LUẬN VĂN THẠC SỸ KỸ THUẬT
NGHIÊN CỨU ẢNH HƯỞNG CỦA CHẾ ĐỘ CẮT, GÓC GHIÊNG CỦA BỀ MẶT GIA CÔNG ĐẾN TUỔI BỀN CỦA DAO PHAY ĐẦU CẦU PHỦ TIAIN KHI GIA CÔNG KHUÔN THÉP R12MOV QUA TÔI
1. Tính cấp thiết của đề tài
Phay cứng là gia công các chi tiết đã qua tôi (thường là thép hợp kim) có độ
cứng cao khoảng 40 ÷ 45 HRC. Đây là chi tiết làm việc trong điều kiện chịu ma sát,
chịu mài mòn cao. Phương pháp này có thể sử dụng để thay thế một số phương
pháp gia công khác như mài, gia công bằng xung điện. . . Khi chi tiết có hình dạng
tương đối phức tạp. Phay cứng cho năng xuất cao hơn với vốn đầu tư ban đầu thấp
hơn nhiều, vật liệu thường sử dụng làm dao phay cứng là các vật liệu phun phủ
như: TiN, TiAlN, CBN .với vật liệu nền là thép gió hoặc hợp kim cứng để làm tăng
khả năng cắt gọt của chúng, được nghiên cứu và chế tạo nhiều chủng loại dụng cụ
cắt có nhiều tính năng ưu việt góp phần nâng cao năng xuất cắt gọt. Với những
dụng cụ cắt có kết cấu phức tạp, việc chế tạo khó khăn thì ứng dụng đó là một trong
những giải pháp mang tính đột phá. Dao phay đầu cầu phủ TiAlN là một loại dụng
cụ như vậy.
Ngày nay nền kinh tế đang trên đà tăng trưởng mạnh. Hệ thống các máy công cụ
CNC đã góp phần tạo nên sự linh hoạt và hiệu quả trong lĩnh vực cơ khí chế tạo.
Trong việc chế tạo khuôn thì thép hợp kim CR12MOV là những loại vật liệu
thường dùng. Thực tế việc gia công thép hợp kim CR12MOV qua tôi cứng bằng
dao phay đầu cầu phủ TiAlN là một giải pháp đang được rất nhiều nhà máy, cơ sở
sản xuất áp dụng để gia công nhiều dạng bề mặt phức tạp trên các loại khuôn dập,
khuôn ép nhựa .trước đây những bề mặt phức tạp này được gia công bằng các
phương pháp không truyền thống như là: Gia công bằng điện hoá, gia công bằng
xung điện, gia công bằng siêu âm nhưng những phương pháp này có một số nhược
điểm:
- Giá thành đầu tư cao.
- Năng suất gia công thấp.
Vì vậy sử dụng dao phay cầu để gia công tinh khuôn thép CR12MOV qua tôi là
một giải pháp tối ưu. Nhưng quá trình cắt bằng dao phay cầu có cơ chế gia công rất
phức tạp trên các cung nối tiếp vì lưỡi cắt của dao phay cầu được bố trí trên mặt
cầu. Trong đó có thể nhận thấy rằng trên toàn bộ biên dạng lưỡi cắt có điều kiện cắt
gọt, cơ chế cắt gọt ở các vị trí trên lưỡi cắt cũng khác nhau. Các vị trí đó phụ thuộc
vào góc nghiêng của phôi, độ mòn dao diễn ra khác nhau dẫn đến tuổi bền trên lưỡi
cắt khác nhau. Hiện nay dao phay cầu đã được một số nhà nghiên cứu trong và
ngoài nước quan tâm nhằm nâng cao khả năng sử dụng của dao phay cầu như:
Nghiên cứu ảnh hưởng bước tiến đến sự hình thành phoi của dao phay cầu gia công
trên máy phay CNC [7]. Nghiên cứu ảnh hưởng của góc nghiêng đến chất lượng bề
mặt khi gia công bằng dao phay cầu [8]. Nghiên cứu ảnh hưởng của thông số hình
học của dao phay cầu đến độ nhám bề mặt khi gia công thép [9]. Nghiên cứu ảnh
hưởng của lực cắt đến tuổi bền của dao phay cầu phủ TiN khi gia công thép
CR12MOV [10]. Nghiên cứu ảnh hưởng của chế độ cắt đến tuổi bền của dao phay
cầu phủ TiAlN khi gia công thép CR12MOV [11] .
Tuy nhiên ảnh hưởng chế độ cắt và góc nghiêng của phôi đến tuổi bền của dao
phay cầu phủ TiAlN khi gia công vật liệu CR12MOV qua tôi chưa có tài liệu nói
đến. Vì vậy, một trong nhưng vấn đề cần được nghiên cứu để có thể khai thác hiệu
quả hơn nữa việc sử dụng dao phay đầu cầu phủ TiAlN khi gia công thép hợp kim
CR12MOV đó là: “Nghiên cứu ảnh hưởng của chế độ cắt, góc nghiêng của bề
mặt gia công đến tuổi bền của dao phay đầu cầu phủ TiAlN khi gia công khuôn
thép CR12MOV qua tôi” có ý nghĩa khoa học và thực tiễn.
86 trang |
Chia sẻ: maiphuongtl | Lượt xem: 2649 | Lượt tải: 3
Bạn đang xem trước 20 trang tài liệu Luận văn Nghiên cứu ảnh hưởng của chế độ cắt, góc nghiêng của bề mặt gia công đến tuổi bền của dao phay đầu cầu phủ tiain khi gia công khuôn thép R12MOV qua tôi, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
g dẻo lưỡi cắt:
0,6
c 1
V .t 30
Luận văn tốt nghiệp thạc sĩ kỹ thuật Chuyên ngành: Công nghệ CTM
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
51
cao xảy ra trên mặt trước từ vùng có nhiệt độ cao nhất. Như vậy mòn mặt trước đều
có nguồn gốc do nhiệt.
Boothroyd cho rằng mòn mặt sau xảy ra do tương tác giữa mặt sau của dụng
cụ với bề mặt gia công và bề mặt mòn song song với phương của vận tốc cắt. Trent
cho rằng, mòn mặt sau xảy ra trong hầu hết các quá trình cắt kim loại và không đều
trên suốt chiều dài lưỡi cắt. Cơ chế mòn mặt sau của dụng cụ hợp kim cứng ở tốc độ
cắt thấp là sự tách ra của các hạt cacbit tạo nên bề mặt mòn không bằng phẳng, khi
cắt ở tốc độ cắt cao thì vùng mòn mặt sau nhẵn và trơn.
Trong điều kiện hình thành lẹo dao, lượng mòn mặt sau tỷ lệ nghịch với lượng
mòn mặt trước. Khi mòn mặt trước xuất hiện sẽ làm tăng góc trước thực, thúc đẩy
sự hình thành và ổn định của lẹo dao có tác dụng bảo vệ mặt sau khỏi bị mòn. Trái
lại khi mòn mặt trước không xuất hiện, dạng của lẹo dao sẽ thay đổi theo xu hướng
không có tác dụng bảo vệ mặt sau khỏi mòn, dẫn đến thúc đẩy sự phát triển của
mòn mặt sau.
Mòn mặt trước và mặt sau có thể tính toán gần đúng như sau:
Thể tích mòn mặt sau: 2
W
.
2
aveVB b tgV
(2- 1)
Trong đó: VBave là chiều cao trung bình của vùng mòn
Thể tích mòn mặt trước:
cr
2 ( )
3
b KB KF KT
V
(2- 2)
Hình 2.11. Các thông số đặc trưng cho mòn mặt trước và mặt sau – ISO3685
Luận văn tốt nghiệp thạc sĩ kỹ thuật Chuyên ngành: Công nghệ CTM
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
52
Các kích thước dùng để xác định mòn chỉ ra trên hình 2.11. có thể đo bằng
kính hiển vi dụng cụ hoặc thiết bị quang học khác, hoặc bằng phương pháp chụp
ảnh. Ngoài ra người ta còn đo khối lượng dụng cụ và sử dụng phương pháp đo
radiotracer (phương pháp đồng vị phóng xạ) để xác định.
2.3.5. Ảnh hƣởng của mòn dụng cụ đến chất lƣợng bề mặt gia công
Khi mòn sẽ làm cho hình dạng và thông số hình học phần cắt của dụng cụ thay
đổi dẫn đến các hiện tượng vật lý sinh ra trong quá trình cắt thay đổi (như nhiệt cắt,
lực cắt…) và ảnh hưởng xấu đến chất lượng bề mặt gia công [2].
2.3.6. Mòn của dao phay cầu phủ
Các dạng mòn và cơ chế mòn của dao phay cầu cũng giống như các dạng và
cơ chế mòn của dụng cụ cắt nói chung. Nhưng về cơ bản dao sẽ có hai cơ chế mòn
chính là nứt, vỡ và bong ra của các mảnh TiAlN và mòn vật liệu nền. Do đặc điểm
vận tốc cắt gọt tại các điểm trên lưỡi cắt của dao cầu là khác nhau dẫn đến tại các
vùng trên lưỡi cắt của dao cầu sẽ có hiện tượng và lượng mòn khác nhau. Vì vậy
việc nghiên cứu quá trình mòn - Tuổi bền của dao tại các khu vực khác nhau trên
lưỡi cắt của dao cầu là một yêu cầu của thực tế. Đặc biệt là đỉnh dao khi cắt gọt quá
trình mòn sẽ diễn ra nhanh nhất. Vì thế việc nghiên cứu chọn ra một chế độ cắt phù
hợp để tăng hiệu quả sử dụng dao (tuổi bền dao lớn nhất) khi dùng đỉnh dao gia
công một loại vật liệu trong một điều kiện cụ thể là rất cần thiết và đem lại hiệu quả
cho quá trình gia công. Đó cũng chính là cơ sở để tác giả lựa chọn nội dung:
“Nghiên cứu ảnh hưởng của chế độ cắt, góc nghiêng của phôi đến tuổi bền của dao
phay cầu phủ TiAlN khi gia công thép hợp kim CR12MOV qua tôi”. Để tăng hiệu
quả sử dụng dao trong sản xuất.
