MỘT SỐ TÍNH CHẤT CỦA HÀM ĐIỀU HÒA
NGUYỄN THANH VŨ
Trang nhan đề
Mục lục
Lời mở đâu
Chương1: Tổng quan về phương trình Laplace.
Chương2: Đinh lý Liouville.
Chương3: Sự tồn tại nghiệm đối với miền bị chặn Ω.
Chương4: Giải phương trình Laplace trong miền ngoài của quả cầu
Tài liệu tham khảo
29 trang |
Chia sẻ: maiphuongtl | Lượt xem: 4312 | Lượt tải: 2
Bạn đang xem trước 20 trang tài liệu Luận văn Một số tính chất của hàm điều hòa, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
£' '/' '0 ,~,
~l.({(ht Yrl;/& (tJao Cf9c .200/ 36 ,//' '" (i7;' CY/':;c/~{t;JIc/& ,,//ItNt;f Ft?
Chu'dng 4
., ,
GIAI PHUdNG TRINH LAPLACE
~, ,., ., ~
TRONG MIEN NGOAI CUA QUA CAU
., '
I. Ma DAlJ:
Xel b,li l()(1ngialri bienDirichlelcuaphlWngldnhLaplaced6ivdi mot
mi6nD (lIdl1lienvabi ch~n):
LlU(X)=0, \iXEW\i5
HeX)=rex), LlXEaD
tronglit')r 1:1hams6lien t~lctrenaD.
-DE chC(ngminh gl)n ma khong mat llnh l6ng quc1t,trongChl(elngnay
chungloj xel mi6nD la quadiu deJnvi B={XER": I x I < I} vdi bienla a13={
x E R": I x I < I} trongkhonggianRII vdi n~2.
-Bai loan gia lr! bien Dirichlet mi6n ngoai se c6 nhi€u nghi~m.Trong
cac Sc1chgiao khoa,ngl(oita thl(OngthemtlnhchatCI}th~cua u 0 vungvo q(c
lhl mdi xac lIinh dl(l}Cbi~uthac cua u.Trong chuangnay ,chungtoi l1l(afa
ml)tdangnghiQI11u1ngqm1tdll cIll(a1'0tinhch~flcua 1I0 vo c~(c.
-N(ji dungcua dll(ling nay dlCl;5Ctdnhbay d~t'atheobai ban IS].
II. lYIQTs6 DJNH NGHIA vA DJNH LY .
1.Dilll, if' :
Xel mi2n0 =13(0,1') \ {O}={x E nn:0 D.
Khi lIl) lc1nlc.lih~ngso c c6 caetlnhchatsall :
. C E (0, I)
. Ml)i h2\111c i6uhoadlCOngu xac l1inhtrenQ d€u th6a
\ix, Y E 13(o,~), Ixi=Iy\=>clI(y) < u (x)
Clul thich:
Hang sf)c khongph\!thuochamdi6u boa u.
Clllfllg mill"
- Gl)i K IA m~tceiubanldnh ~ (tac K =~S) lhl K la t~pcol11pacttrong
O. Theo l1inh1)/Harnack thl tl1nt~\ih~ngs6c E (0, 1)co tinhchat
J;L(1It 'jrt~t-(&to dt;c 200/ 37 Jfiu;}IbJt- ,9'h{Wth-%
C U(Y) <U(X)
VtJi nH}ih~lIndi~llhoadl((jngII xacdjnhtfenQ vav6ix, Y E K.
- Cui t lllY Y thuoc(0, 1)vau 13hamdi~uhoadlf0ngtfenn.
H~l1ns(1 x -1- u (tx) cung 13ham di~uhoa duong tren n, do d6 eung
thoa batdanglh(ic0 tren,t(icla
CU(ly)<u(tx) ,
r
'\Ix, y E - S
2
M6i x E i S setl(ong(ingduynhatmotph~nto'tx E ~.S, do d6
tr
eu (y) <u (x) , '\Ix,Y E - S
2
- Ta thay ~ c6 lh~c6 gia lrj bat k5'trongkhoang(o,~) ne'ut dtiQC
chqnthichht.iptrong(0, I). Do d6
'\Ix,Y E B (o,~), I x I =I y I=>eu(y)<u(x).
0
2) Villh If':
.Gi~isli II : Rli -1-Ria hamdi~uhoatrenB\{O}={XERII: 0< I x I <I}.
. Ham sf)A[ullren B\{O}ducjcd1nhnghlanhl(sall:
Vdi x tuyY thuQcB\{O},A[uJ(x) la giatr1trungblnheuahamu tren .
m~tdiu b,1nIdnh lxi,tuc la
Alul(x):= 111-l fu(y)dS(y)
mix! lyl=lxl
twile
AluJ(x):=~ fu~xl~}lS(~)
1~I=l
trunglit)w la di~nrichcuam~tdu donvi.
. Khi l16AluJ cobi~llthuenhusau:
--. Tncc'lnghejpn =2:
.Yiui /1 'Prl~t'~o ~~c 200/ 38 ./1j;?J/Zn ,9'~tV/t~'r:i
Alu!(x)=b(-Inlxl)+c, VXE B\ {O}
trungd6 b, c IA h~ngso.
- TnCongh(Jpn>2:
Alul(x)=b IxI2-11+C,VXEB\{O}
trongdo11,c IAhhngso.
CIll£llg lIlillh
Xet hamsof : (0,1)~ R dlC<JCxacd!nhbdi
Vr E (0, I), ref)=fll(r~)oS(~) (1)
s
Saudaytasettmbi~uth((ccllaf( I x I), r6i suy ra bi~uth((cCI1aA[u](x).
- Ham s<1-:,~u(r~) lien t~ICd~ukhi r~thuQct?P compacttrangB\{O},ur
00 d6 d~1Ohamcua f IA
1"(r)=f~u(r~)oS(Oor
s
= f~. ('Vu)(r~)oS(~)
S
D~lbienmoi~=r~thl dl(\jC
1"'(1')=rl-l1. f;.('VlI)(~)dS(~)
rS
- Cui rl), 1'1tily Y thuQc (0, 1)
l
(/z .~o L/;/,
J(t(t/{ >(I/It-l tJao O~9C 200/ 39 . Jt;~'JI&l/3h(Mt~CY;i
Gqin ={x E Rn : ro< I x I <rd
Ap dl,lngcongth(I'CGreen, tadt((}c
f U.VlI LiS:::: fllll dV
80 0
trongd6 .an =roSu rl S
J
- ~ Bell ~E foS
ro'U=
1
1 neB ~E rlS
rl
( U lAphapveclddrinvi hudngngoaicuaan ).
