MỞ RỘNG VÀ ỨNG DỤNG BỔ ĐỀ GRONWALL-BELLMAN
HOÀNG THANH LONG
Trang nhan đề
Mục lục
Lời cảm ơn
Danh mục ký hiệu
Chương 0: Tổng quan.
Chương 1: Bổ đề Gronwall-Bellman và một số mở rộng dạng tuyến tính
Chương2: Một số mở rộng dạng phi tuyến.
Chương3: Một số mở rộng dạng hàm Exponent.
Chương4: Một số ứng dụng.
Kết luận
Tài liệu tham khảo
23 trang |
Chia sẻ: maiphuongtl | Lượt xem: 2391 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Luận văn Mở rộng và ứng dụng bổ đề Gronwall-Bellman, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
38
MlJ r(mgvallngdlJngBddl Gronwall-Bellman HoangThanhLong
CHUONG 4
MOT s6 UNG DT)NG
Nhuda gidi thi~uaph~nd~utien,B6 d~Gronwall-Bellmanvacac
marQngcuano dongmQtvai trora'tquailtn;mgtrong1:9thuy€t dinhtinh
phuongtrlnhvi phan.No nhumQtcongCl;lhUllfchd~chungminhmQts6
k€t qu~quailtrQngnhustfduynha't,tinh 6n dinh,danhgia tinhbi ch~n
cuanghi~m,...BaygiC5chungtoixin trlnhbaymQts6ungdl;lngcuano.
,..!' ,,?
§4.1.s1jDUY NHAT NGHI~M CUA PHUONG
TRINH VI PHAN vA TicH PHAN
ChoE ={u:I =[to,to+T]~IRll I u lien tl;lC}.Tren E ta trangbi mQt
chu§'nIlull=Supllu(t)III'11.111la chu§'nEuclidetrenIRll.DSdangnh~ntha'y
11-1,,1,;1'
E la mQtkhonggianvecWva voi chu§'nnhutren,no trathanhmQtkhong
gianBanach.
X6t phuongtrlnhvi phan:
x'=X(x,t), (4.1.1)
trongdox'(t)lad~ohamtheotcuahamxCi).
X: IRnxI ~I Rnlahamlientl;lctrenmi~nD.
D ={(x,t)EIRllxIII x - xollsr, It- tolsT}.
GiasaX lamQthamthoamandi~uki~nLipschitztheobi€n x,
Lllqn vanth{lcsi loanh()c Mil nganh: 1.01.01
39
MlJ rl)ngvaungdl.mgB6dl Gronwall-Bellman HoangThanhLong
nghlala ::JK>0 saocho:
IIX(x,t)- X(y,t)1I~KII x - yll,V(x,t),(y,t)ED. (4.1.2)
Do X(x,t) la hamlien wc trenD lienhamX(xo,t)la bi ch~ntren
It- tal~T. E>~tMo =SupIIX(x(»t)II vaM =Mo+r K. Tli tlnhLipschitz
11-lol$T
cuahamX, tacoduQc:
IIX(x,t)1I~M, V(x,t)ED.
4.1.1.Dinh Iy 1.1.
Ne'uX thoaadu kifn (4.1.2)thihili loanCauchychophuangtrlnh
(4.1.1)coduynhli'tnghifmx(t)trenIt- tol<rM-1.
ChungminhdinhIy 1.1.
Giasax(t),yet)lahainghi<%mcuaphuongtrlnh(4.1.1)thoadi~u
ki<%ndftux(to)=y(to) =Xo.Ta co
x(t)=Xo + fl X(x(s),s)ds,VtEI.
Jlo
(4.1.3)
yet)=Xo+ fl X(y(s),s)ds,VtEI.
Jlo
(4.1.4)
Tli (4.1.3)va (4.1.4),taduQC:
IIyet) - x(t) II ~II ( X(y(s),s)- X(x(s),s)ds II.
~ fl K IIyes)- xes)IIds.
Jlo
(4.1.5)
E>~tu(t) =Ily(t)- x(t)II2 0,apdlJngdinhly 1.1chuang1,taduQCu(t)
=0,vdi t thoamanIt- tal<rM-1.
Vi d\l. Xet bai loansail:
y"(x)+ay'(x)+~y(x)=f(x), (4.1.6)
Lllqn vanth(lcsf loan hf)C Mil nganh: 1.01.01
40
MiJ rfjngvalingdlJngBfldffGronwall-Bellman HoangThanhLong
y(xo) =a; y' (xo)=b, (4.1.7)
Ta chungminhphuongtrlnh(4.1.6)voidi~uki~nd~u(4.1.7)co
nghi~mduynh~tren[xo,Xo+T],voiT >0n~lOdo.
Th~tv~y,giclsli'phuongtrlnhtrencohainghi~mYl, Y2khclvi lien
WcWi b~chaitren[xo,Xo+T].
D:)tw=Yl - Y2. Khi do, wthoaman:
w"(x)+aw'(x)+pw(x)=O.
w(xo)=w' (xo)=O.
(4.1.8)
(4.1.9)
Ta chungminh:w(x)=O,'v'XE[Xo,Xo+T].
