
c=Uc, (3.12)
HQcvienHuynhVanTung Trang22
trongdo
c=(cp...,cm),UC=(U c\,...,(Uc)m)' (3.13)
t
(U e)/t) =G/t)+ fN;U-r)(Ve)/r)dr,
0
(3.14)
1 t
GU) =aNI (t)+ f3N(t)- 2 fNU-r) [g(r)w,(l)_1 fer), Wj)J dr,
1 11 II Ilw.11 1 . \1 0
(3.15)
(Ve)/t) =- 1 2
[
/F
[
i>iU)wpIe:U)Wi
]
,W;
)
+h(t)Ie:(t)w;(1)Wj(1)
}
, (3.16)
Ilwj II \ 1=1 1=1 1=1
sin(At) 1~j ~m.
N;U) A'
(3.17)
Voi m6i 00, tad~t
S={CEC1([O,Tm];IRm):IleI11~M},
Ilelll=llcllo+lle/llo'
m
Ilello=supleU)I\' leU)11=Ile;(t)I.
O<;t<;Tm i=1
Thl S Ia t~pcon16idongvabi ch~ncua y =C1([o,Tm];IRm).
Sa dl;mgdinhly diembcftdQngSchauder,chungtase chungminhr~nganhX(;l
u: S --+Y duQcdinhnghiabdi (3.12)- (3.17)comQtdiembcftdQng.Biembcft
dQngnaychinhIanghi~mcuah~(3.9),(3.10).
a) ChungminhU(S)cS.
Taco
GIU)=-XaN. (t)+f3N/(t)1 III 11 (3.18)
1 t
- 2 fN;U-r) [g(r)w/l)- ] dr,
II Wj II 0
t
(U e)~(t)=G~U)+fN;U-r)(Ve);(r)dr , 1~j ~m.
0
(3.19)
Tli (3.14)- (3.19)tasuyra anhX(;lU: Y --+Y xacdinh.
Cho eE S, tli (3.14) - (3.19) ta suy ra
HQcvienHuynhVanTung Trang23
1 t T
I(Ue)(tH~IG(t)11+ f1 fl(Ve)('Hd'~IIGllo+ ~IIVello
v~ 0 v~
(3.20)
m 1 m 1 T
~I
.
. 1 a; 1+f1 II /3;1+ f1 rT + f1 /3(M,T),
FI v~ ;=1 VAl VAl
t
I(Ue)/(tH~ IG/(tH + fl(Ve)('Hd,~ IIG1 110+TmIIVello
0
(3.21)
m m
~KII a;l+II /3;1+rT+Tm/3(M,T),
1=1 ;=1
trongdo
m 1 T
rT =~II wi W l(lg(t)w/l)l+I\i(t)'Wi)1)dt, (3.22)
~/3;CM,T)
IIVello~/3(M,T)=L. 2'
;=1 II Wi II
/3;(M,T)=SUP
{
/F
(teiWi,td/Wi )
,Wj
)
:llelllRm~M'lldlllRm~M
}\ I I I I (3.24)
+K,'II Wi 11,11h1I,"(onsup{tlc, III w,II,:IIell,. s; M}.
Ch1ithich3.2. Titb6di 2.20.itasuyrarling
F( ~e,(t)w"~e:(t)W,)EVo, 'IeES.
(3.23)
Do d6 (3.24)luontbntc;zi.
Tli (3.20)va(3.21)tasuyra
II [Ie II, <; lOT + Tm(l +k)P(M,T) , (3.25)
trongdo
OJ, =(1+A Jtlaj 1+[1+~)(r, +tl PjI} (3.26)
va /3(M,T)du'QCxacdinhbdi(3.23)va(3.24).
ChonM va 0<1~<T saochoM?:2"" va To(I +J;., ]P(M,T)'; ~.
Tli (3.25)tathudu'QcII UeIII ~M, voimQieE S.
HQcvienHuynhVan Tung Trang24
b) Chungminh U lien tl,lCtrenS .
