Luận văn Nghiên cứu và giải bài toán khôi phục cấu trúc xạ ảnh từ ba ảnh trong thị giác máy tính

NGHIÊN CỨU VÀ GIẢI BÀI TOÁN KHÔI PHỤC CẤU TRÚC XẠ ẢNH TỪ BA ẢNH TRONG THỊ GIÁC MÁY TÍNH VÕ ĐỨC CẨM HẢI Trang nhan đề Mục lục Danh mục Mở đầu Chương1: Bài toán khôi phục cấu trúc xạ ảnh. Chương2: Cơ sở hình học trong thị giác máy tính. Chương3: Một số bài toán liên quan đến cấu trúc xạ ảnh. Chương4: Bài toán khôi phục cấu trúc xạ ảnh từ tập N điểm tương ứng trên 3 ảnh không định cỡ. Chương5: Kết luận. Phụ lục Tài liệu tham khảo

pdf30 trang | Chia sẻ: maiphuongtl | Lượt xem: 1930 | Lượt tải: 0download
Bạn đang xem trước 20 trang tài liệu Luận văn Nghiên cứu và giải bài toán khôi phục cấu trúc xạ ảnh từ ba ảnh trong thị giác máy tính, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
21 ? , , , , Chtio'ng2.CO SOHINH HQC TRONG THf GIAC MA Y TINH 2.1.IDnhhQcx~anh Hinh hQcxc;!anh [3], [8] Ia congcl) cd band€ nghienCUllnhil'ngb~liloan trangthi giac may tinh.Trangphffnnay se trlnhbay cachxay dvng'khonggian quaphepchie'uph6icanh,cacdinhly lienquailde'nanhxc;!,cachbi€.udi€n cdsa xC;!anh va ynghIabi€u di€n tQadQthuffnnhffttrongkhong gian xC;!anh. 2.1.1.Phepchie'uph6icanh D€ giOi thi~uv€ hlnhhQcxC;!anhtru'oche'tquailsatphepchie'uph6icanh (xuyentam)tranghlnh2.1,ta thffydi€m anhdu'<;Jct ;!ora mQtcachtv nhientren m~tph~nganh. M l 11"0 IDnh2.1.Phepbie'nd6iph6icanhxuyentam. Dfnhnghia2.1.Phepchie'uph6icanhxuyentamla anhxC;!cuadi€m M trenm~tph~ng(d6itu'<;Jng)1I"0,leudi€m m trenm~tph~ng(anh)1I"i'm chinh Ia giaodi€m cuadu'ongth~ngquatam chie'uE va M voi m~tph~nganh1I"i 22 MQts6Hnhcha"trongphepchie'uph6icanh. Tat ca nhil'ngdi€m lIen m~tph~ng1foanhx~leu nhil'ngdi€m lIen m~t ph~ng1fitrltnhil'ngdi€m lIen du'ongth~ngl, voi l Ia giaotuye'ncua 1fovoi m~t ph~ngquaE va songsongvoi 1fi . Tat canhil'ngdi€m lIen m~tph~ng1fila anhcuanhil'ngdi~mlIen m~t ph~ng1f0 trlt nhil'ngdi€m lIen du'ongth~ngh (du'ongchantroi), voi h Ia giao tuye'ncua1fi voim~tph~ngquaE vasongsongvOi1fo. Nhil'ngdu'ongth~ngtrongm~tph~ng1fodu'Qcanhx~leunhil'ngdu'ong th~nglIen m~tph~ng1fi'A.nhcuanhil'ngdu'ongth~ngsongsonggiaonhaut~i mQtdi€m lIendu'ongchantroih, nhu'du'ongth~ngl1va l2tronghlnh2.1. Khi dichuy€ndi€m E ragfinvocungthlphepchie'uph6icanhtrdthanh phepchie'usongsong. Nh!;1nxet. Ne'udangnhatm~tph~ng1fova 1fi voi 1R2,dungmQth~tQadQf)~cac chuftnOele2 lfin Iu'QtlIen 1fova 1fi' thl phepbie'nd6i ph6icanhg~nnhli phep bi€n d6i songanhgiil'a1fova 1fi'nghlala tlt 1R2vao 1R2. Ne'ulo~ibo du'ongth~ngl E 1fova h E 1fi thl taseco mQtphepbie'n d6i songanhtlt [J~2\ l vao IR.2\ h . Tuynhien,ne'utamdrQngm6i 1R2b~ngcachthemdu'ongth~ngial?p l' vao m6i m~tph~ngkhi ay se co mQtphepbie'nd6i ph6icanhsonganhtu (IR2 + l') vao (IR2+ l'), trongdo l' du'<;1Cxacdinhtuanhcuanhil'ngdi€m lIen h va nhil'ngdi€m do anhx~vao l (duytrl tinhlien tl;lC).Nhil'ngdu'ongth~ngmd rQngm~cnhientu'onglingvoinhil'ngphu'onglIenm~tph~ngkia.Ch~ngh~nanh 23 cuaduongthdng~ va l2giaot~imQtdi€m trenh cungphuongvoi ~va~. Giaodi€mtrenh coth€ duqcnhlntha'yb~ngcachgiOih~n hungdi€manhcua mQtdi€m trem~khinodichuy€nravocung.Tu nhungnh~nxettrentacodinh nghiasau: Djnhnghia2.2.T~P L g6mnhungduongthdngsongsongvoiduongthdng l trong[R2segiaonhaut~imQtdi€m d vo cung,ky hi~umoo'di€m nayxem nhuduqcgallvaom6it~pL nhutronghlnh2.2. moo CD ~ ey IDnh2.2.Di€m t~ivocungtuongungvoit~pduongthdngL 2.1.2.Khonggianx~anh Djnh nghia2.3.Khonggianx~anh2-chi€uduqcgQila m~tphdngx~anh haym~tphdnganhduqcdinhnghiabdi: p2 =[R2 U {nhii'ngdi~mvocung} Djnhnghia2.4.Duongthdngt~ivocungtrongp2 la t~pnhungdi€m t~ivo cung, ky hi~u loo={nhii'ngdi~mvocung} Thi dQ.Duongthdngl duqcxacdinhbdi di€m blnhthuongva di€m vo cung.Khi do l diquadi€m thuongcophuongduqcchobdidi€m m=. Nhuv~y, duangth~ngx~anhchuamQtdi€m d vocung,kyhi~upI =[RI U{moo}. 