PHƯƠNG PHÁP BẬC TÔPÔ CHO BÀI TOÁN BIÊN
PHẠM VIỆT HUY
Trang nhan đề
Mục lục
Chương1: Giới thiệu bài toán.
Chương2: Các kết quả chính.
Chương3: Mở rộng.
Chương4: Ứng dụng.
Chương5: Kết luận.
Tài liệu tham khảo
31 trang |
Chia sẻ: maiphuongtl | Lượt xem: 1973 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Luận văn Phương pháp bậc tôpô cho bài toán biên, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
8Chlidng 2 "
"
Cae ket qua ehinh
2.1 Truong hQpthu~nnhftt
2.1.1 B~litoan bien thli nh§.t
Trong trl1CJnghc;5PA =B =0, (1.1)(1.2) tr0thanh
x"(t)= f(t, x(t),F(x)(t),x'(t),H(x')(t)),
a(x) =0,x'(I) =O.
Dieuki~n(AI) cua f dl1c;5Cs11d\mg:
(AI) T6n tl;1icaes6L1 ~0~L2saocho
f(t,x,u,L1'W) ~ 0 ~ f(t,x,u,L2'W)
vdih§,uh~tt E J vavdiillQi(x,u,w) E [L1,L2;F, H]IRo
Xet bai toan
x"(t)= J\f*(t,x(t),F(x)(t),x'(t),H(x')(t),J\),J\ E [0,1],
a(x) =0,x'(I) =0,
f* : IR6 ---tIR,
f*(t,x,u,v,w,J\) = J\f(t,x,ii,v,w) +(1- J\)(v- L2),
conX,ii, V,w xac dinh nhl1sau
(2.1)
(2.2)
(2.3)
(2.4)
(2.5)
9A
{
xIx!:::; L
x = Lsign(x) Ixl>L,L =rnax{-L1, L2},
-
{
u lul :::;p(F, [L1,L2]x)
u = p(F, [L1,L2]X)sign(u) lul > p(F, [L1,L2]x),
I'
L1 V <L1
V = < V L1 :::;V :::; L2
L2 V > L2,"
=
{
w Iwl:::;p(H,(L1,L2)x)
W = p(H,(L1,L2)x)sign(w) Iwl >p(H,(L1,L2)x).
TaCOdanhgianghi~rnellabaitoan(2.3)(2.4)trongb6de2.1.
B6 d~2.1. Cia sitx la m{}tnghi~mcua(2.3)(2.4),A E (0,1), con
ham] thoadi€u ki~n(A1). Th€ thi
Ilxll :::;L, L1 :::;x'(t) :::;L2, Vt E J. (2.6)
Chung minh.
a)Cia SU:rnax{x'(t),t E J} =x'(to)>£2.V6is6duongx'(to)- £2 ta
Urndu£2+~khin ;;?no.R6rangtoi- 1,
bdin@uto= 1thl x'(to)=x'(1)=0>£2+ ~ la kh6ngthichh<;:Jp.
Do x' lien tl,lC,v6i E = ~ >0,cornQt/5'>0saGchokhi It- tal</5'
thl !x'(to)- x'(t)1 x'(to)- E = x'(to)- ~ khi
t E [to,to+ /5],/5=~/5'.
Bdi x'(to)>L2 +~ lien x'(t) >L2,t E [to,to+ /5],va ta co
L2 <x'(t) :::;x'(to),VtE [to,to+/5].
Tfch phantren [to,to+ /5]phuongtrlnh (2.3):
l
to+8
x"(s)ds =
to l
to+8
A ]*(s,x(s),F(x)(s),x'(s),H(x')(s),A)ds
to
l
to+8
= A (A](S,X,u,v,w) +(1- A)(v- L2))ds
to
l
to+8
- (A2](s, X,u,v,w)+A(1- A)(v - L2))ds
to
10
trongdox =x(s),u =Fx(s),v =x'(s),w =Hx'(s).
VI s E [to,to+8]nenv =x'(s) >L2,vadodo
1
to+5
"\(1 - "\)(v - L2)ds >O.
to
v = x'(s) > L2 dan d@nv = L2.Theocachd~t(x,it,w) E
- -
[L1,L2;F,H]IR'Th@thi f(s,x,it,v,w) =f(s,x,it,L2'W)~0,va
1
to+5
,,\2f(s,x,it,v,w)ds ~O.
to
1
to+5
guyra ,,\ ("\f(s,x,it,v,w) +"\(1- "\)(v - L2))ds > 0,hayla
to
1
to+5
1
to+5
x"(s)ds> 0, trai v6i x"(s)ds=x'(to+8)- x'(to)( O.
~ ~
V~yta phai co di~unguQcl:;ti:max{x'(t),t E J} ( L2 +~.
b) Gia s11min{x'(t), t E J} = x'(to) < L1 cling dua d@nmQt mati
thuan.TavantimduQcn1E N d~x'(to)<L1- ~khin ~nl. Dotfnh
lient\lCcuax',comQt8>0saGchoL1>x'(t)~x'(to),Vt E [to,to+8].
Tfch phan tren [to,to+ 8] phuong trlnh (2.3):
1
to+5
x"(s)ds =
to
1
to+5
x"(s)ds -
to
1
to+5
,,\f*(s,x(s), Fx(s), x'(s),H x'(s), "\)ds
to
1
to+5
(,,\2f(s,x,it,v,w) + "\(1- "\)(v - L2))ds.
to
Ta s E [to,to+8]suyrav =x'(s)<L1.Khidov- L2 = (v- L1) +
to+5 .
(L1-L2) <0,va { "\(1-"\)(v-L2)ds <O.VI v <L1nenv = L1.
lto
Theocachd~t,(x,it,w) E [L1,L2;F, H]IR,vata co f(s, x,it,v,w) =
f(s, x,it,L1,w) ( O.Di~unaydand@n
1
to+5
1
to+5
1
to+5
x"(s)ds =,,\ ,,\f(s,x,it,v,w)ds+(l-"\) (v-L2) <0
~ ~ ~
1
to+5
mati thuan v6i x"(s)ds =x'(to+8)- x'(to)~O.
to
11
c) Nhu'vi;iy,vdi x la nghi~mcua (2.3)(2.4),t E J tuy y van du ldn
ta du'QcL1 - ~ ~ x'(t) ~ L2+ ~.Cho n -+ +00 thl co L1 ~x'(t)~
L2,VtE J.
d) Vi a(x) =0liencoCE J saorhox(c)= o.
+Ni\ut >c,ta c6x(t) =x(t) - x(c)=l x'(s)ds.
Vdi LI ,;; x'(s) ,;; L2 tIll l' LIds';;l' x'(s)ds,;;1'L2dS.
Suyral' LIds';;x(t),;;l' L2dshayJa
(t - c)L1~x(t)~ (t - C)L2'
VIO <t-c <1,L1~0~L2lien(t-C)L1?:L1,(t-C)L2~L2.Do
doL1~x(t) ~ L2,var6i Ix(t)1~max{-L1, L2}=L, tacla Ilxll~L.
+ N~ut <c,ta cox(t) =-(x(c)- x(t))=-1' x'(s)r1s.
Viii L] « x'(s) « L, th}1'L]dS« l' x'(s)ds« 1'L'dS,vi<1t
eachkhiic:-1c L,ds ~x(t) ~ -1' LIds haylil
-(c - t)L2~x(t) ~ (c- t)(-Ld.
Ma 0 < c - t < 1,- L2 ~ 0 ~ - L1 lien
(c- t)(-L1) ~ -L1, (c- t)(-L2) ?: -L2.
guyra -L2 ~ x(t) ~ -L1, vatv do Ix(t)1~ max{-L1, L2}= L,
tacla ta co IIxll~L. 0
Tiep theota sechangminhSljt6nt~inghi~mcua(2.1)(2.2).Danh
gia (2.6)cho nghi~mcua (2.3)(2.4)du'Qcdung,va ta s11d\mgb6 d~
1.1d~co slj t6n t~inghi~mcua (2.3)(2.4)khi A = 1.Saudo ta ki~m
tra (2.3)(2.4)vdi A =1chfnhla(2.1)(2.2).
D~nh1:5'2.1. Gia 811f thoadi€u ki~n(A1). The thi (2.1)(2.2)co
nghi~mthoa(2.6).
Chung minh. L§.yY = C1(J), Z = L1(J) la cackhonggianBanach
vdichu~nthongthu'dng. ft.H1.;;;:TVN~!\~NI
THoU.~!~~.t
OOlOt)~ J
12
D~tdomD= {x E AC1(J)/a(x) = 0,x'(I) = O},cachamD,N
xacdinhnhu belldu6i
D : domD ---+ Z
X f + X" ,
N : Y x [0,1] ---+ Z
(x,A) f + j*(.,x(.),Fx(.),x'(.),Hx'(.),A),
t~pS1nhu sau, n E N:
S1={xE Y/llxll <max{L2,-Ld +~,
L1 - ~< x'(t) < L2 + ~,t E J}.
R6 rangD tuy@ntfnh trenY va N lient\lCtrenY x [0,1].
a)Ta kh~ngdinh D la mQtsonganhtit domDvaoD(domD). D~co
di~unayta chI ra D la donanh.
+ Hamx = 0lamQtphiintu-cuadomDthoaDx = 0nen0 E kefD.