Cho C E S, {Ck}C S va Ck~ C trong Y, ta co
t
(U Ck);(t) - (U c)/t) = fN;(t-T)[(VCk)/T)-(VC)/T)]dT,
0
t
(U Ck)~(t)- (U c)~(t)= fN;(t- T)[(VCk)/T)-(V C)/T) ]dT,
0
Tm
IIUCk - Ucllo::; JX: IIVCk - Vcllo,
II(UCk)/ - (Uci 110::;TmIIVCk - Vcllo,
IWe, - Uell,'; Tm(l+~Juve, -Veil,.
m m Iw(1)1
I(VCk)(t)- (Vc)(tn::; h(t)II(c~i(t)-c:(t))w,(1)1 I J 2
. 1=1 J=I II Wi II
+f~ /F (fck;(t)w;,fc~;(t)W; ) -F (fc/t)w;,fc:(t)w; )'Wj)j=1 II Wj II \ ;=1 ;=1 ;=1 ;=1
(
~
)[
~lw/l)I
J
/ /
::;llhllr,w(o,T) f:1lw;(1)1 7:1llwjW IIck-c 110
( (
m
) (
m
)
m IwjI
)
+ F; LCk;(t)W; -F; LC/t)W;,L 2
1=1 1=1 J=1 II Wj II
( (
m /
) (
m /
)
m IWjl
)
+ F; LCk;(t)W; -F; LC;(t)W;,L 2.
;=1 ;=1 j=1II Wj II
m
Di.itR=MIll w,III'Khi dotli(3.28)vab6d€ 2.20.iii,tadu'QC
1=1
I (V c, )(1) - (V c)(t) I,S K,' IIhilL"I'T) (tII w, "l~IIII :~II:; J II c~ - C'II,
+
(fIIWIIII )(
f 1 2
J [ ~KR(a)llck-cllo+~KR(j3)llc~-c/lloJ.;=1 J=l IIwi II
Tli (3.27)va (3.29)tasuyra U lien tl,lCtrenS.
(3.27)
(3.28)
(3.29)
HQcvienHuynhVan Tung Trang25
c) Chungminh US compactrongCI ([O,Tm];IRm).
Do USc S, nenhQcacham us ={Ue:eE S}bi ch~nd€u theochu~n11.111trong
CI([O,Tm];IRm).Ta chI c~nchungminh hQcac ham US={Ue:eES} Ia lien t1,lC
d6ngb~cd6ivoichu~n11.111trongkhonggianCI([O,Tm];IRm).
Cho eES, t,tlE[O,TmLtaco
(Ue)j(t)-(Ue)/tl) ,
( ( (3 30)
=G/t)-Gj(t/)+ IN/t-r)(Vc)lr)dr- INj(tl-r)(Vc)/r)dr .
a a
(
=G/t)-G/tl)+ I[N/t-r)-N/tl -r)]cVC)/r)d~(, a
- IN/tl -r)(Vc)j(r)dr,
(
G(t)-G(t/) =a. [NI (t)-NI (tl) J +{3.[N.(t)-N.(tl) J1 1 1 j j 1 j j
1 (
- 2 I[N.(t-r)-N.(tl -r) J [g(r)w,.(1)_1f(r),w j. )J dr
Ilwjllo 1 1 . \
('
+II W: 112fNj(t1 -r) [g(r)w/l)-\f(r), Wj)Jdr.
(3.31)
M~tkhactaco
f INj(t)- N/tl) I:::;It- tl I,
lIN~(t)-N~(t/)1:::;[X:lt-tll, Vt,tl E[O,Tm],l:::;j:::;m.
(2.32)
Tli (3.23),(3.30)- (3.32),tasuyra
m
I(Ue)(t)- (Ue)(tl) II=LI (Ue),(t) - (Ue)/tl) I
j=1
(3.33)
,;[tlaj 1+F.tIP, I+r,}-tll+p(M,r{r. +.k )It-tl
Danhgiatu'dngtt,I'nhu'(3.33),taco
m
I(Uei (t)-(Ue)1(t/)11=LI(Ue)~(t)-(Ue)~(t/)1
j=1
(3.34)
,; K[ Ktl aj 1+~Ilij I+r,] 1t-t' 1+1i(M,T)(KTm +1)1I-I' I.
