TÍCH TENSOR CỦA CÁC ĐẠI SỐ ĐƠN
LÊ CHI LAN
Trang nhan đề
Mục lục
Phần mở đầu
Chương1: Tổng quan về không gian giao hoán.
Chương2: Tích Sensor của các đại số.
Chương3: Một vài nghiên cứu về tính chất của tích sensor của các đại số đơn.
Kết luận
Tài liệu tham khảo
14 trang |
Chia sẻ: maiphuongtl | Lượt xem: 2347 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Luận văn Tích tensor của các đại số đơn, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Ch~((Jng1 : T6ngquanv~vimhkh6nggiao hodn Trang3
CHUaNG 1
,,? ;:;,~" ,
TONG QUAN VE VANH KHONG GIAO HOAN
~ ~" ?",,:> lI:
1.1.CAC KHAI NIEM CeJBAN VA CAC BO DE :
1.1.1.Dinhnghiamodun: ChoRIa mQtvanhtuyy, nhomcQngAben
NtduQcgQilaR-modunphaine"ucomQtanhX?: f: Ntx R ~
'f bO'" - ( --\ th? \-I '!.,f \-I b R
l'
1V1 lcn C?P m,l) ~ mr loa: v m E tv.!,v a, E till
(i) m(a+b)=ma+mb
(ii) (mj+m2)a =fila +m2a
(iii) (ma)b=m(ab)
y Ne"uR cochaaph~ntltdonvi vam.l=m,V m E M thitagQiM
la modununitary
1.1.2.Dinhnghiamoduntrungthanh:
MQt R-modunM duQcg9i la trungthanhne"uMr =0 thi keG rhea r =0
1.1.3.Dinhnghia:
ChoM laR- moduntadinhnghlaA(M) = {x E R / Mx =(0) }
Nhanxet:
* A(M)laideanhaiphiacuaR vaM laR/A(M)lamoduntrung
thanh
* M laR-moduntrungthanhA(M) =(0)
1.1.4.B6 d~:
Ta kyhi~u:E(M)={e:M ~ M /elat1;td6ngca"ucaenhomcQngM}
Thi E(M) la nh6mcQngcaet1!d6ngca"uti1'M ~ 'N1
Chuang1 ..T6ngquanv~vimhkhonggiaohodn Trang4
Nhiin xet..
(i) Voi V a E R anhX~Ta: M ~ M
m~m Ta=ma
thi tacoanhX~Tala tv d6ngcfu cuanhomcQngM lienTaE E(M)
(ii) TrenE(M) tadinhnghTa2 pheptoan:
V cp,'¥ E E(M) , V m EM: m(cp+'¥)=mcp+m'¥
m(cp\fl)=(mcp)\fI
Luc doE(M) clingvoi 2pheptmintrenl~pthanhm(>tvanh
(iii) RI A(M) d~ngcfu voi vanhconcuavanhcactv d6ngcfu E(M)
1.1.5.DinhnghiaHim:
ChoM laR-modun,tagQitamcuaM trenR lat~p
C(M) ={cpE E(M) / cpoTr=Tr OCP, V r E R },voi Tr : M ~ M
ill ~ mTr= mr
1.1.6.Dinhnghlamodunba'tkhaqui:
M du<jcgQilaR-modunbftkhaquine'uMR of.(0)vaM khangco
moduliconth~tSvnaG
11 7 M" K b,:!d~. .. otso 0 e:
1.1.7.1B6 d~Schur's
Ne'uM Ia R-modunbft khaquithiC(M) la vanhchia
Ta matabanchftcuaR modulibft khaqui
1.1.7.2.B6d~
Ne'uM la R-modunbft khaquithiM ding cfu (nhula 1moduli)
voi modulithuangRIptrongdop Ia ideanphaitoi d~inaGdocila
R.Hanm1'a,t6nt~i1phfintti'aER:x-aXEp,VXER
Ch~(ang1: T6ngquanv~vimhkh6nggiaohodn Trang5
+Ng~((jclai :n6um6iideanph,htoi d~ip cuaR thoamantinhchtlt
trenthlRIp la mQtR-modunbtltkhaqui
1.1.8.Dinhnghla:
MQtideanphaipthoatinhchtltcuab6d~1.1.7.2tilcla: :1aER :
