NGHIÊN CỨU VÀ GIẢI BÀI TOÁN KHÔI PHỤC CẤU TRÚC XẠ ẢNH TỪ BA ẢNH TRONG THỊ GIÁC MÁY TÍNH
VÕ ĐỨC CẨM HẢI
Trang nhan đề
Mục lục
Danh mục
Mở đầu
Chương1: Bài toán khôi phục cấu trúc xạ ảnh.
Chương2: Cơ sở hình học trong thị giác máy tính.
Chương3: Một số bài toán liên quan đến cấu trúc xạ ảnh.
Chương4: Bài toán khôi phục cấu trúc xạ ảnh từ tập N điểm tương ứng trên 3 ảnh không định cỡ.
Chương5: Kết luận.
Phụ lục
Tài liệu tham khảo
30 trang |
Chia sẻ: maiphuongtl | Lượt xem: 1892 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Luận văn Nghiên cứu và giải bài toán khôi phục cấu trúc xạ ảnh từ ba ảnh trong thị giác máy tính, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
21
? , , , ,
Chtio'ng2.CO SOHINH HQC TRONG THf GIAC MA Y TINH
2.1.IDnhhQcx~anh
Hinh hQcxc;!anh [3], [8] Ia congcl) cd band€ nghienCUllnhil'ngb~liloan
trangthi giac may tinh.Trangphffnnay se trlnhbay cachxay dvng'khonggian
quaphepchie'uph6icanh,cacdinhly lienquailde'nanhxc;!,cachbi€.udi€n cdsa
xC;!anh va ynghIabi€u di€n tQadQthuffnnhffttrongkhong gian xC;!anh.
2.1.1.Phepchie'uph6icanh
D€ giOi thi~uv€ hlnhhQcxC;!anhtru'oche'tquailsatphepchie'uph6icanh
(xuyentam)tranghlnh2.1,ta thffydi€m anhdu'<;Jct ;!ora mQtcachtv nhientren
m~tph~nganh.
M
l
11"0
IDnh2.1.Phepbie'nd6iph6icanhxuyentam.
Dfnhnghia2.1.Phepchie'uph6icanhxuyentamla anhxC;!cuadi€m M
trenm~tph~ng(d6itu'<;Jng)1I"0,leudi€m m trenm~tph~ng(anh)1I"i'm chinh
Ia giaodi€m cuadu'ongth~ngquatam chie'uE va M voi m~tph~nganh1I"i
22
MQts6Hnhcha"trongphepchie'uph6icanh.
Tat ca nhil'ngdi€m lIen m~tph~ng1foanhx~leu nhil'ngdi€m lIen m~t
ph~ng1fitrltnhil'ngdi€m lIen du'ongth~ngl, voi l Ia giaotuye'ncua 1fovoi m~t
ph~ngquaE va songsongvoi 1fi .
Tat canhil'ngdi€m lIen m~tph~ng1fila anhcuanhil'ngdi~mlIen m~t
ph~ng1f0 trlt nhil'ngdi€m lIen du'ongth~ngh (du'ongchantroi), voi h Ia giao
tuye'ncua1fi voim~tph~ngquaE vasongsongvOi1fo.
Nhil'ngdu'ongth~ngtrongm~tph~ng1fodu'Qcanhx~leunhil'ngdu'ong
th~nglIen m~tph~ng1fi'A.nhcuanhil'ngdu'ongth~ngsongsonggiaonhaut~i
mQtdi€m lIendu'ongchantroih, nhu'du'ongth~ngl1va l2tronghlnh2.1.
Khi dichuy€ndi€m E ragfinvocungthlphepchie'uph6icanhtrdthanh
phepchie'usongsong.
Nh!;1nxet.
Ne'udangnhatm~tph~ng1fova 1fi voi 1R2,dungmQth~tQadQf)~cac
chuftnOele2 lfin Iu'QtlIen 1fova 1fi' thl phepbie'nd6i ph6icanhg~nnhli phep
bi€n d6i songanhgiil'a1fova 1fi'nghlala tlt 1R2vao 1R2.
Ne'ulo~ibo du'ongth~ngl E 1fova h E 1fi thl taseco mQtphepbie'n
d6i songanhtlt [J~2\ l vao IR.2\ h .
Tuynhien,ne'utamdrQngm6i 1R2b~ngcachthemdu'ongth~ngial?p l'
vao m6i m~tph~ngkhi ay se co mQtphepbie'nd6i ph6icanhsonganhtu
(IR2 + l') vao (IR2+ l'), trongdo l' du'<;1Cxacdinhtuanhcuanhil'ngdi€m lIen
h va nhil'ngdi€m do anhx~vao l (duytrl tinhlien tl;lC).Nhil'ngdu'ongth~ngmd
rQngm~cnhientu'onglingvoinhil'ngphu'onglIenm~tph~ngkia.Ch~ngh~nanh
23
cuaduongthdng~ va l2giaot~imQtdi€m trenh cungphuongvoi ~va~.
Giaodi€mtrenh coth€ duqcnhlntha'yb~ngcachgiOih~n hungdi€manhcua
mQtdi€m trem~khinodichuy€nravocung.Tu nhungnh~nxettrentacodinh
nghiasau:
Djnhnghia2.2.T~P L g6mnhungduongthdngsongsongvoiduongthdng
l trong[R2segiaonhaut~imQtdi€m d vo cung,ky hi~umoo'di€m nayxem
nhuduqcgallvaom6it~pL nhutronghlnh2.2.
moo
CD
~
ey
IDnh2.2.Di€m t~ivocungtuongungvoit~pduongthdngL
2.1.2.Khonggianx~anh
Djnh nghia2.3.Khonggianx~anh2-chi€uduqcgQila m~tphdngx~anh
haym~tphdnganhduqcdinhnghiabdi: p2 =[R2 U {nhii'ngdi~mvocung}
Djnhnghia2.4.Duongthdngt~ivocungtrongp2 la t~pnhungdi€m t~ivo
cung, ky hi~u loo={nhii'ngdi~mvocung}
Thi dQ.Duongthdngl duqcxacdinhbdi di€m blnhthuongva di€m vo
cung.Khi do l diquadi€m thuongcophuongduqcchobdidi€m m=. Nhuv~y,
duangth~ngx~anhchuamQtdi€m d vocung,kyhi~upI =[RI U{moo}.
24
r:r D~dinhnghlakhonggianX';lanh3-chi~u,tu'ongtl,l'taxettren 1R3va gall
rnQtdi~rnt';livaclingvaorn6it~pdu'ongth~ngsongsong.