HQcvienHuynhVanTung Trang26
Tli (3.33)va(3.34)tasuyrahQcachamus Ia lient1;lCd6ngb~cd6ivoi
chuffn11.111trongkhonggianC\[O,Tm];IRm).V~ytheodinhly Arzela- Ascolithl
US compact.Tli cacketquaa),b),c)vadinhly di€m beltdQngSchauder,U co
di€m beltdQngtrongS.
Nhuv~ybaitoan(3.9),(3.10)t6nt(;linghi<$mUmtren[O,Tm].V~yb6d~
3.1duQcchungminhxong.
Cacdanhgiatiennghi<$msandaychopheptalelyTm=T,Vm.
Chli thich 3.3. TrangchangminhSl! tbn tf;linghi~mxfipxl Galerkincua bili
loan bifn phan (3.7) chung ta co thi thay cae gid thift yfu han so vrJi
(HI)-(Hs) nhusau ~
{
hO>0, 0<a<3, 0<{J<3, fEL\O,T;Vo),
gEL\O,T), hECo(IR), UOEVI' ul EVo'
V6'igid thift UoEVI, UIEVo thi (3.10) du(fcthaythf bili
m
um(O)=uom=IamjWj ~uo mf;lnhtrang~, khi m~oo,
j=1
(3.35)m
u~(0)=Ulm=I PmjWj ~ UI mf;lnhtrang ~p khi m ~ 00.
j=1
Bu'oc2. Danh gia tit~nnghi~m
Danh gia 1. Nhanphuongtrlnhthu j cuah<$(3.9)voi C~j(t)va lelyt6ngtheoj
tli 1denm,taduQc
Id
[ ]
1 d
J
I
-- lIu~(t)112+a(um(t),um(t))+-- rlum(t)la+ldr
2 dt a +1dt0
(3.36)
1
+frlu~(t)IJJ+l dr+h(t)lu~(1,t)12 +g(t)u~(1,t)
0
=(f(t),u~(t)).
f)~t
t
Xm(t)=Ilu~(t)W+a(um(t),um(t))+2fh(r)lu~(1,r)12dr
0
2 1 t 1
+- fr Ium(t)Ia+ldr+2 f fr Iu~(r)IJJ+ldrdr.
a+lo 00
(3.37)
HQcvienHuynhVanTung Trang27
La'ytichphanhaivfS(3.36)theo t tu0 dfSnt, tadu(jc
I I
Xm(t)=Xm(0)+2f(J('l"),u~(r»)dr- 2fg(r)u~(l,r)dr
0 0
I I
~Xm(O)+fIIJ(r)112dr+fllu~(r)112dr
0 0
I
+21g(t)um(l,t)I+2IiI (r)um(l,r) Idr
0
(vi g(O)=0)
I
~Xm(O)+II J 11~2(o,T;Vo)+fXm(r)dr
0
2 h 1 I I
+-l(t)+-.JLu~(l,t)+ - fll(r)12 dr+ hofu~(l,r)dr.
ho 2 hOD 0
2 I
Xm(O)=II Ulm W +a(uom'uom)+- SriuomIa+ldr
a+1o
2 I I-a2 2
f 2 (
I
)
a+1
~ II u1m II +CI II Uom III +- r -Vr IUom I dr
a+10
2Ka+1 I I-a
~ II Ulm W +CI II UOm II~ + 2 IIUOmII~+Ifr 2 dr
a+1 0
4Ka+1
~ II Ulm W + CI II UOmII~+ 2 II UOmII~+I.
(a +1)(3-a)
Tu (3.10),va(3.39)tasuyra
Xm(O)~M?),'\1m,
trongdo Mil) dQcl~pvdi ffi.Tu (3.38)- (3.40)tasuyra
1 I
X (t)~gl(t)+-X (t)+2fX (r)dr,m 2 m m0
hay
I
Xm(t)~2g,(t)+4fXm(r)dr,
0
, (I) 2 2 21/2
trong do gj (t) =MT +II f IIL2(O,T;Vo)+-,;-1 g(t) I +-,;-11 g IIL2(o,T).0 0
Tu giii thifSt(H3)vado H'(O,T) c.Co([O,T])Dentasuyra
gl (t)~Mi2) a.e.t E[0,T] .