./'>U=0 (dou la hamdi~uboa)
Suyra
f =-~.(V'lI)(~)dS(~)+f1. (\7u)(~)dS(~)=0~) ~
r()S 1'1S
Do d() f I~ .(Vu)(~)dS(~)::::f l~ .(Vu)(~)dS(~)
, 0 S
I
~,s ~
Tl'(dJng lhereli~ntren,ta suyfa
'Vr E (0, I), f~.(Vu)(~)ds(~) =h~ngsO' (h~ngsO'nay c1u~:!cgQila kl)r
rS
- 1'1:(bi~u th(fc clh 1"(r) (j tren, ta SHYra
fer) =k1 rl-n, 'Vr E (0,1)
Do d6
J
k[In r +k2 neu n::::2
1'(r) :::
1kIr2-11+k) neu n> 2
Ma Alulex)= ~f(lxl), SHYra Alul (x)c6bi~uthacnhtI'phatbi~u(rang0)
c1jnhly 11.2.
(p '/:'(0 c.iJ/'
,J..u(h, ;/(/;/t l-5ao Ol9C 200/ 40
.f ~ - ('::5,- o;/~
'./(p';jIMb .!3hCVlth-f/tt
0
3)Djllh Ii :
Gic1slthamsoth~(eu cocaetinheha'tsalt:
i) Lila hamoi~uboatrenB\{O}={XERI1:0<1x 1<1}.
ii) Lila hamlien t~letren:B\{O}={XERI1:o<1xl S';1}.
iii) u(x)=O, '\IxE8B={XERI1:lxl=1}.
iv) u(x)2:0, '\Ix E B(O,r)={xERI1:0<1x I <r} (vdi r la h~ngsothuQc
(0,I ) ).
Khi doucobi~uthuenilltsalt
-Tn((1ngh<;1pn=2:
u(x)=k(-lnI xl), '\Ix E B\ {O}
trongdok lah~ngsokh6ngam.
-Tnf0nghejpn>2:
HeX)=k( 1 X 12-11- ), '\Ix E B\ {O}
lrungdok lah~ngsokh6ngam.
Chl'tllgmillh
G()iAlul(x)lagiatrjtrungbinheuautfenm~tdu bankinh1 xI.
Ta seeh(tngminhu=A[u] trenB \ to}.
Xel mi~nB(O,f), rheadint ly 11.1(ehudng4) tontc~ih~ngso eE(O,I)
saGchovt'iinH,>ihamoi~uboakh6ngamu trenB (0,f) o~uthoa
'\Ix,y ~B (o,~) va I x I =I y 1.cu(y) <U(x)
D~l W =u- e.Alu]
Chltllg ll1inhdW1echiuthanhcaebttdenlll! salt.
Ihioc 1:(Chungminhw kh6ngamlfenB \ {O})
. Coi x E B (O,~)
'\IyE B (o,~), Iy I = Ix I =>eu(y)<u (x)
, I. . (/) ..,y'
,'fWill f/tZl? (.;YfO ekeD 200/ 41 LA~~:yZlt .9'h(l//bti'f/;i
SHYI'd cAlul(x):::; u (x)
lI(X) - cAlul(x) ~0
w(x)~0
Doell)w khC>ugamlrenB(D,~)
.G(.>iL ==inf {w(x): x E B\{O}}
l'{)nlai day {ad lwng B \{O}saDcho w (ad -7L khi k -7 00
Day [a"J BallI trungt~pcompactB nen t6n t~1iday con {bd hOi l~1v~b
E D
Tn('1ugIH.fpbEB\{O}:
Ilam di~uboa w d'.llclfc li6u khi x ==b, lheonguyenIy c~tcti6u
lhl w la ham hang lren B\{O}, w c6 gia ld khong am trang
13(o,~) nen suyra L ~O.
Tn('jngIH.fpbEGB : w(b)=DnenL =D.
Tn(Ojugh(}pb==0 :w khC>ngamlrenB(o,f) nenL ~O.
Ta 11IC>ud) L ~0, do d6 w khongam lren B\{O}.
V~y la Cl) lI(X) - cAlul(x) ~0, '\Ix E B \{O}.
Ihide 2: (ChCrngminh HeX)- Alul(x) ~ 0, '\Ix E B \ {O})
(1)
- Cluj \ lll: If!clays6 dlfC}Cc1jnhnghlabai
lu ==c
1,==c+lu(l-c)
. .........................
IIlI ==c + llll._1(I - c) (2)
Tl( l" ==c E (0, 1) la SHYHI lJ > 0 va tl < c + 1 (l - c) ==1, tltc t[ E (0, I)
Bang ljUY IH,'P,la c6 till E (0, I) vdi ll1l)i Il1 EN.
Ta U) tlll - tlll-J ==C (1 - till-I) >0,dod6day{tm}tang,d6ngthaiclaynay
hi ch~nbiji I Henhoitl,lv~gidiIH,lnmatagqi la1.
Cho 111.--)-00,ll( (5.2) SHYra
I ==c + t (l - c)
;; "'/) ',,/',~jtf(/( fUll '(Jew ,)1oc :..!{,i(J/ 42 . /(y; ~yg1t.?-ZUltlt'Yci
l =1
v~y tIll ---)0 I khi m ---)00 . (3)
- Xel day ham {wm}yoi Will=U -tm A[ul '
Ta lh,l'y Wm- cA\wm] =u-tm Alul-- cA [u -lmAlu]!
=II - tmAIuI - cA Ill! +rImAIIII
=u-lc+tm(l-c)IAlunl
=U-tlllt-1A\Llml
=Wm+l
n'rcla WII1+1=wn-cAlwnl
- Thcl) kel qLl21(I) d bt(dc I thl hamdi~Llhoa Wokhong am tren B\{()}.
Ap dl,lI1gkc'tLlU21(I) Jai vdi hamW()thl Ol((,iCtinhchfltkhongam clla hamWI
tren13\{O:,
Bang Lluy n"Lp,ta suy ra ham Wmkh6ng am tren B\{O} vdi mQi so'
nguycndll\!ng111, tLtCla
W11l(X)= u(x) - tmAlul(x)~0, \imE N ,\ixE B\{O}.
Clio Il) -} 00thl tm---)01 (uo (3)), suy ra
u(x)-AllIj(X)~O, \ix E 13\{0}
IhiO'c3 : (Chang minhu =AluJ)
(4)
Giil sLoe It'\nti;liXu E B\ {O}san cho u(xo) >Alu](xo)
Do u lien t~IC[(.IiXonen t6nli;limOtIan c~nV clla Xosaocho
HeX)>A[u](xo) , \iXEV,
M~lkllac,theoketqua(4)d bt(dc2 taco
lI(X)~Alul(xo) , \ixEoB(O,lxol)
SHYra gia trj trungblnhcua u trenm~tdtu 8B(0,lxol) iOnh(inA[lIl(xo),
llrc la
AIul(xo)>AI ul(xo)
Dietl n~IYvo 19.
Do lit) khongc6 Xol1aOthuQcB\{O}maco trnhchfltU(Xo)>Alul(xo), ket
h(}pydi tlnhcha't(4) tadt«}c.
HeX)=Alul(x), \ix E B\{O}
I L' , 1" (// l:;Y~
.Lw( It Fltlto O{tO (7i9c 20{)/ 43 Jf:f~VJlb;toL9'hCl/lth-%;
Ihifie 4 : (ke'llu~n)
Alul c()bi~ulhlrc nhl(lrongdinh 191I.2(d1lWng4), nen u Lungy~y.