Dfnh nghla2.5.KhonggianX';lanh3-chi~up3 du'<;5cdinhnghlanhu'sau:
p3 =1R3U {nhungdi~m{jvocimg}
Nh~nxet.Nhungdi~rnidealtrongp3 t';lOthanhmQtdat';lP2-chi~u.Tlt do
tacodinhnghlasau.
Dfnhnghla2.6.Nhungdi~rnd va clingtrongp3 t';lOnenrn~tph~ngdu'<;5c
gQilam~tph~ngt';livaclingvachuadu'ongth~ngt';livacling.
2.1.3.H~to~dQthuftnnha't
ey
l: y = 1
lm : (xu x2)t, t E IR
ex
Hlnh 2.3.Xaydl,l'ngtQadQthuftnha"ttrongpI
Day Ia h~tQadQdu'<;5cdlingd~bi~udi~ncac d6i tu'<;5nghlnhhQctrong
khonggianX';lanh.Xeth~tQadQD~cacOexeyvaduangth~ngl: y =1 trong
1R2. Quansathlnh2.3taconh~nxetdongiansau:
B6 d~2.1.NhungvectO(XUx2)va (Yl'Y2) xacdinhclingrnQtdu'ongth~ng
quag6ctQadQkhivachIkhi (Xl,X2)=A(Yl'Y2)' A 7: 0
M~nh d~2.1.MQi du'ongth~nglm =(xuX2)t, t E IR quag6ctQadQ(trlt
tn;tcx) d~uca:tdu'ongth~ngl t';lidi~mm.
25
Bjnh nghia2.7.C~pghitri (Xl'X2)va (YI'Y2)du'<JcgQila tu'dngtu'dngne'u
(Xl' X2)=A(YI' Y2)' A 7:0
hay vie'tl<:lid<:lng(xu X2) rv (YI' Y2)' kyhi~urv laquailh~tu'dngdu'dng.
Nh~nxet.d daycostjtu'dngling1-1 giii'anhii'ngdu'ongth~ngdiquag6c
tQadQvoi nhii'ngdi~mtrendu'ongth~ngl va mQtdi~mmarQng~£)i~mnay
tu'dnglingvOidu'ongth~ngY =0,nghiaIatheophu'dng(1,0),dayl~di~mavo
clingky hi~umoo.B~ngeachd6ngnha'tdu'ongth~ngl vadi~mmoovoi pI ta
codjnhnghiasau:
Bjnh nghia 2.8. Khong gian X<:lanh l-chi€u pI baa g6m nhii'ngc~p
(Xu X2) * (0,0) thoa rv nhu'trongdjnhnghia2.7.C~p(xl' X2) du'<JCgQila tQadQ
thu§nnha'tcua di~mtrongpl. Khi do khonggianX<:lanh pI du'<JCvie'tl<:lid<:lng
t~ph<Jpnhu'saupI ={(Xl'X2)E 1R2\ (O,O)}.
Bjnh ly 2.1.KhonggianX<:lanh pI du'<JCchiathanhhait~pconroi nhau
pI ={(Xl' 1)E pI }U{(4' 0) E pI },
tu'dnglingvOinhii'ngdi~mblnhthu'ongvanhii'ngdi~mavocling.
r:r Tu'dngttjnhu'trongpI tadlingbaho~cb6ntQadQthlseco bi~udi€n
thu§nnha'ttu'dngling cho p2 va p3. Thtjc v~y,trongtru'ongh<Jpp2 ta xet h~
tQadQB€ cae Oexeyeztrong1R3vam~tph~ng1C:Z =1nhu'hlnh2.4.
B6 d~2.2.Nhii'ngvectd(xl'X2'X3)va (YI'Y2'Y3)xacdjnhclingmQtdu'ong
th~ngquag6ctQadQkhi vaemkhi (xUx2,x3) =A(YI'Y2'Y3)' A 7: 0
M~nhd~2.2.MQidu'ongth~nglmquag6ctQadQ(tritnhii'ngdu'ongth~ng
trenm~txOy) giaovoi m~tph~ng1Ct<:limQtdi~mm.
26
ez
ey
lm : (xl' x2,x3)t,t E IR
Hlnh 2.4.Xay dvngtQadQthuffnnha'trongrp2
Nh!;1nxet.MQtIffnnfi'ata tha'yco sVtu'ongling 1-1 gifi'anhfi'ngdu'ong
th£ngquag6ctQadQvoinhfi'ngdi€m trenm~tph£ng7rvamQtdu'ongth£ngma
rQng.Du'ongth£ngnaytu'ongling voi nhfi'ngdu'ongtrenm~tz =0, nghlala
du'ongth£ngvoclingl=. BaygiGtad6ngnha'tm~tph£ng7rva l= vOirp2taco
dinhnghlasau:
Dfnhnghi'a2.9.C~p(xux2'X3)va (YuY2'Y3)du'QCgQila tu'ongtu'ongne"u
(XUX2,X3) =)..(YI'Y2'Y3)' )..7 0
hay (xl' X2'X3)rv (YI' Y2'Y3) , ky hi~urv la quanh~tu'ongdu'ong.
Dfnh nghi'a2.10.Khonggianx~anh rp2baag6mta'tca nhfi'ngbQba
(xuX2'X3)"#-(0,0,0) voi quail h~tu'ongdu'ongnhu'dinh nghi'a2.9. BQ ba
(Xl' X2'X3) du'QCgQi la bi€u di~nthuffnnha'tcua di€m trong rp2. Khi do rp2
du'Qcvie"tl~itheod~ngt~phQprp2={(xu X2' X3) E 1R3\ (O,O,O)}.
Dfnhly 2.2.Khonggianx~anhrp2du'Qchiathanhhait~pconroinhau
rp2={(xux2'1)E rp2}U {(xuX2'0)E rp2},
tu'ongling vOinhfi'ngdi€m blnhthu'ongva nhfi'ngdi€m avocling.
28
Hai du'ongth&ng l =(a,b,ef, l' = (a',b',e')T giao t~imQtdi€m
m = l X l' = (be'- eb',ea'- ae',ab'- ba')T.
Haidu'ongth&ngsongsongc~tnhaut~idi€m avacling(xuX2'0).
- Di€m m n~mtrendu'ongth&ngl khi vachI khi mTl =0
Du'ongth&ngt~iva cling loo,c6 tQadQthuffnnha't(0,0,Ih la t~phQp
nhii'ngdi€m t~ivacling.