VXER thlx-aXEp duqcgQila ideanphaichinhqui
? ,
1.2.RADICAL CUA VANH
1.2.1.Dinhnghla:
Ta gQiradicalcuavanhR la t~phqpnhungph~nttrcuaR linhhoa
duc;5CttltcacacmodulibtltkhaquitrenR
Ki hi~u:J(R) ho~cfadR
J(R) ={aE R /Ma={O},Mch~yquata'tca cacmoduliba'tkha quy}
-NeuR khongcomodulibtltkhaqui,tad~tJ( R )=R
..T1" ~,
LVnail xel:
*J(R)= n A(M) , V MIa R-moc1unbit ilia qui
*J(R) la idean2 phiacuaR
* VI M duc;5chi~utheoR-modunphai DenJ(R) con duqcgQila
radicalJacobsonphaituynhien2khaini~mnaytrungnhauDenta
khongconnha'nm~nhtinhphaivatraicuaradical
1.2.2Dinhnghla:
chopIa ideanphaicuaR.Tadinhnghia:(p:R)={XER/ Rxc p }
1.2.3.Mot soHnhcha't:
. N6u pIa ideanphaitoid~i, chinhquy.B~tM =RIp thl A(1-1)=(p : R)
. J(R) =(\ (p :R) trongdopch~yquamQiideanteid~ichinhqui,(p : R)
la idean2phiaWnnhtltcuaR namtrongp
Chuang1: T6ngquanv.~vimhkh6nggiaohoan Trang6
. J (R) =() p,pchc;tyguakhapcacideanphait6idc;tichinhguycuaR
1.2.4.Dinhnghla:
. Phgntll' a E R duqcgQila tv'achinhguyphain€u :3a' E R :
a+a'+aa'=0 tacongQia' la tl!anghichdaDphaicuaa
. MQtideanphaitrongR duqcgQila tl!achinhguyphain€u illQi
phgntll'cuanod6utl!achinhguyphai
Nhan xet:
N€u R codonvi thlphgnill'aER 1aWachinhguyQ 1+a langhich
daDphaitrongR
1.2.5.Dinh Iv :
J( R) la ideanphaiWachinhguyphaicuaR vachilaillQiideanphai
tl!achinhguyphai
1.2.6.Dinhnghlaph~ntU'hiyHuh- Ideanlilylinh- Nil idean:
.:. a E R duqcgQilaphgntll'lGylinhn€u :3n EN: an=0
.:. Ideantnli ( phai,2phia) cuaR duqcgQila nil ideantrai(phai,2
phia) n€u illQiphgntll'cuanod6ulily linh
.:. Ideantnli ( phai,2 phia) p duqcgQila IllY lint n€u :3ill >0 :
a[.az am=0, '\!al,aZ ,amE p. Tilc la :3ill> 0 : pm=(0)
Nhanxet:
(1) N€u pIa ideanlGylinhthlnola nil idean.Nguqclc;tikhongdung
(2) MQiphgntll'lGylint d6utl!achinhguy
1.3.7.B43d~: J( R) chilaillQinil ideanillQtphia
Noi tomlq.itacothi xacdtnhradicalJacobsonblingnhducachtheos(/
dr5sau:
Chuang1 : T6ngquanv~vcmhkhongglaDhoan Trang7
J(R)
{aE R /Ma={O},V M - ffiodunb.1tkhaguy}I "A(M), A(M) ={XE RfMx=(O}, 'i M-modun biltkha quy}
~R) ~ n p,peh~yquakhipcaeideanphait6id~iehinhquyeuaR
~J(R) =II (p :R) trongdopch<;lYquaffiQiideantoi d<;lichinhqui,
\ Vdi(p:R)={XER/Rxc p }
Ideantl;1'achinhguyldnnh.1tcuaR
1.3.MOT s6 VANH DAc BIET :
1.3.1.VanhnU'adon:
1.3.1.1.Dinh nghia:
VanhR du<;5cgQila vanhmladonne'uJ ( R) =(0)
1.3.1.2.DinhIf :R/ J(R) lavanhmladon
D~caveLO tinhchCi'tcua vemhR/ J( R) fa vimhnT£ad(frztaco thi motel?