- Tn((Jng hl}P Il co:2:
Ta Ct)u(x) co: be-In I x I)+ c, \lXE B\{O}
Khi Ix I-~ I lhlu (x) -) 0 nen suyra C=o.
Khi x E 13(0, r) lhlu (x) ~0, suy fa b ~0
V~yu(x)=b (-In I x I)ydib ~0
- Tnf(ing hl.ipn >2:
Tau')u(x)co:blxI2-n+c, \Ix E 8\{0}
Khi Ix 1-) I lhl u (x) -) 0 nen SHYfa c co:- b,
Llu lk) u(x) =b ( I X 12-11-I)
Khi x E 13(0, r) lhlu (x) ~ 0, SHYra b ~O.
[J
4/Di"" /y :
GiJ sLYlulll I la Llaycaehamdi~uboalfen l~pm6Dc U'\daynayhQi
It.!d~uvC:h~lmsoulfenm6il~pB(a,r) c D.
Khi lit')u lahamaieuboalrenD.
Clll?llg milllt
Cui a IllY yIhuQcD
T6n 1<.liquacau B(a,f) c Q
'I'as0chl"rngminhu la hamui~uhoalren8(a, f).
Do phepIjnhLie'nkh6nglamlbayd6i Hnbdi~uboacuahamsonenta
c()Ih~gd sera=0 makh6ngmilltinhl6ngquat.
Thc!) c()nglh(rcPoisson(dinh 19II.l-chlWng 1) tac6
Um(x ) co: fH(~,x)ul1l (~)dS(~),
1~I=r
'\lXE 13(0,f), \1mE N
Ta Ihfiy
,: 'f ' co '-,,/'.Jtt(ilt /tl/t C:7aoClt~)C 200/ 44 Jt;;~vyJ1b3ha~th-CP;i
Ulll (x) - fH(~,x)u(~)dS(~)S;; fH(~,X)IUm(~)- u(~)ldS(~)
1~I=r 1~I=r
Coi E >() ILlY Y, do UIl1hOit~1c1~uv~Unen 16nt~lis6 nguyenN thoa
m>N=> (IUIll(~)-u(~)I<E,\f~EB(O,r))
Luc utI
Do c1()LIlli(x) ~
LIlli(x) - fH(~,X)U(~)dS(~) S;;E fH(~,X)dS(~);;:oE
1~I=r 1~I=r
fH(~,X)U(~)dS(~),khim~ ct:)
1~I=r
fH(~,x)u(~XJS(~), \fx E B (0, r)
1~I=r
u(x) ;;:0SUY ra
Do lit) Uui~lIboa tren B (0, r).
Suy ra u ui~lIboa trenB (a, r).
V~y LIdieu boa Iren Q.
0
5/ Hill" ly :
Gia Sl(LUmla chu6icaehamdi~uboatrent~pm0Qc R'\ehu6inayhQi"
t~ll1~1Iv~hams6u trenm6it~pB(a, r) c Q.
Khi de)II 1fthamc1i~uboatrenQ.
CIll?llg 11lillh
Binh Iy naylah~quaeuadint Iy 11-60tren.
, ~' ':"
III-PHEP BIEN DOl K.
1)Binh nghia:
.Xet l~pEc R'\{O}.
V()ix la motphftntii'toyyclla E,phc1ntll x* du'<;jedinhnghlanhl!'sau
__'fa'illi f {[~t«(0.0 (;7{~c20()/ 45 t . - cv CY/.'<-/'jtt;:jlbH~h{1dt4 j/ ,t:
x*=~
Ixl2
T~pE* lh(.JcoinhnghTalaE*={x*: XEE}.
2)Tfnh chfttciia x*.
1
a) '\;Ix:;eO,Ix *1=N
b) '\;Ix:;eO,x**=x
c) '\;lEe R"\{O} , E**=E
d) NeuxEE*thIx*EE.
e) Neu E la t~ph(.jp {XE RII: (k I x I <I} thlE* la t~ph(fP {xERII:\x
I>JI.
Cilling lIlinh
x
I
1
H) I' 'I = IH' = N
x
>
b) x**:=(x*)*=x* _Ixr
I
*
1
2 - T =x
x-'
Ixl2
c) Suy 1'atu tint ChEllb).
d) Cui x toyY thuQcE*.T6nt~iYEE thoax=y*.
Suy ra x*=y** ,maLheDtinhchat(b) thl y**=y,nenx*=y.
VGy x* LhuQcE.
e) Suyfa lu ojnhnghTacliax* vatinhchat(a).
0
3) Hill II IIghia.
Ghl Sl(L~pE e R'\{O}vahamsou : E-7 R .
Ham s6 KI ul au\icdjnhnghTanhL(salt
Kluj:E*-7R
\;IxE E*, K[u](x):=Ix12-11u(x*)
(j:' '/,"/) ~~/'
,cL,{ui/l ;/(1/I" Ciao O~~c :::!()O/ 46
,//~ - 6,- CY/,~
JlJtttJlbll- ,!3h{b714f/c'i
4) /Jill" /y.
Gi~isu' Ii c IC\{O}va hamso LI:E~ R .
Khi lh\biend6iK cuahamsoKluj chinhlau ,tL1'cla KI Kluj]=u.
Clll~ngminh
Do E**=EnenmienXclcdint cllaKIK[ull ehinhlaE.
'IIx E E, KI KIuII(x):=Ixl2-nKlu](x*)
1 1
2-11
1
"'
1
2-n
(
", ",
) ( )=x X'" ux"""=ux
V~yKIKlull=LI.
I]
5)/)i"" /y.
Gi<iSlt'E c R'\{O}vahamsog:E~R
Nc'uw=Klglthlg=Klw]
CIll?llg millh
Gia si'i'w=KIgJ thl w :E*~R .
Khi Lh)Kiwi c6mi~nxacdinhlaE**=E.
Vdi x lllY ylhuQcE,la c6
I 1
2-11
( ) I 1
2-11
I 1
2-11
( ) ( )Klwllx)= x wx*=x x* gx**=gx
V~yKlwl=g.
[J
6)ViII" /y :
Gi~lSlt'udieuhoa trenquacauoejnV!B c R'\lien t~lCtrenB.
Khi (It)KIuI dl(JCxacdinhtrenRU\B b(~ic6ngthue
~ f Ix12_1
KllIl(x)= ~ "' IQ=I!x- ~I"u(~)dS(~)
u(x) .
neB x ERn \ B
neB Ixl =1
trung (M (I) I;) di~n tich clla m~tdiu don vi .
( ,( X' ("L? -..i;/'
...Lad/( /(blt 0uo ilt9c 200/ 47
,//' - oT cy/.:
J':ft':f/&t- J~(V1t;; }//i
CJlll'Ilg millh
ThL:o cc)ngLht'fcPoisson Lac6
I
I
1- x-
~-u(l;:)dS(l;:),\/ x E B.
Il;:- xll1
u(x)= ~ J())
I~I=I
ma khi I ~I=I Ihl
Mi€n xacdinhciiaKIHIla U!'\B (doHnhchc1tIII.2-chl1dng4).