24 r:r D~dinhnghlakhonggianX';lanh3-chi~u,tu'ongtl,l'taxettren 1R3va gall rnQtdi~rnt';livaclingvaorn6it~pdu'ongth~ngsongsong. Dfnh nghla2.5.KhonggianX';lanh3-chi~up3 du'<;5cdinhnghlanhu'sau: p3 =1R3U {nhungdi~m{jvocimg} Nh~nxet.Nhungdi~rnidealtrongp3 t';lOthanhmQtdat';lP2-chi~u.Tlt do tacodinhnghlasau. Dfnhnghla2.6.Nhungdi~rnd va clingtrongp3 t';lOnenrn~tph~ngdu'<;5c gQilam~tph~ngt';livaclingvachuadu'ongth~ngt';livacling. 2.1.3.H~to~dQthuftnnha't ey l: y = 1 lm : (xu x2)t, t E IR ex Hlnh 2.3.Xaydl,l'ngtQadQthuftnha"ttrongpI Day Ia h~tQadQdu'<;5cdlingd~bi~udi~ncac d6i tu'<;5nghlnhhQctrong khonggianX';lanh.Xeth~tQadQD~cacOexeyvaduangth~ngl: y =1 trong 1R2. Quansathlnh2.3taconh~nxetdongiansau: B6 d~2.1.NhungvectO(XUx2)va (Yl'Y2) xacdinhclingrnQtdu'ongth~ng quag6ctQadQkhivachIkhi (Xl,X2)=A(Yl'Y2)' A 7: 0 M~nh d~2.1.MQi du'ongth~nglm =(xuX2)t, t E IR quag6ctQadQ(trlt tn;tcx) d~uca:tdu'ongth~ngl t';lidi~mm. 25 Bjnh nghia2.7.C~pghitri (Xl'X2)va (YI'Y2)du'<JcgQila tu'dngtu'dngne'u (Xl' X2)=A(YI' Y2)' A 7:0 hay vie'tl<:lid<:lng(xu X2) rv (YI' Y2)' kyhi~urv laquailh~tu'dngdu'dng. Nh~nxet.d daycostjtu'dngling1-1 giii'anhii'ngdu'ongth~ngdiquag6c tQadQvoi nhii'ngdi~mtrendu'ongth~ngl va mQtdi~mmarQng~£)i~mnay tu'dnglingvOidu'ongth~ngY =0,nghiaIatheophu'dng(1,0),dayl~di~mavo clingky hi~umoo.B~ngeachd6ngnha'tdu'ongth~ngl vadi~mmoovoi pI ta codjnhnghiasau: Bjnh nghia 2.8. Khong gian X<:lanh l-chi€u pI baa g6m nhii'ngc~p (Xu X2) * (0,0) thoa rv nhu'trongdjnhnghia2.7.C~p(xl' X2) du'<JCgQila tQadQ thu§nnha'tcua di~mtrongpl. Khi do khonggianX<:lanh pI du'<JCvie'tl<:lid<:lng t~ph<Jpnhu'saupI ={(Xl'X2)E 1R2\ (O,O)}. Bjnh ly 2.1.KhonggianX<:lanh pI du'<JCchiathanhhait~pconroi nhau pI ={(Xl' 1)E pI }U{(4' 0) E pI }, tu'dnglingvOinhii'ngdi~mblnhthu'ongvanhii'ngdi~mavocling. r:r Tu'dngttjnhu'trongpI tadlingbaho~cb6ntQadQthlseco bi~udi€n thu§nnha'ttu'dngling cho p2 va p3. Thtjc v~y,trongtru'ongh<Jpp2 ta xet h~ tQadQB€ cae Oexeyeztrong1R3vam~tph~ng1C:Z =1nhu'hlnh2.4. B6 d~2.2.Nhii'ngvectd(xl'X2'X3)va (YI'Y2'Y3)xacdjnhclingmQtdu'ong th~ngquag6ctQadQkhi vaemkhi (xUx2,x3) =A(YI'Y2'Y3)' A 7: 0 M~nhd~2.2.MQidu'ongth~nglmquag6ctQadQ(tritnhii'ngdu'ongth~ng trenm~txOy) giaovoi m~tph~ng1Ct<:limQtdi~mm. 26 ez ey lm : (xl' x2,x3)t,t E IR Hlnh 2.4.Xay dvngtQadQthuffnnha'trongrp2 Nh!;1nxet.MQtIffnnfi'ata tha'yco sVtu'ongling 1-1 gifi'anhfi'ngdu'ong th£ngquag6ctQadQvoinhfi'ngdi€m trenm~tph£ng7rvamQtdu'ongth£ngma rQng.Du'ongth£ngnaytu'ongling voi nhfi'ngdu'ongtrenm~tz =0, nghlala du'ongth£ngvoclingl=. BaygiGtad6ngnha'tm~tph£ng7rva l= vOirp2taco dinhnghlasau: Dfnhnghi'a2.9.C~p(xux2'X3)va (YuY2'Y3)du'QCgQila tu'ongtu'ongne"u (XUX2,X3) =)..(YI'Y2'Y3)' )..7 0 hay (xl' X2'X3)rv (YI' Y2'Y3) , ky hi~urv la quanh~tu'ongdu'ong. Dfnh nghi'a2.10.Khonggianx~anh rp2baag6mta'tca nhfi'ngbQba (xuX2'X3)"#-(0,0,0) voi quail h~tu'ongdu'ongnhu'dinh nghi'a2.9. BQ ba (Xl' X2'X3) du'QCgQi la bi€u di~nthuffnnha'tcua di€m trong rp2. Khi do rp2 du'Qcvie"tl~itheod~ngt~phQprp2={(xu X2' X3) E 1R3\ (O,O,O)}. Dfnhly 2.2.Khonggianx~anhrp2du'Qchiathanhhait~pconroinhau rp2={(xux2'1)E rp2}U {(xuX2'0)E rp2}, tu'ongling vOinhfi'ngdi€m blnhthu'ongva nhfi'ngdi€m avocling. 