Ap dl;lngb6d€ Gronwallvao(3.41),tadu(jc
Xm(t)S 2M?)e41~M?) , a.e.t E [O,T].
(3.38)
(3.39)
(3.40)
(3.41)
(3.42)
(3.43)
HQcvienHuynhVanTung Trang28
Ch6 thich3.4. Trangdanhgia 1, tachuasitdf:lnghtt nhomgid thitt thrinh{{t,
thq.mchi co thi thaym(Jts{;'gid thitt bJi cacgid thittytu hantuangring,ch~ng
hqn
(Hi) dur;cthaybJi ho>0, 0<a <3, 0<fJ <3;
(H3) dur;cthaybJi gEHi(O,T). Trang tru(jnghr;pnay, ta chi vifc c(Jng
themVaGvt phdicua(3.38)dqi lur;ng 21g(O)Uom(1) I hichq.n;. . .
\
Nhomgid thitt thrinh{[tnayth1;lcs1;lcandentrangdanhgia 2 sauday"vatrang
cacburJcsaudb.
Danhgia2. L1yd<;lohamhaiv€ cuaphuongtrlnhthuj cuah~(3.9)d6ivoi t,
tadu<;lc
(u:;(t),Wj)+a(u~(t),Wj)+(:tF(Um(t),U~(t)),Wj)
+(hi (t)UI (1,t) +h(t)UII(l,t) +gl (t))w/l)
(3.44)
=(Ir(t),Wj)'l~j~m.
Nhanphuongtrlnhthuj cuah~(3.44)vOi c~/t) va l1y t6ngtheoj tit 1d€n m,
tadu<;lc
1 d 1
2dt[llu~(t)W+a(u~(t),U~(t))J+PJrlu~(t)IP-llu~(t)12dr0
(3.45)
1 d
+-hl (t)-I u~(l,t) 12+h(t) Iu~(1,t)122 dt
+l (t)U~(1,t)+(:tF;(um(t)),U~(t))
=(Ir(t),u~(t)), l~j~m.
Bi;it
Ym(t) = II u~(t) W +a(u~(t),u~(t))+(hi(t)+e) Iu~(1,t) 12 (3.46)
t t 1
+2 fh(T) 1 u~(1,T) 12 dT +2fJ f fr IU~(T)113-11U~(T)12drdT.
0 0 0
L1y tichphan(3.45)theot tit0 d€n t, tadu<;lc
HQcvieDHuynhVan Tung Trang29
tYm(t)=Ym(o)+elu~(1,T)121~:;)+ fhll(T)lu~(1,T)12dT
0
(3.47)
t t
(
d
)
t
+2f\ft(T),U~(T))dT-2f -F; (Um(T)),U~(T)dT-2 fl(T)U~(1,T)dT
0 0 dT 0
t
::;;ym(o)+eKj21Iulm II~+elu~(1,t)12 +llhll Ilc'(O,T)flu~(1,T)12dT
0
I
t t'
+2fllft(T)llllu~(T)lldT+2 fll~F;(Um&))IIIIU~(T)lldT
0 0 dT
t
+21l (O)Ulm(1)I+21l (t)u~(1,t) I+2fill (T)U~(1,T) IdT.
0
Ta co
hoIu~(1,t)12::;;a( u~(t),u~(t))::;;Ym(t), (3.48)
2 h -£I
( )21l (t)u~(1,t)1::;;-I gl(t)12+~ hoIu~(1,t)12
ho-£I 2hO
(3.49)
2 h -£I
::;; - lgI(t) 1 2 +~Y (t)
h - £I 2h m '0 0
t t
2fll/(T)U~(1,T)ldT::;;~llgIIWL2 T +fYm(T)dT,h (0, )0 0 0 (3.50)
II U~(t)II~::;;~a( u~(t),u~(t))::;;~ Ym(t).
