VỀ NHÓM CON ĐA CHUẨN TẮC CỦA NHÓM S5
DƯƠNG KIM DUNG
Trang nhan đề
Lời cảm ơn
Mục lục
Lời mở đầu
Chương 1: Tổng quan về nhóm con đa chuẩn tắc.
Chương 2: Các nhóm con của nhóm S5.
Chương 3: Các nhóm con đa chuẩn tắc của nhóm S5.
Kết luận
Phụ lục
Tài liệu tham khảo
22 trang |
Chia sẻ: maiphuongtl | Lượt xem: 2194 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Luận văn Về nhóm con đa chuẩn tắc của nhóm S5, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
18
~ ~ ? ~
CmJdNG2 CACNHOMCONCUANHOMSs
2.1.Mot8619thuye'tc6lienquan: [11,tr26-84]
2.1.1.Djnh1:9(Lagrange)NellGIII nh6mhfluh/jlnvaS:::;G chiIs 11a
u'dccua IG 1 va[G:S] ='I~i
2.1.2.M~nhd~. Nellf 1am9tsO"nguyento"va I G I ~p thi G III m9tnh6m
cyc]jc.
2.1.3.M~nhd~.NellH:::;G c6chiso"2thia2EH, t1aE G
2.1.4.Bfl d~.Nell G 1anh6mcancycliccapn thit6nt/jlidaynhf{tm9t
nh6mcancapd, vdimollfdc d cuan .
2.1.5.Bfld~.Nell G1anR6mthiquailh~ 1/ Y lienhr;fpvdix trongG 1/ dlfr;fc
xacd.inhbiJiy =gxg-I, 3 g E G, Ja quailh~tlfdngdlfdng.
2.1.6.Djnhngma.G la nh6m
. a EG , aG={xax-llXEG }duQcgQila 1dplienhc;fpcuaph'antli'a
. H:::;G , gEG , Hg=gHg-1= {gHg-11h EH }duQcgQila nh6mcan
cuaG ]jellhc;fpvaiH nhoph'antifg E G vaHg :::;G
. NG(H)={xEG I XHX-I=H}duQcgQilachafinh6atltcuaHtrong
G vaNG(H)la nh6mcan1annhatcuaG nh~nH lamnh6mcon
chu§nt~c
2.1.7.Djnh1:9.Neu-H:::;G thiso"llfc;fngc cacnh6mconlien hr;fpcuaH
trongG blingchiso"cuachafinh6atifcuaH trongG, tdc1a
c=[G: NG(H)] vac1alfaccua I G I nellGhuuhfjln. Hdn
nua, aHa-I =bHHIkhi vachikhi HIa E NG(H)
I
L 2.1.8.M~nhd~.Nellnh6mGhiluh?nc6capchiahetchom(JtsO"nguyen
t6'pthiG chlia1ph'antiJ'capp.
19
2.1.9.Binh 11(Sylow,1872).G la nh6mhiluh?n, I G I =pmrvajplas6"
nguyent6"vakh6ngla lfaccuar . Khj d6.
j)
ji)
jij)
- iv)
2.1.10.
i)
ii)
iii)
G c6nh6mcancappm.M(Jt nh6mcannhlfV?ydU'r;fCgQila
nh6mcanSylowcuaG.
MQip-nh6mcancuaG dellnlimtrongm(Jtp-nh6mcanSylow
nao d6cuaG.
M9ip-nh6mcanSylowcuaGdeujjenhf/pvcJjnhautrangG.