(ir Tu'dngtv tac6 th€ xaydvngchotraCinghQprp3(ngayca cho rpn VOl
n E ~)nhu'ngseg~Pkh6khankhith€ hi~nynghIahlnhhQc.
Dinh nghla2.11.Khonggianx~anh3-chi€u rp3du'Qcdinhnghlabai t~p
nhii'ngkhonggiancontuy€n tinhl-chi€u trongkhonggianvectd 4-chi€u 1R4.
Nhii'ng di€m trong rp3 du'Qcbi€u di€n thuffn nha't bai cac vectd
(xu X2'X3'x4) * (0,0,0,0),trongd6 hatvectdbi€u di€n clingmQtdi€m n€u
chungsatkhacmQth~ngs6d l~.Khi d6 rp3du'Qcvi€t l~inhu'sau:
rp3={(XUX2,X3,X4) E 1R4\ (O,O,O,O)}
(X,Y, Z)T ~ (xu X2' X3' x4f (X,Y, Z)T ~ (Xl' X2' X3' X4)T
d~nhtlmIan Z vai x4trongX(janh m6idiim nhQ.nmQttia4-chi€u
/l>/.,
X2X2
BJ
(X,Y, Z)
~
X3
ffinh 2.6.Y nghIahlnhhQccuabi€u di€n thuffnnha'tchodi€m trongrp3
29
Nhi)nxet.KhonggianxC;!anh3-chi€uchinhla khonggianthu'ongcuacae
vectdkhac0 trong1R4theoquailh~tu'ongdu'ongt'..J.Ta co th€ ky hi~ukhong
gian xC;!anh 3-chi€u: p3 =p(1R4) =(1R4\ 0)/ t'..J.
Djnh ly 2.3.Khonggian p3 du'<;5Cphanthanhhai t~pconroi nhau
p3 ={(Xl'X2'x3'1)E p3}U{(xl'X2'X3'0)E p~},
Iftnlu'<;5tla nhungdi€m blnhthu'ongvanhungdi€m d vaclIng.
H~qua2.3.
(Xl' X2' X3' X4)T t'..J(Xl / X4'X2/ X4'X3/ X4'l)T la cling bi€u di€n thuftn
nhf(tchodi€m M trongp3 va (X, Y, Z) =(Xl / X4'X2/ X4'X3/ X4)T, X4~ 0 la
bi€u di€n cuadi€m M tu'onglingtrong1R3,xemhlnh2.6.
(Xl' X2' X3' O)T, X4 =0 la bi€u di€n thuftn hf(tcuadi€m d voclIng.
- MQtdi€m trongthe'giOithlfc3-chi€ucotQadQ(X, Y, Z)T trong1R3se
du'<;5cbi€u di€n thuftnhf(tbdi (X, Y, Z,l)T .
(a,b,c,df labi€u di€n thuftn hf(tcuaIT: aX +bY +cZ +d =O.
(O,O,O,l)Tlabi€udi€n thuftnhf(tcuam~tph£ngdvaclIng.
H~qua2.4.Dol ngdugifi'adi~m- du'ongthiing- m~tphiingtrongp3
Quabadi€m khongth£nghang MI, M2 ,M3 taxtiydlfngdu'<;5cmQtm~t
ph£ng7fva du'<;5cxacdinhtu 7fTMi =0, i =1,3.
- Bi€m M n~mtrenm~tph£ng7fkhi vachikhi 7fTM =o.
- Bam~t ph£ngkhacnhau7fI' 7f2'7f3giaonhautC;!imQtdi€m M duynhf(t
vadu'<;5cxa dinhbdih~phu'ongtrlnh IT;M = 0, i = 1,3.
30
- Qua hai di€m M} va M2 trong p3 ta xac dinh du'<Jcdu'ongth~ng
l ={M =(Xl' X2' X3' X4) E p3 I M =~MI +t2M2,(~,t2)E pI}, con gQi
la d~ngthams6 va (~,t2) du'<Jcxemla bi€u di~nthu§nnha'tcuadu'ong
th~ng(hlnh2.7.a).
- Giaocuahaim~tph~ng7Cva lp trongp3 (xemhlnh2.7.b)la du'ong
th~ngdu'<Jcbi€u di~n bdi l : {S7C+tlpI (s,t) E pI}, congQila d~nggiao
cuadu'ongth~ng.
a) b)
mnh 2.7.B6i ngftugifi'adi€m - du'ongth~ng- m~tph~ngtrongp3
, ? ??
2.1.4.Anh x~x~anhva cdsox~anh
, ?
2.1.4.1.Anh x~x~anh
Dinh nghi'a2.12.Chokh6nggianx~anhP(lRn+1)lienke'tvoi kh6nggian
vectdIRn+1.Phepchie'uchinht~cla anhx~p: IRn+1\ {O}-7 P(lRn+1) bie'n
mQtvectdME IRn+1\ {O}thanhdi€m x~anhd~idi~nbdivectddo.
Nh~nxet.V€ m~thlnhhQcthl ME IRn+1\ {O}d~idi~ndi€m trongkh6ng
gian,p(M) la tiaxuyentamdiquadi€m M vanh~n olamvectdchiphu'dng.
31
Djnh nghla 2.13.Anh X£;lI : p(lRnH) --+p(lRk+l) du'QcgQila ant X£;lX£;l
ant neu~I E L(lRnH,IRkH)thoalop =p '0Ivai p va p' la haiphep
chieuchinht~ctu IRnH\ {O}--+p(lRnH) vatuIRkH\ {O}--+p(lRkH).
Tinh cha'tcuaanhX~.
I la antX£;ltuyentint 10 p(AM) =AI 0 p(M) dap tuyentint.
Khi I la sangantthl f condu'QcgQila d&ngcfiuX£;lant.
2.1.4.2.Cdsi'ix~anh
GQi c = {El"",cnH} la cd sa cuakh6nggianvectdIRn+lva xetkh6ng
gianX£;lant pn tu'dngling.ChQnt~pdi~mmu ...,mnH' mn+2E pn saDcha:
{
mi = p(Ei)'i = 1,...,n +1
mn+2= p(El+E2+... +EnH)
(2.1)
Khi d6t~pn +2 di~mml' ...,mn+umn+2du'QcgQila cd saX£;lant cua
pn tu'dnglingvoi cdsachatru'ocuakh6nggianvectdIRnH. Ngaaifa, di~m
mn+2du'QCxacdintdlfatrenmu...,mn+l.