Nhan hai vii cua (4.1.8)voi w' va rut gQn,ta duQc:
1 d
--{w'\x) +pw\x)}+aw'\x) =O.
2 dx
(4.1.10)
L~ytichphanhaivii (4.1.10)tuxodiinx, taduQc:
W'2(X)=_pW2(X)- 2aIx w'2(s)ds.Xo (4.1.11)
M:)tkhac,tal?i co:
W2(X)~T Ixw'\s)ds.Xo (4.1.12)
Tuphuongtrlnh(4.1.11),tasuyfa:
Iw'\x) I ~ IPII w\x) I+21a I foIW'2(S) Ids. (4.1.13)
Thay (4.1.12)vao(4.1.13),taduQc:
Iw'\x) I~{IpiT +21a I}foIw'\s) Ids. (4.1.14)
Ap d\lngb6d~1chuang1(c=21al+IpIT,k =0,u(xo)=0 ), tathu
duQcw'\x) ~O.Suyra
Luqnvanthgcsl loanhl)c Mil nganh: 1.01.01
41
Mi'Jri)ngvalingd(tngB6dl Gronwall-Bellman HoangThanhLong
w(x) =c, 'v'XE[Xo,xo+T],C la m9th~ngsf{naodo.
Do (4.1.10)nentaduQc:
w(x)=0, 'v'XE[Xo,xo+T].
4.1.2.Dinh Iy 1.2.
Ne'u~~ tbnt[Ji,lientl:lctrenD thzhai roanCauchychophuangtrenh
(4.1.1)trenIt- tol< rM-1coduynhatnghi~m.
Ti€p theola m9tsf{k€t quav~st!duynha'tnghi~mcuaphuongtrlnh
tkh phan.
£)~tLl={(t,S)EQxQlto~s~t~td.
4.1.3.Dinh Iy 1.3.
ChoK: L1-f IR la mQthamlientl:lc.fJi,it
F ={f If Q -f IR lientl:lc}.
Gid sit art)EF vaJ-lE IR la mQthdngso:Khi dophuangtrenhrich
phanVolterratuye'ntinhtrenF
x(t)=art)+f.1 ft K(t,s)x(s)ds,tirED,
Jto
(4.1.15)
co duynhatnghi~m.
Chung minh dinh Iy 1.3.
St!t6nt~inghi~mcua(4.1.15)cothSchungminhb~ngnguyen1:9
anhX~coho~ccothSthallikhaotrong[10].
Gia sax(t),yet)la hainghi~mcuaphuongtrlnh(4.1.15).Ta co:
X(t)=aCt)+f.1 ft K(t,s)x(s)ds,
Jto
(4.1.16)
yet)=aCt)+f.1ftK(t,s)y(s)ds.
Jto
(4.1.17)
Lllqn vanth{lcsf loan h(JC Mil nganh: 1.01.01
42
Mlf ri)ngvaungdl;lngBtld~Gronwall-Bellman HoangThanhLong
Suyra
I yet) - x(t) 1~ I f.t1(I K(t,s) IIyes)- xes)1ds. (4.1.18)
Do K lien tlJctren~la mQtt~pcompactlient6nt~iM >0 saocho
IK(t,s)1~M, '\i(t,S)E~.Tli (4.1.18),tasuyfa:
1yet) - x(t)I~1f.tIM (I yes)- xes)Ids. (4.1.19)
Tli ba'td~ngthucnaytasuyrayet)=x(t),'\itEQ bangcachapdlJng
h<$quatrongchuang1(mlJc1.1.3)va chliyrangIy(t)- x(t)l?:0.(0)
4.1.4.Dinh Iy 1.4.
Cia sitKEL2(tJ.;IR),a(t)EF, j.1lahlings(5'thiphuangtrinh(4.1.15)
trenF coduynhlltnghi~m.
ChungminhdinhIy 1.4.Tu'angtvnhudinhly 1.3.
1yet) - x(t) I ~I f.tI (I K(t,s) IIyes)- xes)1ds. (4.1.20)
Ap dlJngba'td~ngthucHolder,taduqc:
Iy(t)- x(t)12~ 1f.t1211K 112 ft Iyes)- xes)12ds.
L Jto
(4.1.21)
D~tu(t) =Iy(t) - x(t)12?:O.Ta co
u(t) ~ 1f.t1211K 12L ft u(s)ds.Jto
(4.1.22)
/ ? ,
Ap dlJngb6de2 trongchuang1(mlJc1.2.1),taduqcu(t)=O,'\itEQ,
nghIala phuongtrlnh(4.1.15)trenF coduynha'tnghi<$m.(O)
Lllijn vanth{lcsi loanh{Jc Mil nganh..1.01.01
44
MlJ rQngvaungd~tngBd d€ Gronwall-Bellman HoangThanhLong
II x(t) - yet) II ~ IIx(to) - y(to) II+( K IIxes)- yes) IIds.