Co Co
(3.51)
Til (3.37),(3.43),(3.51),vab6d€ 2.20.ii,taduQc
1
II ~FJum(t))112=a2 frlum(t)12a-2Iu~(t)12dr
0
(3.52)
1
::;;a2 K; II U~(t) II~ fl Um(t) 12a-2dr::;; a2 K; Ym(t) k\(a) II Um(t)ll~a-2
0 Co
a2K2K (a)
(
M(3)
)
a-l a2 K2 K(a)(M(3) )
a-l
< 2 I ~ Y (t) - 2 1 T- C C m - a Ym(t).
0 0 Co
Til (3.47)- (3.50),(3.52)tathuduQc
Ym(t) s Ym(0)+8KJz II uJm II~ +: Ym(t) +II it IIL2(0,T;Vo)0
t II hIt II. t
+ fYmCr)dT+ L"'(O,T)fYm(T)dT
0 ~ 0
-
( (3) )a-l t I
aZK;K1(a) MT fYm(T)dT+ fYm(T)dT
+ a 0 0Co
+Il (0)IZ +KJZII UJm II~ +~ Igl (t) IZ
ho-8
h - 8 II gll 11~2 T
f
l
+~Ym(t)+ (0, ) + Ym(T)dT,
2ho ho 0
hay
t
Ym(t)sgzm(t)+Mi4) fYm(T)dT,
0
(3.53)
trangdo
gZm(t)=h2~)8[Ym(0)+KIZ(8+1)IIUlmII~+llit 1I~2(O,T;Vo)J0
+~
[
ll(O)IZ +2Il(t)lz +llglllI~2(0'T)
]
,
ho-8 ho-8 ho
(3.54)
Mi4)=~
[
3+ IIhIIIILoo(O,T)+aZK;KJ(a)(M?)r-l
]
ho-8 h a.0 Co //
(3.55)
Nhan phuongtrlnhthlij cuah~(3.9)vOi c~(t) va la"yt6ngtheoj tli'1 de"nm,J
taduQc
Ilu~(t)IIZ+(Aum(t),u~(t»)+(F(um(t),U~(t»),u~(t»)
+(h(t)u~(1,t)+get)u~(1,t) = (J(t), u~(t»).
Trang(3.56),chot=0,vachuyding g(O)=h(O)=0, taduQc
Ilu~(O)llz+(Auom'u~(O»)+(F(uom,uJm)'u~(O»)= (J(O),u~(O»).
(3.56)
Suyra
Ilu~(O)11s IIAum(O)II+11 F{uom,uJm)II+IIJ(O)II.
Ap d\lngb6d€ 2.20.i,taduQc
IIF(uOm'u1m)II s II I\(uom) II +II F;(uJm) II
sK(a)II UOm II~ +K (,8)II U1mIii.
(3.57)
(3.58)
HQcvienHuynhVan Tung Trang31
Tli (3.46),(3.57)va(3.58),tathudu'Qc
Ym(O)=Ilu~(O)W+a(Ulm'ulm)+(h/(O)+B)u~m(1)
~ (II Aum(0) II+ IIF(uorn'Ulrn)II+11f(O) 11)2
(3.59)
+[CI +KI2(e+llhIIICo(O,TJJllulrn II~
~3(II UOrnII; +2k2(a) II UOrnII~a+2k2(fJ) II Ulrn 11~j3+11f(O) W)
+[CI+KI2(e+II hi Ilco(o,TJJllulrnII~.
Tli (3.10),(3.54),(3.59),gii thi€t (H3),vado HI (0,T) C.CO([0,Tn nentasuyra
g2rn(t)~Mi5),a.e.tE[O,T]. (3.60)
Tli (3.53),(3.60)vab6d~Gronwall,tadu'Qc
(5) M(4)( (6)
Yrn(t)~MT e T ~MT, a.e. tE[O,T]. (3.61)
Tu'dngtlj (3.58),tacodu'Qc
IIF(um(t),u~(t))II:S;K(a) IIum(t)lit +K(jJ)llu~(t)llf
(
M(3)
J
~
(
M(6)
J
~
:s;K(a) ~ + K(jJ) ~ .