2.4. Tuổi bền dụng cụ cắt
2.4.1. Khái niệm chung về tuổi bền của dụng cụ cắt
Tuổi bền của dụng cụ là thời gian làm việc liên tục của dụng cụ giữa hai lần
mài sắc, hay nói cách khác tuổi bền của dụng cụ là thời gian làm việc liên tục của
dụng cụ cho đến khi bị mòn đến độ mòn giới hạn (hs) [2]. Tuổi bền là nhân tố quan
trọng ảnh hưởng lớn đến năng suất và tính kinh tế trong gia công cắt. Tuổi bền của
Luận văn tốt nghiệp thạc sĩ kỹ thuật Chuyên ngành: Công nghệ CTM
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
53
dụng cụ phụ thuộc vào chính yêu cầu kỹ thuật của chi tiết gia công. Vì thế phương
pháp dự đoán tuổi bền cơ bản có ý nghĩa cho mục đích so sánh [4].
Phương trình cơ bản của tuổi bền là phương trình Taylor:
n
t
V.T C
(2- 3)
Trong đó:
- T là thời gian (phút)
- V là vận tốc cắt (m/phút)
- Ct là hằng số thực nghiệm
Phương trình Taylor mở rộng bao gồm cả ảnh hưởng của lượng chạy dao và
chiều sâu cắt được viết như sau [1].
T =
2.1
A
VA
(2- 4)
T =
2.3
A
VA
.
4AS
. (2- 5)
T =
2.5
A
VA
.
4AS
.
6At
(2- 6)
Các mô hình toán học khai triển bậc nhất và bậc hai loga của tuổi bền dường
như phù hợp hơn với các dữ liệu cho dao composite. Khác với các phương trình
tổng quát (2 - 3), (2 - 4), (2 - 5), (2 - 6) các mô hình toán học này hạn chế trong một
giải với các điều kiện dùng để tạo nên các dữ liệu thực nghiệm. Trong trường hợp
vận tốc cắt, lượng chạy dao chiều sâu cắt được sử dụng như là các thông số độc lập,
mô hình toán học bậc nhất có dạng như sau:
LnT = bo + b1lnV + b2lnS + b3lnt (2 - 7)
Mô hình bậc 2 có dạng:
LnT = bo+ b1lnV + b2lnS + b3lnt + b11(lnV)
2
+ b22(lnS)
2
+ b33(lnt)
2
+ +b12.(lnV)(lnS)
+ b13(lnV)(lnt) + b23(lnt) (2 - 8)
Trong thực tế tuổi bền của dụng cụ thường bị phân tán vì các lý do sau đây:
- Sự thay đổi độ cứng, cấu trúc tế vi, thành phần hoá học và các đặc tính bề
mặt của phôi.
- Sự thay đổi của vật liệu dụng cụ, thông số hình học và phương pháp mài.
- Sự dao động của hệ thống máy, dao, công nghệ.
Luận văn tốt nghiệp thạc sĩ kỹ thuật Chuyên ngành: Công nghệ CTM
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
54
2.4.2. Các nhân tố ảnh hƣởng đến tuổi bền của dụng cụ cắt
2.4.2.1. Ảnh hƣởng của chế độ cắt đến tuổi bền của dụng cụ cắt
Chế độ cắt đặc biệt là vận tốc cắt và lượng chạy dao là tác nhân ảnh hưởng
mạnh nhất tới tuổi bền. Kết quả thí nghiệm của Opitz và Konig được Trent đưa ra
trên hình 2.12. Với mòn mặt trước quy luật mòn tương đối đơn giản, mòn tăng
chậm cho tới vận tốc cắt tới hạn mà tại đó tốc độ mòn tăng vọt. Lượng chạy dao
càng lớn thì vận tốc cắt giới hạn càng nhỏ. Với mòn mặt sau tốc độ mòn cũng tăng
nhanh từ vận tốc cắt và lượng chạy dao giới hạn như mòn mặt trước vì từ tốc độ này
các cơ chế mòn phụ thuộc nhiệt độ quyết định tuổi bền. Tuy nhiên ở dưới dải tốc độ
này tốc độ mòn mặt sau tăng, giảm liên tục vì ở đây các cơ chế mòn không phụ
thuộc vào nhiệt độ.
Hình 2.12. Ảnh hưởng của vận tốc cắt đến mòn mặt trước và mặt sau của dao thép
gió S 12-1-4-5 dùng tiện thép AISI C1050, với t = 2mm.
Thông số hình học của dụng cụ: =80, =100, =40, =900, = 600, r=1mm, thời
gian cắt T =30 phút [4].
Tuổi bền cho mỗi cặp dụng cụ và vật liệu gia công được xác định trong dải
vận tốc cắt cao. Và đường cong Taylor của tuổi bền chỉ có ý nghĩa trong điều kiện
cắt ở dải vận tốc cắt cao, vì khi đó tuổi bền của dụng cụ bị chi phối bởi các cơ chế
mòn phụ thuộc nhiệt độ cao liên quan đến biến dạng, khuếch tán và ôxy hoá.
Luận văn tốt nghiệp thạc sĩ kỹ thuật Chuyên ngành: Công nghệ CTM
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
55
2.4.2.2. Vai trò của lớp phủ cứng trong việc tăng tuổi bền của dụng cụ
Một số thông số quan trọng khi nghiên cứu tuổi bền của dụng cụ cắt là chiều
dài của hành trình cắt là V.T[m] và diện tích cắt là V.T.a[m2] là các hàm số của vận
tốc cắt hay nhiệt độ. Khi tăng vận tốc cắt (nhiệt cắt) từ giá trị vận tốc thấp thì cả
V.T và V.T.a đều tăng và đạt cực đại ở một giá trị xác định. Sau đó tiếp tục tăng vận
tốc thì cả V.T và V.T.a đều giảm. Điều này thể hiện rõ trên hình 2.13 [4].
Hình 2.13. Quan hệ V.T-V và V.T.a khi cắt thép 40Cr bằng dao T15K6 với
hs = 0,6 mm.(1) s = 0,037 mm/v: (2) s = 0,3 mm/v (3)s = 0,1 mm/v; (4)s = 0,5mm/v.
Ảnh hưởng của vận tốc cắt và lượng chạy dao đến tuổi bền thông qua các cơ
chế mòn diễn ra ở chế độ cắt đã cho phụ thuộc nhiều hay ít vào nhiệt độ. Do đó việc
ứng dụng công thức Taylor phải cân nhắc trong từng trường hợp cụ thể.
Có thể thấy rằng lớp phủ cứng có tác dụng giảm ma sát trên mặt trước, giảm
nhiệt độ cực đại và sự phát triển của trường nhiệt độ trong dụng cụ dẫn đến giảm
mòn do nhiệt và tăng tuổi bền cho dụng cụ. Hơn nữa lớp phủ cứng tạo nên một lớp
phân cách giữa vật liệu gia công và vật liệu dụng cụ với khả năng chống dính,
chống cào xước cơ học cao do tính trơ hoá học và độ cứng cao của nó là nguyên
nhân giảm mòn và tăng tuổi bền. Ngoài ra tính chất nhiệt đặc biệt của lớp phủ còn
Luận văn tốt nghiệp thạc sĩ kỹ thuật Chuyên ngành: Công nghệ CTM
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
56
làm giảm tỷ lệ truyền nhiệt vào phoi và dao là nhân tố quan trọng làm tăng tuổi bền
của dụng cụ phủ khi cắt với chế độ cắt cao.
Tuy nhiên vai trò nâng cao tuổi bền của dụng cụ cắt khi sử dụng vật liệu phủ
khác nhau thay đổi theo điều kiện gia công cụ thể. Hình 1.14 chỉ ra mối quan hệ
giữa tuổi bền của dao tiện và phay mặt đầu thép gió phủ TiN, TiCN và TiAlN dùng
để cắt thép cácbon SAE 4340 theo vận tốc cắt cho cả cắt liên tục (hình 2.14a) và cắt
không liên tục (hình 2.14 b). Từ hai đồ thị có thể thấy rằng trong cắt liên tục (tiện)
TiAlN có tác dụng nâng cao tuổi bền của dao thép gió tốt nhất sau đó đến TiN và
cuối cùng là TiCN. Trái lại trong cắt va đập (phay) TiN lại có tác dụng nâng cao
tuổi bền tốt nhất sau đó đến TiN và TiAlN. Như vậy mỗi loại vật liệu phủ đều có
khả năng nâng cao tuổi bền của dụng cụ khác nhau tuỳ thuộc vào các điều kiện cắt
trong đó dụng cụ được sử dụng [4].
Hình 2.14. (a) Quan hệ tuổi bền của dao thép gió phủ PVD theo vận tốc cắt dao
tiện (b) Dao phay mặt đầu dùng để phay thép cácbon tôi cải thiện.