Ap dlJngdinh1y1.1chuang1,tadu(,1c(4.2.3).(0)
(4.2.6)
ChQn8= E . Khi do,taco lIy(t)- x(t)1I~E,co nghla13khi
exp[KT]
di~ukit%nd~uthayd6inhothinghit%mcua(4.2.1)clingthayd6inho.
4.2.2.Dinh Iy 2.2.
Gid sitX la hamthoamandiiu ki~n(4.1.2)va
IIX(x,t)- Y(x,t)11::::&,V(x,t)ED. (4.2.7)
Niu x(t),yet)leinIU(ftla hainghi~mcua(4.2.1)va (4.2.2)tren/, thztaco
ddnhgid:
Ilx(t)- y(t)II ::::llx(to)-y(to)llexp[K(t- to)J
[;
+ -{exp[K(t- to)J-1}.K (4.2.8)
Chung minh dinh Iy 2.2.Tuangtlj nhuchungminhdinh1y2.1.
Th?tV?y,tacodanhgia:
II x(t) - yet) II ~II x(to) - y(to) II+(II X(x(s),s)- X(y(s),s)lids
~ IIx(to) - y(to) II+rtII X(x(s),s) - X(y(s),s) II ds
Jto
+rtIIX(y(s),s) - Y(y(s),s) lids
Jto
~ II x(to) - y(to) II+([K IIxes)- yes) II+E]ds (4.2.9)
Ap dlJngdinh1y1.1chuang1,tadu(,1c(4.2.9).(0)
Lllqn vanth{lcsl loanh(Jc Mil nganh: 1.01.01
45
MlJ rfjngvaungd(tngBddi Gronwall-Bellman HoangThanhLong
" "" ...,? ,...
§4.3.DANH GIA TINH BJ CH~N CUA NGHIEM
Danh gia nghi~mcua mQtphuongtrlnh vi phan co th~cho bie'ttinh
6n dinh, bi ch~n,....
Xetphudngtrlnhviphan:
x'(t)=f(x(t),t), (4.3.1)
trongdox: 1--+IRllva f: IRHxl --+IRH.
Gia saf la hamlien t\lctrenmi~nxacdinhcuano.Ta xetmQtsf)
d~ngcuaf thoa man:
a. IIf(x(t),t)1I~g(t)lIx(t)11+h(t), (4.3.2)
g,h la cachamduong,khatichtren1.
b. Ilf(x(t),t)11~C(llx(t)1I+ IIx(t)IICX),0 ~a < 1.
c. Ilf(x(t),t)1I~Kg(lIx(t)II).
(4.3.3)
(4.3.4)
4.3.1.Djnh If 3.1.
Ne'uhamf(x(t),t)cilaphztclngtrinh(4.3.1)thoamandiiu ki~n(4.3.2)
thEtaco:
IIx(t)IIs IIx(to)IIexp[(g(s)dsJ + (h(s)exp[ fg(r)drJds.(4.3.5)
Chung minh djnh If 3.1.Ta co:
xCi)=Keto) + rtf(x(s),s)ds.Jto (4.3.6)
Suy fa
II xCi) II ~ II Keto)II +(II f(x(s),s) IIds.
Luijn vanthfJcsl loan hflC Mii nganh: 1.01.01
46
MlJ ri)ngvalIngdl,mgBdd€ Gronwall-Bellman HoangThanhLong
II x(t) II ::;II x(to) II +1~{g(s)IIxes) II+h(t) }ds. (4.3.7)
Ap dl;1ngdinh191.5chuang1,taduQC(4.3.5).(0)
4.3.2.Dinh Iy 3.2.
Ne'uhamf(x(t),t)cuaphliangtrinh(4.3.1)thoamandi~uki~n(4.3.3)
thi taco:
I
Ilx(t)ll:::{exp[C(t-to)J{[11x(to)III-a+IJ -l}l-a. (4.3.8)
ChungminhdinhIy3.2.
Tli (4.3.3)va(4.3.7),taSuyfa:
II x(t) II ::;IIx(to) II +C ( (lIx(s)II+llx(s)lIa)ds (4.3.9)
Ap dl;1ngdinh192.6chuang2, taduQc:
I
IIx(t)1I::;exp[C(t- to)]{[IIx(to)III-a+1]-I}1-a.(0)
4.3.3.Dinh Iy 3.3.
Ne'uhamf(x(t),t)cuaphliangtrinh(4.3.1)thoamanddu ki~n(4.3.4)
vag la hamtang,lientl;lctren[0,00)thi taco:
IIx(t)II::; \jf-I [\!f(11x(to)II)+K(t - to)]''ritE/, (4.3.10)
trangdo
ex 1
\!f(x)= JI -ds (£>0, x>O).E g(s)
(4.3.11)
ChungminhdinhIy 3.3.