28 Hai du'ongth&ng l =(a,b,ef, l' = (a',b',e')T giao t~imQtdi€m m = l X l' = (be'- eb',ea'- ae',ab'- ba')T. Haidu'ongth&ngsongsongc~tnhaut~idi€m avacling(xuX2'0). - Di€m m n~mtrendu'ongth&ngl khi vachI khi mTl =0 Du'ongth&ngt~iva cling loo,c6 tQadQthuffnnha't(0,0,Ih la t~phQp nhii'ngdi€m t~ivacling. (ir Tu'dngtv tac6 th€ xaydvngchotraCinghQprp3(ngayca cho rpn VOl n E ~)nhu'ngseg~Pkh6khankhith€ hi~nynghIahlnhhQc. Dinh nghla2.11.Khonggianx~anh3-chi€u rp3du'Qcdinhnghlabai t~p nhii'ngkhonggiancontuy€n tinhl-chi€u trongkhonggianvectd 4-chi€u 1R4. Nhii'ng di€m trong rp3 du'Qcbi€u di€n thuffn nha't bai cac vectd (xu X2'X3'x4) * (0,0,0,0),trongd6 hatvectdbi€u di€n clingmQtdi€m n€u chungsatkhacmQth~ngs6d l~.Khi d6 rp3du'Qcvi€t l~inhu'sau: rp3={(XUX2,X3,X4) E 1R4\ (O,O,O,O)} (X,Y, Z)T ~ (xu X2' X3' x4f (X,Y, Z)T ~ (Xl' X2' X3' X4)T d~nhtlmIan Z vai x4trongX(janh m6idiim nhQ.nmQttia4-chi€u /l>/., X2X2 BJ (X,Y, Z) ~ X3 ffinh 2.6.Y nghIahlnhhQccuabi€u di€n thuffnnha'tchodi€m trongrp3 29 Nhi)nxet.KhonggianxC;!anh3-chi€uchinhla khonggianthu'ongcuacae vectdkhac0 trong1R4theoquailh~tu'ongdu'ongt'..J.Ta co th€ ky hi~ukhong gian xC;!anh 3-chi€u: p3 =p(1R4) =(1R4\ 0)/ t'..J. Djnh ly 2.3.Khonggian p3 du'<;5Cphanthanhhai t~pconroi nhau p3 ={(Xl'X2'x3'1)E p3}U{(xl'X2'X3'0)E p~}, Iftnlu'<;5tla nhungdi€m blnhthu'ongvanhungdi€m d vaclIng. H~qua2.3. (Xl' X2' X3' X4)T t'..J(Xl / X4'X2/ X4'X3/ X4'l)T la cling bi€u di€n thuftn nhf(tchodi€m M trongp3 va (X, Y, Z) =(Xl / X4'X2/ X4'X3/ X4)T, X4~ 0 la bi€u di€n cuadi€m M tu'onglingtrong1R3,xemhlnh2.6. (Xl' X2' X3' O)T, X4 =0 la bi€u di€n thuftn hf(tcuadi€m d voclIng. - MQtdi€m trongthe'giOithlfc3-chi€ucotQadQ(X, Y, Z)T trong1R3se du'<;5cbi€u di€n thuftnhf(tbdi (X, Y, Z,l)T . (a,b,c,df labi€u di€n thuftn hf(tcuaIT: aX +bY +cZ +d =O. (O,O,O,l)Tlabi€udi€n thuftnhf(tcuam~tph£ngdvaclIng. H~qua2.4.Dol ngdugifi'adi~m- du'ongthiing- m~tphiingtrongp3 Quabadi€m khongth£nghang MI, M2 ,M3 taxtiydlfngdu'<;5cmQtm~t ph£ng7fva du'<;5cxacdinhtu 7fTMi =0, i =1,3. - Bi€m M n~mtrenm~tph£ng7fkhi vachikhi 7fTM =o. - Bam~t ph£ngkhacnhau7fI' 7f2'7f3giaonhautC;!imQtdi€m M duynhf(t vadu'<;5cxa dinhbdih~phu'ongtrlnh IT;M = 0, i = 1,3. 30 - Qua hai di€m M} va M2 trong p3 ta xac dinh du'<Jcdu'ongth~ng l ={M =(Xl' X2' X3' X4) E p3 I M =~MI +t2M2,(~,t2)E pI}, con gQi la d~ngthams6 va (~,t2) du'<Jcxemla bi€u di~nthu§nnha'tcuadu'ong th~ng(hlnh2.7.a). - Giaocuahaim~tph~ng7Cva lp trongp3 (xemhlnh2.7.b)la du'ong th~ngdu'<Jcbi€u di~n bdi l : {S7C+tlpI (s,t) E pI}, congQila d~nggiao cuadu'ongth~ng. a) b) mnh 2.7.B6i ngftugifi'adi€m - du'ongth~ng- m~tph~ngtrongp3 , ? ?? 2.1.4.Anh x~x~anhva cdsox~anh , ? 2.1.4.1.Anh x~x~anh Dinh nghi'a2.12.Chokh6nggianx~anhP(lRn+1)lienke'tvoi kh6nggian vectdIRn+1.Phepchie'uchinht~cla anhx~p: IRn+1\ {O}-7 P(lRn+1) bie'n mQtvectdME IRn+1\ {O}thanhdi€m x~anhd~idi~nbdivectddo. Nh~nxet.V€ m~thlnhhQcthl ME IRn+1\ {O}d~idi~ndi€m trongkh6ng gian,p(M) la tiaxuyentamdiquadi€m M vanh~n olamvectdchiphu'dng. 31 Djnh nghla 2.13.Anh X£;lI : p(lRnH) --+p(lRk+l) du'QcgQila ant X£;lX£;l ant neu~I E L(lRnH,IRkH)thoalop =p '0Ivai p va p' la haiphep chieuchinht~ctu IRnH\ {O}--+p(lRnH) vatuIRkH\ {O}--+p(lRkH). Tinh cha'tcuaanhX~. I la antX£;ltuyentint 10 p(AM) =AI 0 p(M) dap tuyentint. Khi I la sangantthl f condu'QcgQila d&ngcfiuX£;lant. 2.1.4.2.Cdsi'ix~anh GQi c = {El"",cnH} la cd sa cuakh6nggianvectdIRn+lva xetkh6ng gianX£;lant pn tu'dngling.ChQnt~pdi~mmu ...,mnH' mn+2E pn saDcha: { mi = p(Ei)'i = 1,...,n +1 mn+2= p(El+E2+... +EnH) (2.1) Khi d6t~pn +2 di~mml' ...,mn+umn+2du'QcgQila cd saX£;lant cua pn tu'dnglingvoi cdsachatru'ocuakh6nggianvectdIRnH. Ngaaifa, di~m mn+2du'QCxacdintdlfatrenmu...,mn+l. Djnh nghla2.14.Cd saX£;lant cuapn la t~pn +2 di~mdu'Qcxaydlfng nhu'(2.1)trongd6bfitky n +1 di~mnaaclIngdQcl~ptuyentint,nghIalakh6ng clingn~mtrensieuph&ng. Djnhly 2.4.Lienh~giuacdsaX£;lantcuap(lRnH) vacdsacuaIRn+1: - Caccdsatll~trongkh6nggianvectdIRnH xacdintduynhfitmQtcdsa X£;lantcuakh6nggianx£;lant p(lRnH). - Chatru'occd sa X£;lant {ml"'.' mnH' mn+2}cuakh6nggianx£;lant p(lRnH) tac6th~tlmdu'QcduynhfitmQtlOpcdsatll~nhautrongIRn+1nh~n 32 {Tnt,...,mn+l'mn+2}lamcosatu'ongling. 