2.5 Phƣơng pháp xác định tuổi bền dụng cụ cắt
Nghiên cứu ảnh hưởng của các nhân tố của quá trình cắt đến tuổi bền T bằng
phương pháp thực nghiệm đo độ mòn cho phép mặt sau [hs]. Với các kết quả thực
Luận văn tốt nghiệp thạc sĩ kỹ thuật Chuyên ngành: Công nghệ CTM
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
57
nghiệm, các đồ thị quan hệ giữa độ mòn, tuổi bền và các nhân tố ảnh hưởng được
xác lập. Trên cơ sở đó xác định được quan hệ giữa tuổi bền và các nhân tố ảnh
hưởng.
Hình 2.15. Quan hệ giữa thời gian, tốc độ và độ mòn của dao
Quan hệ giữa tốc độ, độ mòn và thời gian được biểu thị trên hình 2.15. Với độ
mòn cho phép [hs] đã xác định được thời gian làm việc của dụng cụ với các tốc độ
khác nhau (t1 với V1; t2, t3 với V2, V3 với V1 <V2 <V3 <V4; t1, t2, t3, t4 chính là tuổi
bền T của dụng cụ ứng với tốc độ V1, V2, V3, V4…) khi các yếu tố cắt khác được cố
định. Trên cơ sở đó lập được đồ thị quan hệ giữa tốc độ và tuổi bền V-T hình 2.16
và chuyển sang đồ thị lôgarit hình 2.17.
Hình 2.16: Quan hệ giữa tốc độ cắt V và tuổi bền T của dao
Luận văn tốt nghiệp thạc sĩ kỹ thuật Chuyên ngành: Công nghệ CTM
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
58
Qua đồ thị quan hệ V-T ta thiết lập được công thức liên hệ giữa tốc độ và tuổi bền:
lg lg lgV A m T
(2- 9)
lg lg
lg
A V
m
T
m
A
V
T
. onstmV T c
m
A
T
V
(2- 10)
Hình 2.17. Quan hệ giữa V và T (đồ thị lôgarit)
2.6. Tuổi bền của dao phay cầu phủ
Dụng cụ phủ với đặc điểm lớp phủ rất mỏng thường chỉ vào khoảng vài m
đến vài chục m. Mà đặc trưng của dụng cụ phủ là khả năng cắt gọt sẽ giảm đi đáng
Luận văn tốt nghiệp thạc sĩ kỹ thuật Chuyên ngành: Công nghệ CTM
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
59
kể khi lớp phủ trên bề mặt bị mài mòn, bị nứt, bị bong cục bộ. Chính vì vậy có thể
coi dụng cụ phủ có tuổi bền bằng tuổi thọ.
Đối với dao phay cầu phủ tuổi thọ sẽ được xét riêng cho từng vùng của lưỡi
cắt (cung trên lưỡi cắt có quá trình cắt gọt diễn ra gần giống nhau). Vì cơ chế cắt
gọt phụ thuộc vào đường kính thực tham ra cắt. Nếu xét một cách tổng thể theo quá
trình mòn thì tuổi thọ của dao cầu sẽ là tổng tuổi thọ của các cung trên lưỡi cắt có
quá trình cắt gọt diễn ra gần giống nhau.
Tuổi thọ của dụng cụ phủ thường được xác định như sau:
- Theo chất lượng bề mặt gia công
- Xác định theo độ chính xác kích thước của chi tiết gia công
- Xác định theo lượng mòn mặt sau hs
- Xác định theo lực, nhiệt độ cắt
- Xác định theo khối lượng…
2.7. Kết Luận chƣơng 2
Nghiên cứu bản chất vật lý của quá trình cắt gọt bằng dụng cụ phủ cho thấy:
Mòn, tuổi bền của dụng cụ cắt nói chung và của dụng cụ phủ nói riêng như là:
Các dạng mòn, cơ chế mòn và cách xác định mòn của dụng cụ cắt nói chung.
Mòn của dụng cụ phủ.
Tuổi bền của dụng cụ cắt, cách xác định tuổi bền của dụng cụ cắt.
Tuổi bền của dụng cụ phủ.
Các nhân tố cơ bản ảnh hưởng đến mòn và tuổi bền của dụng cụ cắt.
Luận văn tốt nghiệp thạc sĩ kỹ thuật Chuyên ngành: Công nghệ CTM
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
60
CHƢƠNG 3: NGHIÊN CỨU THỰC NGHIỆM ẢNH HƢỞNG CỦA CHẾ ĐỘ
CẮT VÀ GÓC NGHIÊNG CỦA PHÔI ĐẾN TUỔI BỀN CỦA DAO PHAY
CẦU 10 PHỦ TiAlN KHI GIA CÔNG THÉP HỢP KIM CR12MOV
Để có thể chọn được chế độ cắt hợp lý khi gia công thép hợp kim
CR12MOV bằng dao phay cầu 10 phủ TiAlN thì ở chương này ta tiến hành việc
thực nghiệm bằng cách dùng dao phay cầu phủ TiAlN để phay thép hợp kim
CR12MOV với các chế độ cắt và góc nghiêng của phôi khác nhau. Tiến hành khảo
sát ảnh hưởng của đồng thời các thông số chế độ cắt (S,V,t,θy) đến tuổi bền của dao
thông qua việc đánh giá độ nhám bề mặt khi thay đổi chế độ cắt khác nhau và lựu
chọn được chế độ cắt hợp lí.
3.1. Sơ lƣợc về thép hợp kim
Thép hợp kim là loại thép mà ngoài sắt, cacbon và các tạp chất ra, người ta
còn cố ý đưa vào các nguyên tố đặc biệt với một lượng nhất định để làm thay đổi tổ
chức và tính chất của thép cho phù hợp với yêu cầu sử dụng. Các nguyên tố được
dựa vào một cách cố ý như vậy được gọi là nguyên tố hợp kim. Các nguyên tố hợp
kim thường gặp là:Cr, Ni, Mn, Si,W, V, Mo, Ti, Nb, Zr, Cu, B, N…và ranh giới về
lượng để phân biệt tạp chất và nguyên tố hợp kim là như sau: Mn: 0,8 - 1,0%;
Si:0,5-0,8%; Cr:0,2-0,8%; Ni:0,2-0,6%;W:0,1-0,6%; Mo; 0,05-0,2%; Ti, V, Nb, Zr,
Cu>0,1%; B>0,002%.
Ví dụ: Thép chứa 0,7% Mn vẫn chỉ được coi là thép cacbon (nghĩa là Mn vẫn
chỉ là tạp chất), chỉ khi lượng Mn≥1,0% mới đươc coi là thép hợp kim. Trong khi
đó chỉ cần có≥0,1%Ti (hoặc V, Cu, Zr…) đã được coi là thép hợp kim.
Trong thép hợp kim, lượng chứa các tạp chất có hại như P,S và các khí oxy,
hyđro, nitơ là rất thấp so với thép cacbon. Do việc khử tạp chất triệt để hơn và nhất
là do phải cho vào các nguyên tố hợp kim, nên nói chung thép hợp kim đắt tiền hơn
so với thép cacbon nhưng bù lại, thép hợp kim có những đặc điểm nổi trội hơn hẳn
so với thép cacbon, hay nói khác đi, mục đích của việc hợp kim hóa như sau:
Về cơ tính: Thép hợp kim nói chung có độ bền cao hơn hẳn so với thép
cacbon, thể hiện đặc điểm rõ ràng sau khi nhiệt luyện (tôi và ram), do độ
Luận văn tốt nghiệp thạc sĩ kỹ thuật Chuyên ngành: Công nghệ CTM
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
61
thấm tôi của thép hợp kim được cải thiện rất nhiều so với thép cacbon, thép
hợp kim càng cao, ưu việt này càng rõ. Tuy nhiên cần thấy rằng:
Ở trạng thái không nhiệt luyện, ví dụ: trạng thái ủ, độ bền của thép hợp
kim không cao hơn nhiều so với thép cacbon.
Sau nhiệt luyện, thép hợp kim có thể đạt được độ bền rất cao, nhưng cùng
với sự tăng độ bền, độ dẻo và độ dai lại giảm đi, do vậy phải chú ý tới
mối quan hệ này để xác định cơ tính thích hợp.
Cùng với sự tăng mức độ hợp kim hóa, tính công nghệ của thép sẽ xấu đi.
Về tính chịu nhiệt (tính cứng nóng và tính bền nóng):
Thép cacbon có độ cứng cao sau khi tôi, nhưng không giữ được khi làm việc ở
nhiệt độ cao hơn 200ºC, do mectenxit bị phân hủy và xêmentit kết tụ. Nhiệt độ cao
hơn, thép bị biến dạng do hiện tượng chảy nhão và bị oxy hóa mạnh… Các nguyên
tố hợp kim cản trở khả năng khuếch tán của cacbon, làm mactenxit phân hóa và
cacbit kết tụ ở nhiệt độ cao hơn, vì thế nó giữ được độ cứng cao của trang thái tôi và
tính chống nhão tới 600ºC, tính chống sự oxy hóa tới 800-1000ºC. Dĩ nhiên muốn
đạt được trạng thái này, thép cần được hợp kim hóa bởi một số lượng tương đối cao.
Ưu việt này của thép hợp kim được ứng dụng trong thép dụng cụ và thép bền nóng.