Tli (4.3.1)va(4.3.4),tasuyfa:
II x(t) II ::;IIx(to) II +( Kg(1Ixes)lI)ds. (4.3.12)
Lllqn vanth(lcsfloanh()c Mil nganh: 1.01.01
47
MlJ ri)ngvau'ngd(tngBdd€ Gronwall-Bellman HoangThanhLong
Ap d\mgb6d~Bihari,taduQc(4.3.11).(0)
Nhu chungta dffbie"tphuongtrlnhRiccatinIt kh6 tlm nghi~mgiai
tich tudngminhtrongtrudnghQpt6ngquat,chi'c6 thStlm duQcnghi~m
trongmQts6 trudnghQpd~cbi~t.Vi v~yvi~cdanhgia nghi~mcua n6
d6ngmQtvai trohe"tsucquailtrQng.
4.3.4.Dinh Iy 3.4.
Nghi~mcuaphuongtdnhRiccatisau
y'(t) =a(t)/(t) +b(t)y(t)+kef) (4.3.13)
trangdoa(t),b(t),k(t) la cachamlientl;lctrenQ, yECl(.0),vanh~ngia
trj th1!Cse thoumandanhgia
!y(t)1~M(exp[-(lb(s)ldsJ-M (la(s)lexp[- f' b(r)IdrJds;-1(4.3.14)
'rItE[to,tp),tp=SUp(tEQ I exp[- rtb(s)dsJ(rta(s)dsJ}-i>Mj,Jto Jto
M=Sup(ly(to)+ fk(s)dslj.tED. to
(4.3.15)
Chung minhdinh Iy 3.4.
Tli phuongtrlnh(4,3.13),tasuyfa:
Iyet)I~Iy(to)+L k(s)dsI+L Ia(s)IIy\s) Ids+L Ib(s)IIyes)Ids
~ M + rl Ia(s)IIyes)12ds+ rl Ib(s) IIyes)Ids .
Jlo Jlo
(4.3.16)
Ap dl;lngdinhly 2.4chuang2, taduQC(4.3.14).(0)
Lllqn vanth{lcsi loanh(Jc Mil nganh.. 1.01.01
48
M/J rf)ngvall'ngdl;lngBddi Gronwall-Bellman HoangThanhLong
§4.4.SAI LtCH NGHItM HAl PHUONG TRINH
VI PHAN
MQt phuongtrlnh vi phankhi bi thay d6i vri phai, VI dl;!bC'1icae
nhi~u,di~ukhi€n se diin drinslf sai khaenghi~m.Chungta se sa dl;!ng
caemC'1rQngeuaB6 d~Gronwall-Bellmand€ danhgia slfsaikhaedo,
Cho g: IR+~ (0,00)thoamancaetfnheha't:
a,g lien tl;!evatangtren[0,00).
b. g(x)s;X,VXE[O,oo).
Xet haiphuongtrlnhvi phansail:
x' =X(x,t)
y' =X(y,t)+R(y,t)
(4.4.1)
(4.4.2)
Giasax, R la caehamlientuetrenD vathoamancaedi~ukien:~. .
IIR(x,t)1Is;8(t), (4.4.3)
vdi8(t)lamQthamkhatfchtrenI va
IIX(x,t)- X(y,t)1Is;Kg(lIx- yll),V(x,t),(y,t)ED.
4.4.1.Dinh IS'.
(4.4.4)
Niu caehamX(x,t),R(y,t)cuaphuangtrlnh(4.4.1),(4.4.2)thoaman
caedi~uki~n(4.4.3)va(4.4.4)thEtaco..
Ily(t)- x(t)II s G-1[G(M)+K(t-to)],ME/, (4.4.5)
trongdo
6= Ily(to)-x(to)ll,
Luqnvanth{lcsi loanh{Jc Mil nganh..1.01.01
49
Mi'JrQngvalingdl,mgBddi Gronwall-Bellman HoangThanhLong
M= Sup{15+fte(s)dsltEl},
Jto (4.4.6)
fX 1
G(x)= J, -ds (c:>O,x>O).
E g(s)
(4.4.7)
Chung minh djnhIf.
Tli (4.4.1)va (4.4.2),taSuyfa:
II yet) - x(t) II ::;II y(to) - x(to)II + (II X(y(s),s) - X(x(s),s) IIds
+(II R(y(s),s) IIds
::;IIy(to)- x(to)II+ (Kg(1I yes)- xes)lI)ds
+( e(s)ds (4.4.8)
f)~tu(t)=lIy(t)- x(t)11~0,VtEI, va 8=lIy(to)- x(to)l!.
Tli (4.4.8),taduQC:
u(t)::;M +(Kg(U(S»dS. (4.4.9)
Ap dvngb6d~Bihafi, taduQc:
u(t)::;G-1[G(M)+K(t-to)],
haylIy(t)- x(t)1I::;G-1[G(M)+K(t-to)].(D)
(4.4.10)
4.4.2.H~qua4.1.
Ne'uR(y,t)=0,MEl, thi taco:
Ily(t)- x(t)II ::;G-1[G( 15)+ K(t-to)].
4.4.3.H~ qua 4.2.