radicalJacobsonnta meltidean2phiacuavanhA
1.3.1.3.DinhILNe'u A la idean2phiaeuaR thlJ(A) =J(R) II A
He qua: Ne'uR la vanhmladonthlt.1teacaeidean2phia d~um1a
don
1.3.2..VanhArtin :
1.3.2.1.Dinhngrna:
MQtvanhdU<;5egQiIa VflllhArtinphaine'uffiQit~pkhongr6ng
caeideanphaieuanod~ucophgntt toiti~u
Di ngdngQntagQivanhArtinphdifavanhArtin
* Tacothi dtnhnghzavanhArtin bdngeachkhac:
Chuang1 ..T6ngquanv~vimhkh6nggiaohodn Trang8
VanhA duqcg9i la vanhArtinphaiffi9idaygiafficuacac
ideanphaithl se dungsauhUllh';lnbudcnghlala d€n ffiQtdi€ffi
naad6cacPid~ub~ngnhau
Vi du: Vanhs6nguyenZ khongla vEwhArtin
. Tz£djllh llghiacuavimhArtill tacomi)tsf)'nhijnxetsau :
>-Truong,Th€ ( vanhchia) la vanhArtin
>-T6ngtn!cti€p ffiQts6hUllh';lnvanhArtinla Artin
>-Anhd6ngca'ucuavanhArtinla vanhArtin
VcmhArtincoradicalrtJtdqicbi?tdola :
1.3.2.2.DinhIy: N€u RIa vanhArtinthlJ(R) la ffiQtideanlUy linh
He qua: Ne'uRIa vanhArtinthlba'tkynil idean(phai,tnii,2phia) cila
R d~ulUy linh
Lr..lhanxet: Gia Sl(RIa illvt vanhLilyy,n€u R c6ideanphailUylinh
khac0thlR sec6ideanhaiphialilylinhkh.ac0
1.3.2.3.Dinhnghlaph~ntti'myd~ng:
MQtph~nta e =I:0 trangR la ffiQtph~nt11lUy d~ngn€u e2=e
1.3.2.4.B6 d~:
Gias11RIa vanhkhongc6ideanlily Iinh=I:O.GiasaP =1=0la idean
phait6iti€u cilavanhR thlPc6d';lngP=eRvdie Iaph~ntalily
d~ngcuae trongR
1.3.2.5.DinhIv:
N€u RIal vanhArtinva P=I:( 0)laideanphaikhongIllYIinh
cuaR thl p chila 1ph~nt11IllY d~ng=I:0
1.3.2.6.DinhIi
GiasaR lavanhtuyy, giasae1a1phc1ntti'liiy d~ngtrongR.Khi
do J (eRe) =e J(R) e
1.3.2.7.DinhIf:
Gia saR 1avanhkhongco ideanlily 1inh*- 0 va gia sae*-0 ,e liiy
d~ngtrongR. Khi do eR ( ideanphaichinhsinhbdi e) 1aidean t6i
ti~ucuaR 6>vanheRe 1avanhchia
Hequa..
Ne'uR khongco idean *- 0 va e2=e trongR thleR 1aideanphai t6i
ti~ucua R ~ Re 1aideantnii t6i ti~ucua R
1.3.2.8.Dinh If :
Gia saR 1avanhArtinnaadon,giasa p*- ( 0) 1aideanphai bat
ky cuaR thi p =eR vdi e 1aphc1nta liiy d~ng
1.3.3.Vanh figureDthuy :
1.3.3.1.Dinhnghla :
VanhR du'<;5cgQi1avanh nguyenthiiyne'uno co modulibatkha
quy trungthanh
Nhan xet..
(1) Ne'u R 1avanh nguyen thiiy thi Ker <p=A(M)= (0) vdi anh Xc;l<p:
R ~ E(M) bie'nr thanh Tr vdi Tr : M ~ M
m~mTr=mr
(2) Ne'uR 1avanhnguyenthiiy ~ J(R) =(0)
Nen taco th~noi mQivanhnguyenthuyd~u1avanh naadon
(1)Ne'uR 1avanhbit ky , giasaM la R- modulibatkhaquy
~ A(M) 1aidean2 phia ciia R va R/A(M) nguyenthiiy
Chucrng1 : T6ngquanv~vimhkhonggiaohoan Trang10
(2) Ne'uM la R-modunba"tkhaquy,pia ideanphaitoi d£;lichinh
quycuaR vane'uM =RIp thi A(M) =(p :R) ideanhai phia IOn
nha"tn~mtrongp.