-Khilxl=ILhl
KluJ(x)=1XI2-IIU(X*)
=u(x)
-Vdi X IllY Y LhuQcRI1\B , Laco
11
1-11
KllIl(x)= x - u(x*)
1
I
*
1
2
1 1-11 - X=-
J Ixl- u(l;:)dS(l;:)
()) Il;: - x'If
Il;:l =1
1
1---
=~ f IxI 2-11_lxI2 u(~)dS(~)(0
I
111
I~I=I ~- --~-
Ixl2
l~e_=1
=~
J Ixl2-n Ixl2 . u(~)dS(l;:)(0 In
11;1=I Ixll"l;\xl-I;1
=~J Ix12-1 u(l;:)dS(~)0)
1
m
I~I=I~Ixl-.-~
Ixl
x
~Ixl- - =Ix- ~I
Ixl
2
X
I
?
(do 1l;:lxl-N =Ix-l;:I-)
nen
II?I x --I
KllIl(x)= - J u(l;:)dS(l;:)
(O1l;:1=IIX-l;:ln
0
( L' 'I' /? ~);/'
.1Wilt j/~ht' bao (j~(JC .2001 48 JJ:f;':fIblt ,-3Y;;a7t~%
7)J)i"h Ii .
Gia sl'rt~pm0E c IC\{O}vahamsou:E-t R .
Khi Ll6,hamso1Idieuhoa(renE ne'uvachlne'uK[uj dieuhoatrenE*
Cillfllg millh
-BliO'e1:
Giii sl'r1Ilahamsodieuhoatrenn.11.TachCrngmintKlu] la hamso
dieuboatrenR'\{O)nhLrsau.
Coi x lLIYy thuQCquadu donvi B.
Ta cti u(x) ~ ~ J I-lxi' u(i;)dS(~)~ JH(~.x)u(C)dS(~)
ffile:l=llx-ct . 1e:1=1
Theo LlinhIy 111.6(chLWng4) ,vdi I xl >1tac6
Klu}(x)= f-H(~,x)f(~)dS(~)
1e:1=1
Suy ra ~x(KllIj(x»= f~x (- B(e:,x))f(OdS(e:)
1e:1=1
=0 (theochdthieh0 Il-2-d1LWngI)
Do LIt)Klujla h~lJl1dieu hoa lren n!\B .
Theodint nghla,tac6
'IXE R"IB. K[u](x):~Ixl2-n{lx~2J .
Suyra Klulla hamgiairichtrenW\{O}(dorichvahlJpcae
h~\111giiii richla hamgiairich).
Dod6ham ~(Klu})la hamgiili tiehtrenUII\{0},dongthaiham
naylrit;ltieulrenR'\B,suy raD.(Klu})lri~tlieu lreneelR'\{O},tue
hamKlu}aiel!boalrenR'\{O}.
-Ihide 2 :
XGtu 1[1hamdieuhoatrenE c W\{O}.
Cui b tLIYY thuQcE*.
Ta c6 a=b*thuQcE thoa b=a* .
TheodjnhIy IIl.6-clutong1,t6nt~\imQtIanc~nVacllaa saDchoue6
thekhailri2nlhanhmQtehu6ihQit~1delltrenvunge~nnay.
,/' . I. '-/;J ~:i;/'
dWi/( ';/(;;jt.'c5ao (j~9c :!(/(J/ 49 ' j~;?JfZ'lt-c?hCVlth~i
Do
CD 00
HeX)=LPm (x- a)=L Um(x)
m=O m=O
Lrungd6 moi UIIlla da lh(tcdi€u boa .
KlulIll(x)= Ix12-1I1I1Il
[
~2
J
vachlloidalh(tcI Um
Ixl III =0
hOil~ld€u
w
Lren Va ,Lasuy ra c1L((,icchlloi LKlull1} hOil~ld€u lrungmOlHinc~nclla b,
111=0
khid6
,~KllIm}~{~Um ]~ Kill]
Hams6Klulla tC1ngcuamQLchlloicaehamK[ulll},maCell:ham
KllIlIl}dicuboa lrenE*c R'\{O}(kelquabl(OCI), nenlheodinhIy II.6
(chuoung4) Lac6Klu J la h~\Jndi€u boalrenR1\{O}.
IhiO'c3 :
Gj~1Sll'KllllIA hamdiellhoa,dou=KIKlulJ nenthenketqui1cllabuoc
2 Lac6 1II,}hAm c1i€lI hoa ,
LJ
CJlIi lhich:
. MQLpluwngplu-1pkhacd~changminhdinhIy Lrenla dlfaVaGbi~u
th('oK[uI(x) ~ [x12-n 1I( [X~2) di!tjnhcael1~nhamdongphilncuaK[u] then
cacd~loh~\Jl1riengphgnCllau,saud6 tinh i'1K[u]va changminhbj~uth((c
naybhng(),
[V-NGHI(~M CUA HAl TOAN DIRICHLET MIEN NGOAI.
lIBjllh Ii :
Xet bAiLm1nDirichletd6ivoimienngoaicoaqU(1diudonvi B trangRI1
(vdjn>I)
i'1u(x)=0, '\Ix E R"\B
HeX)=rex),'\IxE oB
Lrongl1{)r lient~lCtrenbienoB vanghi~mu E C2(R"\B) n C (R'\B).
MOLnghi~md~cbi~Lellabailoannayla
(/' ,y' (£' ~iI."
j.fUj/{ f/ rl/~ 6ao cree l!OO/ so .jfj.;:y&~5YhMA%
j~.flxl2 - IU(X)=
1
w
I
-
I
II f(~)dS(~)
al3x ~
t"(x)
neu xERII\B
neu x EoB
lrung(16w ladi~nlfchciiam~ldu donvi .
C/lllllg l1linh
XCl hamv tren B nht( sau
~
f
l-1xI2.
v(x)= I WaBlx- ~rt(~)dS(~)
nell x E B
rex) nellx E oB
Theoc()l1gthCrcPoissonlhi hamvEC2(B)nC(B) vav dj@lIhoatfenB.
Hamv xacdjnhlfen B\lO} thlhamKlvi xacdjnhtrenR'\B.
TheoL1jnhIy llI.6-cht(dng4 ,K[v] cobi€u th(rcsall
{--HlIllv di@uhoatfent~pmdB\{O}nentheodjnhIy 111.7-chuang4 la
c6 Kl vIl~1h~lIndi@uhoa lfen R"\ B .
-D€ changminh KI uI lien l~lclfen R"\B, ta chI dn ki€m tinh lien t~IC
cib Klvll<.li013.
Cui ~lllY 5'lhuQcoB .
Neu x -7 ~trong R"\B lhi x':::;-;- --j-~:::; ~ :::;~, hk dov(x*)-7f(~).
Ixl- I~I I
11
2-11
(
X
J
Jim Klv](x)= lim x v ---;; =f(~),
x -7 ~ X-7 ~ Ix/-
Do LV)
v ~yKI vI lien t~ICtrenI~"'\B.