+ Gia su-x E kefD. Ta coDx= 0 hayla x" = O.Th@thl x"(t) = 0
v6iIDQit E J. guy ra x' la mQthamh~ngtren J, max E domDnen
x'(I) = 0,va nhu vi;iyx'(t) = 0 v6i mQit E J: x la hamh~ngtren J.
V6ix E domDta coa(x) = O.Theo chli y 1.1 ta tim dU<;1cmQt
c E J saochox(c) =O.Dovi;iy,x =0trenJ.
Nhu vi;iykefD = {O}:D donanh.
b) Ta ki~mtra D-1N : Y x [0,1]-+ Y la anhX<,l,compact:Gia su-A
la IDQtt~pconbi ch~ncuaY x [0,1],ta changminhD-1N(A) la mQt
t~pcompactb~ngcachsu-d\lngdinh ly Ascoli-Arzela.
+ D-1N(A) bi ch~nd~u:
L§,y(x,A) E A b§,tky.
DM y = D-1N(x, A), thl N(x, A) = Dy: N(x, A)(t) = y"(t).
Ta c6,v6is E J, 11 y"(r)d-r=y'(l) - y'(s) =0- y'(s) ~ -y'(s),
d dayta su-d\lngy'(I) = 0,do y E domD.
ClingVIy E domDnena(y)=0vacomQtcE J saochoy(c)=O.
Vai t E J ta dU<)cl' y'(s)ds ~ y(t) ~ y(c)=y(t).
13
guyfa y(t) ~ -1' 11y"(r)d'rds=-1' 11N(x,>.)(r)dnls,
Vdir E [s,l] ta clingdi;itx = x(r),u = Fx(r), v = x'(r),w =
Hx'(r), vaco
N(x, "\)(r) = f*(r, x(r), Fx(r), x'(r), Hx'(r)) = f*(r, x, u,v,w),
N(x,"\)(r)="\f(r,X,u,iJ,w)+(1- ,,\)(v - £2)'
811dl,lngdi;ictint thli ba cua fEe ar(J x }R4),ta tim dl1<;JcmQt
hamrjJE £1(J) 8aacha If(r, x, u,iJ,w)1:::;cp(r),Vr E J. Ta co
IN(x, "\)(r) I :::;"\If(r, x, u, iJ, w) I + (1- ,,\)Iv - £21
IN(x, "\)(r)\ :::;"\rjJ(r)+(1- "\)(Ivl+£2)'
Vi (x,"\) E A nenx E Y, va co h~ng86M' > 0 8aacha Ix'(t)1:::;
M',t E J. Da do IN(x, "\)(r)1 :::;"\rjJ(r)+(1- "\)(M' +£2)'Ma ta co
y(t)= -il N(.T,>.)(r)drdsnenly(t)1( ilIN(X, >.)(r)ldrds,
va nhti vf!,y thlly(t)l ~II (A4>(r) + (1- A)(M' + L,))drds. Nhting
rjJE £1(J), danhgianay8etrd thanh
ly(t)1«l' [(AII4>II£'(1)+(1- A)(M'+L2))drds.
D@nday ta khing dint ly(t)1bi chi;in:ly(t)1:::;M, M > 0 1amQt
h~ng86.Di~unayco nghia1aID-1 N(x, "\)(t)1= \y(t)\ :::;M vdi mQi
t E J. Ma (x,"\) E A bilt ky lienD-1N A bi chi;ind~u.
+ D-1N A donglien tl,lc:
Lily (x,"\) E A, va tl,t2 E J bilt ky,coth§ gilt811t1~ t2.
DM D-1N(x,"\) = y, ta danhgiaD-1N(x, "\)(tl)- D-1N(x, "\)(t2)'
itlVi D-1N(x,"\)(td - D-1N(x,"\)(t2) =y(tl)- y(t2)= y'(s)ds,t2
may'(s)= -(y'(l) - y'(s))= - l' y"(r)drnen
itl 1
1
y(t1) - y(t2) =- y"(r)drds.
t2 s
itl 1
1 itl 1
1
8uy ra ly(td-y(t2)1 :::; ly"(r)ldrds = IN(x,"\)(r)ldrds.
t2 s t2 S
Lilc nay ta 811dl,lng IN(x, "\)(r)1:::;"\rjJ(r)+(1- "\)(M'+£2),clingvdi
14
danhgiaAII</YII£l(J)+(1- A)(M'+L2))~ 11</YII£l(J)+ M' +L2).DM
C =1IO.Ta co
i
tl
1
1
~ (A</y(r)+(1- A)(M' +L2))drds
i
t2tl
1
8 1
~ (AII</YII£l(J)+ (1- A)(M' +L2)))drds
i
t2tl 8
i
tl
~ C(l - s)ds~ Cds= C(t1- t2)'
t2 t2
ly(t1)- y(t2)\
guyra D-1N(x, A) lient~c.B(ji (x,A) E A tuy ynen D-1 N A dong
lient~c.
+ K@thQpD-1NAb! ch[[tnd@uvaD-1N A donglient~c,theod!nh
ly Ascoli-Arzela,D-1N la toantv compactrenY x [0,1].
c) Phuongtrinh x"(t) = Af*(t,x(t),Fx(t),x'(t), Hx'(t), A) duQcvi@t
thanhDx = AN(x, A). Ta vi@tlC;1it~p0, v6in E N tuy y:
0 = {xE Y/llxll < max{L2,-Ld +~,
L1 - ~< x'(t) < L2+~,t E J}.
TheobE>d@2.1,v6i A E (0,1), n@ux la nghi~mcuaphuongtrinh
x"(t)= Af*(t,x(t),Fx(t),x'(t),Hx'(t),A)
thi x ph.:Uthoa L1 ~x'(t)~L2,t E J va Ilxll~ max{-L1, L2}.Noi
khacdi, x kh6ngth@n~mtrenBO. Nhu v~y,Dx - AN(x, A) -I 0 v6i
ffiQi(x,A) E (domDn BO)x (0,1).
Cacdi@uki~ntrongbE>d@1.1duQcthoaman.Dodo,phuongtrinh
Dx =N(x, 1)conghi~mtrongdomDn0, haybaitoansailconghi~m
trong0:
x"(t)= 1.f*(t,x(t),F(x)(t),x'(t),H(x')(t),1),
a(x) =0,x'(l) =O.
Ta chiconki@mtrar~ngdaychinhla (2.1)(2.2).
x langhi~mcuabaitoantrendaythiL1- ~ ~x'(t)~L2+~va
Ilxll~ max{-L1, L2}+ ~.Cho n ~ +00 ta co L1 ~ x'(t) ~ L2 va
Ilxll~ max{-L1, L2}.
15
V6iy =x(t),u=Fx(t),v=x'(t),w=Hx'(t)taco
f*(t,x(t),F(x)(t),x'(t),H(x')(t),1)=
= l.f(t,y,u,v,w) + (1-1)(v - £2)=
=f(t,y,u,v,w).
R6rangv =v =x'(t),Y=y = x(t),u= u = Fx(t), conw = w =
Hx'(t). V~yv6i A = 1ta tro l~iphltc5ngtrinh bandati:
X"(t) = f(t, x(t),F(x)(t),x'(t),H(x')(t)).
Dinh1y2.1duQcchangminh. 0
2.1.2 Bai toan bien thil hai
Khi A =B = 0ta co(2.7)(2.8):
X"(t)= f(t, x(t),F(x)(t),x'(t),H(x')(t)),
a(x) =0,x'(O)=o.
(2.7)
(2.8)
Di~uki~n(A2) cua1: T6n t~i£1 :::;;0 :::;;£2saGcho
f(t,x,u,£2,W):::;;0:::;;f(t,x,u,L1'W)
v6ihallh@tt E J va v6imQi(x,u,w) E [£1,£2;F, H]IR.
Tru6ch@tta xU'1ydi~uki~nbiena(x) =0,x'(O)=O.
a)Thayt = 1- s,dM x(t)=u(s).Ta cou(s)= x(1- s).
Tti do u'(s) = -x'(1 - s),u'(I) = -x'(1 - 1) = -x'(O) = 0 va
U"(s)=x"(1- s) =x"(t).
V6ix E X ta d~tx* 1ahamx*(t) =x(l-t), t E J. R6 rangx* E X.
Boiu*(t)=u(l-t) =x(t)nenx =u*;vaboi-(u')*(t) = -u'(I-t) =
(u(1- t))'(t)=x'(t) ta vi@tx' = -(u')*.
D~ta* :X ---+JR.,F*,H* : X ---+X 1acachamdinhboi
a*(x) = a(x*),
F*x(t) = Fx*(1- i),t E J
H*x(t) = Hx*(1 - i), t E 1.
16
Vi a*(x)=a(x*)tacoa*(u)=a(u*),mau*=x liena(u*)=a(x).
N~ua(x)=0thl phaicoa(u*)=0,hayla a*(u)= O.
b)Taki@mchanga* E A, F*,H* E V.
+a*tuy~ntfnh,bi ch~nvatang.