GQj n 1i1s6/p-nh6mcanSylowcuaG thin la lfaccua I G I va
n ==1 (modp).
o Ja nh6m,H::; OJ a E 0, 5 C OJkhi d6:
xCG(a)x.I=CG(xax.I)
xNG(H)x.I=NG(xHx.I)
X X.I =
Chungminh.
i) Ta coY E xCG(a)x.l<=?X.lyxE CG(a)
<=?(x.lyx)a=a (X.lyX)
<=?x(x.lyx)ax.l =xa (X.IYX)X.l
<=?y(xax.l)=(xax.l)y
ii)
<=?Y E CG(xax.l)
VfJy : xCG(a)x.l=CG(xax.l)
Ta coy E xl"{Q(H)x.l<=?X.lyx E NG(H)
<=?(x.lyx)H =H (X.lyX)
<=?y(x.IHx) =(XHX.I)y
<=?Y E NQ(xHx.l)
20
iii) GiiisaS={Sb Sz,...,Sk} ri E ll, k E IN
Ta c6y E Xx-Iy =XS~IS;2...S~kX-1
y=(XS;IX-I)(XS;2X-I)...(XS~X-l)
y = (XSIX-I)'1(XS2X-l)'2",(XSkX-l)'k
Y E
Do d6: x X-I=
2.1.11..M~nhd'e.G Iii nh6mhfluh~n,H lap-nh6mcanSylowcilaG.Khj
d6,H <1G khj vachikhj G c6duynhatmQtp-nh6mcan
Sylow-laH
Chungminh:
(=»Giii saP lap-nh6mcanSylowcuaG thltheodinh11Sylow3xE
G saochoP=xHx-InhungH <1G nenXHX-I=H.SuyfaP=H.
«=)H la p-nh6mconSylowcuaGnen'\IxE Gtac6xHx-Iclinglap-
nh6mcanSyloweuaG.Dotintduynha'tcuaH nenxHx-I=H.
Suy fa H <]G.
2.1.12.M~nhd'e.Kf hj~uSnla nh6mdolxungb$cn , 5 E Sn , 8= 5]52...5k
vdj 5], 52,...,5k la cac yangxich d(Jcltip [an lU<;ftco cap
la n],n2,"',nkthi 181 =BCNN(n], n2,"',nIJ
2.1.13.Caedinh11diiduQcchungminhtrong[5]
. M9j nhomcanAbelcap6d8ucyclk.
. M9j nhomcap4ho?cding cauV(JjZ4ho?cding caavdjZ2xZ2.
. M9j nhomcap6ho?cding cauV(JjZ6ho?cding cauvdjSJ.
. Nh6mthayphjenAn(vdjn~4)du<;fCsjnhra biJj cac3 chutrinh.
. Vdjn~3,SncoduynhatmQtnhomcanchiso/2laAn-
21
2.1.14.M~nhd'e.[6,tr34]A4cocap12nhlfngkhongchuanhomcancap6.
2.1.15.M~nhd'e.Nell G cocap12vaGkhangding CallvdiA4 thiG chria
ph'antztclf; 6 Hon lilla, G e6 illQt3-nh6illcan Sylow.
ehu~nt~e.
2.1.16.B6 d'e.Nell a,j3E Snthi aj3a-i1.1m9tphep the"co clingCalltruc
I vongxfchnhlt13,no thudltrjcnhC!tacod9ngcuaa 1entung
ki hi~uco trong13.
Tric1.1:13=(aia2...aiJE Sn, vdimtiia E Sn, taco:
r=aj3a-l=(a(ai)a(a2)."a(aiJ)
2.1.17.DinhIi. a,j3E Snlienhrjpnhaukhi vachjkhi chungc6clingCall
trucvongxich.Tli dinh11naytatha'yell2 phepthe'cocling
ea'utruevangxichtaluantImduQeYESnd~Y~i1=a.
2.1.18.DinhIi. An1.1nh6madD,'rIn~5
2.1.19.Dinhngma.Nhomdjhedra1D2nvdi n~2laillQtnhomcanea'p2n
d
.
h b?' 2 h'" ? , h? n? 1 ' -1 -1u<;1eSIn ra 01 p an tu Sva t t oa: S =c= va tst =s
2.1.20.DinhIi. 2-nhomcanSylowcuaS5dingCallvdiDs
2.1.21.DinhIi. Nellpnguyenta"thimtiinhomGcap2pho;fic1.1cyclic
ho;fic1adihedral.