Về các tính chất vật lý và hóa học đặc biệt:
Như đã biết, thép cacbon bị gỉ trong không khí, bị ăn mòn mạnh trong các môi
trường axit, bazơ và muối… Nhờ hợp kim hóa mà có thể tạo ra thép không gỉ, thép
có tính giãn nở và đàn hồi đặc biệt, thép có từ tính cao và thép không có từ
tính….Trong những trường hợp như vậy, phải dùng những loại thép hợp kim đặc
biệt, với thành phần được khống chế chặt chẽ.
Như vậy có thể nói rằng, nguyên tố hợp kim có tác dụng rất tốt, thép hợp kim
là vật liệu không thể thiếu được trong chế tạo máy, dụng cụ, thiết bị nhiệt điện, công
nghiệp hóa học… Nó thường được làm các chi tiết quan trọng nhất trong điều kiện
làm việc nặng, chịu mài mòn, va đập.
3.2. Cơ sở xác định tuổi bền của dao bằng thực nghiệm.
Luận văn tốt nghiệp thạc sĩ kỹ thuật Chuyên ngành: Công nghệ CTM
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
62
3.2.1. Lựa chọn chỉ tiêu xác định tuổi bền của dao
Tuổi bền của dao phay cầu được xác định bắt đầu từ khi dao bắt đầu cắt cho
đến khi bắt đầu diễn ra giai đoạn phá huỷ ứng với mỗi chế độ cắt xác định. Trong
điều kiện gia công tinh thì chất lượng bề mặt trong đó nhám bề mặt là thông số có ý
nghĩa đến chất lượng sản phẩm. Để có thể đánh giá tuổi bền của dao phay cầu phủ
TiAlN để gia công thép hợp kim CR12MOV có thể thực hiện theo phương pháp:
Dùng chỉ tiêu chất lượng bề mặt để xác định giới hạn tuổi bền của dao. Cụ thể là khi
tiến hành gia công ứng với mỗi chế độ cắt sẽ tiến hành kiểm tra chất lượng bề mặt
theo chỉ tiêu độ nhám bề mặt. Giới hạn tuổi bền của dao được xác định là thời điểm
giá trị độ nhám của bề mặt gia công thay đổi đột ngột.
Hình 3.1. Đồ thị thể hiện quan hệ giữa lượng mòn và thời gian
Trong quá trình gia công dụng cụ cắt sẽ trải qua 3 giai đoạn mòn. Để xác
định giới hạn tuổi bền của dụng cụ cần phải xác định thời gian từ khi bắt đầu cắt
đến thời điểm cuối cùng của giai đoạn mòn thứ 2. Như hình 3.1 là thời điểm ứng
với điểm B. Thực chất quá trình mòn của dụng cụ ảnh hưởng trực tiếp đến chất
lượng bề mặt gia công và được thể hiện rõ qua sự thay đổi về độ nhám bề mặt.
Chính vì vậy có thể khẳng định rằng khi dao tiến đến giai đoạn mòn khốc liệt là lúc
giá trị độ nhám bề mặt có sự thay đổi lớn. Đó là một trong những cơ sở để xác định
tuổi bền của dụng cụ.
3.2.2. Độ nhám bề mặt và phƣơng pháp đánh giá
Luận văn tốt nghiệp thạc sĩ kỹ thuật Chuyên ngành: Công nghệ CTM
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
63
3.2.2.1. Độ nhám bề mặt
Độ nhám bề mặt hay còn gọi là nhấp nhô tế vi là tập hợp tất cả những bề lồi,
lõm với bước cực nhỏ và được quan sát trong một phạm vi chiều dài chuẩn rất ngắn
(l). Chiều dài chuẩn l là chiều dài dùng để đánh giá các thông số của độ nhám bề
mặt (với l = 0,01 đến 25mm).
Độ nhám bề mặt gia công đã được phóng đại lên nhiều lần thể hiện trên hình 3.2.
Theo TCVN 2511 – 1995 thì nhám bề mặt được đánh giá thông qua bảy chỉ
tiêu. Thông thường người ta thường sử dụng hai chỉ tiêu đó là Ra và Rz, trong đó:
Hình 3.2: Độ nhám bề mặt
- Ra: Sai lệch trung bình số học của prôfin là trung bình số học các giá trị
tuyệt đối của sai lệch prôfin (y) trong khoảng chiều dài chuẩn. Sai lệch prôfin (y) là
khoảng cách từ các điểm trên prôfin đến đường trung bình, đo theo phương pháp
tuyến với đường trung bình. Đường trung bình m là đường chia prôfin bề mặt sao
cho trong phạm vi chiều dài chuẩn l tổng diện tích ở hai phía của đường chuẩn bằng
nhau. Ra được xác định bằng công thức:
10
1 1
.
l n
a x x i
i
R y d y
l l
(3-1)
- Rz: Chiều cao mấp mô prôfin theo mười điểm là trị số trung bình của tổng
các giá trị tuyệt đối của chiều cao năm đỉnh cao nhất và chiều sâu của năm đáy thấp
nhất của prôfin trong khoảng chiều dài chuẩn. Rz được xác định theo công thức:
Luận văn tốt nghiệp thạc sĩ kỹ thuật Chuyên ngành: Công nghệ CTM
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
64
5 5
1 1
5
pmi vmi
i i
z
y y
R
(3-2)
Ngoài ra độ nhám bề mặt còn được đánh giá qua chiều cao nhấp nhô lớn nhất
Rmax. Chiều cao nhấp nhô Rmax là khoảng cách giữa hai đỉnh cao nhất và thấp nhất
của độ nhám (prôfin bề mặt trong giới hạn chiều dài chuẩn l).
Cũng theo TCVN 2511 – 1995 thì độ nhám bề mặt được chia thành 14 cấp, từ
cấp 1 đến cấp 14 ứng với các giá trị Ra và Rz. Trị số nhám càng bé thì bề mặt càng
nhẵn và ngược lại. Độ nhám bề mặt thấp nhất (hay độ nhẵn bề mặt cao nhất) ứng
với cấp 14 (tương ứng với Ra 0,01 m và Rz 0,05 m). Việc chọn chỉ tiêu Ra
hay Rz là tuỳ thuộc vào chất lượng yêu cầu của bể mặt. Chỉ tiêu Ra được gọi là
thông số ưu tiên và được sử dụng phổ biến nhất do nó cho phép ta đánh giá chính
xác hơn và thuận lợi hơn những bề mặt có yêu cầu nhám trung bình (độ nhám từ
cấp 6 đến cấp 12). Đối với những bề mặt có độ nhám quá thô (độ nhám từ cấp 1 đến
cấp 5) và rất tinh (cấp 13, cấp 14) thì dùng chỉ tiêu Rz sẽ cho ta khả năng đánh giá
chính xác hơn khi dùng Ra (bảng 3.1).
Bảng 3.1: Các giá trị Ra, Rz và chiều dài chuẩn l ứng với các cấp độ nhám bề mặt
Cấp độ
nhám bề
mặt
Loại Thông số nhám (m) Chiều dài
chuẩn (mm) Ra Rz
1 - - từ 320 đến 160 8,0
2 - - < 160 – 80
3 - - < 80 – 40
4 - - < 40 – 20 2,5
5 - - < 20 – 10
6
a từ 2,5 đến 2,0
0,8
b < 2,0 – 1,6
c < 1,6 – 1,25
7 a < 1,25 – 1,00
Luận văn tốt nghiệp thạc sĩ kỹ thuật Chuyên ngành: Công nghệ CTM
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
65
b < 1,00 – 0,80
c < 0,80 – 0,63
8
a < 0,63 – 0,50
b < 0,50 – 0,40
c < 0,40 – 0,32
9
a < 0,32 – 0,25
0,25
b < 0,25 – 0,20
c < 0,20 – 0,16
10
a < 0,160 – 0,125
b < 0,125 – 0,100
c < 0,100 – 0,080
11
a < 0,080 – 0,063
b < 0,063 – 0,050
c < 0,050 – 0,040
12
a < 0,040 – 0,032
b < 0,032 – 0,025
c < 0,025 – 0,020
13
a từ 0,100 đến 0,080
0,08
b < 0,080 – 0,063
c < 0,063 – 0,050
14
a < 0,050 – 0,040
b < 0,040 – 0,032
c < 0,032 – 0,025
Trong thực tế sản xuất nhiều khi người ta đánh giá độ nhám theo các mức độ:
thô (cấp 1 4), bán tinh (cấp 5 7), tinh (cấp 8 11) và siêu tinh (cấp 12 14).
3.2.2.2. Phƣơng pháp đánh giá độ nhám bề mặt
Để đánh giá độ nhám bề mặt người ta thường dùng các phương pháp sau đây:
Luận văn tốt nghiệp thạc sĩ kỹ thuật Chuyên ngành: Công nghệ CTM
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
66
a) Phƣơng pháp quang học (dùng kính hiển vi Linich). Phương pháp này đo
được bề mặt có độ nhẵn bóng cao (độ nhám thấp) thường từ cấp 10 đến cấp 14.
b) Phƣơng pháp đo độ nhám Ra, Rz, Rmax v.v..bằng máy đo prôfin. Phương
pháp này sử dụng mũi dò để đo prôfin lớp bề mặt có cấp độ nhẵn tới cấp 11. Đây
chính là phương pháp được tác giả sử dụng để đánh giá độ nhám bề mặt sau khi
phay cứng.