Thi;itv~y,l~yx,y E X b~tky vac E IRtuyy ta coa*(x+cy)=
a(x+cy)*.Ma (x+cy)*(t)= (x+cy)(l - t) = x(l - t) +cy(l - t)
nen(x+cy)*(t)= x*(t)+cy*(t).Do a tuy~ntfnhliena(x +cy)*=
a(x*)+ca(y*).Suyraa*(x+cy)=a*(x)+ca*(y):a* tuy~ntfnh.
a*bi ch~n:Ila*(x)11=Ila(x*)11~M.llx*11=M.llxll,VxE X.
Cias11cox,y E X saGchox(t)<y(t)vdit E J. Th~thl x(l -
t) <y(l - t), vax*(t) < y*(t).VI a tangliena(x*) < a(y*),hayla
a*(x)< a*(y). Do do a* la hamtang.
Vi;iya* E A.
+ Baygidta ki@mtra F* E V. H* E V la hoantoantuongt\!.
TrUdCtienta changminhF* lient\lCtrenX.
L~y{xn}eX, Xn ---+X E X khi n ---++00.Ta c§,nF*xn ---+F*x
khin -t +00.
Theocachd~t,Xn---+X E X thl x~---+x* trongX.
Taco
IIF*xn - F*xll = supIF*xn(t) - F*x(t)l,
tEJ
IF*xn(t)- F*x(t)1 = IFx~(1- t) - Fx(l - t)l,
IFx~(1- t) - Fx*(l - t)1 ~ IIFx~- Fx*ll.
Vi F lient\lCtrenX lienkhix~---+x* thl IIFx~- Fx*11---+O. Day
ladi~uta dangc§,n:F*Xn---+F*x trongX hayF* lient\lCtrenX.
D@co F* bi ch~nta S11d\lngtfnh bi ch~ncua F. Vdi x E ~ b~t
ky,~ bi ch~ntrongX, ta co x* E ~ va IIF*xll = IIFx*ll. Ma IIFx*11
bi ch~nlien IIF*xll clingbi ch~n.
Ta daki@mtra xongF* E V. H* E V tuongt\!.
c) Vdi t = 1- s thl Fx(t) = (Fu*)(t) = (Fu*)(l - s) = F*u(s) va
Hx'(t) = H( -(u')*)(t) = H( -(u')*)(l - s) = H*(-(u'))(s).
17
Phuongtrlnh x"(t) = f(t, x(t),Fx(t),x'(t),Hx'(t)) trc;,thanh
u"(s)=f(l - s,u(s),F*u(s),-u'(s), H*(-(u'))(s). (2.9)
V6iy E X, t E J, d~tFgy(t)= F*y(t) = Fy*(l - i), Hgy(t)=
H*(-y)(t) = H(-y)*(l-t) thl Fg,Hgxacdinhva130cacphantv cua
t~pV. Ti~pt\lCd~tg(t,x,u,v,w) =f(l - t,x,u,-v, w) v6it E J va
x,u,v,wEIR, khidophuongtrlnh(2.9)dU(5cvi~t130
u"(s)=g(s,u(s),Fgu(s),u'(s),Hgu')(s)).
Nhuv~y,(2.7)(2.8)dU(5cduav~(2.10)(2.11):
u"(s) =g(s,u(s),Fgu(s),u'(s),Hgu')(s)), (2.10)
a*(u)= 0,u'(l) =o. (2.11)
Tit a),b),c) ta k~tlu~nn~ubaitoan(2.10)(2.11)conghi~mu thl
baitoanbandati(2.7)(2.8)seconghi~mx =u*,x(t) =u(l-t), t E J.
Svt6nt~inghi~mcua(2.7)(2.8)dU(5cth@hi~ntrongdinhly 2.2.
D!nh 15'2.2. Cia 871f thoadi€u ki~n(A2). The thi (2.7)(2.8)co
nghi~mthoa(2.6).
Chung minh. Ta apd\lngdinhly 2.1chobai toan(2.10)(2.11)b~ng
cachki@mchllngdi~ubell du6i
g(t,x,u,-L2,w) ~0~g(t,x,u,-L1,w)
v6ihallh~t E J vav6imQi(x,u,w)E [-L2,-L1; Fg,Hg]]R.
Tru6ctienta chllngminhp(Fg,[-L2, -L1]x) ~p(F,[L1,L2]x).
L~yy E [-L2, -L1]x b~tky. Ta co Ilyll ~ max{-L1, -( -L2)} =
max{-L1, L2}, ma lIy*11= Ilyll nen Ily*11~ max{-L1, L2}, tllC 130
y* E [L1,L2]x.
Honmia,v6i t E J, Fgy(t)= F*y(t) = Fy*(l - i), IFgy(t)1=
IFy*(l - t)j ~ IIFy*ll. VI y* E [L1,L2]x nen IIFy*11~ p(F, [L1,L2]x).
Tit do, IFgy(t)1~p(F,[L1,L2]x),r6i suy ra IIFgyll ~p(F,[L1,L2]x).
17
Phuongtrlnhx"(t)= f(t,x(t), Fx(t),x'(t),Hx'(t)) trCJ.th~1llh
u"(s)= f(l - s,u(s),F*u(s),-u'(s), H*(-(u'))(s). (2.9)
VdiY E X, t E J, di;itFgy(t)= F*y(t) = Fy*(l - i), Hgy(t)=
H*(-y)(t) =H( -y)*(l - t) thl Fg,Hgxacdinhvala cacph§,ntv cua
t~pD. Ti~pt\lCdi;itg(t,x,u,v,w) = f(l- t,x,u, -v,w) vdit E J va
x,u,v,w E ~,khidophuongtrlnh(2.9)duc;Jcvi~tla
u"(s)=g(s,u(s),Fgu(s),u'(s),Hgu')(s)).
Nhuv~y,(2.7)(2.8)duc;Jcduave(2.10)(2.11):
u"(s)=g(s,u(s),Fgu(s),u'(s),Hgu')(s)), (2.10)
a*(u)=0,u'(l) =o. (2.11)
Tl1a),b),c) ta k~tlu~nn~ubaitoan(2.10)(2.11)conghi~mu thl
baitoanband§,u(2.7)(2.8)seconghi~mx =u*,x(t) =u(l- t), t E J.
Sv ton ti;1inghi~mcua (2.7)(2.8)duc;Jcth~hi~ntrongdinh15'2.2.
D~nhly 2.2. Gia sV:f th6adi€u ki~n(A2). Th~thi (2.7)(2.8)co
nghi~mth6a(2.6).
Chung minh. Ta apd\lngdinh15'2.1chobai toan(2.10)(2.11)b~ng
cachki~mchangdieubell dudi
g(t,x,u, -L2,w):::;;0:::;;g(t,x,u, -L1,w)
vdih§,uh~t E J vavdimQi(x,u,w)E [-L2,-L1; Fg,Hg]rn;.
Trudctien ta changminhp(Fg,[-L2, -L1]x):::;;p(F, [L1,L2]x).
Lfty y E [-L2, -L1]x bftt ky. Ta co Ilyll :::;;max{-L1, -( -L2)} =
max{-L1, L2},ma Ily*11= Ilyll lien Ily*11:::;;max{-L1, L2}, tac la
y*E [L1,L2]x.
Hon nfi'a,vdi t E J, Fgy(t) = F*y(t) = Fy*(l - i), IFgy(t)1 =
IFy*(l - t)1 :::;;IIFy*ll. VI y* E [L1,L2]x lien IIFy*11:::;;p(F, [L1,L2]x).
Tl1d6, IFgy(t)l:::;;p(F, [L1,L2]x),roi guy ra IIFgy11 :::;;p(F, [L1,L2]x).
18
IIFgyl1~ p(F, [L1,L2]x) v6i y E [-L2, -L1]x btit ky. Nhu th@thl
p(Fg,[-L2, -L1]x) ~ p(F, [L1,L2]x).
Vi~ckH~mtra p(Hg,(-L2, -L1)x) ~ p(H,(L1'L2)X) la tuongtV'.
Ltiyz E (-L2, -L1)x tuyy,tachangminhduQcIIFgZl1~ p(H, (L1,L2)x).
Baygid,trd11;1ibaitoandangxet,ltiy(x,u,w) E [-L2, -L1; Fg,Hg]JR
btitky thl secolxl ~ max{-L1,-(-L2)} = max{-L1,L2)}, lul ~
p(Fg,[-L2, -L1]x) va Iwl ~ p(Hg,(-L2, -Ldx). Cling v6i hai k@t
quatrenday ta khiingdinh ding n@u(x,u,w) E [-L2, -L1; Fg,Hg]JR
thl (x,u,w) E [L1'L2;F, H]JR.
Llicnaytheodi~uki~n(A2)cuahamf ta co
f(1 - t,x,u,L2,w) ~0~ f(1 - t,x,u,L1,w).
Ma g(t,x,u,-L2,w) = f(l- t,x,u,L2,w), g(t,x,U,-L1'W) -
f(1-t,x,u,L1,w) nen
g(t,x,u, -L2,w) ~ 0 ~ g(t,x,u, -L1,w).
Cacdi~uki~ncuadinhly 2.1duQcthoaman.Bai toan(2.10)(2.11)
conghi~mu thoa Ilull ~ max{-L1, L2}, -L2 ~ u'(s) ~ -L1, S E J.
Nghi~mcuabaitoan(2.7)(2.8)la x =u*,x(t)= u(1- t),t E J. Do
lIu*11=Ilullvax'(t)= -u'(1 - t) nennghi~mx naythoa(2.6):
Ilxll ~max{-L1, L2},L1~x'(t)~L2,t E J.