(4.4.11)
Ne'ug(u) =uthi taco:
Ily(t)- x(t)II ::;15exp[K(t- to)]+ (exp[ K(t - s)]e(s)ds. (4.4.12)
Luljn vanth[Jcsl loan h(Jc Mil nganh: 1.01.01
50
MlJ rQllgvaUllgd(l1lgBiJ dl Grollwall-Bellman HoangThanhLong
§4.5.SV PHT}THUQC CUA NGHItM THEO
THAM SO
Ta danghiencUuslf lien tl;lccuanghi~mtheodi~uki~ndeluva theo
v~phai.Bay giotanghienCUuslflien tl;lccuanghi~mtheothams6.
X6t phudngtrlnhvi phan:
x'(t) =X(x(t),t,~), (4.5.1)
x: I ~ IRll; X: IRllxlxlR~ IRll,lahamlientl;lctheocacbi~nvatheo
thams6Jl, vathoamandi~uki~nLipschitztheobi~nx,nghlala 3L >0 :
IIX(x,t,Jl)- X(y,t,Jl)II::;Lllx - yll,V(x,t),(y,t)ED,VJlEIR. (4.5.2)
Dinh Iy.
Ne'uphu{fflgtrinh(4.5.1)cohamX(x,t,Jl)thoamanddu ki~n(4.5.2)
thinghi~mxl/t) =rp(t,p)cilano lient1;lCrheathamsf;'J-l..
Chung minh dinh Iy.
Ta celnchungtorAng:
VE> 0, 38(E,~o)>0: I~- ~olIIcp(t,~)- cp(t,~o)1I<E.
Th~tv~y,tu(4.5.1),taco:
cp(t,~o)=cp(to'~o)+ rl X(cp(s'~o),s,Jlo)ds.
Jlo
(4.5.3)
cp(t,~)=cp(to'~)+ rl X(cp(s,Jl),s,Jl)ds.Jlo (4.5.4)
Til (4.5.3)va (4.5.4),tathuduQc:
II <p(t,f.l)- <p(t,f.lo)II < II <p(to'f.l)- <p(to'f.lo)II
Lllljn viill (h{lcsi (oanh(Jc Mil ngil1lh..1.01.01
43
Mi'irfjngvall'ngd~tngBli di Gronwall-Bellman HoangThanhLong
§4.2.Stj LIEN T{)CCUA NGHItM THEO
;:: " ;:: '- "'?
DIEU KIENDAU VA THEOVE PHAI.
Tinh lien t\lCcuamQthams6la ra'"tquailtrQngvi dt!avao tinh lien
t\lCta co th€ xa'"pXl gia tri cuahams6ling vdi st!thayd6i nhobandgu.
Tinhlienwc cuanghi<%mcuamQtphudngtrlnhvi phanclingkhongphiii
la ngo(;li 1<%.
Xet haibai loanCauchysau:
X'=X(x,t); x(to)=Xo. (4.2.1)
(4.2.2)y'=Y(y,t); y(to)=Yo,
x, Y lacachamlient\lCtrenD.
4.2.1.Djnh Iy 2.1.
GiGsaX thoaman(4.1,2).Ne'ux(t),yet)fahai nghi~mcua(4.2.1)thi
Ilx(t)- y(t)11.$'11x(to)- y(to)llexp[K(t- to)J,
Chung minh djnh Iy 2.1.
(4.2.3)
Giii sax(t),yet)la hainghi<%mcua(4.2,1).Ta co:
x(t) =x(to)+ rtX(x(s),s)ds,\itEr,Jto
(4.2.4)
yet)=y(to)+ rtX(y(s),s)ds,\itEI.Jto
(4.2.5)
Tli (4.2.4)va (4.2.5),tathuducjc:
II x(t) - yet) II :::;II x(to) - y(to) II+(II X(x(s),s)- X(y(s),s)IIds
Luqn van th[Jcsi loan h(JC Mil nganh: 1.01.01
51
Mli r(mgvalingdljngBiJ dl Gronwall-Bellman HoangThanhLong
+ rtII X«p(s,f.1),S,f.1) - X«p(s,f.1o),S,f.1o)IIds
Jto
II <p(t,/.-l)-<p(t,/.-lo) II < II <p(to,/.-l)-<p(to'/.-lo) II
+ rt II X«p(S,f.1),S,f.1) - X«p(s,f.1o)'S,f.1) II ds
Jto
+ rtII X«p(s,f.1o)'S,f.1) - X«p(s,f.1o),S,f.1o)IIds.(4.5.5)
Jto
Do X la ham lien tl;lctheo f.1nen 381> 0, 1f.1-f.11<81, keo theo
E:L
II X( <pCs,f.lo), s, J.l) - X( <pCs, J.lo), s, f.lo) II <
2exp[L(t, - to)]
Tli (4.5.5),tathuduqc:
II <pCt, f.l)- <pCt, f.lo)II ~II <pCtIp f.l) - <pCtIp J.lo) II
E:L }ds.