2.1.4.3.Cdsdx~anhehinhtile Dinh nghia 2.15.T~p veeto e={el=(1,O,...,O)T,e2=(O,I,...,O)T,... ...,en+!= (0,0,...,I)T,en+2= (I,I,...,I)T}, trongdotQadQthli i euaei co ghi ~ trib~ng1, i =1,n +1, du'<JegQila cosaehinhtileeuakhonggianx~anhpn Nh~nxet. - Trongdoei voi i =1,n Ia nhii'ngdi~mt~ivoclingtheem6i~e, en+! di~mg6e,en+2di~mdonvi. - Bfftky di~mm E pn d~uco th~du'<Jebi~udi€n nhu'bai t6h<Jptuyen n+l tinheuan +1 veetcrtrongcosaehu§n,vietdu'oid~ngm =L xiei . i=l Thid\l.Cosax~anhehinhtileeuap2 vap3. p2: e ={(I,0,of, (0,1,of, (0,0,I)T, (1,1,I)T} (2.2) p3: E ={(I, 0,0,O)T,(0,1,0,O)T,(0,0,1,O)T,(0,0,0,I)T, (1,1,1,I)T} (2.3) 2.1.5.Phepbie'nd6ix~anh Phepbiend6iph6ieanha hlnh2.1Ia mQthid\leuaphepbiend6ix~anh. Trongph§nnayehuyeutrlnhbayv~phepbiend6ix~anhtu p2 -+ p2 va tu p3 -+ p3, conphepbiend6ix~anhtu p3 -+ p2 sedu'<Jetrlnhbaytrong2.2.3, tru'oehettadinhnghiat6ngquatv~phepbiend6ix~anh Dinh nghia2.16.Phepbiend6i x~anhtU m E pn vao m' E pk du'<Je dinhnghianhu'phepbiend6i tuyentinhtronghc$tQadQthu§nnhfft,nghiaIa x' r-..JHx trongdo x va x' bi~udi€n tQadQthu§nnhffteuahaidi~mm va m', H la matr~nkhongsuybieneffp(k+1)x (n +1). 33 2.1.5.1.Phep d6nganh trong rp2 Dfnhnghia2.17.Phepd6nganhtrongrp2hayphepdi6nd6iph~ng(phep cQngtuye'n)la mN anhX'.lkhanghichh tu rp2vaochinhno,nghIala badi6m ml 'm2'm3 n~mlIen mQtdu'ongth~ngkhi va chi khi h(ml) ,h(m2)'h(m3) clingn~mlIen mQtdu'ongth~ng. DfnhIy 2.5.AnhX'.lh : rp2-+ rp2la mQtphepbie'nd6iX'.lanhne'uvachi ne'ut6nt'.limQtmatr~nH3x3kh6ngsuybie'nsacchovoiba"tky di6mm nao trongrp2thl h(m) =Hm. Chungminh. Gia sa ml' m2' m3 n~mlIen du'ongth~ngl thl ITmi =0, i =1,3 . GQi H la ma tr~nca"p3x3 kh6ng suy bie'n, khi a"y H thoa: ITH-I Hmi =0, i =1,...,3.Dodota"tcacacdi6mHmi n~mlIendu'ongth~ng H-Tl vatinhcQngtuye'nbaaloan quaphepbie'nd6i. X2 (Xl / X2'Xl / X3) m m' (X~/ X;, X~/ X~) Hinh 2.8.Phepd6nganhtrongrp2 34 Phepbie"nd6inayconduQcgQila phepd6nganhtrongrp2,hlnh2.8,va matr~nH la matr~nthuffnnha'tco 9phfintu, nhungchungsaikhacmQth~ng s6dl~nenco8bi;ictQ' do.H va AH, A 7:0, clingbi€u di€n phepbie"nd6i. Vie"tl~id~ngmatr~n: (2.4) d' ( ) T I ( I I I )T ff)2trongom=xl,x2,x3 ,m=xI,x2,x3 Er. Do do,cffnitnha't4c~pdiemtuonglinglIenhaianhd€ xacdinhphepd6ng anhH (xemphVIvcB). 2.1.5.2.Phepd6nganhtrongrp3. Phepd6nganhtrongkhanggianx~anh3-chi€uduQcmatanhux~tuye"n tinhtu rp3--+rp3va noduQcbi€u di€n boi matr~nH4x4khangsuybie"n.Ma tr~nH va AH, A 7:0, clingbi€u di€n phepbie"nd6i.Ma tr~nthuffn ha'tH co 16phfintd'nhungchungsaikhacnhaumQth~ngs6d l~nenchIco15bi;ictQ' do. (Xl' X2' X3' X4f ~H ~ ( I I I I ) T Xl' X2' X3' X4 X2 X2 Xl Xl Hlnh 2.9.Phepd6nganhtrongrp3 X I IhH 2 3 Xl I l 2 3 x21haym' =Hmx2 - I h31 h32 h33 X3X3 35 Bi€u di€n d'.lngmatr~nM' =HM, trongd6 M =(xl' X2'X3'X4)T va M ' ( ' , , , )T tn3= X1'X2'X3'X4 E r . 2.2.Mo hinhCameravarangbuQcepipolar QuaCameramQtdi€m trongthe'giOithlfc3-chi€utathuduqcmQtdi€m anh trenm(Ltph~nganh2-chi€u.TrongphftnnaysetrlnhbaymahlnhCameracoban trongthigiacmaytinh.Phantichvaltrc>,ynghIahlnhh9Ccuamatr~nCamera X'.lanhvaquailh~giuahatCamerabairangbuQcepipolar. 