Ta changminhxongdinh ly 2.2. 0
2.1.3 Bai toan bien thil ba
Khi A = B = 0ta co(2.12)(2.13)
x"(t)= f(t,x(t),F(x)(t),x'(t),H(x')(t)), (2.12)
x(O)=0,x(l) =O. (2.13)
19
a) Cia S11L1 :( 0 :( L2,L3 :( 0:( L4,L3 L2. Khi do co
noE]\I saGcho L2 + 2 L3. Ta xac dinh hamhnvai~ ~ .
n) nonhu sail
hn(t,x,u,v,w) =
j(t, X,ii, L4,w)
j(t,x,ii,v,w)
j(t, X,ii, L2+ ~,w)+
+g(L2,~,v)
j(t, X,ii, L2,w)
j(t,x,ii,v,w)
j(t, X,ii, L1,w)
j(t,x,ii,L1 - ~,w)-
-g(L1' -~, v)
j(t,x,ii,v,w)
j(t, X,ii, L3,w)
L4 <V
L2 +1 < v :( L4n
L2 +1. <v :( L2 +1n n
L2 <V :( L2 +1.n
L1 :( V :( L2
L1 - ~ :( v <L1
L1- 1 :::::.v < L 1 - 1.n :::. n
L3 :( V < L1 - 1n
v < L3
(2.14)
ddayg(Li,k,v) = (j(t, x,ii,Li,w)- j(t, x,ii,Li+k,W))(Li+k- v)n,
caegiatrt cuai la 1va 2,
L4 x> L4
x = <.X L3 :( X :( L4
. \.. L3 X <L3,
it = { :(F, (L3,L4)x)sign(u)
W={ ;(H, (L",L4)x)sign(w)
Ch6.y 2.1. hn E Car(J x }R4),n du ldn.
lul :( p(F,(L3,L4)x)
lul >p(F,(L3,L4)x),
Iwl :( p(H,(L3,L4)x)
[wi> p(H, (L3,L4)x).
Chung minh. Ta ki~mtra l§,nlu<;:JtcaetinhchatcuahamCaratheodory.
Truaehetta khiingdtnh,khi n du lOn,hn(t,x,u,v,w) = j(t, X,ii, V,w)
vai mQit E J, (x,u,v,w) E }R4.ThM v~y,l&yt E J, (x,u,v,w) E }R4
tuyy,n ) no, xet eae trudng h<;:Jpsail.
Nell v) L4 thl hn(t,x,u,v,w) =j(t,x,ii,L4,w)=j(t,x,ii,v,w).
20
N~uv:( L3 thl hn(t,x,u,v,w) =j(t,x,u,L3,w)=j(t,x,u,v,w).
N~uL2 <V < L4thlluonco j(t,x,u,v,w) = j(t,x,u,v,w).Vi
2 /
Hrn- =0 nenv6isodl1dngv - L2 ta tlm dl1<;1cnl ;::nosaochon-++oon
1 < v - L2 khi n ;:: nl, hay la L2 + 1 < v khi n ;:: nl. Va nhl1n n
v~y,n~ulayn ;::nl thl ta cohn(t,x,u,v,w) = j(t, x,U,v,w), tac la
hn(t,x,u,v,w)= j(t,x,u,v,w), n;:: nl.
N~uL1 :( V :( L2 thl co ngayhn(t,x, u,v,w) = j(t, X,U,v,w)v6i
n ~novanhl1v~yhn(t,x,u,v,w)= j(t,x,u,v,w) khin;::no.
N~uL3 < V < L1 thl j(t,x,u,v,w) = j(t,x,u,v,w), ta co mOt
86n2;::nosaocho1 v khin n
n ~n2.Layn ;::n2thl tacohn(t,x,u,v,w)= j(t,x,u,v,w), tacla
hn(t,x,u,v,w)= j(t,x,u,v,w),n;::n2.
Nhl1v~yta dachangminh,khi n dli 16n,v6imQit E J, (x,u,v,w) E
JR4thl hn(t,x,u,v,w) =j(t,x,u,v,w).
Vadodo,VI j E Car(J x }R4)nenv6i moin dli Wnthl:
+ hn(.,x, u,v,w) do dl1<;1ctren J;
+ N~uK C }R4compactthl sup hn(t,x, u,v,w) E L1(J).
(x,u,v,W)EK
TachIconki~mtrav6imoin dli Wn,hn(t,.,.,.,.) lient1.lCtren}R4
voihftuh§tt E J.
Lay (x,u,v,w) E }R4batky.Giltsit {xd, {ud,{vd,{Wk}la cac
dayIftn111<;JthOit1.lv~x, u,v,w, ta changminhhn(t,Xk,Uk,Vk,Wk)~
hn(t,x,U,v,W) khi k ~ +00. D~Y 13.dang xet n kha Wn, ta co
th~vi§t hn(t,Xk,Uk,Vk,Wk) = j(t, Xk,Uk,Vk,Wk)vahn(t,x,u,v,w) =
f(t, x,u,v,w). Do do,d~sitd1.lngdl1<;1ctinh lient1.lCclia j(t,., .,.,.) ta
phlticoXk~ X,Uk~ U,Vk~ V,Wk~ w. ChangminhXk ~ X,Uk~
U,Wk-+w hoantoantl1dngtv changminhVk~ V.
Ta vi§t lq.iky hi~uf):
A
y=
L4
Y
L3
y> L4
L3 :( Y :( L4
Y < L3'
21
+ N@uv >L4 thl V = L4.Do Vk-7 v lientont9>is5k1saDcho
Vk>L4,k ~ k1.Nhuv~yVk=L4=V,k ~ k1.
+ N@uv = L4 thl v = v = L4-
L§,yE >0 r§,tnho.
Do Vk -7 V =L4 lien ton t9>is5 k1saDcho IVk- L41 <E,k ~k1-
Ta co IVk- vi < E,k ~ k1.
Th~tv~y,gQiC1= {k~ k1: L4 <Vk <L4+E}vaC2= {k~ k1:
L4 - E < Vk ~ L4}. V6i k ~ k1 tuy y, n@uk E C1 ta co IVk- vi =
IL4- L41= 0<E,conn@uk E C2 thl Ivk- vi = Ivk- vi <E.
+N@u L3 <V <L4 thl v = v. ClingdoVk-7 v lien ta Urn du<;1c
mOtk1saDchoL3 < Vk< L4,k ~ k1.Ta co Vk= Vk,k ~ k1.R6 rang
A A
Vk =Vk -7 V =V.
+ Trudngh<;1pv =L3 gi5ng trudng h<;1pv =L4, conv < L3 gi5ng
V> L4-
Ta khiingdtnhdu<;1Cn@uVk-7 v thl Vk-7 v.
Ta dachangrninhxonghnE Car(J x JR4)v6i rnoin dli 16n. D
Chli Y 2.2. Neu{xn},{un},{vn},{wn}la caedayhamIan lurt h(Ji
t'l),vt x,u,V,w trongX th'ita cov(jihauhett E J
~ -
hn(t,xn(t),un(t),vn(t),wn(t))-7 f(t, x(t),u(t),v(t),w(t))
khin -7 +00.
Chung minh. Theochliy2.1,ta tlrndU<;1Cn1d~khi n ~n1 thlseco
hn(t,X,U,V,W) = f(t,X,U, 11,W) v6irnQit E J, (X,U,V,W) E
JR4tuy y. Do do, n@un ~ n1 thl hn(t,xn(t),un(t),vn(t),wn(t)) =- -
f(t, xn(t),un(t),vn(t),wn(t)).
Vi Xn -7 x trong X lien xn(s) -7 x(s) v6i rnQis E J. Trong chli y
2.1ta dachIra n@udays5{an}hOit\l v@a thl anhOit\l v@a. Sitd\lng- ----
di@unayv6ian=xn(s),a=x(s)tacoxn(s)-7 x(s), s E J b§,tky.-----
TucJngtv, un(s) -7 u(s), vn(s)-7 v(s), wn(s) -7 w(s) v6is E J b§,t
ky.
22
Li;1ico j(t,.,.,.,.) lien t\IC tren JR4v6i hiiu h@tt E J. Th@thl- ~ -
j(t,xn(t),un(t),vn(t),wn(t))-+ j(t,x(t),u(t),v(t),w(t)):
~ -
hn(t,xn(t),un(t),vn(t),wn(t))-+j(t, x(t),u(t),v(t),w(t)). 0
b) Di~uki~n(A3) cua j duqcsU'd\Ing
(A3)T6nti;1iL1 ~ 0 ~ L2,L3 ~ 0 ~ L4 saocho
j(t,x,u,L1,w) ~ 0 ~ j(t,x,u,L2,w),
j(t,x,U,L41W) ~ 0 ~ j(t,x,u,L3,w)
v6ihiiu h@tt E J va v6i mQi (x,u,w) .E (L, M; F, H)ITJ!.,trong do
L = min{Ll,L3}conM = max{L2,L4}.
c)Xetbaitmin(2.15)v6idi~uki~nbien(2.13),A E [0,1],n ) no:
x"(t) =Aj~(t,x(t),Fx(t),x'(t),Hx'(t),A), (2.15)
hamj~ bi@udiennhu sauv6i t E J, (x,u,v,w) E JR4,A E [0,1],
j~(t,x,U,V,W,A)=Ahn(t,x,u,v,w)+(1- A)p(V), (2.16)
hamhnxacdinh d a), vap : JR-+ JR lien t\IC thoa
p(v) ) 1,v E [L3 - l.., L3] U [L2'L2 + l..],no no
p(v)~ -l,v E [L1- ;0,L1]U [L4,L4+;0]'
Bd d~saucho danh gia v~nghi~mcua bai toan (2.15)(2.13)khi
L3 < L1,L2 < L4. Nhiic li;1i,Slj t6n ti;1icua no EN, la s6 saocho
L2+;0L3,daduqckh~ngdinhtru6cdo.