(3.62)
Tli (3.62),tasuyra
IIF(urn,u~)lloo. ) ~Mr),a.e.tE[O,T],L (O,T,Vo (3.63)
va
I
1I"r;.F(u., u~)II"(Q,) ~ 01F (um(r),u~(r»)II' drr ,;JT M!') (3.64)
Bu'oc3. Qua gioi h~n
Tli (3.37),(3.43),(3.46),(3.61),va (3.64)ta co th€ trichtli day {urn}mQtday
conv~nkyhi~ula {urn}'saocho
Urn~ u trong D$J(O,T;VI)y€u *,
u~~ul trong DJ(O,T;VI) y€u *,
uti~Ull trong L"' (OT V ) Y€u *rn , , 0 ,
(3.65)
(3.66)
urn(l,t) ~ u(l,t) trong WI""(O,T)y€u *,
(3.67)
(3.68)
HQcvienHuynhVan Tung Trang32
1 1
ra+IUm~ ra+lu trong LOO(O,T;La+l(o.)) ye'u *, (3.69)
1 1
rfJ+I U~ ~ rfJ+I Ul trong LfJ+I (QT) ye'u, (3.70)
(3.71)FrF(um'u~)~X trongL2(QT)ye'u.
Ap dl;lngb6 d€ v€ tinh compactcua Lions vao (3.65)- (3.68),va dophep
nhungWI,OO(O,T)c.Co([O,T])lacompactnentacoth~trichtuday{um}mQtday
conv§nkyhi~ula {um},saocho
um~ u m(;lnhtrongL2(0,T;Vo),
U~~ UI m(;lnhtrong L2(0,T;Vo),
(3.72)
(3.73)
Um(1,t) ~ u(l, t) m(;lnhtrong CO([0,T]) . (3.74)
Theodinhly Riesz- Fischertacoth~trichtuday{um}trong(3.72)va(3.73)
mQtdayconv§nkyhi~uIa {um},saocho
um(r,t)~ u(r,t), a.e.(r,t)EQT'
~.
u~(r,t)~ ul(r,t), a.e.(r,t)EQT'
(3.75)
(3.76)
Do F(u,ut)=IuIa-I U+1Ut113-1Ut lien tl;lc,nen tu (3.75)va (3.76) ta suy ra
F(um(t),u~(t))~F(u(t),ul(t)),a.e.(r,t) E QT' (3.77)
Ap dl;lngb6 d€ 2.15vOi q=n=2, Q=Qp Gm=FrF(um,u~),G=FrF(u,ul), tu
(3.64)va (3.77),tadu'Qc
FrF(um,u~)~FrF(u,ul) trongL2(QT)ye'u. (3.78)
Tu (3.71)va(3.78)tasuyra
F(um,u~)~ F(u,uJ trongL2(0,T;Vo)ye'u. (3.79)
Nhan(3.9)voi rpED(O,T) tuyy, r6i lfiy tichphantheot tuOde'nT, tadu'Qc
r T
f(u~(t),w/)rp(t)dt + fa(um(t),wJrp(t)dt
o o
r T
+ f(F (um(t), u~(t) ), WI)rp(t)dt+ f(h(t) u~(1,t) +get) )wi (1)rp(t)dt
o o
T
=f(f(t),wJrp(t)dt,VI
o
(3.80)
HQcvienHuynhVanTung Trang33
Do(3.67)taco
T T
f(u~(t),wJqy(t)dt~f(UII(t),Wj)qy(t)dt,khim~+oo.
0 0
(3.81)
Qua giOih(;lnkhi m~ +00trang(3.80)bdi (3.65),(3.68),(3.79)va (3.81),ta
duQc
[(Ull(t),Wi)+a(u(t),Wj)+(F( u(t),ul(t)), Wi)Jqy(t)dt
T
+ f( h(t)ul (l,t)+ get))WJ(l)qy(t)dt
0
T
= f(f(t)'Wj)qy(t)dt,Vi, VqyED(O,T).
0
(3.82)
Tu (3.82)tathuduQc(3.7).
D€ chungminh u la nghi<%myeu cua bai tmin(3.1)- (3.4)taconph,Uchung
minh u(O)=u(pui(O)=u]'
a) Chungminh u(O)=uo'
Taco i
f
t I '\
urn(t)=uOrn+ urn(s)ds.
0
(3.83)
Nhan(3.83)voi r Wi r6i l§y tichphantheor tu0 den1,taduQc
t
(urn(t),wJ=(uorn,wi)+f(u~(s),wJ)ds.