Tuy nhiên đối với các bề mặt lỗ thường phải in bằng chất dẻo bề mặt chi tiết
rồi mới đo bản in trên các máy đo độ nhám bề mặt.
c) Phƣơng pháp so sánh, có thể so sánh theo hai cách
- So sánh bằng mắt: Trong các phân xưởng sản xuất người ta mang vật mẫu so
sánh với bề mặt gia công và kết luận xem bề mặt gia công đạt cấp độ bóng nào. Tuy
nhiên phương pháp này chỉ cho phép xác định được cấp độ bóng từ cấp 3 đến cấp 7
và có độ chính xác thấp, phụ thuộc rất nhiều vào kinh nghiệm của người thực hiện.
- So sánh bằng kính hiển vi quang học.
3.3. Thiết kế thí nghiệm.
Mục đích:
- Thông qua thực nghiệm khi tiến hành dùng dao phay cầu phủ TiAlN phay
thép hợp kim CR12MOV (phay trên mặt nghiêng) với các chế độ cắt khác nhau rồi
đưa ra nhận xét và kết luận tương ứng.
- Xác định giới hạn tuổi bền của dao theo các thông số chế độ cắt khác nhau.
Từ đó đưa ra mối quan hệ giữa chúng. Các cơ sở sản xuất có thể dùng kết quả đó cho
việc gia công với các điều kiện tương tự.
- Mục tiêu của việc xây dựng thí nghiệm là nghiên cứu ảnh hưởng của các
yếu tố thông số chế độ cắt và góc nghiêng của phôi đến tuổi bền của dao phay cầu
phủ TiAlN khi gia công thép CR12MOV.
3.3.1. Các giới hạn của thí nghiệm
. - Nghiên cứu ảnh hưởng của vận tốc cắt và góc nghiêng của phôi đến tuổi
bền của dao phay cầu phủ TiAlN khi gia công thép CR12MOV.
- Vận tốc cắt v = 50 110 (m/phút).
Luận văn tốt nghiệp thạc sĩ kỹ thuật Chuyên ngành: Công nghệ CTM
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
67
- Lượng chạy dao không đổi s = 0.2 (mm/răng).
- Chiều sâu cắt không đổi t = 0,5 (mm).
- Góc nghiêng của phôi θy=10
0
÷75
0
- Tổng hợp các nhiễu ảnh hưởng đến chất lượng bề mặt gia công là ổn định.
- Độ cứng của phôi ổn định trong suốt quá trình gia công khoảng 40÷45
HRC.
- Gia công tưới tràn với dung dịch Emusil: Mira EM40 5%.
3.3.2. Mô hình thí nghiệm
3.3.3. Mô hình toán học
Mô hình toán học khi xác định tuổi bền của dao phay cầu phủ TiAlN khi gia
công thép hợp kim CR12MOV trong nghiên cứu này được lựa chọn trên cơ sở
phương trình cơ bản tuổi bền của Taylor:
n
t
V.T C
Trong đó:
- T là thời gian (phút)
- V là vận tốc cắt (m/phút)
- Ct là hằng số thực nghiệm
Phương trình Taylor mở rộng bao gồm cả ảnh hưởng của lượng chạy dao và
chiều sâu cắt được viết như sau phương trình (2 - 4), (2 – 5), (2 - 6) như sau:
T =
2.1
A
VA
T =
2.3
A
VA
.
4AS
.
T =
2.5
A
VA
.
4AS
.
6At
Các mô hình toán học khai triển bậc nhất và bậc hai loga của tuổi bền dường
như phù hợp hơn với các dữ liệu cho dao composite. Khác với các phương trình
tổng quát (2- 3), (2- 4), (2-5), (2- 6) các mô hình toán học này hạn chế trong một
Quá trình gia công
Vận tốc cắt.
Gócnghiêng phôi
θy
Tuổi bền của dụng cụ
Luận văn tốt nghiệp thạc sĩ kỹ thuật Chuyên ngành: Công nghệ CTM
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
68
giải với các điều kiện dùng để tạo nên các dữ liệu thực nghiệm. Trong trường hợp
vận tốc cắt, lượng chạy dao, chiều sâu cắt, góc nghiêng phôi được sử dụng như là
các thông số độc lập, mô hình toán học bậc hai có dạng như sau:
LnT = bo + b1lnv + b2lnθy + b12lnvlnθy +b11 (lnv)
2
+ b22 (lnθy)
2
Đây là mô hình toán học được lựa chọn để xác định tuổi bền của dao.
3.3.4. Điều kiện thí nghiệm
3.3.4.1.Máy.
Thực nghiệm được tiến hành tại trung tâm gia công VMC - 85S do hãng
Maximart sản xuất năm 2003 với hệ điều khiển Fanuc OMD, máy có khả năng tích
hợp CAD/CAM qua cổng RS 232 của Trường Đại học Kỹ Thuật Công Nghiệp –
Thái Nguyên
Bảng 3.2. Thông số kỹ thuật cơ bản của máy
Thông số Đơn vị Kích thước
Kích thước bàn làm việc mm 515 x 1050
Hành trình theo trục X mm 850
Hành trình theo trục Y mm 560
Hành trình theo trục Z mm 520
Đường kính trục chính mm 65
Tốc độ cắt (chạy dao) mm/ph 1 - 5000
Tốc độ dịch chuyển nhanh theo X, Y mm/ph 12000
Tốc độ dịch chuyển nhanh theo Z mm/ph 10000
Công suất động cơ chính Kw 3.7 - 5.5
Động cơ secvo X, Y, Z Kw 0.5 - 3.5
Trọng lượng Kg 4200
Tốc độ quay trục chính Vg/ph 60 - 8000
16 đầu dao BT 40
Kích thước tổng thể mm
3500 x 3020 x
2520
Luận văn tốt nghiệp thạc sĩ kỹ thuật Chuyên ngành: Công nghệ CTM
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
69
3.3.4.2. Dao.
- Mảnh dao phay cầu phủ TiAlN hai lưỡi cắt ký hiệu VP15TF của hãng
Mitsubishi -Nhật Bản có thông số như sau:
+ Độ cứng của mảnh dao 91.5 HRA
+ Độ bền nén 2.5 GPa
+ Đường kính mảnh dao: 10 mm
+ Chiều dài phần cắt: 8.5 mm
+ Số lưỡi cắt: z = 2.
+ Góc độ: Góc trước = 0; góc sau = 5
- Thân dao ký hiệu SRFH10S12M của hãng Mitsubishi - Nhật Bản có thông
số như sau:
+ Đường kính chuôi dao: 12h6 mm
+ Chiều dài thân dao: 120 mm
3.3.4.3. Phôi.
Thép hợp kim CR12MOV đã qua tạo hình dáng và tôi
Độ cứng: 44 ÷ 45 HRC
Kích thước: 300 x 150 x 40
Thành phần hoá học:
Bảng 3.3: Thành phần các nguyên tố hoá học thép CR12MOV.
Nguyên
tố hoá
học
C Si P Mn Cu V Cr Mo
Hàm
lượng %
1.57 0.29 0.020 0.25 0.19 0.19 11.46 0.44
3.3.4.4. Dụng cụ đo kiểm.
Máy đo nhám bề mặt SJ 201 của Mitutoyo, kính hiển vi điện tử.
3.4. Thực nghiệm để xác định tuổi bền của dao phay cầu 10 phủ TiAlN khi
gia công thép hợp kim CR12MOV.
3.4.1. Nội dung:
Chuẩn bị trước khi gia công gồm:
Luận văn tốt nghiệp thạc sĩ kỹ thuật Chuyên ngành: Công nghệ CTM
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
70
Tạo phôi: Bao gồm việc xác định mác thép hợp kim CR12MOV, gia
công chuẩn bị phôi, đo độ cứng trước khi gia công.
Chuẩn bị đồ gá, phương tiện đo kiểm theo phương án gia công, chọn
máy, lập phương trình gia công chi tiết trên máy trên máy CNC theo
bộ thông số S, V, t, θy dùng để khảo sát.
Tiến hành gia công và kiểm tra kết quả:
Dùng dao phay cầu 10 phủ TiAlN để gia công, quan sát, ghi chép
kết quả.
Tiến hành đo lấy kết quả.
Sử lý số liệu sau gia công, rút ra kết luận tương ứng chỉ dẫn cần thiết,
dùng làm tài liệu cho các nhà sản xuất có quan tâm về lĩnh vực này.