Djnh nghla2.14.Cd saX£;lant cuapn la t~pn +2 di~mdu'Qcxaydlfng
nhu'(2.1)trongd6bfitky n +1 di~mnaaclIngdQcl~ptuyentint,nghIalakh6ng
clingn~mtrensieuph&ng.
Djnhly 2.4.Lienh~giuacdsaX£;lantcuap(lRnH) vacdsacuaIRn+1:
- Caccdsatll~trongkh6nggianvectdIRnH xacdintduynhfitmQtcdsa
X£;lantcuakh6nggianx£;lant p(lRnH).
- Chatru'occd sa X£;lant {ml"'.' mnH' mn+2}cuakh6nggianx£;lant
p(lRnH) tac6th~tlmdu'QcduynhfitmQtlOpcdsatll~nhautrongIRn+1nh~n
32
{Tnt,...,mn+l'mn+2}lamcosatu'ongling.
2.1.4.3.Cdsdx~anhehinhtile
Dinh nghia 2.15.T~p veeto e={el=(1,O,...,O)T,e2=(O,I,...,O)T,...
...,en+!= (0,0,...,I)T,en+2= (I,I,...,I)T}, trongdotQadQthli i euaei co ghi
~
trib~ng1, i =1,n +1, du'<JegQila cosaehinhtileeuakhonggianx~anhpn
Nh~nxet.
- Trongdoei voi i =1,n Ia nhii'ngdi~mt~ivoclingtheem6i~e, en+!
di~mg6e,en+2di~mdonvi.
- Bfftky di~mm E pn d~uco th~du'<Jebi~udi€n nhu'bai t6h<Jptuyen
n+l
tinheuan +1 veetcrtrongcosaehu§n,vietdu'oid~ngm =L xiei .
i=l
Thid\l.Cosax~anhehinhtileeuap2 vap3.
p2: e ={(I,0,of, (0,1,of, (0,0,I)T, (1,1,I)T} (2.2)
p3: E ={(I, 0,0,O)T,(0,1,0,O)T,(0,0,1,O)T,(0,0,0,I)T, (1,1,1,I)T} (2.3)
2.1.5.Phepbie'nd6ix~anh
Phepbiend6iph6ieanha hlnh2.1Ia mQthid\leuaphepbiend6ix~anh.
Trongph§nnayehuyeutrlnhbayv~phepbiend6ix~anhtu p2 -+ p2 va tu
p3 -+ p3, conphepbiend6ix~anhtu p3 -+ p2 sedu'<Jetrlnhbaytrong2.2.3,
tru'oehettadinhnghiat6ngquatv~phepbiend6ix~anh
Dinh nghia2.16.Phepbiend6i x~anhtU m E pn vao m' E pk du'<Je
dinhnghianhu'phepbiend6i tuyentinhtronghc$tQadQthu§nnhfft,nghiaIa
x' r-..JHx trongdo x va x' bi~udi€n tQadQthu§nnhffteuahaidi~mm va m',
H la matr~nkhongsuybieneffp(k+1)x (n +1).
33
2.1.5.1.Phep d6nganh trong rp2
Dfnhnghia2.17.Phepd6nganhtrongrp2hayphepdi6nd6iph~ng(phep
cQngtuye'n)la mN anhX'.lkhanghichh tu rp2vaochinhno,nghIala badi6m
ml 'm2'm3 n~mlIen mQtdu'ongth~ngkhi va chi khi h(ml) ,h(m2)'h(m3)
clingn~mlIen mQtdu'ongth~ng.
DfnhIy 2.5.AnhX'.lh : rp2-+ rp2la mQtphepbie'nd6iX'.lanhne'uvachi
ne'ut6nt'.limQtmatr~nH3x3kh6ngsuybie'nsacchovoiba"tky di6mm nao
trongrp2thl h(m) =Hm.
Chungminh.
Gia sa ml' m2' m3 n~mlIen du'ongth~ngl thl ITmi =0, i =1,3 .
GQi H la ma tr~nca"p3x3 kh6ng suy bie'n, khi a"y H thoa:
ITH-I Hmi =0, i =1,...,3.Dodota"tcacacdi6mHmi n~mlIendu'ongth~ng
H-Tl vatinhcQngtuye'nbaaloan quaphepbie'nd6i.
X2
(Xl / X2'Xl / X3) m
m'
(X~/ X;, X~/ X~)
Hinh 2.8.Phepd6nganhtrongrp2
34
Phepbie"nd6inayconduQcgQila phepd6nganhtrongrp2,hlnh2.8,va
matr~nH la matr~nthuffnnha'tco 9phfintu, nhungchungsaikhacmQth~ng
s6dl~nenco8bi;ictQ' do.H va AH, A 7:0, clingbi€u di€n phepbie"nd6i.
Vie"tl~id~ngmatr~n:
(2.4)
d' ( )
T I
(
I I I
)T ff)2trongom=xl,x2,x3 ,m=xI,x2,x3 Er.
Do do,cffnitnha't4c~pdiemtuonglinglIenhaianhd€ xacdinhphepd6ng
anhH (xemphVIvcB).
2.1.5.2.Phepd6nganhtrongrp3.
Phepd6nganhtrongkhanggianx~anh3-chi€uduQcmatanhux~tuye"n
tinhtu rp3--+rp3va noduQcbi€u di€n boi matr~nH4x4khangsuybie"n.Ma
tr~nH va AH, A 7:0, clingbi€u di€n phepbie"nd6i.Ma tr~nthuffn ha'tH co
16phfintd'nhungchungsaikhacnhaumQth~ngs6d l~nenchIco15bi;ictQ' do.
(Xl' X2' X3' X4f ~H ~ (
I I I I
)
T
Xl' X2' X3' X4
X2 X2
Xl Xl
Hlnh 2.9.Phepd6nganhtrongrp3
X I IhH 2 3 Xl
I
l 2 3 x21haym' =Hmx2 -
I
h31 h32 h33 X3X3
35
Bi€u di€n d'.lngmatr~nM' =HM, trongd6 M =(xl' X2'X3'X4)T va
M ' (
' , , ,
)T tn3= X1'X2'X3'X4 E r .
2.2.Mo hinhCameravarangbuQcepipolar
QuaCameramQtdi€m trongthe'giOithlfc3-chi€utathuduqcmQtdi€m anh
trenm(Ltph~nganh2-chi€u.TrongphftnnaysetrlnhbaymahlnhCameracoban
trongthigiacmaytinh.Phantichvaltrc>,ynghIahlnhh9Ccuamatr~nCamera
X'.lanhvaquailh~giuahatCamerabairangbuQcepipolar.