2.2.1.Mo hinhPin-holeCamera Day la h~th6ngthigiacdongiannhfftdungd€ mahlnhh6aCameraduqc g9i la Pin-holeCamera.N6 duqcmatanhumQtCathQpVOlmQt16nho(Pin- hole)a m(LtbellvamQtffmkinhch\lpanha m(Ltd6idi~n,nhuhlnh2.10,trong d6g6ct9adQd(Lt'.litamchitu C duqcg9i la tieudi€m vatr\lcz trungVOl tr\lcthigiac.KhoangcachtITtieudi€m de'nanhg9ila tieuclfkyhi~uIa f . (X,Y, Z) xl X e O---muu (xo,Yo}..-- .----- {x,y) Z f IDnh2.10.Ma hlnhPin-holeCameravOlh~t9adQdclit D€ ti~ntrongcachbi€u di€n tad(Ltm(Ltph~nganhlentru'octamCameraC khi d6mahlnhPin-holeCameratronghlnh2.10duqcbi€u di€n tu'onglingnhu' hlnh2.11,b~ngcachd(Ltamchie'uC t'.lig6ccuah~t9adQdclit vam(Ltph~ng 36 ant Z =f. R6rangday laphepchie'uph6icantxuyentam(nhu'trong2.1.1)cua mQtdi€mtrongkhong ianlenm~tph~ngant. Y M c z p z f tam ~ Camera mijtphiinganh ffinh 2.11.D';lnghinthQccuaPin-holeCamera QuamohintPin-holeCamerasebie'ndi€m M trongkhonggiancotQadQ (X, Y, Z)T len di€m m co tQadQ (x,y)T trenm~tph~ngant, m la giao di€m cuadu'ongth~ngdiquadi€m M vatamchie'uC voim~tph~ngant.Xet h . ., d):, d h' h 2 11 ,? 1" fX, fY V ".!' al tamglac ong ';lngtrong III . , tacot1vx =Z va y =Z' let l';li du'oid';lngthu~nnha'tnhu'sau: x xllfXI If 0 0 oilY AlyilfYI =10 f ° 011z lllZI 10 ° 10" 1 (2.5) trongdo A =Z la chi€u saucuadi€m. Congthuc(2.5)la bi€u di~nphepchie'u xuyentamdungh~tQadQthu~nha't.VaCameradu'Qcxacdintnhu'sau: - Tamchie'uC la tamcuaCamerahaycongQila tieudi€m. 37 M<}tph~ngquaHimCamerasongsongvdi m<}tph~nganh IT gQila m<}t ph~ngchinhcuaCamera. Duongth~ngtitHimC tn;(cgiaovdim<}tph~nganhgQiIatr\lcchlnh. Giaocuatr\lCchlnhvam<}tph~nganhgQiIadi€m chinh,kYhi~ula p. 2.2.2.Mo hlnhCCD Camera TrongmahlnhPin-holeCamera,tQadQanhgiasaduQCdotrongh~tQadQ dclit vdi cackhoangchiadonvi trenhaitr\lcb~ng nhau.Tuynhien,trongth1!cte cacCameraky thu~t s6haymayquayphimgQichungla CCD Camerasa d\lngthanhphffncambiend€ t~onendi€m anh.TQa dQanhduQctinhtheedonvi pixelnhungtrenmoi tr\lct11~d6khanggi6ngnhaudonhii'ngdi~manhbi biend~ng(khangvuong). Dod6,phaichuy€ntQadQaOOtittQadQdclitsangtQadQtinhtheepixel. x Y t IYo t " 8 .t- I '" Pixel I pY ! ~ ..( ~ px ..( "~YXo Hlnh2.12.H~tQaanhvadi~manh(pixel) GQi Px va Py la chi~urQngva chi~ucaocuapixeltheephuongx va y tuongling. p =(xo,Yo,l)T Ia tQadQthuffnnha'tcua di€m chinhduQcdo trong tQadQpixel(c6th€ khacHimcuam<}tph~nganh).a: la g6cl~ch(moo2.12)ph\l 38 thuQcvaonhasanxua'tbQph?ncamlingtrongcacCCD Camera.ax =f / Px ' ay =f /Py bi6udi€n tieuql'cuaCameratrongdonvi pixeltheohaiphu'ongx, Y tu'ongling.Ngoaira,anhhu'dngcuanhungpixelkhongvuongdu'c;cxemnhu' thams6d l~s =(f / Py) tana, thu'ongthlthams6 s cuacacCamerab~ngO. Khi d6d~ngt6ngquatcuamatrq,nainhciJCameradu'c;cxacdi~hnhu'sau: ax s xo K=!O 0 ay YO 0 1 (2.6) matr?nK condu'C;cgQila thamsf{nQicuaCamera.Khi d6phepbie"nd6idi6m trongkhonggiandclit lenm~tph~nganhchobdi: x fX+ZPxl lax s xolll 0 0 oilY fY +ZPy = 0 ay Yo 0 1 0 0II Z zoo 1 0 0 1 0" 1 (2.7) Dinh nghi'a2.18.MQtCameradu'c;cgQila dinhco du'c;cne"ubie"tru'ocma tr?nK. Ngu'C;cl~i,n6du'c;cgQila Camerakhongdinhco. 2.2.3.Camerax~anh 2.2.3.1.Ma tr~nCamerax~anh Trongphfin2.2.1va 2.2.2,HimCameradu'c;cd~tt~ig6ccuakhungtQadQ the"gioithvc.Tuynhien,thu'ongthlkhungtQadQCamerakhongtrungvoikhung tQadQthe"gioithvc.VI the"nhungdi6mtrongkhonggian3-chi~udu'C;cbi6udi€n trongkhungtQadQthi gicJi th1!Cphai du'C;cbie"nd6i sangkhungtQadQCamera tru'ockhi X<:lanh len m~tph~nganh.Hai khungtQadQnay c6 m6i lien h~voi nhauthongquamatr(inquayRax3vavectottnhtiin t. 39 Ma tr~n(tn,tcgiao)quay R bi€u di€n phuongcuakhungtQadQCamerava vectdtinhtien t bi€u di€n tQadQcua HimCameratrongkhungtQadQthegidi thtfc.Dodo,R va t duQcgQilathamsifngo{licuaCamera. z Mcam y ~ x llinh 