3.4.2. Các thông số đầu vào của thí nghiệm:
Gọi x1, x2, x3, x4 Là các biến tương đương với các thông số: Vận tốc dài v,
góc nghiêng phôi θy, lượng chạy dao s và chiều sâu cắt t. Trên cơ sở các điều kiện
biên và xác định chính xác góc nghiêng của phôi ảnh hưởng đến tuổi bền. Giá trị
chế độ cắt tối ưu được nhà sản xuất MITSUBISHI MATERIALS cung cấp khi gia
công thép hợp kim CR12MOV bằng dao phay cầu phủ TiAlN. Bằng phương pháp
quy hoạch thực nghiệm tại mỗi thí nghiệm các thông số đầu vào có giá trị được
chọn theo giá trị nhất định. Giá trị của thông số đầu vào được lấy 2 giá trị: lớn nhất
và nhỏ nhất (thông thường giá trị mã hoá được ký hiệu +1; -1). Các giá trị này phụ
thuộc vào các điều kiện gia công cụ thể.
vimax = 110 (m/phút) s = 0,2 (mm/răng) t = 0.5 mm
vimin = 50 (m/phút) θymin = 10
o, θymax = 75
o
Mã hoá các biến ở trên các phần tử của ma trận X là +1 và -1.Nhưng
khoảng biến thiên của các biến mà ta nghiên cứu nói chung là khác với [-1,+1] vậy
bố trí thí nghiệm sao cho X trực giao đơn giản nhất là lấy các giá trị xj = ± 1. Bằng
cách gọi các biến thực tế là Zj, j=
k,1
, ta thu được:
Luận văn tốt nghiệp thạc sĩ kỹ thuật Chuyên ngành: Công nghệ CTM
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
71
2
ZZ
Z
jj0
j
;
2
ZZ
Z
jj
j
;
j
0
jj
j
Z
ZZ
x
;
Zj =
jZ
xj = -1; Zj =
jZ
xj = +1, Zj =
0
j
Z
xj = 0
Giá trị được mã hoá trong ma trận thí nghiệm là:
30
80ln
1
V
x
;
5,32
5,42ln
2
x
;
Bảng 3.4: Giá trị tính toán giá trị thông số chế độ cắt v, θy cho thực nghiệm:
Các yếu tố x1 (m/phút) x2 (độ)
Mức lớn nhất 110 75
Mức lớn 100 65
Mức trung bình 80 42.5
Mức nhỏ 60 20
Mức nhỏ nhất 50 10
3.4.3. Thực nghiệm xác định tuổi bền:
Để xác định tuổi bền cực đại ta phải hồi quy các số liệu thực nghiệm. Trên
cơ sở nghiên cứu của Phan Quang Thế [4] được sử dụng làm phương trình hồi qui
trong nghiên cứu này của tác giả.
LnT = bo + b1lnv + b2lnθy + b12lnv.lnθy+ b11(lnv)
2
+ b22(lnθy)
2
(3- 1)
Đặt: y = ln(T); x1 = ln(vi); x2 = ln(θyi);
Thay vào ta có: y = bo + b1x1 + b2x2 + b12x1x2 + b11(x1)
2
+ b22(x2)
2
Đây chính là phương trình hồi quy phi tuyến bậc 2 là phương pháp xây dựng
quy trình thí nghiệm và sử lý số liệu dựa trên một số tiêu chí giống như quy hoạch
trực giao cấp 1, nhưng ở đây ta sẽ nhận được mô hình hồi quy dạng đa thức bậc 2
đủ, mô tả sự phụ thuộc vào hàm y vào các thông số ảnh hưởng x1,x2 , ...xk.
Vấn đề đặt ra: Phải quy hoạch thí nghiệm thế nào để mô hình thống kê y biểu
diễn gần đúng tốt nhất
yˆ
. Xét mô hình bậc 2 đầy đủ như sau:
yˆ
= bo + b1x1 + b2x2 + b12x1x2 + b11(x1)
2
+ b22(x2)
2
(3-2)
Luận văn tốt nghiệp thạc sĩ kỹ thuật Chuyên ngành: Công nghệ CTM
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
72
Với thực nghiệm có hai biến đầu vào: Vận tốc cắt v, góc nghiêng phôi θy
(chiều sâu cắt chọn cố định t = 0,5 mm và lượng chạy dao s = 0.2 mm/răng). Lúc
này số thí nghiệm đầy đủ. Số thí nghiệm với k = 2; N = 2k + n0 + 2k = 9.
Ta có n1= 2
2
=4; n0 =1; n2 = 2.2= 4.
Điều kiện để k cột cuối trực giao với nhau: α =
12 22. kkN
=
Tính xj
’
= xj
2
–
)22(
1 2k
N
= xj
2
– 2/3. Ta lập bảng quy hoạch và tiến hành
làm thực nghiệm sau:
Bảng 3.5: Bảng quy hoạch và kết quả thực nghiệm xác định tuổi bền của dao.
N
o
x0 x1 x2 x1.x2 x1
,
x2
,
v(m/p) θy(độ) T(phút)
1 + - - + 1/3 1/3 50 10 9.2
2 + + - - 1/3 1/3 110 10 6.4
3 + - + - 1/3 1/3 50 75 16.2
4 + + + + 1/3 1/3 110 75 14.5
5 + 0 0 0 -2/3 -2/3 80 42.5 20
6 + 1 0 0 1/3 -2/3 110 42.5 18.6
7 + -1 0 0 1/3 -2/3 60 42.5 21.4
8 + 0 1 0 -2/3 1/3 80 65 19.5
9 + 0 -1 0 -2/3 1/3 80 20 8.2
Bảng 3.6: Bảng tổng hợp kết quả thí nghiệm
Thời
gian
(Phút)
v = 50(m/p)
θy = 10
o
Thời
gian
(Phút)
v = 110(m/p)
θy = 10
o
Ra(m) Rz(m) Ra(m) Rz(m)
6,0 1,22 5,25 4,5 0,85 4,36
7,0 1,25 5,58 5,0 0,87 4,67
8,0 1,74 5,85 5,5 0,95 4,72
Luận văn tốt nghiệp thạc sĩ kỹ thuật Chuyên ngành: Công nghệ CTM
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
73
8,5 1,87 6,25 5,8 1,15 5,29
8,8 2,25 6,95 6,0 1,35 5,62
9,0 2,29 7,85 6,2 1,50 5,81
9,2 2,35 8,75 6,4 1,75 6,25
9,4 3,85 14,20 6,6 3,65 15,0
Thời
gian
(Phút)
v = 50(m/p)
θy = 75
o
Thời
gian
(Phút)
(m)
v = 110(m/p)
θy =75
o
Ra(m) Rz(m) Ra(m) Rz(m)
12,0 0,82 3,35 10,0 0,75 3,10
14,0 1,20 4,65 11,0 0,86 4,36
15,0 1,54 5,85 12,0 0,90 3,65
15,6 1,65 5,96 13,0 1,05 4,86
15,8 1,85 6,35 14,0 1,25 5,54
16,0 2,15 6,72 14,3 1,55 5,86
16,2 2,45 8,85 14,5 1,95 6,75
16,4 3,65 12,26 14,7 2,74 12,25
Thời
gian
(Phút)
v = 80(m/p)
θy =42,5
o
Thời
gian
(Phút)
V = 80(m/p)
θy =42,5
o
Ra(m) Rz(m) Ra(m) Rz(m)
15,0 0,75 3,15 15,0 0,73 3,12
17,0 1,15 5,28 17,0 1,14 5,29
18,0 1,45 5,76 18,8 1,45 5,81
19,0 1,60 5,85 20,0 1,65 5,87
19,5 1,85 6,35 20,4 1,84 6,34
Luận văn tốt nghiệp thạc sĩ kỹ thuật Chuyên ngành: Công nghệ CTM
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
74
19,8 2,0 6,47 20,6 2,1 6,46
20,0 2,25 7,15 20,8 2,25 7,15
20,2 3,35 11,8 20,9 3,34 11,5
3.4.3.1. Tính các hệ số của phƣơng trình hồi quy
Áp dụng tính chất của quy hoạch trực giao cấp 2 ta tính các hệ số theo công
thức (3.1.3) [25].
Ta có:
b0=
N
u
uy
N 1
1
, bj =
N
u
uj
N
u
uuj
x
yx
1
2
1
.
với các số hạng bậc nhất
kj ,1
bij =
N
u
ujui
N
u
uujui
xx
yxx
1
2
1
)(
).(
với các số hạng chéo.
bjj =
N
u
uj
N
u
uui
x
yx
1
2,
1
,
)(
với các số hạng bậc 2.
Dựa vào công thức (3.1.3) tính được các hệ số bj:
b0 = 14,8 b1 = -1,2 b2 = 4,35 b12 = 0,18 b11= -1,35 b22 = -7,7
Thay vào phương trình (3 - 2) ta được:
yˆ
= 14,8 – 1,2 x1 + 4,35 x2 + 0,18 x1x2 – 1,35(x1)
2
– 7,7(x2)
2
(3- 4)
3.4.3.2. Kiểm định các tham số bj
* Kiểm định bj = 0 hay không thì phải tính các phương sai.
Ta có 2 thí nghiệm lặp lại ở tâm với kết quả như sau:
1
0y
= 20,0;
2
0y
= 20,8;
Luận văn tốt nghiệp thạc sĩ kỹ thuật Chuyên ngành: Công nghệ CTM
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
75
0
y
=
2
1
(20,0+20,8) =20,4
Phương sai tái sinh s2ts
2
ts
s
=
n
1i
0
i
0
0
)yy(
1n
1
2
2
ts
s
=
22 )4,208,20()4,200,20(
12
1
= 0,32
sts=
32,0
= 0,56
2
bis
=
2
ts
s
{c
-1
}jj
2
0bs
=
9
32,02
N
s ts
= 0,035 =>
0bs
= 0,59
2
bjs
=
6
32,0
1
2
2
N
u
uj
ts
x
s =0,053 =>
bjs
= 0,23
2
bijs
=
4
32,0
)(
1
2
2
N
u
ujui
ts
xx
s = 0,08 =>
bijs
= 0,28
2
bjjs
=
2
32,0
)(
1
2,
2
N
u
ui
ts
x
s = 0,16 =>
bjjs
= 0,4
tbi =
bi
i
s
b
tb0 =
0
0
bs
b
=
59,0
8,14
= 25,0
tb1 =
bis
b1
=
23,0
1,2-
= -5,2
tb2 =
bis
b2
=
23,0
4,35
= 18,9
t12 =
ijs
b12
=
28,0
0,18
= 0,64
Luận văn tốt nghiệp thạc sĩ kỹ thuật Chuyên ngành: Công nghệ CTM
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
76
t11 =
jjs
b11
=
4,0
1,35-
= 3,37
t22 =
jjs
b22
=
4,0
7,7-
= 19,25
Ta chọn mức độ có nghĩa = 0,05 cho các bảng thống kê.