+ 1:.(L II <p(s,~)-<p(s'~o» II +2exp[L(t,-to)]
(4.5.6)
f)~tyet)=II <p(t,f.l) - <p(t,f.lo)II. Khi do,tli (4.5.6),taduqc:
t 8L }ds.
yet)~y(to)+II{Ly(s)+2exp[L(t]- to)]
(4.5.7)
Ap dl;lngdinh191.1chudng1,taduqc:
E:
yet)~y(to)exp[L(t - to)]+ {exp[L(t - to)]-I}
2exp[L(ti - to)]
(4.5.8)
Khi dotachQny(to)vataduqcdi~ucffnchungminh.(D)
Lll{jnvanlh(lcsf loan h(JC Mii nganh ..1.01.01
52
Mli rf)ngvazIngdlJngB{Jde'Gronwall-Bellman HoangThanhLong
N - A
§4.6. ON DJNH MU TRONG KHONG GIAN
BANACH
Khi xet de'nHnh6n dinhnghi~mcuamQtphuongtrlnhvi phan,
chungtathudngxetslf6ndinhcuanghi~mt~mthudng,tuclanghi~m x
=o.Ne'ux =XI"*0,tacothSd?ty =x - XlvaxetHnh6ndinhnghi~my.
Trongph~nnaychungta xetHnh6ndinhmil cuanghi~m.Gia samQi
nghi~md~ucothSkeodaide'n00.
D'={(x,t)IlIxll~H, to~t <oo},0<H lah~ngs6.
Xet phuongtrlnhvi phan:
X'(t)=A(t)x(t)+R(x(t),t), (4.6.1)
voiA(t)la loantatuye'nHnh,bi ch?n,lienWctheot,R(x,t)lahamlien
t\lCtrongD' vathoamandi~uki~n:
IIR(x,t)1I~Lllxll,L >0, (x,t)ED'.
4.6.1.Dinh nghla.
(4.6.2)
Nghi~mX=0 cuaphuongtrlnh(4.6.1)duQcgQila 6ndinhmilne'u
t6n t~ia> 0, B >0 saocho:
Ilx(t)11~Bexp[-a(t - to)]lIx(to)11.
4.6.2.B6 d~.
(4.6.3)
Nghi~mcuaphuangtrrnh(2.6.1)cod(lng:
x(t)=W(t,to)x(to)+ rlW(t,s)R(x(s),s)ds,JID (4.6.4)
trangdo W(t,s)lil taantitCauchy( matrqncaban), W(t,s)=X(t)X./ (s)
Lllqn vanthl!csf loanh(Jc Mil nganh : 1.01.01
53
Mi'Jri)ngvau'ngd1;lngBi}dl Gronwall-Bellman HoangThanhLong
vdix( t) lit matrcJ-nghi~mcuaphuclngtrinh
X'(t) =A(t)X(t).
Chungminhbfld~.
(4.6.5)
Tinh toantrl;1'cti€p x(t)tli (4.6.4)r6i thayvaophuongtrlnh(4.6.1).
x'et)=X'(t)X-I(to)x(to)
+X'(t) rtX-I(s)R(x(s),s)ds+R(x(t),t).
Jto
(4.6.6)
ThayX'(t) =A(t)X(t) vao(4.6.6)vanit gQn,tadU<;5c:
xlet)=A(t)x(t)+R(x(t),t). (4.6.7)
V~yx(t)langhi~mcua(4.6.1).(0)
Vi d\l 1.
X6t h~phuongtrlnhvi phan:
{
X\(t) =x2(t)
, X'2(t)=2tx2(t)
(4.6.8)
d 2
Ta co:-X2(t) =2tX2(t),tasuyfa,x2(t)=Cetdt
N€u C =0 thl x2(t)=0 vachQnXl(t)=1.
2 it 2N€u C =1thl X2(t)=et va chQnXl(t)= esds.to
Bi:!t
X(t)=
[
1 (eS2ds
]0 t2e
D~tha'yX(t)thoamanphuongtrlnh(4.6.8)vadetX(t)= et2"* 0,
\ftE [to,oo).Tli day ta d~dangtinh dU<;5cWet,s)=X(t)X-1(s).
Lllijn vanlh{lcSl loanhQC Mil nganh ..1.01.01
54
Mi'Jri)ngvalingdl!ngBddl Gronwall-Bellman HoangThanhLong
4.6.3.DinhIy .
Ne'uphu(jflgtrlnh(4.6.1)cohamR(x,t)thoamandi~uki~n(4.6.2),
IIW(t,to)I1.5'Bexp[-a(t - to)J, (4.6.9)
A =a - BL >0 thinghi~mx =0 cuaphurJngtrinh(4.6.1)tindinhmil.
ChungminhdinhIy6.1.
Ta conghi~mcua(4.6.1)1ft:
x(t) =Wet,to)x(to)+ rtW(t,s)R(x,s)ds.Jto (4.6.10)
Suy fa
II x(t) II ~II W(t,to) 1111Keto) II +II (W(t,S)R(x,s)ds II
~ Bexp[ -aCt - to)] II Keto) II
+ r BLexp[-a(t - s)]IIxes)IIds.
Jto
(4.6.11)
Ap dl!ngdinh 1y1.8chuang 1,tadU<;5c:
IIx(t) II~B IIKeto)IIexp[-( a - BL)(t - to)]. (4.6.12)
VI A =a - BL >0,nenphuongtrlnh(4.6.1)6ndinhmil.(D)
4.6.4.H~qua.