0
(3.84)
L§y tichphantheot tu0 denT trang(3.84),taduQc
T T
f(urn(t),Wj)dt =T(uorn,wj)+f(u~(s),(T-s)wj)ds.
0 0
(3.85)
Qua gioi h(;lnkhi m ~ 00 trang(3.85)bdi(3.10),(3.65)va(3.66)taduQc
T T
f(u(t),Wi)dt=T(uo,wj)+f(u\s),(T-s)wj)ds, Vi=1,2,...
0 0
(3.86)
Trang(3.85)thayUrn bdi u, taduQc
T T
f(u(t),wi)dt=T(u(O),Wj)+f(UI(S),(T-s)wj)ds,Vj=1,2,...
0 0
(3.87)
Sosanh(3.86)va(3.87)taduQc
(u(O),v) =(uo,v), VvEVI' nghlala u(O)=UO'
HQcvienHuynhVanTung Trang34
b) Chungminhul(O)=Ul'
Tit (3.10),(3.66),(3.67)va ly lu~ntu'dngtv nhu'ph:1na) ta cling thu du'Qc
Ul (0)=Ul '
M~itkhactU(3.67),(3.79)vagiathi€t (Hz), tasuyrarflng
Au =f -uti -F(u,ut) E LZCO,T;Vo),nghla Ia u E Lz(O,T;Vz)'
V~y sv t6n t<;linghi<%mdu'Qcchungminh .
Bu'O'c4. Chung minh sl!duynha'tnghi~m
Giasa Up Uz la hainghi<%my€u cuabaitoan(3.1)-(3.4)nhu'trongdinhly 1.
Khi dow=Ul - Uz langhi<%my€u cuabaitoan
(Wll(t),v)+a(wet),v)+h(t)Wi(l,t)v(1)
+(F( Ul(t),u{(t))- F( uz(t),ui(I)),v)=0,\IvEVI' a.e.tE (O,T),
WE LOO(O,T;V1)nLz(O,T;Vz)'
wi E LOO(0,T;V1),WllE LOO(O,T;Vo),w(1,.)E W1,OO(O,T),
(3.88)
1- ~
ra+lwE LOO(O,T;La+l(Q)),r,B+lwlE L,B+l(Qr),
w(r,O)=wi(r,O)=0,
VI WiELOO(O,T;V1),nenl1yv=wl, tit(3.88)tadu'Qc
t
111wi (I) W +la( wet),w(t)) + fh(T) Iwi(1,T) IzdT
2 2 0
t
=- f(F(Ul(T),U{(T))- F( uz(T),ui(T)), wi (T)}dT.
0
(3.89)
f)~t
t
O"(t)=II wi (t) W +a(w(t),w(t))+2fh(T) IWi (1,T) Iz dT.
0
(3.90)
Tit (3.89)tasuyra
t
O"(t)=-2 f\F(Ul(T),U{(T)) - F( uz(T),ui(T)), Wi(T)}dT
0
t
=-2 f(~(Ul(T)) -~(Uz(T)),WI(T))dT
0
(3.91)
t
-2 f(lu{(T)I,B-l U{(T)-lui(T)I,B-l Ui(T))(U{(T)-ui(T))dT
0
HQcvienHuynhVan Tung Trang35
t~ -2 f\F; (Ul (T») - F; (uz (T) ), Wi (T ))dT
0
t t
~ fllF;(u,(T») -F;(Uz(T»)W dT +fiiwl(T)W dr.
0 0
Ap d\:mgb6d€ 2.20.iiitaduQc
IIF; (UI(t»)- F; (uzU») III ~KR (a)11wU) II~~ KR(a) aU),
Co
(3.92)
trongd6 R =~nII Ui II C (O,T;VI).
Til (3.91)va(3.92),tathuduQc
aU)~
(
1+KR(a)
]
fa(T)dT.
Co 0
(3.93)
Ap dt,mgb6d€ Gronwallvao(3.93),taduQc
aU)=0, nghla1a UI=uz.
V~ydinh1y1dffduQcchungminh.
HQcvienHuynhVanTung Trang36