Với = 0,05, bậc tự do n0 = 2 tra bảng Student ta được t = 0,142.
So sánh |tbi| đều lớn hơn t nên mọi ai đều có nghĩa.
Do đó phương trình hồi quy có dạng.
yˆ
= 14,8 – 1,2 x1 + 4,35 x2 + 0,18 x1x2 – 1,35(x1)
2
– 7,7(x2)
2
3.4.3.3. Kiểm định sự phù hợp của mô hình
Sau khi xây dựng được mô hình
yˆ
ta tính phương sai dư.
2
1
2 )ˆ(
)1(
1
N
i
iidu yy
kN
s
2
9
1
2 )ˆ(
)12(9
1
i
iidu yys
Bảng 3.7. Bảng kết quả tính toán giá trị (yi-
i
yˆ
)
2
T
T
yi x1 x2 b0 b1 b2 b12 b11 b22
i
yˆ
(yi-
i
yˆ
)
2
1 9,2 - - 14,8 -1,2 4,35 0,18 -1,35 -7,7 10,8 2,5
2 6,4 + - 14,8 -1,2 4,35 0,18 -1,35 -7,7 8,0 2,5
3 16,2 - + 14,8 -1,2 4,35 0,18 -1,35 -7,7 19,1 2,9
4 14,5 + + 14,8 -1,2 4,35 0,18 -1,35 -7,7 16,5 4
5 20 0 0 14,8 -1,2 4,35 0,18 -1,35 -7,7 19,6 0,8
6 18,6 1 0 14,8 -1,2 4,35 0,18 -1,35 -7,7 16,8 3,2
7 21,4 -1 0 14,8 -1,2 4,35 0,18 -1,35 -7,7 19,4 4
8 19,5 0 1 14,8 -1,2 4,35 0,18 -1,35 -7,7 17,7 3,2
9 8,2 0 -1 14,8 -1,2 4,35 0,18 -1,35 -7,7 9,0 0,6
Luận văn tốt nghiệp thạc sĩ kỹ thuật Chuyên ngành: Công nghệ CTM
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
77
Ta có:
95,3)ˆ(
)12(9
1 2
9
1
2
i
iidu yys
Xét tỷ số:
3,12
32,0
95,3ˆ
2
2
ts
du
s
s
F
Chọn mức ý nghĩa = 0,05, tra bảng Fisher ta được f = 98,5
Fˆ < f. vậy mô hình là phù hợp.
Chuyển về biến thực nghiệm ta có phương trình hồi quy như sau:
LnT=1,7–0,192lnv+0,474lnθy+0,00018lnv.lnθy–0,0015(lnv)
2–0,0072(lnθy)
2
(3-5)
3.4.3.4. Đồ thị biểu diễn mối quan hệ giữa v, θy và tuổi bền dao khi t = 0,5 mm
Hình 3.3: Đồ thị biểu thị mối quan hệ giữa vận tốc cắt v, góc nghiêng phôi θy với
tuổi bền của dao phay cầu 10 phủ TiAlN khi gia công thép hợp kim CR12MOV
qua tôi đạt độ cứng 40 ÷ 45 HRC khi chiều sâu cắt không đổi t = 0,5 mm.
40
60
80
100
120
0
20
40
60
80
6
8
10
12
14
16
18
20
22
T (phút)
θy(độ)
V(m/ph)
Luận văn tốt nghiệp thạc sĩ kỹ thuật Chuyên ngành: Công nghệ CTM
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
78
3.4.3.5. Một số hình ảnh chụp phôi, lƣỡi cắt của dao khi gia công.
Hình 3.4. Máy phay CNC-VMC-85S
Hình 3.5. Máy đo độ nhám SJ.201
Luận văn tốt nghiệp thạc sĩ kỹ thuật Chuyên ngành: Công nghệ CTM
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
79
Hình 3.6. Hình ảnh phôi đang gia công
Hình 3.6.a. Hình ảnh mặt sau của dao sau 6,4 phút khi gia công với v = 110
(m/phút), θy=10
0
Luận văn tốt nghiệp thạc sĩ kỹ thuật Chuyên ngành: Công nghệ CTM
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
80
Hình 3.6.b. Hình ảnh mặt sau của dao sau 9,2 phút khi gia công với v = 50
(m/phút), θy=10
0
Hình 3.6.c. Hình ảnh mặt sau của dao sau 14,5 phút khi gia công với v = 110
(m/phút), θy=75
0
Luận văn tốt nghiệp thạc sĩ kỹ thuật Chuyên ngành: Công nghệ CTM
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
81
Hình 3.6.d. Hình ảnh mặt sau của dao sau 16,2 phút khi gia công với v = 50
(m/phút), θy=75
0
Hình 3.6.e. Hình ảnh mặt sau của dao sau 21,4 phút khi gia công với v = 80
(m/phút), θy=42,5
0
Luận văn tốt nghiệp thạc sĩ kỹ thuật Chuyên ngành: Công nghệ CTM
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
82
3.4.3.6. Phân tích kết quả thí nghiệm.
Từ các kết quả thí nghiệm và hình ảnh chụp trên máy SEM tại phòng thí
nghiệm Vật lý trường Đại học Sư phạm Thái Nguyên chúng ta có thể thấy mặt trước
của dụng cụ chia thành 3 vùng rõ rệt theo phương thoát phoi thông qua mức độ dính
của vật liệu gia công với mặt trước và mặt sau. Hình 3.6(a) thể hiện rõ 3 vùng này.
Chiều dài vết tiếp xúc giữa phôi và mặt trước thay đổi tăng dần từ mũi dao đến
vùng tiếp xúc giữa bề mặt tự do của phoi và mặt trước. Vùng nằm sát lưỡi cắt với
những vết biến dạng dẻo bề mặt do các hạt cứng trên vật liệu gia công gây ra. Theo
kết quả nghiên cứu của Tren [3] thì vùng ngay sát lưỡi cắt là vùng mà các lớp bề
mặt gia công sát mặt trước dính và dừng trên mặt trước tạo nên vùng biến dạng thứ
hai trên phoi. Tuy nhiên, các hình ảnh bề mặt cho thấy hiện tượng biến dạng dẻo bề
mặt do cào xước theo hướng thoát phoi gây mòn tạo trên mặt trước phụ mới với góc
trước phụ âm. Như chúng ta biết trong vật liệu gia công có những hạt cứng những
hạt cứng này khi di chuyển qua vùng ma sát 1 vừa lăn, vừa trượt dưới tác dụng của
ứng suất pháp rất lớn ở vùng lưỡi dao là nguyên nhân tạo ra các rãnh biến dạng dẻo
do cào xước trên bề mặt của vùng này. Sự mòn bề mặt này tạo ra một mặt trước phụ
và góc trước phụ âm tự nhiên. Từ hình 3.6.b. Khi phay 9,2 phút vận tốc 50 m/phút
trên mặt trước của dao xuất hiện các vết bám dính của vật liệu gia công trên bề mặt
mòn bắt đầu xuất hiện trên lưỡi cắt chính. Khi tăng vận tốc 110 m/phút vật liệu gia
công bám dính trên mặt trước của dao tăng lên và vết mòn của dao cũng tăng lên.
Từ phân tích thí nghiệm chúng ta thấy tuổi bền của dao cầu phụ thuộc vào vận tốc
và góc nghiêng của phôi.
3.5. Kết luận chƣơng 3
Nội dung chính của chương này là tập trung vào nghiên cứu ảnh hưởng
của các thông số vận tốc cắt v và góc nghiêng của phôi θy khi bước tiến s = 0.2
mm/vòng, chiều sâu cắt t = 0,5 mm đến tuổi bền của dao phay cầu phủ TiAlN khi
gia công thép hợp kim CR12MOV qua tôi đạt độ cứng 40 – 45 HRC. Thực hiện
trong điều kiện sản xuất thực tế trên máy phay CNC tại trường Đại học Kỹ Thuật
Công Nghiệp Thái Nguyên. Trong đó tập trung giải quyết được một số vấn đề sau:
Luận văn tốt nghiệp thạc sĩ kỹ thuật Chuyên ngành: Công nghệ CTM
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
83
Xây dựng được mô hình định tính của quá trình gia công bắt đầu từ các yếu
tố đầu vào đến khi thực hiện và kết thúc quá trình.
Đã tiến hành thí nghiệm thành công và thu được kết quả đảm bảo độ tin cậy.
Xây dựng được mối quan hệ giữa các thông số công nghệ (v, θy) khi chiều
sâu cắt t = 0,5 mm đến tuổi bền của dao phay cầu phủ TiAlN khi gia công
thép hợp kim CR12MOV qua tôi đạt độ cứng 40 ÷ 45 HRC.
Luận văn tốt nghiệp thạc sĩ kỹ thuật Chuyên ngành: Công nghệ CTM
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
84
CHƯƠNG 4. KẾT QUẢ VÀ THẢO LUẬN
4.1. Kết luận
Với nội dung “Nghiên cứu ảnh hưởng của chế độ cắt và góc nghiêng của phôi
đến tuổi bền của dao phay cầu phủ TiAlN khi gia công thép hợp kim CR12MOV”
qua ba chương đề tài đã giải quyết được các vấn đề sau:
Đánh giá được ưu điểm, khả năng ứng dụng của dao phay cầu trong việc gia
công các bề mặt phức tạp đồng thời cũng chỉ ra những khó khăn, hạn chế khi
sử dụng chúng để gia công.