Ne'uphu(jflgtrinh
x'(t) =A(t)x(t)+f(t)x(t),
co hamf(t)thoamanIIf(t) II ~L (to~t <00),comatrgncrJbanthoaman
(4.6.9),vaA =a- BL >0,A(t) roantiituye'ntfnh,lientl;lc,bi chi;inthi
nghi~mx =0 cuanotindinhmil.
Vi d\l2.
X6th~phuongtrlnhvi phansail:
Lllf)n vanthfJcSl loan hf)C Mil nganh : 1.01.01
55
Mi'Jri)ngvazingdljngBtld~Gronwall-Bellman HoangThanhLong
(
X\(t)=-Xl (t)
X'2(t)=-2X2(t)
xJto) =1;x2(to)=2
(4.6.17)
£)~t
[
-1 0
] [
XJt)
]
A = , x(t)= .
0 -2 X2(t)
Khi do (4.6.17)ducjcvi€t l~ithanhX'(t)=Ax(t).Phuongtrlnhnay
co nghit%m1a
x(t)=exp[A(t- to)]x(to). (4.6.18)
M~t khac,tal~ico:
[
e-(Ho) 0
]exp[A(t- to)]= 0 e-2(Ho) ,
(4.6.19)
lien Ilx(t)1I~2I1x(to)11exp[-(t -to)].
V?y nghit%mkh6ng cua ht%phuongtrlnh (4.6.17)6n dinh mil.
Luljn van lhCJcsi loan h(JC Mil nganh : 1.01.01
56
MlJ ri)ngvaungdl;mgBd dl Gronwall-Bellman HoangThanhLong
~ """ ;::; ,,?
§4.7.ON DJNH CAC H~ TtjA DIED KHIEN
Xet phuongtrlnh:
x'(t)=Ax(t)+R(x(t),t), (4.7.1)
trongdoR(x,t)lahamdi6ukhi€n, lienWctrenD'; Ala matr~nh~ng.
N€u phuongtrlnh(4.7.1)duav6d,;mggndungthti'nha't,nghlala
R(x,t) thoamandi6uki~n:
. IIR(x,t)11=0,11111
I IIIlxll~O I x
(4.7.2)
vaAla matr~n5ndinhthlnghi~mx=0cuaphuongtrlnh(4.7.1)cling5n
dinh.
Bay giotaxettruongh<;jpR(x,t)khongthoamandi6uki~n(4.7.2).
4.7.1.Djnh nghia.
Ma tr~nA du<;jcgQila 5ndinhn€u Re(Ai)<0, i =1,...,n,trongdoAi, i
=1,...,n,la cacgiatri riengcuamatr~nA.
4.7.2.Djnh Iy 7.1.
Gid sitR(x,t) thoamandi~uki?n:
IIR(x,t)ll::;y(t)llxll & J~y(s)ds<oo,
(4.7.3)
va matrcJ-nA an dinh thi nghi?mx =0 cuaphuongtrrnh(4.7.1)andinh.
Chung minhdjnh Iy 7.1.
Nghi~mcua(4.7.1)dudid~ngc6ngthucCauchy:
x(t) =exp[A(t- to)]x(to)+ rtexp[A(t- s)]R(x(s),s)ds. (4.7.4)
JtD
Luqn vanthgcsl loan h{JC Mii ngimh ..1.01.01
57
MlJ ri)ngvazingd~tngBIl di Gronwall-Bellman HoangThanhLong
Ta suyraduqc:
II x(t) II s II exp[A(t - to)]1111Keto)II
+(II exp[A(t - s)]1111R(x(s),s) lids (4.7.5)
M~tkhacdonghi~mX=0cuaphuongtrinhx'(t)=Ax(t)6ndinhnen
::3K>0 saocho IIexp(At)lis K. Tli (4.7.5),tasuyfa:
II x(t) II s K II Keto) II +K ( yes) II xes) II ds (4.7.6)
sK II Keto) II exp[K ( y(s)ds]
Do (4.7.3)nentli (4.7.7),taduqc:
(4.7.7)
II x(t) II S k, II Keto) II vdi kj =Kexp[Kr y(s)ds].
Jto
Ta coth~chQnKeto)d~chonghi~mx =0cua(4.7.1)6ndinh.(D)
TacomQts6di6uki~nkhacd~danhgias116ndinhcua(4.7.1).
Giii samatr~nA cocacgiatri riengAjvaRe(Aj)<O.'v'j=1"..,n.
D~tA =maxReA.iCA),'v'j=1,...,n.
4.7.3.DinhIy 7.2.
NeuphurJngtrlnh(4.7.1)comatr~nA andjnhvaR(x,t) thoaman
IIR(x,t) II '1 ' '1 '1 h' h'" O ? (4 71)
A' d
'
hs I\.,()' va 1\.,0 <-I\." t 1ng lemx = cua .. on In .
Ilxll ' ,
Chung minh djnh Iy 7.2.Ta co:
II x(t) II s II exp[A(t - to)]1111Keto)II
+rtIIexp[A(t - s)]1111R(x(s),s) lids.