Theonh~nxet(3)nentaco:RI(p:R)lavanhnguyenthuy
1.3.3.2.DinhIi :
Ne'uR la vanhnguyenthuyt6nt£;lip la ideanphai toi d£;lichinh
quy trongR saGcho (p :R) =(0) . Ne'uvanhnguyenthuyR giao
hmlnthiR la tru'ong
1.3.4.Vanhdon-lVloilienhegiii'avanhmiadOn.artin vavanhdon:
1.3.4.1.Dinhnghia:
VanhR dU<;5cgQila vanhdonne'uR2;/: (0)vaR khongcoideannaG
khac(0)vaR
Nhanxet:M6ivanhchialavanhdon
1.3.4.2.M6i lienhegiii'avanhmi'adon-VanhArtin-Vanhmi'adOn
(1) Ne'uR Lavanh drJn c6 drJnvi thiR Lavanhnl,t:adrJn
Th~tv~y:Gia sdR lavanhdon =>J(R) =(0) ho~cJ(R) =R
GQipia ideanphait5id£;licuaR
=>pia ideanphait5id?ichinhqui(viRia vanhcodonvi)
=>pc J( R) maJ(R) =n (p :R)
=>J(R) =( 0)V~yR la vanhndadon
(2)Ne'uR vaaLavanhdrJn, vaa La vcmhArtinthiR LavanhntladrJn
Th~tv~y: R la vanhdon R2;/:0
maR21aideancuavanhR =>R2 =R ( vi R la vanhdon)
Chuang1: T6ngquanvi vimhkh6nggiaohodn Trang11
Ta giasa: J (R) *-0 maJ( R) la ideancuaR =>J(R) =R
=>{J(R)}2=R2=R .Tl1ongtl!: [J(R)t =Rn=R*-0
maRIa vanhArtinkhongcophftntU' lily linh*-0
=>J (R) =(O).V~yR la vanhnaadon
(3) R favanhnguyenthttythiR favanhmladr.m
ThrJtw;Zy: Ne'uR la vanhnguyenthuythlt6nt£;lip la ideanphai
t6i d£;lichinhquisaocho(p : R ) =( 0)
maI( R)=n (p :R)=>J(R) =( 0).V~yRIa vanhmYa don
(4)Ne'uR vt'ta favanhdr.m,vitafavanhmladr.mthiR favanhnguyen
thtty
Th(ztv(zy: R2*-0 vakhongcoideannaokhacngoaiR va0
maR 1avanhnaadon=>J(R) =(0)
=>(\ (p :R)=(0) voi 1aideant6i d£;li
Ta co : (p :R)1aideancuaR =>(p :R)=(0)ho~c(p :R)=R
Ne'u(p :R)=R thl(\ (p :R)=R ( vo 11') =>(p :R) =(0)
V~yR 1avanhnguyenthuy
1.4.cAe BINDLY :
GiasaR 1avanhnguyenthuyvaM laR-modunbit khaquytrung
thanh.Theob6d~Schur's:11={q>E E(M) / q>oTr=~oTr, "ifrE R }
voiTr :M ~ M thll1 lavanhchia(haycongQila th~) .
m.~ mTr=mr
Voi vanhchia11,tacothSxet M lakhonggianvectotren11.