2.2.1.Mo hinhPin-holeCamera
Day la h~th6ngthigiacdongiannhfftdungd€ mahlnhh6aCameraduqc
g9i la Pin-holeCamera.N6 duqcmatanhumQtCathQpVOlmQt16nho(Pin-
hole)a m(LtbellvamQtffmkinhch\lpanha m(Ltd6idi~n,nhuhlnh2.10,trong
d6g6ct9adQd(Lt'.litamchitu C duqcg9i la tieudi€m vatr\lcz trungVOl
tr\lcthigiac.KhoangcachtITtieudi€m de'nanhg9ila tieuclfkyhi~uIa f .
(X,Y, Z)
xl
X
e O---muu
(xo,Yo}..--
.-----
{x,y) Z
f
IDnh2.10.Ma hlnhPin-holeCameravOlh~t9adQdclit
D€ ti~ntrongcachbi€u di€n tad(Ltm(Ltph~nganhlentru'octamCameraC
khi d6mahlnhPin-holeCameratronghlnh2.10duqcbi€u di€n tu'onglingnhu'
hlnh2.11,b~ngcachd(Ltamchie'uC t'.lig6ccuah~t9adQdclit vam(Ltph~ng
36
ant Z =f. R6rangday laphepchie'uph6icantxuyentam(nhu'trong2.1.1)cua
mQtdi€mtrongkhong ianlenm~tph~ngant.
Y M
c
z p z
f
tam ~
Camera mijtphiinganh
ffinh 2.11.D';lnghinthQccuaPin-holeCamera
QuamohintPin-holeCamerasebie'ndi€m M trongkhonggiancotQadQ
(X, Y, Z)T len di€m m co tQadQ (x,y)T trenm~tph~ngant, m la giao
di€m cuadu'ongth~ngdiquadi€m M vatamchie'uC voim~tph~ngant.Xet
h . ., d):, d h' h 2 11
,? 1" fX, fY V
".!'
al tamglac ong ';lngtrong III . , tacot1vx =Z va y =Z' let
l';li du'oid';lngthu~nnha'tnhu'sau:
x
xllfXI If 0 0 oilY
AlyilfYI =10 f ° 011z
lllZI 10 ° 10" 1
(2.5)
trongdo A =Z la chi€u saucuadi€m. Congthuc(2.5)la bi€u di~nphepchie'u
xuyentamdungh~tQadQthu~nha't.VaCameradu'Qcxacdintnhu'sau:
- Tamchie'uC la tamcuaCamerahaycongQila tieudi€m.
37
M<}tph~ngquaHimCamerasongsongvdi m<}tph~nganh IT gQila m<}t
ph~ngchinhcuaCamera.
Duongth~ngtitHimC tn;(cgiaovdim<}tph~nganhgQiIatr\lcchlnh.
Giaocuatr\lCchlnhvam<}tph~nganhgQiIadi€m chinh,kYhi~ula p.
2.2.2.Mo hlnhCCD Camera
TrongmahlnhPin-holeCamera,tQadQanhgiasaduQCdotrongh~tQadQ
dclit vdi cackhoangchiadonvi trenhaitr\lcb~ng
nhau.Tuynhien,trongth1!cte cacCameraky thu~t
s6haymayquayphimgQichungla CCD Camerasa
d\lngthanhphffncambiend€ t~onendi€m anh.TQa
dQanhduQctinhtheedonvi pixelnhungtrenmoi
tr\lct11~d6khanggi6ngnhaudonhii'ngdi~manhbi biend~ng(khangvuong).
Dod6,phaichuy€ntQadQaOOtittQadQdclitsangtQadQtinhtheepixel.
x
Y
t
IYo
t
"
8
.t-
I '" Pixel I pY
! ~
..( ~
px
..( "~YXo
Hlnh2.12.H~tQaanhvadi~manh(pixel)
GQi Px va Py la chi~urQngva chi~ucaocuapixeltheephuongx va y
tuongling. p =(xo,Yo,l)T Ia tQadQthuffnnha'tcua di€m chinhduQcdo trong
tQadQpixel(c6th€ khacHimcuam<}tph~nganh).a: la g6cl~ch(moo2.12)ph\l
38
thuQcvaonhasanxua'tbQph?ncamlingtrongcacCCD Camera.ax =f / Px '
ay =f /Py bi6udi€n tieuql'cuaCameratrongdonvi pixeltheohaiphu'ongx,
Y tu'ongling.Ngoaira,anhhu'dngcuanhungpixelkhongvuongdu'c;cxemnhu'
thams6d l~s =(f / Py) tana, thu'ongthlthams6 s cuacacCamerab~ngO.
Khi d6d~ngt6ngquatcuamatrq,nainhciJCameradu'c;cxacdi~hnhu'sau:
ax s xo
K=!O
0
ay YO
0 1
(2.6)
matr?nK condu'C;cgQila thamsf{nQicuaCamera.Khi d6phepbie"nd6idi6m
trongkhonggiandclit lenm~tph~nganhchobdi:
x
fX+ZPxl lax s xolll 0 0 oilY
fY +ZPy = 0 ay Yo 0 1 0 0II Z
zoo 1 0 0 1 0" 1
(2.7)
Dinh nghi'a2.18.MQtCameradu'c;cgQila dinhco du'c;cne"ubie"tru'ocma
tr?nK. Ngu'C;cl~i,n6du'c;cgQila Camerakhongdinhco.
2.2.3.Camerax~anh
2.2.3.1.Ma tr~nCamerax~anh
Trongphfin2.2.1va 2.2.2,HimCameradu'c;cd~tt~ig6ccuakhungtQadQ
the"gioithvc.Tuynhien,thu'ongthlkhungtQadQCamerakhongtrungvoikhung
tQadQthe"gioithvc.VI the"nhungdi6mtrongkhonggian3-chi~udu'C;cbi6udi€n
trongkhungtQadQthi gicJi th1!Cphai du'C;cbie"nd6i sangkhungtQadQCamera
tru'ockhi X<:lanh len m~tph~nganh.Hai khungtQadQnay c6 m6i lien h~voi
nhauthongquamatr(inquayRax3vavectottnhtiin t.