B5 d~2.2. Cia SV:j thoadi€u ki~n(A3), L3 <L1,L2<L4,vabai
loan(2.15)(2.13)conghi~mx vrJiA E (0,1)van) no.Tht thi ta co
dankgiasau,t E J, n ) no,
1 1 1, 1
L3 - - ~x(t)~L4+-, L3 - - ~x (t) ~L4+ -.n n n n (2.17)
Chungminh. Theodi~uki~nbien(2.13),x(O)= x(l) = 0, ta tlm
duqca E (0,1) saochox'(a) =O.
a)GiasU'max{x'(t)jtE [0,an =x'(to)>L2+* sedaTId@nmQtdi~u
matithuan.
23
+Trudctienta chungmint comQtkhaang[" v] C (to,a) saGcha
x'(v)=£2,x'(,) =£2+~ vavdit E b, v]thl £2~x'(t)~ £2+ ~.
Phuongtrlnhx'(t)- £2 - ~ =0(theabi§nt) conghi~mtl E (to,a)
bdix'(to)>£2+ ~ vax'(a)=0<£2+~.
L§.y, = max{t2E (to,a) : X'(t2) = £2 + ~}.Khi do x'(,) =
£2+ ~,x'(,) > £2. K§t hQpvdi x'(a) = 0 < £2e), phuongtrlnh
x'(t)=£2co nghi~mt2E (" a).
L§.yv = min{t2E (" a) : X'(t2)= £2}.R6 rangb, v] c (to,a),
x'(v)=£2,x'(,) = £2+~;honmia,vdit E b, v]thl £2~x'(t)~
£2+~. Ta ki@mchungkhing dint nay.
Giasut6nt:;tit E b, v] :x'(t)> £2+~.Duongnhient i- "t i- v.
Bdix'(a) = 0 < £2+~ nen ta Urn duQcmQtt3 E (t,a) saGeha
X'(t3)= £2+~. Da, = max{t2E (to,a) : X'(t2)=£2 +~}nent3~,.
DayIa di~uvo If VI t3E (t,a) va t E b, v] thl phai co , < t3.Vf!}.yta
eox'(t)~£2+ ~,t E b, v].
x'(t)~£2,t E b, v]duQcchungmint tuongtv.
+ Khi cokhaangb, v] c (to,a) saGchax'(v) = £2,x'(,) = £2+ ~,
£2~x'(t)~£2+ ~,t E b, v],thl ta duQe
j vx"(s)ds =x'(v)- x'(,) =-~ <O.~ n
Trangkhi do, thea(2.15),(2.16)
[X"(S)dS = A1"f~(s,x(s),Fx(s), x'(s),Hx'(s),A)ds
- A1" (Ahn(s,x(s),Fx(s),x'(s),Hx'(s))+
+(1- A)p(x'(s)))ds
lTa dangxet£2 > O.N~u£2 =0 thl ta van tlm dll<;iCmQtkhoangb,v] E (to,a) saDcho
x'(~)= £2+ ~,x'(v)=£2, d6ngthai £2 :::;x'(t) :::;£2 + ~,t E b,vl. Th~t v~y,lily v = min{tE
(to,aI,x'(t)= O},viq = max{tE (to,v),x'(t)=£2+~= ~},thl b, v]litkhoangd.ntill. Chid.n
ki~mchung£2:::;x'(t) :::;£2+~,t E [" vI.N~ucot E [" v]saGchox'(t) > £2+~thl do x'(v) =0
nencotl E (t,v): x'(td = £2+~, mallthuanvoi~= max{tE (to,v),x'(t)= £2+~= ~}.N~u
cot E b,v] saGchox'(t) < £2thldox'(T)=£2+ ~nencomQtt2E (T,t): x'(t2)= £2=0,mall
thuanvoiv =min{tE (to,a],x'(t)=O}.
24
- >,'l" hn(s,:£(8),Fx(s),X'(S),Hx'(s))ds+
+-X(1- -X){p(x'(s))ds.
DM X = X(S),U = Fx(s),v = X'(S),W= Hx'(s), ta CO(X,it,W)E
(L3,L4;F, H)]R.VI s E [r, v] nen£2 (; x'(s) (; L2 + ~.Thea (2.14),
hn(s,x,u,v,w) = f(s, x, it,L2,w). Dung di@uki~n(A3) cua f, v6i
s E [r,v], taduQchn(s,x,u,v,w)) O.M~tkhac,L2 (; x'(s) (; L2+~,
vatfnhch§,tcuahamlient1,1Cp sedaTIdenp(x'(s)) ) 1.guy ra
.{ x"(s)ds;, A(l - A).{ p(x'(s))ds;, A(l - A)(v- ,,) >o.
+ Dendayxu§,thi~nmOtmatithuan,gia Sltban d§,usai,va phai co
max{x'(t)jtE [0,an (; L2+ ~,hayla x'(t) (; L2 +~,Vt E [0,a).
b)min{x'(t)jtE [0,an ) L1 - ~ duQcchU'ngminh tuong t\!o
c) Nhu v~yv6i t E [0,a), L1 - ~ (; x'(t) (; L2+ ~.
d) Baygidv6it E (a,1]ta chU'ngminhL3 - ~ (; x'(t) (; L4+~.
Cia Sltmax{x'(t)jt E (a,I]) = X'(t4)> L4 + ~.Gi6ngnhUtrong
ph§,na) trenday,ta tIm duQcmOtkhaang[r,v] C (a,t4) saGcha
L4(; x'(t)(; L4+~,VtE [r,v]vax'(,) =L4,x'(v)=L4+~.
1v x" (s)ds = x' (v) - x'(,) = ~> O.I n
Trangkhi do, thea(2.15),(2.16),
1"x"(s)ds = >'.ff~(s,x(s),Fx(s),x'(s),Hx'(s),>')ds
- >.'1" h,,(s,x(s), Fx(s), "'(8),H x'(s))ds+
+.\(1-.\) 1" p(x'(s))ds.
NeudMx =x(s),u=Fx(s),v=x'(s),w=Hx'(s)thl (x,it,w)E
(L,M; F, H)]R.V6i s E [r,v] thl L4 (; x'(s) (; L4+ ~.Thea (2.14),
hn(s,x,u,v,w)=f(s,x,it,L4,w).
Da di@uki~n(A3) cua f, hn(s,x,u,v,w) (; O.Tv L4 (; x'(s) (;
25
L4+ ~ tacop(x'(s)),;; -1. Suy fa i" x"(s)ds < 0, mauthuh viii
1" x"(s)ds> 0 trllOCd6.Vi;iyphaic6max{:c'(t)/lE (a,II} ,;;L4+ ~.
Tl1ongtv, min{x'(t)jtE (a,I]}~L3- ~.
e)Toml~i,n~ux la nghi~mdm (2.15)(2.13),n E N,n ~no,thl:
L1 - ~~x'(t)~L2+~,t E [0,a),
L3 - ~ ~x'(t)~L4+ ~,t E (a,1].
Tv day,VI L3 <L1,L2 <L4vax'(a)=0,v6is E J ta co
L3 - ~ ~x'(s)~L4+~.
f) Tfch phanL3 - ~ ~x'(s)~L4 +~ tv 0d~nt,t E J:
1 it 1(L3- -)t ~ x'(s)ds~ (L4+ -)tnon
hayla (L3- ~)t~ x(t) - x(O)~ (L4+ ~)t.Da x(O)= 0 nensuyra
(L3- ~)t~x(t)~ (L4+~)t,haylaL3- ~ ~x(t)~L4+~.
B6de2.2chvngminhxang. D
H~ qua 2.1. Gid su:co di€u kitjn (A3)) L3,L1 ~ 0 ~ L2,L4; L3 -I
L1,L2 -I L4; va3noEN: I L3 - Lll >2, I L4 - L2 1 > 2. N€u bailoanno no
(2.15)(2.13)conghitjmx v{Ji,\E (0,1)van ~no)thzta co:
1 1 1, 1
L - - ~x(t)~M +-, L - - ~x (t)~M +-, t E J,n n n n (2.18)
trongdoL =min{L1,L3},M =max{L2,L4}.
Chung minh. Ta chiara nhieutrl1dngh<,5pd@xet.
a) L3 < L1: L =L3. N~uL2 <L4,M = L4,ta congay(2.18)theab6
de2.2.N~uL2 > L4,M = L2.Trangdinhnghiahn (2.14)ta chIc§,n
thayd6ivi tri cuaL2 va L4. Tl1ongtv trangchvngminhb6 de2.2,
L3 - ~ ~u'(t) ~ L2 +~,'lit E J.
b) L1 < L3: L = L1. N~uL2 < L4,M = L4. Trang dinh nghiahn
(2.14)ta thayd6i vi tri cuaL1 va L3' Theab6 de2.2,(2.18)thoa:
L1 - ~~u'(t)~L2+~,'litE J.