Th~tv~y: taxetpheptoaD:M/1~ M
t-)H.J<~~;'"
THlf VIEN
00767
q>
Chuang1 : T6ngquanv~vcmhkh6nggiaohoan Trang12
Voi pheptmlnnayM cocffutrUckhonggianvectOtren~,do~la
vanhchianenMIa khonggianvectOtrenL1.VItht taco th~dinhnghlas1;1'
dQcl~ptuyentinhva s1;1'phl;!thuQctuytntinhnhusau:
>- ffir,ffi2, ,ffikdQcl~ptuyentinh( neuffil<Pl+illz<pz+ +illk<Pk=0
thl «>1 =«>2==«>k=0)
>- ffi[,ffi2, ,ffikphl;!thuQCtuytn tinh 3«>r*-0 : illl«>l+ill2«>Z+ +illk«>k=0
( l~r ~k )
1.4.1.Dinhnghlataedongdayaile:
VanhR gQila tacdQngdayd~ctrongM (ho~cR dayd~ctrongM )
ntu voi ffi6ih~vectc5VI,VZ, ,VnE M dQcl~ptuyentinhtren~vaba'tky
n phftn tU' WI,WZ, , Wn trong M thl t6n t:;ti rE R sao cho Wi =vir,
i=1,2, ,n
Nhanxet:
(1) 0 daysl!dayd~cduQchi~urheanghla: Iffytliy Y ffiQth~huu
h:;tndQcl~ptuytntinh,voi illQth~hii'llh:;tnbfftky , baagid
cling16nt:;tiphepbiend6ituyentinhbitn h~dQcl~ptuyen
tinhnaythanh ~kia.VIv~ykhitanoiR dayd~ctrongM tuc
la R dayd~ccacphepbiend6ituyentinhtrongkhonggian
vectdM trenvanhchiaL1
(2) Ntudimt1M =n( huuh:;tn) thethiHOillt1(M,M) =R
Th~tv~y:
'iff E Homt1(M,M),giasaEl,E2,"",EnlacdSacuaM
D6ng cffuf hoanroanduQcxacdinhntu bitt cacanhElf,Ezf, , Enf
Theotinhdayd~ctaco: 3r E R saocho"i/ Wr,W2"""Wn EM:
Chuang1 : T6ngquanv~vcmhkhonggiaoholm Trang13
E i r =Wi ( l~ i ~n) ~ r ==f
V~yHomtl(M,~i) c R (**)
Tli (*) va (**) ~ Homtl (M,M) =R
1.4.2.DinhIt daydac:
GiasaRIa Valinnguyenthuy, M IaR-modunb§tkhaguytrung
thanh, n€u ~=C(M) tillR la Valincondayd~ccacphepbi€n d6i
tuy€ntinhtrongM tren~(n6itat:R dayd~ctrongM)
chLtngminh :
D€ chungminhdinh ly trentac~nchungrninh:
Vc M la khonggianvectOhUllh~nchi~u, mEM,m~Vthl
t6nt~ir E R :Vr =0vamr*0
Th~tv~y:N€u tac6di~utrentill :mrR* 0
d~dangchungrninh:mrRla moduliconcuaM trenR
DoM-b§tkhaguytrungthanh~ mrR=M
Ta tlmdu'<;1Cs E R saocho : mrstuy ytrongM vaVrs=0
Gia sa Vl,VZ,...,Vnla h~dQcl~ptuy€n tinhtren ~
WI,WZ,...,WnE M
GQiVi la khonggiancuaM tren~sinhbdicacVj( i * j )
~ Vi = ~ Vi~Vi
Do h~Vl,VZ, ,VndQcl~ptuy€n tinhlien '1/i t6nt~itiE R:
Wi =Vitiva Viti =(0 )
D~tt=tl+tz+ ,.+tn.