Ham sf{Klvl thoacaetlnhcha'tciia b[tiloan nen la mQInghi~meila b[li
loan. 0
I f!xl2 - I
Klul(x)= 0) Ix-111 f()dS()
A'neu x E RI1\ B
II=I
rex) nell Ixl=1
,5.£:(2/1CPa~~«(feLOc1l~c !!!{/o/ 51 ,/t:Y~t;!I&~9'h(Mih%
2/ Dillh Ii :
Xet bAiloanDirichletdoivdimi~nngoAicllaquadu dejnV!B trongRl1
(vdin>1)
L1U(x)=0, \:Ix E RII\ B
HeX)::: rex),\:Ix E 3B
trongd6r lienl~IClrenbien3B.
Khi d6,mqinghi~muEC\R"\B )nC(R'\B) clla bAi loand~uc6 d<.tng
lrennll\B nilL(sau
[ ]
)
2--11 X 1 x--l
u(x):::
I
x
l
w ~ +- III r(~)dS(~)
Ixr CD3131x- ~111
, \:IXE n!\B
trongde):
w Iii l11e)th~1111::;6di~uboa lren B\{O},lien t~ICtren B \{O}va c6 gi<lt1'1
trenbien 813b~ngO.
CDI~Idi~n llch clla lI1~lcall (jdn vi.
CJul tbieb:
.Trong l\"L(Ongh(}pn=2thl Uco lh~Vie'ldl(oi di:.\I1gsan
I 1 2" 1'2-1
u(1',H) =w(-,8)+- J ? f(p)d(p
l' 2rc 01'- +1- 21'cos(8- (p)
,Vel',8) E (1,CX))x(O,2rc)
CluIng millh
Ta lh{{yh IA II1Qlnghi~mclla bAi tOi:ln(lheo djnh 19IV.l d lren).
Gia Sl(II lA mQtnghi~mba'tky cuabili loan dangxet.
f)?l g(x)=u(x)-h(x)
Ta Cl)g Iii mOl hamdi~lIboa tren R"\B ,lien 19ct1'enR"\B,c6gia td 0
lren bien aB.
J f()dS()
'" x E n.11\ BneB
-Gqi h(x)= CD1I:::llx - 111
'"
Ixl:::1rex) neB
(? .'j,' (a c".'
.L(trilt F Ii", lDaD?(9C 200/ 52 Jt;~~JJt-3hlVlb~%
(:;l)iw=Klgllhl w X,1c((jnhtrcn B.
I-Hling di~llboatn~nt~pmo' R"\B nenw la hamdi~llboatfenB (do
dinhIy IIl.7-cllltdng4).Hamg b~ng0 tfenaB nenhamWcungb~ng0 tren
as.
-Coi ~ILlY Y thllC)CaB
Nell x -+~tIll x'=-;- --7-; = ~ =~,d6ngthdig(~)=O,
I x1- I~I 1-
dod6
11
2-n
(
X
)
lim w(x)= lim x g ~ =0,
x -+ ~ x -+~ Ixl-
SllY ra w lien t~ICt~li~.
Do d6 w lien t~ICtren B.
NI1lev~Yw th6acaeHnhcha'tHell trangdinh Iy.
-Ta Cl)w=Klgl nen g=Klwl(theo dinh Iy llI.5-chlWng 4) ,SHYfa
ll(X) :=:KI wJ(x) +hex)
11
2-11
I
1 112 1
=x w \ +CJ.) II x - n f(~)dS(~)
Ixl aBlx-~1
'\JXE RII\ B,
0
.Yi~'~ht'l(i~l(am (jac 200/ 53 .-,A:f~~!lJJb.9h{UJt~%
3) Vi d{l:
Xcl bAi loan Dirichlel d6i vdi mi€n ngoai ciia dla troll don vi B trangu?
') -
L\u(x)=0, '\Ix E R-\ B
u(x) =rex),'\Ix E 8B
(i)
(ii)
lim HeX)==L
IXI-7oo
(hfj'uh~ln) (iii)
lrungdt')r lien [~ICtrenbien8B vanghi~mllEC2(U?\B )nC(R\B).
tHy changrninhkefqll(1sall:
-Tnrongh(}pL=21Itff(l;)LlS(l;;):
an
Nghi~mcllabftito<1nlaLluynha'tvacobi611thuctrenR2\ B lEi
ll(X) ==~ flxl2-I f(~)dS(~)
2ItaBlx- ~12
-Tn()ng IH}PL:;t:-f- ff(~)JS(O_It
an
BAi loan lren vo nghi~l1l.
Cllllllg mill"
Gia sLfbai loan co nghi~mla u.
Th~oc1jl1hIy IV.2-chlfc1ng4 ,nghi~mu cod<;lng
u(x)=w(x*)+h(x)
v(1ih(x)=
~ flxl2_12It
I
x - r
l
2 f(~)dS(~)
an '-:>
rex)
lIeu
? -
xER-\B
neu x E8B
')
Suy ra w(x*)=u(x)-h(x) , '\Ix E R-\B.
Dod6 w(x)=u(x*)-h(x*) , '\Ix E B\{O}.
Khi clH>X-7() trong B thl X*-7oo , u(x*) -7L (gi~lthief) va
.(:I<;~ldL'f(?~{'(,;~o~c 200/ 54 ,jJ:j; 'j/b/L '%V/btf %
h(x"') ~.~ ff(~)us(~)211:
aB
Do lit>khi x~O trungB thl
(tinh chfttclia cong thltcPoisson)
1
f
'
w(x)-->I.J -- l(~)dS(C;;)
211:
au
(ta gqi gidi h',111nay 1£1L' )
-SaudaytasedllYngminhw bang0 trenB\{O},
Xct hamg,lx)=w(x)+E(-lnlx )
IHlIl1gt;ui~uboatrenB\{O}.
Khi X~Olhlgix) ~oo,suyra g,,(x»Onellx (higanO.
l-)~tm=inf'{g,,(x):xEB\{O}}(mc6 thi la -.00).
T6n t~liday{adlrongB\{O}saocho gt;(ak)~mkhik~oo.
Day {adHamtrongt~pcompaGtB nent6nt<;1idaycon{bdhQi
tu v6hEB ,
Neu hEB\{Ollhlhamdi~uhoag"d(,ltgia tr!clfetiiu khi x=b,
lhcn nguyenIy Cl,retieu lhl g" 1£1ham hang (luon bang m) tren
B\{0I,ma khix gan0 thlg,,(x»Onensuyra m>O.NelibE aB thlm=O
dngo;{h)=O.Neuh=OthlIII ;?0 dog,,(x»Okhi x gaBO.Dod6 taluonc6
III ;:::O,suyra g,,(x)khongam trenB\{O}vdi mQiE >0,do d6 w(x)
khtHlg[1mtrenB\{OI,
Trongbiiu lluk cuagix) LaxcLhamdi~lIboa-w thayVIw,ly
lu~11lu'dngH,rla c6 ket qua -w(x) khongam trenB\{OLt(rc fa w(x)
khol1gllLrdngLrenB\{OI,
Ta ua ch(rngIllinhw(x) VITakhongamVITakhongdlrOngtren
B\{O},l1cnC()thesuyraw(x)bang0 LrenB\{O}.