2.1.22.DinhIi. Giasri I G I =pq,trongaop,q 1acacsa"nguyenta"va
p>q.Khid6ho;ficG cyclicho;ficG=vdjlI=l, aQ=1,
aba-i=bmvamQ=1(modp) nhlfngm +1(modp) .Nellq
khang1i1lfdcua (p-1)thitrltCfngh<;fpthri2khangxayra.
2.1.23.M~nhd'e.T 1anhomcap12dlt<;fCsinhbdi2ph'antztavab thoa:
a6=1,b2=a3=(abj
22
..
2.1.24.BpmIi. M6i nh6mG cap12khonggiaohoanho?ctilingdiu vdi
A4ho#cD12ho#eT.
2.2.Mot s6thongtindinh11.1dngvanh6mSf
. ,<'
2.2.1.Capeuanh6m55
I s51=5!=120=23.3.5
2.2.2.Caeudenguyendudngeua I 551
T~pta'tcacacu'ocnguyendu'dngcua I S511a:
J={1,2,3,4,5,6,8,10,12,15,20,24,36,40,60,120}
Theodinh11Lagrangene'uHsS5thl IHIE J
2.2.3.Caeph'antaeuaS5
Ca'utrucvongxich, s61u'Qng, ca'p)tinhchaD, Ie cuatungd?ngph'antli'cua
S5du'Q'cth6ngke trongbangsail:
2.3.Mo tacaenh6mconGilaS5
D1favao[5J.va[11]d6motata'tcacacnh6mcon( ne'uc6) cuaS5lingvoi
m6idEJ.
Ca'utrUcvongrich S61uQng Ca'p T'mb
ehan, Ie
(i) 1 1 ChaD
(ij) 10=(5x4): 2 2 Ie
(ijk) 20=(5x4 x 3): 3 3 . chaD
Ujkl) 30=(5x 4x 3x2): 4 4 Ie
(ijkls) 24=(5'!):5 5 chaD
(ij)(kl) 15= (5x4x3x2) 2 Ie2 2 2
(ij)(kls) 20=5x4x3x2xl 6 Ie
ho?c(iik)(ls) 2 3
120=5!
23
2.3.1.d=l
55comQtnhomcandip l1a :Dl={Id}
2.3.2. d=2
55co25nhomcanca'p2 :10nhomcancodq.ngva15nhom
concodq.ng
£)~tD2i =={Id,(ij)} (i=1,10).
D2j=={Id, (i j)(k I)} U =11,25)
2.3.2.1.10nh6mcand~ng:
D2n=={Id,(ij)} (n=1,10)
2.3.2.2.15nh6mcond~ng:
D2n=={Id,(ij)(k I)}
D211= D216=
D212= D217=
D213= D21s=
D214= D219=
D215= D22o=
2.3.3. d=3
(n=1l;25)
D221=
D222=
D223=
D224=
D225=
GQim 1as6nhung3 nhomcanSylowcua55
D21= D26=
D22= D27=
D23= D2s=
D24= D29=
D25= D21O=
24
=>
{
m=1(mod3)
mt40
=> m=1,4,10,40
NSum=40thlco itnhfttla 40x2=80ph'antli'cftp3khacnhau,maSs
chico 20ph'antli'cffp3 lientacomQtmailthu~n,V~ym:::;10"
Ta tIll thftySsco 10nhomconcffp3 cod(~mg:
D3n=={Id,(i j k), (i k j) } (n=1;10)
Giasli'H ::;ss, I H I =4, ta co H ==Z4ho~cH ==Z2XZ2
2.3.4.1 X6t trltC1nghQpH ==Z4
T~p{i,j, k, I}chotaSailchutrlnhcodQdai4,dola:
(ij k 1),(i 1kj), (i kj 1),(i Ij k), (ij 1k), (i k Ij)
VI
={Id,(i j k 1),(i k)O 1),(i 1k j)} =
={Id,(i k j 1),(i j)(k 1),(i 1j k)} =
={Id,(i j 1k), (i 1)0k), (i k 1j)} =
lienling vdimQtt~pg6m4ph'antli'tachico3 nhomcancftp4d~ng
cffuvdi Z4
D31= D36=