2.13.Phepbiend6idclitgiil'akhungtQadQthegioith\icvaCamera Ta dungkyhi~uMworld= (Xw,Yw'Zw)Tbi€u di€n cuadi€m trongkhung tQadQthe gidi th\icva Mcam= (Xc,Yc,Zc)T Ia bi€u di€n cua di€m trong khungtQadQCamera.Khi dophepbiend6idclit tttkhungtQadQthegioith\ic vaokhungtQadQCamera,nhuhlnh2.13,duQCvietduoidC;!ngthuffnhfftnhusail: B~ngcachkethQp(2.5),(2.7)va(2.8)tadinhnghiamatr~nxc;!anhnhusail: Dinh nghIa2.19.Ma tr~nCameraxc;!anh P3X4bi€u di€n m6i lien ket giil'a tQadQthu~n hfftcua m =(x,y,If trenm~tph~nganhvoitQadQthuffnhfft M =(X, Y, Z, I)T trongkhungtQadQthegioith\icthongquaphuongtrlnh Am =PM (2.9) Xc] Xw Y R 0 13x3 -t Yw R -Rt Zc I - OT OT =>Mcam = T IM world (2.8) 1 1 Zw 13 3 03 1 I 1 40 va(2.8)du'QcgQilaphu'dngtrlnhCamera.Trongd6 P =KR[I3x3I-t] Nh!;lnxet. - Ma tr~nP c612phfintti'nhu'ngchic611b!;lctIt do(K: 5thams6,R: 3thamsO',t: 3thams6).Di€u nayc6nghIaP la matr~nthuffnnha'tc6cacphffn tli'saikhacnhaumQth~ngs6ti1~. - Ma tr~nconbelltraica'p3X 3 cua P b~ngKR la khong~uybien.Do d6 ba'tky matr~nP3X4naoc6 matr~nconbell tnii M3X3khongsuybiend€u la ma tr~n Cameracua Camerax~ anh hfi'uh~n.Voi Q =KR khi d6 P =KR[I3x3 I -t] =Q[I I Q-Ip4]' P4 la cQtcu6iclingcua P Dfnhnghla2.20.MQtCamerax~anht6ngquatla Cameradu'Qcbi~udi~n bdimQtmatr~nthuffnnha't3x4tuyy h~ngb~ng3vac6 11b~ctl,l'do. Dfnhnghla2.21.(SuytudinhnghIa2.16)Camerax~anht6ngquatla phep biend6ix~anhtu 1'3(1R4)vao1'2(1R3)nhu'sau: Xl XII IPn Pl2 Pl3 P14 X2 x21=IP21 P22 P23 P24 X3 x3I IP31 P32 P33 P34I I X4 (2.10) trongd6 (xl' X2'X3f E 1'2 va (Xl, X2,X3,x4f E 1'3 la bi~udi~ntQadQ thuffnnha'tcuadi~mm trenm~tph£nganhva M trongthegioithl,l'ctu'dngling. 2.2.3.2.YnghlahinhhQcciiamatr!;lnCamerax~anh Trongphffnnayse phantichcacthanhphffntrongCamerax~anhva y nghIahlnhhQccuan6.Giasli',mQtCamerax~anht6ngquatdu'QCphantich thanhP =[Q I P4], trongd6 Q lamatr~n3x3khongsuybien. 41 qT PH Pl2 P13 I Q =Ip21 P22 P2a =qf Pal Pa2 Paa qJ (2.11) r:r Nhii'ngvectdcQtcua ma tr~nCamera.Gia sa, d~tcaccQtcuamatr~n CameraP Ia Pi' voi i =1,4nghIalaP =[PI I P2 I Pa I P4]'Khi do,m6ivectd Pi COY nghlahinhhQcnhu'sau: PI' P2'Pa la nhii'ngdi€m tri~tlieu cuacactI1;lCX, Y, Z tu'ongungtrong h~tQadQthe'giOith\fc,donhii'ngdi€m nayla anhcuaphu'ongcuacactI1;lctQa dQnhu'hinh2.14.Ch~ngh;;tn,tI1;lcX co phu'ongD =(I,0,0,of (di€md vo cling)thidu'<JcX;;tanht;;tiPI =PD, PI chinhIa cQtdc1uliencuamatr~nP. P4 la anhcuag6ctQadQthe'giOith\fc.Th\fcv~y,voi D =(0,0,0,If chinhIa phu'ongchI vaog6ctQadQthe'giOith\fcvaco anhla P D =P4' 0 Z Y IDnh2.14.Badi€m PI' P2,Pa la nhii'ngdi€m tri~tlieucuaphu'ongcactI1;lc Cir Nhii'ngvectddongcuamatr~nCamera.VectddongcuaCameraX;;tanhIa cacvectd4-chi€u,chungcoynghlahinhhQcnhu'nhii'ngm~tph~ngd~tbi~ttrong the'gioi th\fc.Ta kY hi~u7r[, 7rf, 7rJ Ia badongcuatu'onglingcuaCamera. 42 PH PI2 PI3 PI4 T 1T"1 P =IP21 P22 P23 P24 =1T"! P3I P32 P33 P34 1T"T3 (2.12) 1T"1'1T"21ahai m~t ph~ngtr1}.c.Thl;tcv~y,nhungdi€m M thuQcm~t ph£ng 1T"1thoa 1T";M =0 va duQCx~anht~inhungdi€m anhco tQadQ PM =(0,y,wf manhungdi€m nayn~mlIen tr\lcanh y: M~tkhac, PC =0 suy ra 1T";C =0 nghlala C clingn~mlIen m~tph£ng1T"I'Do do, 1T"1lam~tph£ngduQcxacdinhbdiHimthigiacC vatf\lCy trongm~tph£ng anhnhutronghinh2.15.TudngtV,m~tph£ng1T"2duQcxacdinhbditamC va tr\lc x trongm~tph£nganh.Nhu v~y 1T"1va 1T"2la hai m~tph!ng trongthe giOithl;tcmaanhla m~tph£ngx =0 vay =o. C Zc Zc Yc Yc Xc ffinh 2.15.Hai m~tph£ngtf\lC1T"1'T"2va m~tph£ngchinh1T"s 1T"3co vai trbla m~tph~ngchinh.M~tph£ngnaychuatamCamerava songsongvoi m~tph£nganh(hinh2.15).Thl;tcv~y,nhungdi€m M thuQc m~t ph£ngnayco anh1aduongth!ngd vo cungPM =(x,y,0f . Do d6 nhungdi€m n~mlIen m~tph£ngchinhcua