Dn (It>vabi6uth((ccliau LrenU,z\B la
u(x) =w(x*)+h(x)
=hex)
')
=~ jlxl- - ~ f(C;;)uS(C;;)211: .
l
x-c;; I
-
au
-Ham s6 u c6 biill th(rcd Ln3nth~tslf la nghi~mclla bai loan nell u
Ihl1ade linh chftL(i),(ii),(iii).Ta Lhfty1Ithda(i)va (ii),cho x~oo Lhl
u(x) ~~ ff(~)dS(~)211:
an
(j.) ( ",' '/' c.~)
oLU-{?-/tFrz,/t C)(tu en t?c !to{N 55 Jt:;~<;yb;?!M(Mt~%
do (() II chi Ih6a lInh chelL(iii) nc\, vi, chi nc'u
L==~ fr(~)dS(~)2n
an
V~y Lacc>keLqu~idn chungminh.
0
4) Vi d{l
XeL b[1iL(HinDirichlcLdoi v(Hmi~nngoai clia dla Lrondrin vi B trong
n? ,
') '-,-
,[.,II(X) == 0, \Ix E U-\ B
,11(x)==rex),\Ix E 013
.11bi ch~nd vungvoCl,fC, ILtcIii :
3M>O,3[>0,\Ix E U2\13,1xl>1'~ IHeX)I <M
lrongde)r licn LI.letrcnbicn013viighi~mUEC2(U2\B)nC(n?\B),
Hayeh(fngminhnghi~mcliabiii loanJii
')
I
f'x'-- J,l1(X) ==--- ? l(~)dS(~)2IT Ix -~ I -an
Cldtllgmillh
Thco djnh 19JV.2-chlwng 4 , nghi~m U c6 d<:1ng
U(X)==w(x*)+h(x)
Suy ra
I )0 dc)
f
?
~ Ixl-- J f(~)dS(~)
vdih(x)==
1
2
,
"aLlx-~12
rex)
".
w(x*)==u(x)-h(x), \Ix E nhB.
w(x)==u(x*)-h(x*) , \Ix E B \{O}.
nell
? -
XEU-\B
IH~11 x EoB
Khi cho X-70 Lh. X*-7W,
hie de) h(x*) -7 ~ fr(~)dS(~)(1lnhchatctiac6ngLhuePoisson),2n
an
(IcingIhlJi lu(x *) 1<M khi Ix*1dti /dn(x* E n?\B),
1£' .'" ( ' (k/~j{{~i/{ Yrt/t' '(tv JL~C j!{j() / 56 J1:;;ljIblt5YicWthtfi
do d6 I w(x) I hi d}~nhdi M+I~ ff(~)dS(~)1 khi x gan 0,
DB
XCLham g,lx)=w(x) -/-1=;(-Inlxl) .
Ham g"t,li6uboa Iren B\{O},
Khi x~() ,Ihlg,,(x)~CX),SHYra g,,(x»Ontll x dLigftnO.
f)[,ilm=inf{g,,(x):xEB\{OI} (m c6 Iht3Ia-CX).
'I'(inL"li day{adLrong B\{Olsao cho g,,(ak)~m khi k~CX),
Day {ad nam Imng I~pcompacL13Ben tan t'.liday con {hdhQi t~1v€
hEB.
Ncli hEB\{O}lhl ham di€u hoa g~d<;llgia Iri Cl,fCtit3l1khi x=h ,tbeo
nguyenIy cl,fCLieu Lhlg~la hamhang(luanbangm) lren B\{0},makhi x
gin 0 Lhlg,,(x»O nen SHYra m >O,N6uhE 8B thlm=Odo g~(b)=O,Ne'ub=O
Lhlm ;:::()do gjx»O khi x gan O.l)o dt) Laluan c6 m ;:::O,suyra g,,(x) khang
al1llren H\{OI vdi mqi E>0,do d6 w(x) khang am lfen B\{O},
Trung hit3uIinte cLiag~(x)ta xet ham di€u boa -w thay VI w,ly lu~n
ll(ling llf Ll c() kc'tL/u.i-w(x) khong am IrenB\{0},t(rcIii w(x) khong dl(Ong
Ire n B \ (() I,
'I'a dfJ ch((ng minh w(x) vua khong am vua kh6ng dl(0ng tren
B\{0!,ncnc()theSHYraw(x)bang0 trenB\{O},
T6m l'.li,nghi~11lc la bai loan Iren Iii dllY nhatva c6 bit3uthl'i'ctTen
n2\B la
u(x)=w(x*)+h(x)
=hex)
=~ f
lxl2-1
2rc
I
x -(
1
2 f(~)ds(~)
DB ":>
0
5) Vi d{l:
Xcl hai [min Dirichkt d6i vdi l1li€n ngoai clla dla Iron dl1nvi B trang
n2,
~ -
,lHl( x) =0, \Ix E n.-\B
,u(x) =rex),\Ix E 8B
u(x) .. --
I I
~ 0 kill x~ CX)
111X
( /J ," i /J ,.ij';;
,La~i/t frl/t ()(to ,;1(9(; 5!(){i/ 57 II' - 6.- cy/,-./ 'jI-a'pc-'ll-..:7h£Mthj/ /;;
trong U() r lien l~IClren bienaB va nghit%mUE C2(R2\B) n C (U2\B).
IHy clurng l11inhnghi~111CUi.!bai loan la
')
1
J
1xl--]
u(x)=- -2f(~)dS(~)211:
I x - ~I3B
Cluj thieh :Vi cl~l3 (Iu(x) I bi ch~nkhi Ix I kha 16n)la lru'ongh(.jpd~c
bi~lCUi.!vi cll.14 (I u(x)Ico th6lien ra 00khi x.~ oo).Chungtoi v~ntdnh bay vi
cl~\3 vll11116nphanbit%lr5 tnc()nghc;iPu bi ch~nva khongbi ch~n.
CluIng lIlillh
Gd Sl~btli locinco nhgit%1111a1I.
Thel>dinh Iy IV .2-chlcung4 , nghit%ml\ c6 d<;tng
u(x)=w(x*)+h(x)
vdi h(x)=
~
J
lx12_1
211:3Blx- ~12-r(~)dS(~)
rex)
nell xER2\B
nell x EaB
Suy ra
Do c1()
?
w(x*)=u(x)-h(x) , \:Ix E R-\B.
w(x)=lI(x*)-h(x*) , "dx E B\{O}.
Khi chu x~O thl x*~oo,
luc Ll6 h(x*) ~ J..- J r(~)dS(~)211:
3B
(tinhcha'tcua congth(tcPoisson),
Xet hamgJx)= w(x)+£(-lnlxl) ,vdi XE B\{O}.
Ham gt;di~lIhoa trenB\{O}.
Ti.! c6
gE(x) =u~x*)- h(x*) +Einlx *1
(
lI(X*) - h(x*)
J
u
=: +£ Inlx -I-I
Inlx *1
Khi X~O thl I x* I ~oo, gE(X)~oo,SHYra gt;(x»Onell x du gfinO.