D32= D37=
D33= D3s=
D34= D39=
D3s= D31O=
2.3.4. d=4
25
ChQn4 phftntli'trong5phftntli'{i,j, k, 1,s},coCs4=5eachchQn
vaellm6it~pcang6m4phftntli'cuat~p{i,j, k, 1,s}chota3nhom
cand~ngca'uvoi Z4
Do do taco5x3=15nhomcand~ngca'uyoi Z4
Ssc615 nhomcand~ngca'uvoiZ4:
2.3.4.2.X6t trltCJnghqpH ==~xZz ([ 5,tr 13-15])
Ssco:
* 15nhomcond~ngca'uyoi Zzx Zzcod(;l.ng
D4n== {Id,(i j), (k 1),(i j)(k I)}
=«i j),(i j)(k 1»
(n=16;30)
D416= D421= D4z6=
D417= D4zz= . D4z7=
D41s= D4z3= D4zs=
D419= D4z4= D4z9=
D4zo= D4zs= D43o=
* 5nhomcond~ngca'uyoi~x~ co d(;l.ng
D4n=={Id,(ij)(k l),(i k)(j l),(i 1)(jk)} (n =31,35)
D431=
D433=
D432=
D434=
D435=
D41= D4z= D43=
D44= D45= D46=
D47= D4s= D49=
D41Q= D411= D412=«1354) >
D413= D414= D41s=
26
2.3.5. d=5
GQiill las6nhung5nhomcon5ylowcua55
=>
{
m::l(mOd5)
mf24
=>ill =1 hay ill =6 =>m::;6
D5n=«i j k 1s»={Id,(ij k 1s),(ik sj l),(i1j sk),(is1kj)}
V?y 55codung6nhomconcip 5.Do la:
D51= D52=
D53= D54=
D55=
2.3.6. d=6
D56=
Gia suH ::;55, I HI =6, ta co H ==Z6ho~cH ==53
. Xet tn1onghQpH ==Z6
55chico20ph'antuca'p6khacnhaucod~ng: (i j)(k 1s)
Ma =
={Id,(i j) (k 1s),(ks1),(i j), (k1s), (i j)(k s1)}=
V?y 55chico 10nhomconca'p6d&ngciu voiZ6
D61=
D63=
D65=
D67=
D69=
. Xet tru'onghQpH ==53
D62=
D64=
D66=
D6s=
D61O=
H co 10 d~ng : 5123,5124,5125,5134,5135,5145,5234,5235,5245,5345
Voi D6n=5ijk={rd,(i j), (i k), (j k), (i j k), (i k j) }=«ij),(i k»
=«i j),(i j k»
( n =11,20)
27
2.3.7. d=8
Gia saH ~S5, I HI =8
GQim la s6nhting2 nh6mconSylowcuaS5
=>
{
m==1(mod2)
mIlS
=>m=1,3,5, 15 =>m ~15
Ta Hmdu'qcl5nhomconca"p8 cuaS5. V?y S5co,dung15nhomcon
ca"p8 ~':lng, trongdo :
«i j),(i kj 1»=«i j k l),(ik»={Id,(ij),(ij)(k l),Uk),(il)Uk),(ij k 1),
(i k)Ul),(i1j k)}
D81= D82=
D84= D8s=
D83=
D86=
D87= D88= D89=
D81O= D811= D812=
D813= D814= D815=
2.3.8. d=10
GiasaH ~S5, I HI =10
Sur ra H ==ZlOho~cH ==DlO
2.3.8.1. TruonghdpH ==ZlO
Ta tha"yH khongcoph'antuca"p10,nenH khongd~ngca"uyoiZlO
2.3.8.2. TruonghdpH ==DlO
D1O=, , ,
5 2 2=, , ,
E>~timH =trongd6s,tthuQcS5, I s I =5, I t I =2,(st)2=Id,
28
Ta coth~giiisus=(i j k 1Sl) (vI I s 1=5) ma khong ma-ttinhtang
quat,r6ixettungtxemcos,tnaGthuQcv'eH mathGaI sI =5,I t I =2,
(st)z=Id khong?