Cơ chế cắt gọt của dao cầu là rất phức tạp, vị trí của lưỡi cắt tham ra cắt thực
thay đổi phụ thuộc vào vị trí tương đối giữa dao và phôi, quá trình mòn của
dao ở từng vị trí của lưỡi cắt khác nhau. Vì vậy, để sử dụng hiệu quả dao
phay cầu cần xác định mối quan hệ giữa tuổi bền của dao và chế độ cắt góc
nghiêng của phôi cho từng vị trí trên chiều dài của lưỡi cắt.
Xác định được điều kiện để đỉnh dao tham ra vào quá trình cắt gọt.
Đề tài đã xác định được mối quan hệ giữa chế độ cắt và góc nghiêng của
phôi đến tuổi bền của dao phay cầu phủ TiAlN khi cắt ở toàn bộ biên dạng
dao để gia công thép hợp kim CR12MOV qua tôi đạt độ cứng 40 ÷ 45 HRC
thông qua các chỉ tiêu về nhám bề mặt, bằng mô hình toán học về mối quan
hệ giữa chế độ cắt v, góc nghiêng phôi θy khi t = 0,5 (mm), s = 0,2 mm/răng
và tuổi bền của dao phay cầu phủ TiAlN khi gia công thép hợp kim
CR12MOV qua tôi đạt độ cứng 40 ÷ 45 HRC.
Dao phay cầu phủ TiAlN có khả năng gia công được thép đã tôi, vì vậy có
thể sử dụng tốt để gia công các bề mặt phức tạp trong lĩnh vực chế tạo máy,
đặc biệt là trong lĩnh vực khuôn mẫu khi vật liệu gia công đã được tôi cứng.
4.2. Hướng nghiên cứu tiếp theo.
Nghiên cứu ảnh hưởng của chế độ cắt đến tuổi bền của dao phay cầu phủ
TiAlN gia công thép hợp kim CR12MOV và những vật liệu khác khi cắt ở
đỉnh dao.
Luận văn tốt nghiệp thạc sĩ kỹ thuật Chuyên ngành: Công nghệ CTM
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
85
Nghiên cứu ảnh hưởng của chế độ cắt đến tuổi bền của dao phay cầu phủ
TiAlN gia công thép hợp kim CR12MOV tại những vị trí khác trên lưỡi căt.
Khi bước tiến s và chiều sâu cắt t thay đổi.
Nghiên cứu ảnh hưởng của dung dịch trơn nguội và biện pháp tưới dung dịch
trơn nguội đến tuổi bền của dao phay cầu phủ TiAlN khi gia công thép hợp
kim CR12MOV.
Tối ưu hóa các thông số hình học, chế độ cắt của dao phay đầu cầu phủ
TiAlN khi gia công khi gia công thép hợp kim CR12MOV đã tôi.
Trên cơ sở nghiên cứu ở trên có thể mở rộng để tối ưu chế độ cắt những loại
dao cầu có đường kính, vật liệu khác khi gia công những vật liệu khác nhau.
Luận văn tốt nghiệp thạc sĩ kỹ thuật Chuyên ngành: Công nghệ CTM
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
86
TÀI LIỆU THAM KHẢO
[1]. PGS, TS. Nguyễn Trọng Bình (2003), Tối ưu hoá quá trình gia công cắt gọt,
NXB Giáo dục.
[2]. Bành Tiến Long, Trần Thế Lục, Trần Sĩ Tuý. (2001), Nguyên Lý Gia Công Vật
Liệu, Nhà xuất bản Khoa học và Kỹ thuật, Hà Nội.
[3]. PGS. TS. Nguyễn Đăng Bình, PGS. TS. Phan Quang Thế (2006), Một số vấn đề
về ma sát, mòn và bôi trơn trong kỹ thuật. Nhà xuất bản Khoa học và Kỹ thuật, Hà
Nội.
[4]. Phan Quang Thế (2002), Luận án Tiến sĩ. “Nghiên cứu khả năng làm việc của
dụng cụ thép gió phủ dùng cắt thép cacbon trung bình”, Trường Đại học Bách khoa
Hà Nội.
[5]. MITSUBISHI General catalogue (2008), Turning tools, rotating tools, tooling
solutions.
[6]. SUMITOMO General catalogue (2008), Performance cutting tools.
[7]. Marius Cosma , Assist. Eng., North University Baia Mare, Dr. V. Babeş 62A
street, Romania (2006), Geometrc method of undeformed chip study in ball nose
end milling, The international conference of the Carpathian EURO – Region
specialists in industrial systems 6
th
edition, pp. 49-54.
[8]. Marius Cosma, Assist. Eng. North University of Baia Mare, Romania (2007),
Horizontal path strategy for 3D-CAD analysis of chip area in 3 – axes ball nose end
milling, 7
th
International multidisciplinary conference, Baia Mare, Romania, May
17-18, 2007 ISSN-1224-3264, pp115-120.
[9]. Hiroyasu Iwabe and Kazufumi Enta (2008), Tool Life of Small Diameter Ball
End Mill for High Speed Milling of Hardened Steel – Effects of the Machining
Method and the Tool Materials –, Graduate School of Science and Technology,
Niigata University 8050, Ikarashi 2-nocho, Nishi-ku, Niigata 950-2181, Japan, pp
425-426.
Luận văn tốt nghiệp thạc sĩ kỹ thuật Chuyên ngành: Công nghệ CTM
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
87
[10]. Ching – Chih Tai+ and Kuang – hua Fuh+ (1995), Model for cutting forces
prediction in ball end milling, Int. J. Mach. Tools Manufact. Vol. 35. No. 4. pp.
511-534.1995. Printed in Great Britain
[11]. EE Meng Lim, His – Yung Feng, Chia-Hsiang Menqhi-Hang Lin (1995), The
prediction of dimenional error for sculptured surface producctions using the ball end
milling process. Part 1: Chip geometry analysis and cutting force prediction, Int. J.
Mach. Tools Manufact. Vol. 35. No. 8. pp. 1149-1169.1995 Printed in Great
Britain.
[12]. EE Meng Lim, His – Yung Feng, Chia-Hsiang Menqhi-Hang Lin (1995), The
prediction of dimenional error for sculptured surface producctions using the ball end
milling process. Part 2: Surface generration model and exrerimental verification,
Vol. 35. No. 8. pp. 1171-1185.1995 Printed in Great Britain.
[13]. Trần Thế Lục (1988), Giáo Trình Mòn và Tuổi Bền Của Dụng Cụ Cắt, Khoa Cơ Khí
- Trường Đại học Bách khoa Hà Nội.
[14]. Trần Văn Địch, Nguyễn Trọng Bình, Nguyễn Thế Đạt, Nguyễn Viết Tiếp,
Trần Xuân Việt (2003), Công Nghệ Chế Tạo Máy, NXB Khoa học và Kỹ thuật.
[15]. Trần Hữu Đà, Nguyễn Văn Hùng, Cao Thanh Long (1998), Cơ sở chất lượng
của quá trình cắt, Trường ĐH Kỹ thuật Công nghiệp.
[16]. Trần Văn Địch (2003), Nghiên cứu độ chính xác gia công bằng thực nghiệm,
NXB Khoa học và Kỹ thuật.
[17]. Nguyễn Doãn Ý (2003), Giáo trình Quy hoạch thực nghiệm, NXB Khoa học
và Kỹ thuật.
[18]. Nguyễn Văn Hùng (2003), Luận án Tiến sỹ: “Nghiên cứu tối ưu các thông số
của quá trình mài điện hoá bằng mài kim cương khi gia công hợp kim cứng, Trường
Đại học Bách khoa Hà Nội.
[19]. Nguyễn Tiến Thọ, Nguyễn Thị Xuân Bẩy, Nguyễn Thị Cẩm Tú (2001), Kỹ
thuật đo lường kiểm tra trong chế tạo cơ khí, NXB Giáo dục.
[20]. Bùi Công Cường, Bùi Minh Trí, (1997), Giáo trình xác suất và thống kê ứng
dụng, NXB Giao thông vận tải.
Luận văn tốt nghiệp thạc sĩ kỹ thuật Chuyên ngành: Công nghệ CTM
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
88
[21]. Tạ Văn Đĩnh (1998), Phương pháp tính, NXB Giáo dục.
[23]. Lê Công Dưỡng (1996), Vật liệu học, NXB Khoa học kỹ thuật.
[24]. GS, TSKH. Phan Quốc Khánh - TS. Trần Huệ Nương (2003), Quy hoạch
tuyến tính, NXB Giáo dục.
[25]. PGS, TS. Bùi Minh Trí (2005), Xác suất thống kê và quy hoạch thực nghiệm,
NXB Khoa học và kỹ thuật.
[26]. Phạm Quang Đồng (2007), Nghiên cứu ảnh hưởng của các thông số công nghệ
bôi trơn – làm nguội tối thiểu đênd độ mòn dao và chất lượng bề mặt khi phay rãnh
bằng dao phay ngón, Trường ĐH Kỹ thuật Công nghiệp.
[27]. Nguyễn Mạnh Cường (2007), Nghiên cứu ảnh hưởng của chế độ cắt đến chất
lượng bề mặt gia công khi tiện tinh thép X12M qua tôi bằng dao gắn mảnh PCBN,
Trường ĐH Kỹ thuật Công nghiệp.
Các file đính kèm theo tài liệu này:
- doc387.pdf