D~t l1l=inf{gt;(x) :xEB\{O}} (m c6 th61a -00).
T6n l<.liJay{adtrong B\{O}sao cho gt;(ak)~m khi k~oo.
(£' <'.' " ':/#'
j{a}lt Frt-It 6au {/'['!c 200/ ss JfJt~t;jfblt<91{t;ltkc;{i
Day {ad nam lmng l~pcompact B nen l6n l~i day con {bk}hQil~1v€
hE B.
Ne'u hEB\{O}lhl h~lll1di~u hoa gt;d',ll gill If! Cl,tCtitSukhi x=b ,tIleD
nguyen 19clfc li6u Lhlgt;la ham hang (Iuon bang 111)LrenB\{0},makhi x
gan () Ihl gjx»O nen suy ra m >O,N6ubE aB thl m=Odo gt;(b)=0,N6ub=O
Ihl m 20 do gt:(x»Okhi x gfin O,Dod6 ta luon c6 1112 O,suyra gE(X)khong
am LrenB\{O}vdi mqi E>0,do d6 w(x) khong am LrenB\{O},
Twng hi6u LhC(clla g,,(x)la xet h~lIndi€u boa -w thay VI w,ly lu~n
Il(dng It,rla Cl) kCIqua-w(x) khongam trenI3\{O},tC(cIii w(x) khongdl(Ong
Lren Ii \ {° I.
Ta da cIlll'ng minh w(x) vua khong am vua khong dlWng tren
B\{O},ncnc()Ih6SHYraw(x)bang0 lrenB\{O}.
Tl)l111',li,nghi~mdla bili LoantrenIii duy nha'tva c6 bitSutllll'Clren
n?\B Iii
u(x)=w(x*)+h(x)
=hex)
?
=~ f'X'- -~r(QdS(~)2IT
I
x-~
I
-
aB
0
6) \Ii d{l:
XCI hili loan Dirichlet l!()i vdi mi€n ngoiii clla dJa Lronddn vi B trong,
n- .
")-
,L\u(x)=0, '\IxE R-\ B
,u(x)=rex),'\IxE aB
(i)
(ii)
u(x) ( kl
'
(
"'
). _ II
~ L:;t) 11x~ CD III
III X
Lrungdo r lien ll,lCtren bien aB , L c6 thtSbang+CDhay -CD,
Vtl nghi0m UE C2 (R2\ B) n C (Ie\B),
Hay chCrngminhke'lquLlsaIl :
. Khi L huntH~nIh1nghi~mIi}<.Iuynha'tva c6bi€u Ihuctrenn?\B la
I flxl2- JII(X)=L .Inlxl+- -~r(c;,)ds(c;,)2IT
Ix - c;,1
-
DB
.L(;ri/l 'l(z~( 0(;0 ,~(; ':;(J(J/ S9 A/' ~. ()// cp;'
'j/(t;7C/t ,j !z{{//tltj/ it
. Khi L h~ng +0':) hay-UJ Lhlbai tOLlnvanghi~m,
CIl {tllgIllillh
Gj,i sil' h~\iLoan lren c(}nghi~m Iii lI.
Theo dinh 19IY,2-chLwng4 , nghi~mII c6 ui:,lng
lI(X)=w(x*)+h(x)
Suy ra
Do d6
[
?
~- Ix/-~ f(t;;)uS(t;;)
vl)i h(x)=
1
2n f
i x _t;;1
2
DB
rex)
')
w(x*)=lI(x)-h(x) , '\Ix E n.-\B.
w(x)=u(x*)-h(x*) ,'\IXE B\{O},
n~u xER2\B
n~u X E 813
Khi cho x-}O thl x*-}O':), u(x*) lien wi +0':)hay -0':),
h(x*) -} ~ ff(~)JS(t;;)2n
DB
llic li() w(x) lien Ldi +0':)hay -0':) ,
(Hnhchill clla cang LhucPoisson),
Nhu'the ,l6n l,.li1'>0saoclIo w lllan Iuan dL((Jnghay Illan Iuan am tren
! mi~n13(0,1').M:;ttklulc,hiim s6 di~uhoa w tri~tLieutren bienClB.
Theo dinh 19Il.3-chlcdng4 ,hamWc6 bi€ll thuetren B\{O}Hi
w(x)=k(-Inlxl). '\IxeB\{O}
Ll1c <-16u c()bi€u Lhtre[renn?\ B Iii
. u(x)=w(x*)+h(x)
=k(-lnlx*I)+h(x)
=k.lnlx/+h(x)
H~lIl1S()u c(}bieu thlk d [ren Lh~tsIr la nghi~mclla bai LOannell u
lh6a dc linh chilL(i),(ii),(iii),Ta thily u lh6a (i)va (ii),cho X-}O':)till
u(x) -}k
Inlx!
do (I()u lh()aLinhchill (iii) n~uva chi neu
L=k va L hull h<;ln
.~L;(i/' frt~1 (>{~Oi;t~(; !!()()/ 60 .A:f;t;YIJ/t!JZ,Wtli%
V~y khi L hang +lfJ hay -0) lhi hai lOLinv() nghi~lll,con khi L hecnh<;ln
lhi nghieIII u la tllIY nhal va co hi€lI lluk trenc()bi€u lh((cIren U?\B la
')
I
f
ix1- - j
u(x)= L .Inlxl+-- ') f(~)ds(~)
2n .
I
x-c-;;
I
~
DB
0
7) Vi d{l:
XCI hai loan Dirichlel dC)ivdi mi~nngoai cila quit cau d(Jn vi B lrang
R" (V(1in>2)
L1U(x)=0, '\IxE J{I\B (i)
lI(X)=rex),'\IxE oB ( ii)
lim HeX)=L (huu h<;ln)(iii)
Ixl--+0)
lrong (It)r lien Il.IClren bien oB va nghi~mUE C\}t'\B) n C (RlI\B).
Hay chll'ngminhnghi4111cila bai loan la tllIY nhatva co bi€u lhuc tren
}t"\ 13 Illll( S311
[ )
')
I 7-11 1 x ~-1
II(X)~ L - (0 ff(Ob(~) (1-lxl- )+(0 flx'- n r(~)dS(~)
aB OBI c-;;I
CIUl/lg Illillh
GiJ sil'h~liloan c()nghi~mIii u.
Thco tlinh Iy IV-I ,nghi~lllll c()tI<;lng
u(x)= Ixr~-llw(x*)+h(x)
r
~
f
lxl2 - I .
v,1i h(x)~1 (() aBlx- 1;,1"I(1;,)dS(1;,)
lrex)
nell X E nil \ B
nell x EoB
Suy ra w(x*)= Ixlll-2 (u(x)-h(x» , '\Ix E R"\B
Do J() w(x)= Ixlz-n (lI(x*)-h(x*» , '\Ix E B\{O}
:£:~i/t:Yrl~1(,(~OJt;(; !!!{){j/ 61
j r r?57/ CY/""
J(P1/blt J,1cvllh I'll-
. Tnt'(Jnghl}PL=~ ff(~)dS(~)
an
XcI h{1l1lg,,(X)=W(X)+E( IxI2-Jl-l )
!-H1111g;:dicuhoa Lren13\{O}.