I t I =2lienho~ct co d,;mgla mQtchuy~nvi ho~ct cod1;lngrichcila2
chuy~nvi dQcl?p. Dlfa VaGchungminhtrong [5], ta duQc:
55co 6nhomconca-p10d1;lng=
{ld,(ij)(ks),(ik)(ls),(il)Uk), (is)Ul),Us)(kl),(ijkls), (iksjl) ,(iljsk),(islkj) }
D101= D10z=
D103=
D105=
D104=
D106=
2.3.9. d=12
Giii suH ~55,I H 1=12
VI IH 1=12lienho~cH ~Z12,ho~cH ==Z6XZZ,ho~cH ==A4,ho~c
H ~DIZ,ho~cH ==T voi T =
a./ H ==ZlZ
VI H khongcoph'antti'ca-p12lienH khongd&ngcf{uvoiZ12
b./H ==Z6xZZ ([ 5,tr21-23]) 55c6 10nhomconcf{p12d&ngcf{uvoi
Z6XZZ
c./ H ==A4.Ta c65nhomconH cila55,H ==A4,d6la :
AIZ34, AIZ35, AIZ45, A1345, AZ345
Voi D 12n=Aijkl
={Id,(ijk),(ikj),(ijl),(ilj),Ukl),Ulk),(ij)(kl),(ik)UI),(il)Uk)}
( n =11,15)
29
d./ H ==D12Cacnh6mcondl;lngnaytrungvoi IOnh6mcondphanb./
e./ H ==TKh6ngc6nh6mconH naGcua55d~ngca'uvoi T
V~y55c6 :
10nh6mconca'p12dl;lng: «i j )(k1s ),(k 1» =
.=.=.
={Id,(kl),(ks),(1s),(ij),(ij)(ks),(ij)(ls),(ij)(kl),(ksl),(kls),(ij)(kls),(ij)(ksl)}
(n =1,10)
DI2t=.
DI23=.
DI2z=.
D124=.,
DI2s=.
DI27=.
DI26=
DI28=.
DI29=.. DI21O=.
2.3.10. d=15
Ta tha'y55kh6ngconh6rncanca'p15.Th~tv~y,d@tha'yrnQinhorncan
ca'p15d'euxiclic,matrong55kh6ngcoph'antti'naoc6ca'p15,dod655
kh6ngconhomconca'p15.
2.3.11. d=20
D1.!aVaG[7]d6chungmint
B?t K=
M=<ab
I
a5=1b4=1bab-1=a-z=a3>, "
L=<ab
I
a5=1b4=1 bab-I=a-I=a4>, , ,
GQi H::;55, I H I =20
VI I H I =20,dod6ho?cH ==Z20, ho?cH ==K ho?cH ==L
ho?c H ==M ho?c H ==Z2X22X Z5 ho?c H ==D2o
al Xet trl1onghc;1pH ==Z20:
30
H~5s, H khongcophftntti'cftp20lienH khongd~ngcftuvdiZzo
bl Xet tfl1C1ngh<;1pH ==ZzxZzXZs :
Ta co ZzxZzXZs=ZzX ZlO
Vi H khong co phftnt11cftp10lien H khongd~ngcftuvdi Zz xZz X Zs
cl Xet tfl1C1ngh<;1pH ==Dzo:
D ~I 10 1 z 1 -1zo=.