26
N§u L2 > L4,M = L2. Trangdinhnghiahn (2.14)ta haand6i L1
v6iL3,L2v6iL4.Theab6de(2.3)thoa:
L1 - ~ ( u'(t) ( L2 +~,Vt E J. D
B6 d~2.3. Cia s71:j thoadi€u ki~n(A3). Tht thi vdin E N dil ldn,
baitoan (2.15)(2.13) khi ,\=1 co nghi~mthoa (2.19),
2 2 2, 2
L - - ( x(t)( M +-, L - - (x (t) ( M +-, t E 1.n n n n (2.19)
Chung minh.
+ Trudngh<;5pL3 i- L1,L2 i- L4 ta dungh~qua2.1.L~yno E N
saDcha\L3- L11>;0' IL4- L21 > ;0' Khi n?: novax lamOtnghi~m
cua(2.15)(2.13),v6it E J thl
L - 1 ~ X(t) ~ M +1 L - 1 ~ x'(t) ~ M +1.n ~ ~ n' n ~ ~ n
Khi dotaapd\mgb6de1.1v6iD : domD-+ Z,Dx=x",trang
dodomD= {xE AC1(J)jx(0) =x(l) = O},conN : Y x [0,1]-+ Z,
N(x,'\) = j~(.,x(.),Fx(.),x'(.),Hx'(.),'\), cungv6i
Q ={xE YjL - ~ <x(t)<M +~,
L - ~ ( x'(t) ( M +~,t E J},
vak§tlu~n(2.15)(2.13)conghi~mkhi ,\ = 1.
+Khi L1=L3=L, tttdieuki~n(A3)cuaj tacoj(t, x,u,L, w) =
0v6it E J, (x,u,w) E (L,M; F, H)'Rf..Trudngh<;5pnayta thi§t l~phn
nhusau,
hn(t,x,u,v,w) =
j(t, x, ii, L4,w)
j(t,x,ii,v,w)
j(t, X,ii,L2+~,w)+
+g(L2'~'v)
j(t, X,ii,L2,w)
j(t,x,ii,v,w)
j(t,x,ii,L,w)
L4 <V
L2 + l <v ( L4n
L2 +1 <v ( L2 + ln n
L2 <V ( L2 +1n
L ( v ( L2
V <L.
V6in du Wn,phuongtrlnhX"(t)= hn(t,x(t),Fx(t),x'(t),Hx'(t))
comOtnghi~mt:1mthudngx(t) = Lt, nghi~mnayduongnhienthaa
27
(2.19). Tuong t\l khi L2 = L4 = M, thi@tI~phn cho thfchh<;jp,bai
tmin(2.15)(2.13)conghi~mtitmthudngx(t) = Mt, vanghi~mnay
phli h<;jpvdid{mhgia (2.19).Do do n@utrudngh<;jpL1 = L3 ho1;tc
L2 =L4 xiwfa, baitoan(2.15)(2.13),vdiA = 1,vanconghi~mthoa
(2.19). 0
S\l t6n tC;1inghi~mcuabai toan (2.12)(2.13)du<;jcchI ra trongd!nh
Iy sauday,d!nhIy 2.3.
D~nhIy 2.3. Cia sv:coditu ki~n(A3) cuaf. Bili loan (2.12)(2.13)
conghi~mx thoa
L:::; x(t):::;M,L:::; x'(t):::;M,t E J (2.20)
Chung minh. Theob6 d~2.3,bai toan(2.15)(2.13)khi A = 1 co
nghi~mXnthoa(2.19),n E N duldn:
x~(t) = f~(t,xn(t),Fxn(t),x~(t),Hx~(t),1)
- hn(t,xn(t),Fxn(t),x~(t),Hx~(t)).
Theo chli y2.1,khin duldn,hn(t,x,u,v,w) = f(t,X,ii,V,w)vdi
t E J, (x,u,v,w) E JR4.Vi f E Car(J x JR4) lien co ~E L1(J) saocho
If(t,x,ii,v,w)1 :::;~(t)vdihituh@t E J. Do v~y,khi n dli ldn,ta vi@t
Ihn(t,x,u,v,w)1:::;~(t),t E J.
l
t2
Vdi t1,t2E J (giaS11t1 :::;t2)ta co X~(t2)- x~(t1)= x~(s)ds:
tl
l
t2
IX~(t2)- X~(tl) I = I f*(s,xn(s),Fxn(s),x~(s),Hx~(s),1)ds
tl
l
t2
-, hn(s,xn(s), Fxn(s), x~(s),Hx~(s))ds
tl
l
t2
= Ihn(s,xn(s),Fxn(s),x~(s),Hx~(s))lds
tl
l
t2
:::; ~(s)ds.
tl
Do do, IX~(t2)- x~(tdl :::;It2- tll.II~lIu(J)' Tli day suy ra {x~}
28
d6nglien tl,lc.
l
t2
l
t2
Ta 1l;1ico IXn(t2)- xn(tl)1=I x~(s)ds:::;; Ix~(s)1ds.
1
~~
ltlt2 2Dung (2.19),x thaybdi xn: Ix~(s)1ds :::;; (M + -) ds.
lt2 2 tl tl nVI (M+-)ds:::;; (M+2).lt2-tll lientl n
IXn(t2)- xn(tl)1:::;;(M +2).lt2- tll
Dieunaydand~n{xn}d6nglientl,lc.
{xn(t)}bi chi;indelilahi~nnhienbdi{xn}langhi~mcua(2.15)(2.13)
thoa(2.19),trongdocodanhgiaL - ~ :::;;xn(t) :::;;M +~ vdi t E J.
Vf).,y,theodinh ly Ascoli-Arzela,A = {xn}la t~pcompactrongX.
Day {xn}chaatrongA compactlienseco mQtdaycon {xnk}hQit\)
vemQtphl1ntu x trongX.
VI {x~}d6nglien tl,lClien {x~J cling d6nglien tl,lc.{x~J thoa
mandanhgiaL - ;k :::;;X~k(t) :::;;M +;k vdit E J lien {X~k(t)}labi
chi;indeli. Do do theodinh ly Ascoli-Arzelat~pB = {x~J compact
trongX vata chQndl1QcmQtdaycon{x~km}cua{X~k}hQit\)vemQt
y trongX.
Ta changminhx' t6n tl;1ivay = x'. D~dongianvemi;itky hi~uta
giaiquy~tviLlidesail:
Cho day {xn}trong Cl (J) saochoXn ~ x va x~~ y trong
X, thi x' t6n tl;1iva x' =y (tren J).
Lily <pE C~ (J) hiLtky.VI x~t6n tl;1i,ta co
[ x~(t)rp(t)dt=- [Xn(t)rp'(t)dt.
VI Xn~ x, x~~ y trongX =C(J) lienguyra
[ y(t)rp(t)dt=- [X(t)rp'(t)dt.
TU'do,x' t6n tl;1i,x' = y trongLl(J). Ma y E X = C(J) lien
x'(t)=y(t)vdimQit E J, x'E X.
viLli dedl1QCgiaiquy~t.Ta changminhxongx' t6n tl;1i,
x'(t)=y(t),t E J.
29
TrC!li;tibaitoan.Lticnay,x' t6nti;tivax' EX. Ta cox E c1(J).
Ta ki@mchangx thoa(2.12)(2.13),nghlala phajchangminhx"
t6nti;ti,x"(t)= f(t, x(t),Fx(t),x'(t),Hx'(t))vax(O)=0,x(l) =O.
Tavi~txnkmla nghi~mcua(2.15)(2.13)khi A= 1:
x~ (t) =hnk(t,xnk(t),Fxnk (t),x~ (t),Hx~ (t)),km m m m km km
xnkm(0) = 0,xnkm(1) = O.
811dl,mgxnkm---+X trong X khi m ---++00, tr116ctien ta co x(O) =
x(l) = 0, v~yx thoa di§u ki~nbien (2.13).Va vi xnkmthoa danh gia
(2.19)nenkhi chom ---++00 ta co
L ~x(t)~M, t E J,
L ~x'(t)~M, t E J.
Ta chic§,nxet trl1dngh<;jpL = L3,M = L4,bC!icactrl1dngh<;jp
khacla tl1ongtv khicothayd6ithichh<;jptrongbi@uthaccuahnva
x,ii,w. D@ti~nchovi~ctrlnhbay,ta vi~t,v6in du ldn,
x~(t)= hn(t,xn(t),Fxn(t), x~(t),H x~(t)),
xn(O)= 0,xn(1)= 0,
va dangco Xn lien t1,1Cd~ncftp1,x~E L1(J), Xn ---+x,x~---+x' trong
X =C(J).
D~tzn(t)= hn(t,xn(t),Fxn(t),x~(i), F[x~(t)).Theochliy2.2taco-~-
Zn---+z trong L1(J), z(t) = f(t,x(t),Fx(t),x'(t),Hx'(t)).
V6imQi<pE Or:(J) ta co
[ x~(t)<p(t)dt=-[ X;,(l)<p'(t)dt.