Jto
(4.7.9)
Do A la matr~n6ndinhnen::3B >0, la mQth~ngs6saocho:
Lufjnvanth{lcsfloanh(Jc Mil nganh: 1.01.01
58
MiJ rf)ngvaungdl!ngB6di Gronwall-Bellman HoangThanhLong
II exp[A(t - s)] II ~Bexp[A(t- s)],lit 2:s2:to.
Tli (4.7.9),taduQc:
II x(t) II ~ Bexp[A(t - to)] II Keto) II
+BAortexp[A(t- s)] II xes)II ds.
Jto
(4.7.10)
Ap dlJngdinhly 1.8chuang1,taduQC:
IIx(t) II :s;B IIKeto)IIexp[(A+Ao)(t- to)]. (4.7.11)
DOA+Ao <O,neil limllx(t)1I =0.(0)t~oo
Tli dinhly 7.1vadinhly 7.2suyfa
4.7.4.H~qua.
Gid SU:A la m(Jtmatr(mandjnh.Ne'u(4.7.1)thoamanm(Jttranghai
ddu ki~nsail:
1.IIR(x,t)II~llxllay(t), a<O, IIXW-1~Ao<-A.
2.IIR(x,t)1I~h(llxll)y(t), h(U)~AoU<-AU,
(4.7.12)
(4.7.13)
trangdoh(u) la hamduclng,lientl;lc(u >0),va thiphuclngtrlnh(4.7.1)
co nghi~mandjnh.
Lui)n vanthlJcsf loan hf)c Mil nganh : 1.01.01
59
Mi'Jr(Jngvaungd~tngBdd~Gronwall-Bellman HoangThanhLong
~ """
§4.8.ON DJNH H~ KICH DONG
THU ONG XUYE N
X6t phuongtrlnhvi phan:
x'(t)=A(t)x(t)+R(x,t)+u(x,t), (4.8.1)
trongd6A(t)la loantutuy6ntinh,bi ch?n,lienWctheot.u(x,t)laham
kichdQng,lientl;lctrenD' vathoamanIlu(x,t)1I::;;r(t)voir(t)lahamkha
tichtrongkhoangthaigianhUllh£;lnba'tky; R(x,t)la hamlien tl;lctrenD'.
D?t ho=Sup{r(t)1t ~to}.
4.8.1.Dfnh nghia.
(4.8.2)
Nghi~mx =0 cuaphuongtrlnh(4.8.1)6ndinhduoilac dQngthuang
xuyencuakichdQngu(x,t),n6u '\IE>0,38,h saDchoIIxoll<8,ho<h thl
IIx(t)1I<E.
4.8.2.Dfnh If.
Gidsitcaedduki~n(4.6.2),(4.6.9)durjcthoaman,va/L=a - BL >
O.Ntu V'E>O,llx(to)11<~,ho <~A, thEnghiemx =0 cuaphuangtrinh2B 2B .
(4.8.1)and;nhduailacd{)ngthuiJngxuyen.
D~chungminhdinhly chungtasadl;lngb6d~sail:
4.8.3.B6 d~.
MQinghi~mcuaphuongtrinh(4.8.1)sethoamandanhgia:
Ilx(t)11::;;B(~Jt)+~2(t)), (4.8.3)
trangdo
Luijn vanth{lcsf loan h{JC Mjj nganh ..1.01.01
60
Mil ri)ngvadngdljngBfld€ Gronwall-Bellman HoangThanhLong
rPj(t) =exp[-A(t - to)]IIx(to)II,
rP2(t)=exp[-A(t-to)]r exp[A(s-to)]r(s)ds.
Jlo
(4.8.4)
(4.8.5)
Chungminhb6d~.
Tit (4.8.1),tavie'tnghi~mdudid~ngcongthucCauchy:
x(t)=W(t,to)xo+ ftW(t,s)[R(x(s),s)+u(x(s),s)]ds
Jto
(4.8.6)
II x(t) II ::;Bexp[ -ex(t - to)] II x(to) II
+B( exp[-a(t - s)][L IIx(s) II+r(s)]ds (4.8.7)
Ap dt,mgdinhly 1.9chudng1,taduQc:
IIx(t) II::;Bexp[-(a - BL)(t - to)] IIx(to) II
+B ftexp[-(ex- BL)(t - s)]r(s)ds
Jto
::;Bexp[-(ex- BL)(t - to)]
{II x(to) II+( exp[(a- BL)(s - to)]r(s)ds}
::;Bexp[-A(t - to)]{IIx(to)II+(exp[A(s- to)]r(s)ds}
::;B(~l(t)+~2(t)).(0)
ChungminhdinhIf.
Tit (4.8.2)va(4.8.5),taduQc:
it h E~2(t)::;hoexp[-A(t- to)] exp[A(S- to)]ds::;~::;-to A 2B (4.8.8)
Ap dt,mgb6 d~tren,tasuyfa:
II x(t) II <E .(0)
Lllljn vanthq.,cs'iloanhfJc Mii nganh: 1.01.01