Khi d6 : Wi=Vit, i = l,...,n
Chuang 1 ..T6ngquanv~vimhkh6nggiao hodn Trang 14
Ta chungminhtinh tu'angduang,tUGla n€u c6 di~utrenthl tu'ang
du'angvdiV la khonggianvectcJconhUllh;~lllchi~ucila M trenLl : mE
M, m flY th13r E R : Vr =0, mr::/=0
Ta chungminhdi~unayguyn(;lptheosf)chi~ucilaV
. n€u V la0chi~uV ={O}dung
. GiasadungvdiV c6sf)chi~u~n- 1chi~u
. ChungminhdungvdiV lanchi~u
f)?tV =V0 +w6. ~ dimV0=dimV -I, Wfl V0
Ap d\lllggiathi€t guyn(;lpvdi A (Vo)={XE V / Vox=(O)}
vdi y fl V0 ~3 r E A(V 0): yr::/=0 ~ yA(V 0) ::/=0
N6i cachkhac: mA(vo)=0~ mEVo
D~dangkiSmtraA(Vo)Ia ideanphaicuaR
laywA...(vo)"*0 ( do \11~Vo),va wA...(vo)la moduncon1\1
~ wA(vo)=M (doM batkhaquy)
Dungphanchung:
GiasamEM, mflV vavdimliirmaVr=0thlmr=0 (*)
Ta chungminh(*) khongthSxliyra :
£)?t :T:M~M,
x ~ xT =waT( vdix=wa)
vdia E A(V0): xT =IDa ~ waT =IDa
giasa:x=x' ~ wa=wa'~ w(a- a') =0
~ a-a'linhh6atoaDbQm9iphffntlrA(w)
MaVo(a-a')=0~ yea-a')=0(doVoeVe W)
~ m(a-a') =0 ~ ma=ma'=>x T =x'T ~ T III anhX(;l
Chuang1 ..T6ngquanv~vcmhkhonggiao hoan Trang 15
D~d~mgki~mtra:T E E(M)
(Xl+X2)T=(wal +wa2)T=w (al+a2)T =mal +ma2 =Xl T +X2 T
=>T la1tvd6ngca"u
* chungminh:T E ,1
'\!x EM, x =wa, a E A(V 0)
'\!r E R =>arEA (Vo)( doA(Vo)la ideanphaicuaR)
xet :xr=(wa)r=wear)
ma(xr)T =((wa)r)T =wear)T =m(ar)=(ma)r=(xT)r
* mE V : '\!a E A(Vo) =>ma=(wa)T =(wT)a
=>(m- wT ) a=0,aE A(V0)=>m- wT E V0
=>m E Vo+wT c Vo+w,1=V (vo 19).V~y mr=I:-0
1.4.1.3.DinhIv: GiasuR lavanhnguyenthuy.Khid6voivanhchia
,1naGd6thiho~cR ==,1n( v?mhmatr?llca'pn x n tren~)ho~cydi InQisf)
nguyenduongill t6nt<;1ivanhconSmcuaR ma d6ngca"ulen ,1m,We la
L1mla anhd6ngca"ucuaSm
1.4.1.4.DinhIv Wedderburn- Artin :
ChoR la vanhArtindonthlR d~ngca"uvdi Dn,Dnla t~pta"t
cacaeIDatr~n x n trenvanhehiaD.Honnua, n duynha"t, D sai
khaemQtphepd~ngea"u.Ngu'<;1el<;1i: ba"tky th€ D naGthl Dnla vanh
Artindon
ChLtngminh..GiasuR lavanhArtindon=>J(Rt =( 0)
Ta c6 :R don=>R =I:-0 =>R2 =R => R khongIllY linh
=>J(R) =I:-R =>J(R) =0=>R - nuadon
=>R la vanhnguyenthuy( doR VITadon, VITanuadon)
Chuang 1 : T5ngquanvi vimhkh6nggiaohoan Trang16
=>R coM -modunbfttkhi!quytrungthanh
GQiMIa khonggianvectdtrenth~D =C(M)
=>R dayd~ctrongHomD(M,M)
* Ne'uM huuh~nchi~utrenD :R =HomD(M,M) ==Dn
* Ne'uM voh~n
Lfty t~p{VI,VZ,"",vn}dQcl~ptuye'ntinhtrongMtren D
Pm={X E R / ViX =(0),"1i =1,2,...,m}.Tagia sli' PI~ Pz~ ~ Pm
Chungminh:Pmla ideanpilCh
v X,X'E Pm: ViX- ViX'=Vi(X- X' ) =0 =>x- X' E Pm
v X E Pm, "IrE R :ViX=0 , V i =1,2, , m
=>(vix)r=0 , V i = 1,2,...,m
=>vixr=0=>xr E Pm=>Pmideanphi!i cua R
*
Pk+I C Pk :
Xet VI,VZ,".,Vk,Vk+1dQcl~ptuye'ntinhtrongM
WI,Wz, ,wbwk+llaphftntli'cuaM saocho: WI=W2 = =Wk =0
va Wk+1=Vk+1 "* 0
Dotinhdayd~c uaR , 3 r E R : Wk+1=vk+lr
=> vir =0, , vkr=O,vk+lr=Wk+1 '* 0
=>r E Pknhangr ~Pk+1
V~y Pk+lC Pkmall thu~nR la vanh Artin
=>M huuh~nchi~uvadimDM=n
=>R =HomD(M,M) ==Dn