Cameraneu va chI neu 43 7f{ M =o.Ne"uC IatamCamerathlC thuQcm~tph&ngchinhvaPC =0 T hay 1I"3C =o. <:ir Di~m chinh. Phap tuye"ncua m~tph&ng1I"3=(PH' P12'P13'P14)T la vectd n =(PIU P12'P13f ho~cco th€ bi€u di€n bdi di€m 1T3=(PIU P12'P13'of tIeD m~tph&ngd vacung,nhu'hlnh2.16.X~anhdi€m naybdimatr~nP~taxacdinh di€mchinhP =P 1T3=Qq3'voiqf ladongthlibacuaQ . Zc "" T 1I"3=(PIU P12'P13'0) ~ IDnh 2.16.Phu'ongcuam~tph&ngchinh1I"3 2.2.3.3.Tac dQngcuaCameraleDdi~m r::r x~ anhxuoi.TrangmohlnhCamerax~anhsebie"nd6idi€m M trong khonggian x~ anh vao di€m anh thoa m =PM. Ngoai fa, nhfi'ngdi€m D =(X, Y, Z,of tIeDm~tph&ngd va cung,bi€u di€n nhfi'ngdi€m tri~ttieu trangp3 tu'onglingdi€m d =(X, Y, Z)T trongthe"giOithlfc1R3,nhu'hlnh2.17, khidonhfi'ngdi€m naydu'Qcanhx~vaodi€m anhmd: md =PD =[Q I P4]D=Qd (2.13) Nh~nxet.CQtthlitu',P4,cuamatr~nP khongtacdQngleDdi€m D. 44 ~...p (X,Y, z, O)T \............................ \d Yc Y ffinh 2.17.X<;tantxu6icuadi€m r:r x~anhngu'Q'c.Chodi€mant movamatr~nCameraP. Xacdintt~p di€m trongthe'giOithlfcco ant Ia mo.T~pdi€m nayt<;tohanhtiadi quatam Cameratrongthe'giOithlfc,xemhInt2.I8.a.TianayIa du'ongthAngdu'Qcn6ibdi haidi€m Ia tamCameraC vadi€m P+mocod<;tnghu'sau: M (J.l)=P+mo+J.lC (2.14) voi p+ Ia matr~ngiadaDcuaP. C Zc YcYc Zc C a) b) ffinh 2.18. a. X<;tant ngu'Qccua di€m, b. Chi€u saucua di€m 45 r:r Chi~usau cua di~m.Cho di~mMo trongth~gioi thtfcva matr~n CameraP. TImchi€u saucuaCamerazo.Ta co di~mMo =(X,Y,Z,T)T duQcnhlnthffytrongCameraP la di~manhMoP =mo=..\(x,y,l)T khido chi€u sau,hlnh2.18.b,cua di~mMo trenm~tph~ngtru'ocm~tph~ngcmnh CameraduQctinhtheocongthuc(xemchungminhtrong[8]): Asign(detQ) Zo= Tllq311 (2.15) 2.2.3.4.Tac dQngcuaCameralendu'ongth~ng r:r X~anhxuoi.X~anhduongth~ng(tia)trongkhonggianx~anhtenm~t ph~nganh.Duongth~ngva tamCameraxac dinhmQtm~tph~ng7r.Duong th~nganhIa giaocua7rvam~tph~ngcmnh,xemhlnh2.19.a. c Yc JlB Yc c Zc a) b) mnh 2.19.a.x~anhxuoiduongth~ng(tia).a.x~anhnguQcduongth~ng(tia) GQiA, B la haidi~mtrongkhonggian3-chi€ucoanhla haidi~ma, b thongquaCamerax~anh P. Khi do mQtdi~mM(Jl) =A +JlB n~mtren duongth~ngn6ihaidi~mA, B codi~manhIa: m(Jl) =PM(Jl) =P(A +JlB) =a +Jlb (2.16) 45 r:Jr Chi~usau cua di~m.Cho di€m Mo trongthe'giOitht!cva matr~n CameraP. TImchi€u sancuaCamerazo.Ta co di€m Mo =(X,y,Z,T)T duQcnhlnthty trongCameraP la di€m anhMoP =mo =A(X,y,l)T khido chi€u san,hlnh2.18.b,cua di€m Mo trenm~tph~ngtru'ocm~tph~ngchinh CameraduQctinhtheocongthuc(xemchungminhtrong[8]): Asign(detQ) Zo= Tllq311 (2.15) 2.2.3.4.Tac dQngcuaCameraleDdliongth~ng r:r X~anhxuoi.X~anhduongth~ng(tia)trongkhonggianx~anhlenm~t ph~nganh. Duong th~ngva tam Cameraxac dinh mQtm~tph~ng1r. Duong th~nganhla giaocua1rvam~tph~ngchinh,xemhlnh2.19.a. c yc J-lB yc c Zc a) b) Hinh2.19.a.X~anhxuoiduongth~ng(tia).a.X~anhnguQcduongth~ng(tia) GQi A, B la haidi€m trongkhonggian3-chi€uco anhla haidi€m a, b thongqua Camerax~ anh P. Khi do mQtdi€m M(J-l) =A + J-lB n~mtren duongth~ngn6ihaidi€m A, B codi€m anhIa: m(J-l) =PM(J-l) =P(A + J-lB)=a + J-lb (2.16) 46 c:r x~ anh ngu'Q'c.T~p nhii'ngdi€m du'<;5cx~ anh len du'ongthing l =(xu X2'X3)T bdimatr~nCamerax~anhP la m~tphingtrl=pTl, xem hlnh2.19.b. 2.2.4.Quanh~giiIahaiCamerax~anh- rangbuQcepipolar Trang2.2.3,x~anhdi€m M trongkhanggianvaodi€m anh'in trenm~t phinganhbdiCameraC du'<;5cth€ hi~nbdi m6iquailh~PM . m. Trong ph§nnay,sexemxetm6iquailh~cuadi€m x~anhM vahaidi€m anhm, m' cuanotrenhaim~tphinganhkhacnhau,xemhlnh2.20. M6i quail h~ giii'ahai anhph6icanh(di€m trenhai anh) cua mN khung canh (mQtdi€m trangkhanggian) du'<;5Cma ta bdi hlnh hQc epipolarmaC'l;!th€ la matr~n cosa. 2.2.4.1.Hinh hQCepipolar Hinh2.20.Anhclmdi~mM trenhaiCamera. HinhhQcepipolarchIdlfavaocacthamso'nQicuacacCameravavi tricua chung.No coth€ du'<;5Cmatabdimatr~nF cfip3X 3 coh~ngb~ng2.N€u bi€t tru'(kcacthamso'nQicuaCamerathlco th€ nh~ndu'<;5ctQadQanhdffdu'<;5cchutin hoa va khi do hlnh hQCepipolarse du'<;5cma ta bdi ma tr~nthi€t y€u [3], [8]. Ngu'<;5cl~i,hlnhhQcepipolardu'<;5Cmatabdimatr~ncosd [2],[10].Vi v~y,ma tr~ncosdth€ hit%nm6ilienh~giii'acacthamso'nQivavi tricuahaiCamera. 