39
Ma tr~n(tn,tcgiao)quay R bi€u di€n phuongcuakhungtQadQCamerava
vectdtinhtien t bi€u di€n tQadQcua HimCameratrongkhungtQadQthegidi
thtfc.Dodo,R va t duQcgQilathamsifngo{licuaCamera.
z
Mcam
y ~
x
llinh 2.13.Phepbiend6idclitgiil'akhungtQadQthegioith\icvaCamera
Ta dungkyhi~uMworld= (Xw,Yw'Zw)Tbi€u di€n cuadi€m trongkhung
tQadQthe gidi th\icva Mcam= (Xc,Yc,Zc)T Ia bi€u di€n cua di€m trong
khungtQadQCamera.Khi dophepbiend6idclit tttkhungtQadQthegioith\ic
vaokhungtQadQCamera,nhuhlnh2.13,duQCvietduoidC;!ngthuffnhfftnhusail:
B~ngcachkethQp(2.5),(2.7)va(2.8)tadinhnghiamatr~nxc;!anhnhusail:
Dinh nghIa2.19.Ma tr~nCameraxc;!anh P3X4bi€u di€n m6i lien ket giil'a
tQadQthu~n hfftcua m =(x,y,If trenm~tph~nganhvoitQadQthuffnhfft
M =(X, Y, Z, I)T trongkhungtQadQthegioith\icthongquaphuongtrlnh
Am =PM (2.9)
Xc]
Xw
Y R 0 13x3 -t Yw R -Rt
Zc I
-
OT OT
=>Mcam = T IM world (2.8)
1 1 Zw 13 3 03
1 I 1
40
va(2.8)du'QcgQilaphu'dngtrlnhCamera.Trongd6 P =KR[I3x3I-t]
Nh!;lnxet.
- Ma tr~nP c612phfintti'nhu'ngchic611b!;lctIt do(K: 5thams6,R:
3thamsO',t: 3thams6).Di€u nayc6nghIaP la matr~nthuffnnha'tc6cacphffn
tli'saikhacnhaumQth~ngs6ti1~.
- Ma tr~nconbelltraica'p3X 3 cua P b~ngKR la khong~uybien.Do
d6 ba'tky matr~nP3X4naoc6 matr~nconbell tnii M3X3khongsuybiend€u la
ma tr~n Cameracua Camerax~ anh hfi'uh~n.Voi Q =KR khi d6
P =KR[I3x3 I -t] =Q[I I Q-Ip4]' P4 la cQtcu6iclingcua P
Dfnhnghla2.20.MQtCamerax~anht6ngquatla Cameradu'Qcbi~udi~n
bdimQtmatr~nthuffnnha't3x4tuyy h~ngb~ng3vac6 11b~ctl,l'do.
Dfnhnghla2.21.(SuytudinhnghIa2.16)Camerax~anht6ngquatla phep
biend6ix~anhtu 1'3(1R4)vao1'2(1R3)nhu'sau:
Xl
XII IPn Pl2 Pl3 P14 X2
x21=IP21 P22 P23 P24 X3
x3I IP31 P32 P33 P34I I X4
(2.10)
trongd6 (xl' X2'X3f E 1'2 va (Xl, X2,X3,x4f E 1'3 la bi~udi~ntQadQ
thuffnnha'tcuadi~mm trenm~tph£nganhva M trongthegioithl,l'ctu'dngling.
2.2.3.2.YnghlahinhhQcciiamatr!;lnCamerax~anh
Trongphffnnayse phantichcacthanhphffntrongCamerax~anhva y
nghIahlnhhQccuan6.Giasli',mQtCamerax~anht6ngquatdu'QCphantich
thanhP =[Q I P4], trongd6 Q lamatr~n3x3khongsuybien.
41
qT
PH Pl2 P13 I
Q =Ip21 P22 P2a =qf
Pal Pa2 Paa qJ
(2.11)
r:r Nhii'ngvectdcQtcua ma tr~nCamera.Gia sa, d~tcaccQtcuamatr~n
CameraP Ia Pi' voi i =1,4nghIalaP =[PI I P2 I Pa I P4]'Khi do,m6ivectd
Pi COY nghlahinhhQcnhu'sau:
PI' P2'Pa la nhii'ngdi€m tri~tlieu cuacactI1;lCX, Y, Z tu'ongungtrong
h~tQadQthe'giOith\fc,donhii'ngdi€m nayla anhcuaphu'ongcuacactI1;lctQa
dQnhu'hinh2.14.Ch~ngh;;tn,tI1;lcX co phu'ongD =(I,0,0,of (di€md vo
cling)thidu'<JcX;;tanht;;tiPI =PD, PI chinhIa cQtdc1uliencuamatr~nP.
P4 la anhcuag6ctQadQthe'giOith\fc.Th\fcv~y,voi D =(0,0,0,If
chinhIa phu'ongchI vaog6ctQadQthe'giOith\fcvaco anhla P D =P4'
0
Z
Y
IDnh2.14.Badi€m PI' P2,Pa la nhii'ngdi€m tri~tlieucuaphu'ongcactI1;lc
Cir Nhii'ngvectddongcuamatr~nCamera.VectddongcuaCameraX;;tanhIa
cacvectd4-chi€u,chungcoynghlahinhhQcnhu'nhii'ngm~tph~ngd~tbi~ttrong
the'gioi th\fc.Ta kY hi~u7r[, 7rf, 7rJ Ia badongcuatu'onglingcuaCamera.
42
PH PI2 PI3 PI4
T
1T"1
P =IP21 P22 P23 P24 =1T"!
P3I P32 P33 P34 1T"T3
(2.12)
1T"1'1T"21ahai m~t ph~ngtr1}.c.Thl;tcv~y,nhungdi€m M thuQcm~t
ph£ng 1T"1thoa 1T";M =0 va duQCx~anht~inhungdi€m anhco tQadQ
PM =(0,y,wf manhungdi€m nayn~mlIen tr\lcanh y: M~tkhac,
PC =0 suy ra 1T";C =0 nghlala C clingn~mlIen m~tph£ng1T"I'Do do,
1T"1lam~tph£ngduQcxacdinhbdiHimthigiacC vatf\lCy trongm~tph£ng
anhnhutronghinh2.15.TudngtV,m~tph£ng1T"2duQcxacdinhbditamC va
tr\lc x trongm~tph£nganh.Nhu v~y 1T"1va 1T"2la hai m~tph!ng trongthe
giOithl;tcmaanhla m~tph£ngx =0 vay =o.