Ta c()
go:(x) ==IxI2-1I11I(X*) - h(x*)I+E(lxI2-n-1)
==(II(x*)-h(x*)+E)lxI2-II-E
Khi cho x~O thl x*~C(), ILk d6 u(x*)~L va
I
h(x*)~ - ff(~)ds(~)
coas
Do lit) khi x~o tIll gAx) ~co, SHYra ge(X»OHe'llx lIll gan O.
I-)~l111=inJ'{gAx) :xEB\{O}}(m c6 the la -co).
(tinhchit cllatong thucPoisson)
Tc1nL<.liday{adLrongB\{O}saotho g,,(ak)~mkhi k~co.
Day {ad n~mLrungL~pcompact B uen L6nt~iday can {bdhQi ll~ve
bE B.
Nell hEB\{O}lhl h::l111(lieu hoa g" d~llghi Lr!cllc Lil5ukhi x=b ,theo
nguyen Iy CIt'CLieu Lhlg" la ham h~ng(luau bang m) tren B\{O},makhi x
gfin 0 thl gjx»O Hen SHYra m >O.Ne'ubE DB thl m=Odo gib)=O .Ne'ub=O
thl m 2::0 do g,:Cx»Okhi x gftnO.Do d6 Laluon c6 m 2::O,suyra ge(x)khong
am LrenB\{O) vdi nll.>iE>0,do d6 w(x) khongam tren B\{O}.
Trong hi<5uLh(t'clla ge(x)ta XCI ham dicu boa -w thay VI w,ly lu~n
tLt'dngLL.I'Lac6 ke'tquit -w(x) khong am trenB\{0},t((cIa w(x) khong dlt'dng
lrcnB\{O}.
Ta (la ch(rngminh w(x) vi'rakh6ng am vaa kh6ng dlWng tren
B\{O},nenC()theSHYraw(x)bang0 trenB\{O}.
Biell Ih(t'cllanghiC;111II lrenl{'\B la
I I
')-il
II(X) =X - w(x*) +hex)
=hex)
')
=~f'xl- -) f(~)dS(~)
OJaBlx- ~III
-H{lIll sf) u c6 bieu th(t'cd tn~nth~tSl.t'la nghi~mclla hai loan ne'liu
lh6a dc Linhch[lt(i),(ii),(iii).Ta thiy u thoa(i)va (ii),cho x~co Lhl
(jJ (,,' £' c:;w.'
,j{U,ilt Yrz,11 (5«(> (;7/((;(; Z(}(J! 62 Jf~u:!lb/?5lirvlz4r1i
u(x)-+~ frU;')dS(~)
DB
do(16u Ih6aIlnllchat(iii) VIdangxellnfongh<;lp
L=~ It'(~)dS(~)
DB
. Tn((jng h(Jp Lot:L fr(~)dS(~):
DB
Khi x-+() lhl
+aJ neuL >! ff(~)dS(~)(0
DB
w(x) -+
neu L <~ff(~)dS(~)
DB
Nhl!'Ih6 ,[(int0suocho w luon Juon dlwng huy Juan 1LJ()nam l1'l3n
mi0n B(O,r), M~l khac, ham so di0u boa w lri~l lieu lren bien DB,
Thco d!nh Iy II.3-chl!'dng4 ,hamw c6 biGuLInk lren B \{O}la
W(X)=k(lxI2-1l-I) , \ixEB\{O}
-UJ
Loc dt) II co biGullul'cLIenu.11\B la
ll(X)= Ix\2-1lw(x*)+h(x)
=lxI2-1l.k~x*12-11- )+h(X)
=k(I -lxI2-11) +h(x)
[J
H~lIn so u c6 bit311lh(fc d lren lh~l Sl,rIii nglli~m cila biii loan ne'll II
Lh6acac llnll chat (i),(ii),(iii).Ta lhay II lhoa (i)va (ii),cho X-+aJ IhI
ll(X) -+k+~ fr(~)dS(~) ,(0
DB
do (I()II llH')allnh chat(iii) neu va chi neu
Lo'c I;l
L=k+~ fr(~)dS(~)CD
DB
k=L-L fr(~)dS(~)
DB
CI ) ,I ' ' 0 ';:(/)J {{(tit YrZ/t '( )(tu J'L rc !!(J()/ 63
j/' - 67/ OJ/.-
J IftiJIblb <;/fliNt/if j/ (i
V~y ngllicl1lu c() bi6u Iherc
u(x)=
[
L - ~ ff(~)JS(~)) (1-lxI2-")+~flxl:-,: f(~)ds(i;)DB DBIx ~I
Ki/t [Will: G0p hai kct qua doi v(jj hai tHronghC,5Pclia L,ta Olrcjckit
qui!dn chlfng minh,
0
8) Vid{l:
Xct hui 10,lnDirichletdoi vdi mi~nngoaiclia qucldu odnvi B trung
RII (vdi n>2)
L\u(X)=0, "I/xE R'\ B
HeX)= rex), "I/xE as
(i)
(ii)
(iii)1i1l1 u(x)=L
Ixl~oo
lrungdo L bang+00hay -00, r lien tt,lCtren bien aB va nghi~rn
1 --
UEC-(Jt"\ 13)n C (If'\B),
HayclufngminhhaiLOanIrenvonghj~rn.
C'dlngminlt
Giii sli'h~lito,1nc6 nghj~mlau,
Thco d!nhly IV-l ,nghi~mucodi;lng
11
"-11
u(x)= x - w(x *)+h(x)
SHY ra w(x*)= Ixl"-2 (u(x)-h(x» , "I/xE R'\ B
Do lit) w(x)= IxI2-11(u(x*)-h(x*» , "I/xE B\{O}
Khi x~() thl w(x)ticn toj +00hay -00,
1 pxl'-I .
v(ji h(x)=i (D I -I" l(QdS()
,
neu x E R" \ B
DBx
rex)
'
neu XEaS
(~) ",. /) (jjt~
.'JcU;/dt Frldt' (j(?u (f[(;m 200/ 64 cA;~v;;g,? '%?/lZh cy;;
NIH!'lhC~,ldn l'-;lir>Osao cho w lu6n Juan dlfcjnghay lu6n lu6n am tren
mien B(O,r), M~t klHlc, h~\lns6 dieu hoa w tri~t lieu tren bien DB.
Thco d!nh Iy I1.3-dn((jng4 ,hamw c6bi€u thliclrenB\{O}la
II?-uw(x)=k( x - -I), \ixEB\{O}
Luc do LIcobiEuthu'ctrenIf\B la
II?-nu(x)= x - w(x*)+h(x)
=Ix12-11.k~x*12-11- 1)+h(X)
=k(I-lxI2-U) +h(x)
Cho x~co lhl
u(x)~k+~ ff(~)ds(~)
2nDB
(lieunaymallthu£lnvdi Linhchat(iii).
(huu h<.lIl),
V~y h~liloan v6 nghi~m.
0