47 HlnhhQcepipolarla hlnhhQccuacacm~tph~nganhgiaovoi chumm~t ph~ngcoduongcdsanhutronghlnh2.21. miffphiing---- epipolar ~-- I I / I II 0 0' dlldngcdsO lfinh 2.21.Chumm~t ph~ngepipolar- 7r1,7r2,. ..,7rn dtiongcdsdIa duongdiquaHim0 va 0' cuaCamera.Nhungdiemepipolee va e' la nhunggiaodiemcuaduongcdsahaim~tph~nganh.M~tkhac,diem epipolechinhIa anhcuatamCameranaytrenm~tph~nganhkia.Nhungdiem m va m' la anhcuadiemM trongkh6nggian.M~tph~ng7r Ia m~tphiing epipolarchuam, m' , M vaduongcdsa(xemhlnh2.22). dlldngcdsO 0 lfinh 2.22.X<;lanhmQtdiemtrongkh6nggiantrenhaim~tph~nganh 48 f)i~mm trenm~tph£nganhthlinha"tIa hlnhchi€u cuadi~mbfftky trong khonggian3-chi€un~mtrentia Tl nhu'hlnh2.23.Hlnhchi€u cuabfftky di~m naotrentia Tl sen~mtrendu'ongth£ngi' trenm~tph£nganhthlihai.Tu'ongtv, d<5ivditiaT2vadu'ongth£ngi. 0 0' dllungcdsO 0 0' dllungcdsO llinh 2.23.Khaini~mdu'ongepipolar Do v~y,rangbuQcepipolardu'<;1Cmota nhu'sau:M6i di~mm trenm~t ph£ngthlinhfftsecodi~mm' tu'onglingn~mtrendu'ongepipolari' vatu'ongtv bfftky di~mm' naotrenm~tph£ngthlihaiclingco di~mm tu'onglingn~m trendu'ongepipolari. 49 2.2.4.2.Ma tr~ncdsi'i Ma tr~ncdsi'iF la bi€u di~nd~isf)cuarangbuQcepipolar.Ma tr~ncdsa chinhla anhx~bi€n nhungdi€m trenm(ltph£ngnaylendu'ongepipolartrenm(lt kia,nghlala l' =Fm va l =FTm' (2.17) dom n~mtrenl' va m' n~mtrenl (theoh~qua2.2)nentacorangbuQcsau: m,TFm=0vamTFTm'=0 (2.18) trongmatr~nF cffp3x3 du'<jcxacdinhduynhfft,co 7b~ct1;l'do,h~ngb~ng2 va detF =0. dliungcdsll Hlnh2.24.Matr~ncdsaquanh~voiphepd6nganh Th1;l'cv~y,gia sam(ltph£ng7r khongxuyenquabfftky tamCameranao nhu'hinh2.24.Ta thffytiadi quadi€m m trenm(ltph£ngthlinhfftgiaovoim(lt ph£ng7r tC;tidi€m M va di€m M du'<jcXC;tanhvao di€m m' trenm(ltph£ng thlihai.Anh x~bi€n d6i tu anhnay sanganhkhacthongquam(ltph£ng7r trong tru'ongh<jpnayla phepd6nganh(xem2.1.5.1)du'<jcmotabaimatr~nHIT va nhungdi€m tu'dnglingtrenhaianhthoaquanh~sau: 50 m' =H m7r (2.19) M~t khac,theoh~qua2.2,tac6th~xacdinhdu'ongthiingepipolarl' b~ng cachn6idi~mepipolee' vadi~mm' (xemkyhi~u[e']xtrongph\ll\lcA.1): l' , , [ ' ] , =e Xm = e xm (2.20) ke'thQpphuongtrlnh(2.17),(2.19)va(2.20)taduQcquailh~sau: F = [e']xH7r (2.21) Ngoaifa,duangth~ngepipolarl' = Fm chuadi~mepipolee' Dene' thoa phuongtrlnhe'T(Fm) = (e'TF)m = 0 (tuongtt;t'l = FTm' chuae).Suyra: e'TF =0 vaFe =0 (2.22) Vi matr~nH 7r c68b~ctt;t'doh~lllgb~ng3vamatr~nphand6ixung[e']x c6h~ngb~ng2 Dentheo(2.21)F c6h~ngb~ng2.M~tkhactheo(2.22)tac6 detF =0 dod6matr~nF chic67b~ctt;t'do. Tinh ma tr~ncd sd F tu haimatr~nCameraP, P'. Ta c6 tiax~anh nguQctUdi~mm di xuyenquadi~mp+m (giaiphuongtrlnhm =PM vdi p+ la matr~ngiadaocuaP) vatamCameraC (thoaPC =0). X~anhdi€m C va P+m leDm~tph~nganhthuhai ta duQchai di~manh p'C = e' va p' P+m. Khi d6,duangepipolardi quanhungdi~manhnayduQctinhbCiic6ng thucl' = e' X (P' P+m) = Fm. Do d6,matr~nco sciF c6th~duQcxacdinh bCii: F =[e']xp'p+ (2.23)

Các file đính kèm theo tài liệu này:

  • pdf5.pdf
  • pdf0.pdf
  • pdf1.pdf
  • pdf2.pdf
  • pdf3.pdf
  • pdf4.pdf
  • pdf6.pdf
  • pdf7.pdf
  • pdf8.pdf
  • pdf9.pdf
  • pdf10.pdf