Vetraih(>itl.1yel' z(t)<p(t)dtconYephiiihQitv Ye-11 x'(t)<p'(t)dt,
non[z(t)<P(t)dt =-[ x'(t)<p'(t)dt,'if<pE 0;:'(1). Suy fa z =x"
trongL1(J): -~-
x"(t)=f(t, x(t),Fx(t),x'(t),Hx'(t)).
30
--- ---
V6i cacky hi~unhl1bandatithl f(t, x(t),Fx(t), x'(t),Hx'(t)) =
f(t, x(t),Fx(t), x'(t),Hx'(t)).
Dinh1y2.3chungmintxong. 0
2.2 Tru'ong h<Jpkhong thu~nnhftt
Ta vi@t19>ibai toan
x"(t)= f(t,x(t),(Fx)(t),x'(t),(Hx')(t)), (2.21)
a(x)=A,x'(I) =B,
a(x)=A,x'(O)=B,
x(O)=A,x(l) =B.
(2.22)
(2.23)
(2.24)
0dayta sechi ra cacdint 1yt6nt9>inghi~mchobai toanbien
kh6ngthuannh§,t(2.21)(2.i)v6i i =22,23,24.
1
Ch6 Y 2.3. Ham <p(t)= a(l) (A - Ba(l)) +Bt,t E J, vdi l(t) =
t,t E J, th6acaeditukiiJnbien(2.22)va (2.23).
a) CachdM ham<pnhl1tren1ach§,pnh~ndl1Qc,bdi a(l) i= O.Di~u
naydl1Qckhiingdint ngaysauchliy 1.1.
b)Tath§,yc.p'(t)= B v6imQit E J. Tavi@tdl1Qc.p'(O)=c.p'(I)=B.
D~ki~mtra ham<pthoaca hai di~uki~nbien (2.22)(2.23),ta chi
canki~mchunga(c.p)=A 1axong.Ta co
1
a(c.p)= a(a(l) (A - Ba(I)).l +B.l).
VI a :X ---+IRtuy@ntint nen
1
a(c.p)= a(l) (A - Ba(I)).a(l) +B.a(I)
hay1aa«p) = (A - Ba(I)) +Ba(I) =A.
Ch6 Y 2.4. Vz1(8)= 8,8E J, nen0 ~ 1 ~ 1 va beJia E A taco
0 ~a(I) ~a(l). Buyra 0 ~ :~~~ 1. Dodovait E J tacodun"
. , a(l)
gw It - a (l) I ~ 1.
31
2.2.1 Bai toan bien thli nh§.t
a) DM rp(t)= a~l)(A - Ba(I)) +Bt,t E J, nhu trong ehli y 2.3,
thl rp'(t)= B v6i t E J va rpnhu th§ thoa di@uki~nbien (2.22):
ex(rp)=A, rp'(1)= B.
Til biJu thdc cua 'P ta co 'P(t) = 11)+B (t- :i~D;nhl1 v~y,
v6i moi t E J:
. IAI a(I)
j<p(t)1~a(l) +IBI. t - a(l) ,.
Theo eM. y2.4, It- :i~~ ~ 1,vata co Itp(t)1~ ~~I)+ lEI. guy
IAI
Ilrpll ~ ex(l)+IBI.
ra
(2.25)
b) Ta duabai toanv@d<;1ngthu§,nnh~tv6ibi§n z bfLngbi§n d6i
x(t)= z(t)+rp(t). (2.26)
Tru6etien,tv (2.26)ta eo
a(z) =a(x - rp)=ex(x)- a(rp)= A - A =0,
z'(t) =x'(t) - rp'(t) =x'(t) - B,
z'(1)=x'(1)- rp'(1)= B - B =O.
z'(t)=x'(t)- rp'(t)=x'(t)- B cland§nz"(t)=x"(t).
Fx(t) = F(z +rp)(t).
Hx'(t) = H(z' +rp')(t).
f(t, x(t),Fx(t), x'(t),Hx'(t)) =
= f (t,z(t) + rp(t),F (z + rp)(t),z'(t) + B, H (z' + B) (t)).
V6i t E J, (x,u,v,w)E }R4,d~t
g(t,x,u,v,w) = f(t,x+rp(t),u,v+B,w),
va v6i 'YE X dM F* ('Y) = F ('Y+ rp),H* ('Y) = H ('Y+ B).
Th§ thl
f(t, x(t),Fx(t), x'(t),Hx'(t)) =
= 9(t, z (t), F (z + rp)(t) , z' (t), H (z' + B) (t ))
=g(t,z(t),F*z(t),z'(t),H*z'(t)).
- 32
Phuongtrlnh theox band§,utrd thanh
z"(t)=g(t,z(t),F*z(t),z'(t),H*z'(t)), (2.27)
a(z) = 0,z'(1)=O. (2.28)
R6 rangbaitm1n(2.21)(2.22)conghi~mx khivachikhibaitmin
(2.27)(2.28)conghi~mz.
Dinh ly 2.4. Cia SV:j thoadi~uki{?nsau
(H1) T8n tQ,iA, B, L1,L2 E JR saGchoL1 ~B ~L2 vii
j(t,x,u,L1,w)~0~ j(t,x,u,L2,w)
vdihauh~tt E J vii m9i (x,u,w) E [A,B, L1,L2,a; F, H]JR.
(2.21)(2.22)co nghi{?mx saGcho
IIxll~max{B- L" L2- B}+ ~1;)+ IBI, vii L1 ~ x'(t) ~ L2,t E J.
(2.29)
Chung minh. Ta se ap d1).ngd!nh1y2.1cho bai toan thu§,nnhat
(2.27)(2.28).Ki~m chvng F*, H* E D 1ade dang.Chi con di xac
nh~nham 9 thoa man di@usail day,t E J va v6i mQi (x,u,w) E
[Ll - B, L2- B; F*, H*]JR,
g(t,x, u,L1 - B, w) ~ 0 ~ g(t,x, u,L2 - B, w).
a) Lay t E J,(x,u,w) E [L1- B,L2 - B;F*,H*]JR bat ky thl (x+
<p(t),u,w) E [A,B, L1,L2,a; F, H]JR,tvc 1a
Ix + <p(t)I ~max{L2- B, B - Ld + ~1i)+ IBI,
lul ~p(F,[0,max{ILl- BI, IL2- BI}+~111)+IBI]x),
va Iwl ~ p(H, (L1,L2)x).
Khing d!nhnayduQcchvngminhngaysail day.
(x,u,w) E [L1- B,L2 - B;F*,H*]JR chota
Ixl ~max{L2- B,B - Ld,
lul~p(F*,[Ll - B,L2 - B]x),
Iwl ~p(H*,(L1- B, L2 - B)x).
33
Biitdftutli Ixl ~max{L2-B,B-LI}.Ta colx+~(t)1~ Ixl+I~(t)1
ma1~(t)1~ ~~I)+IBInenIx+~(t)1~max{L2-B,B-LI}+ ~~I)+IBI=
max{IL1- BI, IL2- BI}+ ~~I)+ IBI.
V6i lul ~ p(F*, [L1- B,L2 - B]x) ta phaiki@mtra
lul ~p(F,[0,max{IL1- BI, IL2- BI}+ ~111)+ IBI]x).
Liiy y E [L1-B, L2-B]x biitky thillyll ~ max{L2-B, B-LI}. Luc
do,theo(2:25),taco y+~ E [0,max{IL1-BI, IL2-BI}+ ~~I)+IBI]x.
Ta danhgia F*y:
IIF*yll = IIF(y+~)II~p(F,[0,max{IL1-BI,IL2-B!}+ ~~I)+IBI]x).
Dieunayxayra v6imQiy E [L1- B, L2 - B]x biit ky nenta dl1<;:Jc
p(F*, [L1- B,L2 - B]x) ~ p(F,[0,max{IL1- BI, IL2- BI} + ~111)+
IBlJx). Do do n§u co lul ~ p(F*, [L1- B, L2 - B]x) thl
lul ~ p(F, [0,max{IL1- BI, IL2- BI} +~~I)+ IBI]x).
Bay gidIiiy y E (L1 - B, L2 - B)x biit ky ta coy + B E (L1,L2)x.
Theocachd~t,IIH*yll= IIH(y+B)II ~p(H,(L1,L2)x)VIY+B E
(L1'L2)x. Nhl1th§ thl p(H*, (L1- B, L2- B)x) ~p(H,(L1,L2)x),va
n§ucolwl ~ p(H*, (L1-B,L2-B)x) thl secolwl ~ p(H, (L1'L2)x).
b) Liiy t E J, (x,u,v,w) E [L1 - B,L2 - B;F,H]IR biit ky, ta co
g(t,x,u,L1- B, w) = f(t, x +~(t),u,L1,w) vag(t,x,u,L2- B,w)=
f(t,x + ~(t),u,L2,w);ma (x + ~(t),u,w) E [A,B,L1,L2,a;F,H]IR
nentli dieuki~ncuaf ta dl1<;:Jcf(t, x +~(t),u,L1,w) ~ 0 ~ f(t, x +
~(t),u,L2,w).Nhl1vi;1y,v6it E J, (x,u,v,w) E [L1-B, L2-B; F*,H*]IR
biitkythl
g(t,x,u,L1- B,w) ~0~g(t,x,u,L2 - B,w).
c) TheodinhIf 2.1,baitoan(2.27)(2.28)conghi~mz saocho
IIzll~max{B- L1,L2 - B},
L1 - B ~z'(t)~L2- B v6it E J.
e)x(t)=z(t)+~(t)Ianghi~mcua(2.21)(2.22).