C Zc
Zc
Yc Yc
Xc
ffinh 2.15.Hai m~tph£ngtf\lC1T"1'T"2va m~tph£ngchinh1T"s
1T"3co vai trbla m~tph~ngchinh.M~tph£ngnaychuatamCamerava
songsongvoi m~tph£nganh(hinh2.15).Thl;tcv~y,nhungdi€m M thuQc
m~t ph£ngnayco anh1aduongth!ngd vo cungPM =(x,y,0f . Do d6
nhungdi€m n~mlIen m~tph£ngchinhcua Cameraneu va chI neu
43
7f{ M =o.Ne"uC IatamCamerathlC thuQcm~tph&ngchinhvaPC =0
T
hay 1I"3C =o.
<:ir Di~m chinh. Phap tuye"ncua m~tph&ng1I"3=(PH' P12'P13'P14)T la vectd
n =(PIU P12'P13f ho~cco th€ bi€u di€n bdi di€m 1T3=(PIU P12'P13'of tIeD
m~tph&ngd vacung,nhu'hlnh2.16.X~anhdi€m naybdimatr~nP~taxacdinh
di€mchinhP =P 1T3=Qq3'voiqf ladongthlibacuaQ .
Zc
"" T
1I"3=(PIU P12'P13'0)
~
IDnh 2.16.Phu'ongcuam~tph&ngchinh1I"3
2.2.3.3.Tac dQngcuaCameraleDdi~m
r::r x~ anhxuoi.TrangmohlnhCamerax~anhsebie"nd6idi€m M trong
khonggian x~ anh vao di€m anh thoa m =PM. Ngoai fa, nhfi'ngdi€m
D =(X, Y, Z,of tIeDm~tph&ngd va cung,bi€u di€n nhfi'ngdi€m tri~ttieu
trangp3 tu'onglingdi€m d =(X, Y, Z)T trongthe"giOithlfc1R3,nhu'hlnh2.17,
khidonhfi'ngdi€m naydu'Qcanhx~vaodi€m anhmd:
md =PD =[Q I P4]D=Qd (2.13)
Nh~nxet.CQtthlitu',P4,cuamatr~nP khongtacdQngleDdi€m D.
44
~...p (X,Y, z, O)T
\............................
\d
Yc
Y
ffinh 2.17.X<;tantxu6icuadi€m
r:r x~anhngu'Q'c.Chodi€mant movamatr~nCameraP. Xacdintt~p
di€m trongthe'giOithlfcco ant Ia mo.T~pdi€m nayt<;tohanhtiadi quatam
Cameratrongthe'giOithlfc,xemhInt2.I8.a.TianayIa du'ongthAngdu'Qcn6ibdi
haidi€m Ia tamCameraC vadi€m P+mocod<;tnghu'sau:
M (J.l)=P+mo+J.lC (2.14)
voi p+ Ia matr~ngiadaDcuaP.
C Zc
YcYc
Zc C
a) b)
ffinh 2.18. a. X<;tant ngu'Qccua di€m, b. Chi€u saucua di€m
45
r:r Chi~usau cua di~m.Cho di~mMo trongth~gioi thtfcva matr~n
CameraP. TImchi€u saucuaCamerazo.Ta co di~mMo =(X,Y,Z,T)T
duQcnhlnthffytrongCameraP la di~manhMoP =mo=..\(x,y,l)T khido
chi€u sau,hlnh2.18.b,cua di~mMo trenm~tph~ngtru'ocm~tph~ngcmnh
CameraduQctinhtheocongthuc(xemchungminhtrong[8]):
Asign(detQ)
Zo=
Tllq311
(2.15)
2.2.3.4.Tac dQngcuaCameralendu'ongth~ng
r:r X~anhxuoi.X~anhduongth~ng(tia)trongkhonggianx~anhtenm~t
ph~nganh.Duongth~ngva tamCameraxac dinhmQtm~tph~ng7r.Duong
th~nganhIa giaocua7rvam~tph~ngcmnh,xemhlnh2.19.a.
c
Yc
JlB
Yc
c
Zc
a) b)
mnh 2.19.a.x~anhxuoiduongth~ng(tia).a.x~anhnguQcduongth~ng(tia)
GQiA, B la haidi~mtrongkhonggian3-chi€ucoanhla haidi~ma, b
thongquaCamerax~anh P. Khi do mQtdi~mM(Jl) =A +JlB n~mtren
duongth~ngn6ihaidi~mA, B codi~manhIa:
m(Jl) =PM(Jl) =P(A +JlB) =a +Jlb (2.16)
45
r:Jr Chi~usau cua di~m.Cho di€m Mo trongthe'giOitht!cva matr~n
CameraP. TImchi€u sancuaCamerazo.Ta co di€m Mo =(X,y,Z,T)T
duQcnhlnthty trongCameraP la di€m anhMoP =mo =A(X,y,l)T khido
chi€u san,hlnh2.18.b,cua di€m Mo trenm~tph~ngtru'ocm~tph~ngchinh
CameraduQctinhtheocongthuc(xemchungminhtrong[8]):
Asign(detQ)
Zo=
Tllq311
(2.15)
2.2.3.4.Tac dQngcuaCameraleDdliongth~ng
r:r X~anhxuoi.X~anhduongth~ng(tia)trongkhonggianx~anhlenm~t
ph~nganh. Duong th~ngva tam Cameraxac dinh mQtm~tph~ng1r. Duong
th~nganhla giaocua1rvam~tph~ngchinh,xemhlnh2.19.a.
c
yc
J-lB
yc
c
Zc
a) b)
Hinh2.19.a.X~anhxuoiduongth~ng(tia).a.X~anhnguQcduongth~ng(tia)
GQi A, B la haidi€m trongkhonggian3-chi€uco anhla haidi€m a, b
thongqua Camerax~ anh P. Khi do mQtdi€m M(J-l) =A + J-lB n~mtren
duongth~ngn6ihaidi€m A, B codi€m anhIa:
m(J-l) =PM(J-l) =P(A + J-lB)=a + J-lb (2.16)
46
c:r x~ anh ngu'Q'c.T~p nhii'ngdi€m du'<;5cx~ anh len du'ongthing
l =(xu X2'X3)T bdimatr~nCamerax~anhP la m~tphingtrl=pTl, xem
hlnh2.19.b.
2.2.4.Quanh~giiIahaiCamerax~anh- rangbuQcepipolar
Trang2.2.3,x~anhdi€m M trongkhanggianvaodi€m anh'in trenm~t
phinganhbdiCameraC du'<;5cth€ hi~nbdi m6iquailh~PM . m. Trong
ph§nnay,sexemxetm6iquailh~cuadi€m x~anhM vahaidi€m anhm, m'
cuanotrenhaim~tphinganhkhacnhau,xemhlnh2.20.
M6i quail h~ giii'ahai
anhph6icanh(di€m trenhai
anh) cua mN khung canh
(mQtdi€m trangkhanggian)
du'<;5Cma ta bdi hlnh hQc
epipolarmaC'l;!th€ la matr~n
cosa.
2.2.4.1.Hinh hQCepipolar
Hinh2.20.Anhclmdi~mM trenhaiCamera.
HinhhQcepipolarchIdlfavaocacthamso'nQicuacacCameravavi tricua
chung.No coth€ du'<;5Cmatabdimatr~nF cfip3X 3 coh~ngb~ng2.N€u bi€t
tru'(kcacthamso'nQicuaCamerathlco th€ nh~ndu'<;5ctQadQanhdffdu'<;5cchutin
hoa va khi do hlnh hQCepipolarse du'<;5cma ta bdi ma tr~nthi€t y€u [3], [8].
Ngu'<;5cl~i,hlnhhQcepipolardu'<;5Cmatabdimatr~ncosd [2],[10].Vi v~y,ma
tr~ncosdth€ hit%nm6ilienh~giii'acacthamso'nQivavi tricuahaiCamera.
47
HlnhhQcepipolarla hlnhhQccuacacm~tph~nganhgiaovoi chumm~t
ph~ngcoduongcdsanhutronghlnh2.21.
miffphiing----
epipolar ~-- I
I
/
I
II
0 0'
dlldngcdsO
lfinh 2.21.Chumm~t ph~ngepipolar- 7r1,7r2,. ..,7rn
dtiongcdsdIa duongdiquaHim0 va 0' cuaCamera.Nhungdiemepipolee
va e' la nhunggiaodiemcuaduongcdsahaim~tph~nganh.M~tkhac,diem
epipolechinhIa anhcuatamCameranaytrenm~tph~nganhkia.Nhungdiem
m va m' la anhcuadiemM trongkh6nggian.M~tph~ng7r Ia m~tphiing
epipolarchuam, m' , M vaduongcdsa(xemhlnh2.22).
dlldngcdsO
0
lfinh 2.22.X<;lanhmQtdiemtrongkh6nggiantrenhaim~tph~nganh
48
f)i~mm trenm~tph£nganhthlinha"tIa hlnhchi€u cuadi~mbfftky trong
khonggian3-chi€un~mtrentia Tl nhu'hlnh2.23.Hlnhchi€u cuabfftky di~m
naotrentia Tl sen~mtrendu'ongth£ngi' trenm~tph£nganhthlihai.Tu'ongtv,
d<5ivditiaT2vadu'ongth£ngi.
0 0'
dllungcdsO
0 0'
dllungcdsO
llinh 2.23.Khaini~mdu'ongepipolar
Do v~y,rangbuQcepipolardu'<;1Cmota nhu'sau:M6i di~mm trenm~t
ph£ngthlinhfftsecodi~mm' tu'onglingn~mtrendu'ongepipolari' vatu'ongtv
bfftky di~mm' naotrenm~tph£ngthlihaiclingco di~mm tu'onglingn~m
trendu'ongepipolari.
49
2.2.4.2.Ma tr~ncdsi'i
Ma tr~ncdsi'iF la bi€u di~nd~isf)cuarangbuQcepipolar.Ma tr~ncdsa
chinhla anhx~bi€n nhungdi€m trenm(ltph£ngnaylendu'ongepipolartrenm(lt
kia,nghlala
l' =Fm va l =FTm' (2.17)
dom n~mtrenl' va m' n~mtrenl (theoh~qua2.2)nentacorangbuQcsau:
m,TFm=0vamTFTm'=0 (2.18)
trongmatr~nF cffp3x3 du'<jcxacdinhduynhfft,co 7b~ct1;l'do,h~ngb~ng2
va detF =0.
dliungcdsll
Hlnh2.24.Matr~ncdsaquanh~voiphepd6nganh
Th1;l'cv~y,gia sam(ltph£ng7r khongxuyenquabfftky tamCameranao
nhu'hinh2.24.Ta thffytiadi quadi€m m trenm(ltph£ngthlinhfftgiaovoim(lt
ph£ng7r tC;tidi€m M va di€m M du'<jcXC;tanhvao di€m m' trenm(ltph£ng
thlihai.Anh x~bi€n d6i tu anhnay sanganhkhacthongquam(ltph£ng7r trong
tru'ongh<jpnayla phepd6nganh(xem2.1.5.1)du'<jcmotabaimatr~nHIT va
nhungdi€m tu'dnglingtrenhaianhthoaquanh~sau:
50
m' =H m7r (2.19)
M~t khac,theoh~qua2.2,tac6th~xacdinhdu'ongthiingepipolarl' b~ng
cachn6idi~mepipolee' vadi~mm' (xemkyhi~u[e']xtrongph\ll\lcA.1):
l' , , [
'
]
,
=e Xm = e xm (2.20)
ke'thQpphuongtrlnh(2.17),(2.19)va(2.20)taduQcquailh~sau:
F = [e']xH7r (2.21)
Ngoaifa,duangth~ngepipolarl' = Fm chuadi~mepipolee' Dene' thoa
phuongtrlnhe'T(Fm) = (e'TF)m = 0 (tuongtt;t'l = FTm' chuae).Suyra:
e'TF =0 vaFe =0 (2.22)
Vi matr~nH 7r c68b~ctt;t'doh~lllgb~ng3vamatr~nphand6ixung[e']x
c6h~ngb~ng2 Dentheo(2.21)F c6h~ngb~ng2.M~tkhactheo(2.22)tac6
detF =0 dod6matr~nF chic67b~ctt;t'do.
Tinh ma tr~ncd sd F tu haimatr~nCameraP, P'. Ta c6 tiax~anh
nguQctUdi~mm di xuyenquadi~mp+m (giaiphuongtrlnhm =PM vdi
p+ la matr~ngiadaocuaP) vatamCameraC (thoaPC =0). X~anhdi€m
C va P+m leDm~tph~nganhthuhai ta duQchai di~manh p'C = e' va
p' P+m. Khi d6,duangepipolardi quanhungdi~manhnayduQctinhbCiic6ng
thucl' = e' X (P' P+m) = Fm. Do d6,matr~nco sciF c6th~duQcxacdinh
bCii:
F =[e']xp'p+ (2.23)