Tachangminhx =z+~thoa(2.29).
V6i L1 - B ~z(t) ~L2- B vax'(t)=z'(t)+~'(t)=z'(t)+B:
34
L1 :::;x'(t) :::;L2.
Theo (2.26), IIxll :::;IIzll+II'PII.
Thea (2.25), 11'1'11~~1~)+lEI,vaIlzll~ma.x{E- L" L2+E}thj
I!xl! .:; max{B - L" L,+ B}+~~I)+IBI.
x 180nghi~mcua (2.21)(2.22)thoa(2.29).
Dinh ly 2.4changminhxong. 0
2.2.2 Bili toan bien thil hai
Ta vansli d\mgbiend6ix =z +<p,<p(t) = at!) (A - BOI(1))+Bt,
t E J, d@co(2.30)(2.31):
z"(t)=g(t,z(t),F*z(t),z'(t),H*z'(t)), (2.30)
a(z) =0,z'(O)=o. (2.31)
Caehamg,F*,H* gi5ngnhl1khi dl1abai toanbientha nhatve
d~ngthu§,nnhat:
+g(t,x,u,v,w) = j(t,x+'P(t),u,v+B,w), t E J, (x,u,v,w) E IR4,
+ F*y = F(y +cp),Y E X,
+ H*y = H(y +B), y E X.
Xet dieuki~n(H2):
T6nt~iA, B, L1,L2E IRsaDchoL1 :::;B :::;L2va
j(t,x,u,L2,w):::; 0:::;j(t,x,u,L1,w)
vdih§,uh@tt E J, vdi mQi(x,u,w) E [A,B, L1,L2,a; F, H]JR.
Djnh ly 2.5. Cia sitj th6adi€u ki~n(H2).Khi do (2.21)(2.23)co
nghi~mx thoa(2.32),
IIxll~max{B-Ll, L,-B}+ ~~I)+IBI,t E J, vaL, ~x'(t)~L" t E 1.
(2.32)
35
Chung minh. D~ap dl).ngdinh ly 2.2,ta chi c§,nki~mtra ham9
thoadi@uki~nsau,khi t E J va(x,u,w) E [L1- B, L2- B; F*, H*]]R:
g(t,x,u,L2 - B,w) ~0~g(t,x,u,L1 - B,w).
Trangdinh ly 2.4ta da lammQtdi@utuongtv nhu v~yrai. D
2.2.3 Bai tmin bien thli ba
D~tcp(t)= A(l - t) + Bt,t E J thl cp(O)= A,cp(l)= B. Dung
(2.26),x = z + <p,ta th~yz(O)= x(O)- <p(0) = A - A = 0 va
z(l) =x(l) - cp(l)= B - B =O.Vdibi@nd6inay,(2.21)trdthanh
z"(t)=f(t, z(t)+cp(t),F(z +cp)(t),z'(t)+B - A,H(z'+B - A)(t)).
Vdi y E X d~tF*y = F(y +cp),H*y = H(y +B - A), convdi
t E J, (x,u,v,w) E JR4d~tg(t,x,u,v,w) = f(t, x+<p(t),u v+B-A, w)
ta cophuongtrlnh
z"(t)=g(t,z(t),F*z(t),z'(t),H*(z')(t)).
Bai taan (2.21)(2.24)dU<;:icdua v@d~;lllgthu§,nnh~t (2.33)(2.34):
z"(t) =g(t,z(t),F*z(t),z'(t),H*z'(t)), (2.33)
z(O)=0,z(l) =O. (2.34)
x la mQtnghi~mcua(2.21)(2.24)n@uvachin@uz la nghi~mcua
(2.33)(2.34).
Trudch@t,vdiham/',/,(t)= cp(t)-B+A= 2A-B+t(B-A), t E J,
taconh~nxetmin{2A-B,A}~/,(t)~max{2A-B,A},t E J. Th~t
v~y,ta xet l§,nlU<;:ittangtrudngh<;:ip:
+ N@uA = B thl /,(t) = 2A - B = A vamin{2A- B,A} =
max{2A- B, A};
+ N@uA >B thl VIB - A <0ta co/,(t)= 2A - B +t(B - A) ~
2A-B =max{2A-B,A}va/,(t)=2A-B+t(B-A) ~2A-B+
(B - A) =A =min{2A- B,A};
36
+N~uA 0taco,(i) =2A- B +t(B - A) ~
2A - B =min{2A- B, A}va,(i) =2A- B +t(B - A) ~2A - B +
(B - A) =A =max{2A- B, A}.
Xet di~uki~n(H3),
T6nt1;1iA, B, L1,L2,L3,L4 E JRsaochoL1 ~ B - A ~ L2,
L3~B - A ~L4va
J(t,x,U,Ll'W) ~0~ J(t,x,U,L2'W),
J(t,x,U,L4,W) ~0 ~ J(t,x,U,L3,W)
vdih§,uh~tt E J, vdimQi(x,u,w) E (A,B,L,M;F,H)]R, va L =
min{L1,L3},M = max{L2,L4}.
Ta codinhly 2.6chobaitoaD(2.21)(2.24).
D!nh ly 2.6. Cia sitcodituki~n(H3).(2.21)(2.24)conghi~mx thoa
L+min{2A-B,A}~x(t)~M+max{2A-B,A},L ~x'(t)~M,VtE J.
(2.35)
Chung minh. Ta seapd\mgdinhly 2.3cho(2.33)(2.34).
a) Ta ki@mtra rAngvdit E J, (x,u,w) E (L - B +A,M - B +
A;F*,H*)]Rthl (x+~(t),u,w) E (A,B,L,M;F,H)]R, hay
L +min{2A- B,A}~x+~(t)~M +max{2A- B,A},
lul~p(F,(L +min{2A- B,A},M +max{2A- B,A})x),
vaIwi~p(H,(L, M)x).
(x,u,w) E (L - B +A, M - B +A;F*, H*)]Rnghlala
L - B +A ~x ~M - B +A,
lul ~p(F,(L - B +A,M - B +A)x),
vaIwi~p(H,(L - B +A,M - B +A)x).
N~uL-B+A ~x ~M -B+A thlL-B+A+~(t) ~x+~(t)~
M-B+A+~(t) tticlaL+,(t) ~x+~(t) ~ M+,(t). Vdinh~n
xetnhlltrendayv~ham,(t) =~(t)- B +A ta sedll<}C
L +min{2A- B,A}~x+~(t)~M +max{2A- B,A}.
37
Ltiy YE (L-B+A, M -B+A)x btitky ta coL-B+A ~ y(t) ~
M - B +A vasuyray+'PE (L +min{2A- B,A},M +max{2A-
B, A})x. Di@unaydaTIdenIIF*Yll = IIF(Y+'P)II~p(F,(L+min{2A-
B, A},M + max{2A- B, A})x). Vf}.yco p(F*, (L - B +A, M - B +
A)x) ~p(F,(L +min{2A- B,A},M +max{2A- B,A})x) va nhl1
the,lieUlul ~p(F*,(L - B +A,M ---B +A)x) thi
lul ~p(F,(L +min{2A- B, A},M +max{2A- B, A})x).
NeuY E (L-B+A,M -B+A)x btitky thi y+B-A E (L,M)x
vaIIH*yll= IIH(y+B - A)II ~p(H,(L,M)x) suyrap(H*,(L - B +
A, M - B + A)x) ~ p(H, (L, M)x). Vf}.ykhi Iwl ~ p(H*,(L - B +
A, M - B + A)x) thi Iwl ~ p(H, (L, M)x).
b) Ltiy t E J,(x,u,w) E (L - B + A,M - B + A;F*,H*)]R,theo
cachdM thi g(t,x,u,L1- B +A,w) = j(t,x +<p(t),U,Ll'W)va
g(t,x,u,L2-B+A,w) = j(t,x+'P(t),u,L2,w),ma(x+'P(t),u,w)E
(A,B, L, M; F, H)]Rlientheodi@uki~ncua j ta thu dl1<;c
j(t,x+'P(t),u,L1,w) ~ 0 ~ j(t,x+<p(t),u,L2,w).
Tv dog(t,x,u,L1- B, w) ~0~g(t,x,u,L2- B, w).
Tl1ongtv, g(t,x,U,L3 - B, w) ~0~g(t,x,U,L4- B,w).
c) Theodinhly 2.3,bai toan(2.33)(2.34)co nghi~mz, saochov6i
t E J, L-B+A ~z(t)~M -B+A vaL-B+A ~z'(t)~M -B+A.
R6rangx = z +'Pla nghi~mcho(2.21)(2.24)vax thoa(2.35):
+DanhgiaL- B+A ~z(t) ~M - B+A keotheoL+min{2A-
B, A} ~x(t) ~ M +max{2A- B, A}.
+ Vi x'(t) = z'(t) +<p'(t), maL - B +A ~z'(t) ~ M - B +A va
'P'(t)=B - A lien L ~x'(t)~M.
Ta chl1ngminhxongdinhly 2.6. 0
Các file đính kèm theo tài liệu này:
- 4.pdf