Vi H khongCOphftntti'cftp10 lienH khongd~ngcftuvdiDzo
d/Tn1C1ngh<;1pH ==Kho~cH==L ho~cH ==M
Theo(2.1) , 55 CO30phftntti'cftp4 , do1a:
(i j k l),(i j 1k),(i k 1j),(i k j l),(i lj k),(i 1kj)(i j k s),(ij s k),(i k sj),(i kj g),
(i sj k), (i skj),(i j 1g),(i j s 1),(i 1sj), (i lj g),(i sj 1),(i s 1j),(ik 1s)(i k s1),
(i 1k g),(i 1s k), (i s k 1),(i s 1k),Uk 1g),( j k s 1),(j 1k s),(j1s k) (j skI),
(j s 1k)
Vdi i,j , k, 1,s E {1,2,3,4, 5}
Phftnt11atrongK, L, I a I =5 lientagias11a=(ij k 1s)ma
khonglammftt lnht6ngquat
Bay giotaxettungphftnt11b cocftpbang4 d~xemcotru'ong
hmaH ::K ho~cH ::M khong?
. Ne'ub=(i j k 1)
a.b=(i j k 1s).(ij k 1)=(i k s)(j1)~H .
(vI I H I =20,khongth~chuaphftnt11cftp6), talo~ib =(i j k 1)
VI (i jk 1s)=(j k 1s i) =(k 1s i j) =(l s i j k) =(s i j k 1) (**)
lien taloc;Udu'<;1cthem4 phftnt11'cftp4 . 80 1a :
U k 1g), (k 1s i) =(i k 1g),(l s i j) =(ij 1g),(s i j k) = (i j k g).
. Ne'ub=(ilkj)
={Id,(i 1kj), (i k)(lj),(ij k I)}
31
(1j k 1sleij k I) =(i k s)UI) ~H
(do IH I=20 lienH khongth~chuaph'antti'ca'p6 )talo<;lib=(i1kj)
Do (**) lientalo<;lithem4 ph'antti'm1'al :
Us 1k), (k is I) =(i s1k), (lj i s),=(i sIj), (skj i) =(i skj)
V~ytdngcQngtalo<;li10ph'antti'ca'p4.
. N€u b=(i j 1k)
Ta tha'ya2=(ij k 1s)(ij k 1s)=(i k sj I)
a'-l=(s 1k j i) =(i s1kj)
bab-1=(ij 1k)(ij k 1s)(kIj i) =(i k sj 1)=a2
khongdAngca'uvoi L VI bab-1:;t:a-l
= {rd,(i j 1k), (i I)U k)(i k 1j)} ,
d~dangtha'y=<a,(i k Ij»
Ta co(i k Ij)(ij k 1s)U1k i) =(i Ij sk)=a-2,(i Ij sk) :;ta2,a-l
Suyra<a,(i k 1j» khongdAngca'uvoi K
tucla khongdAngca'uvoi K nhu'ng==M
lien tachQnb=(ij 1k)
Do (**) lientachQnthem4ph'antti'nuala :
U k s1),(k1is) =(i ski), (l sj i) =(i 1sj), (&i k j) =(i k j s)
. N6u b=(i k 1j)
bab-1=(i k Ij)(ij k 1s)U1k i) =(i Ij sk) =a-2
suyrakhongdAngca'uvoi K,L , nhung==M
Theo (**) tachQnthemdu'Qc4ph'antti'nuala :
U 1sk), (k s i 1)=(i 1k s), (1i j s)=(i j s1),(sj k i) =(i sj k)
. N6u b =(ikj 1)
bab-1=(ikj 1)(ijk1s)(ljk i)=(iskI) :;ta2,a-I,a-2lien lo<;lib.
Theo (**) talo<;lithem4 ph'antti'nuala :
U1k s),(k s1i) =(i k s1),(l i sj) =(i sj 1),(sj i k) =(i k sj)
32
. Ne'ub=(i 1j k)
bab-I=(i 1jk)(ijk 1s)(kj1i)=(ij s1k)"*az,a-I,a-zlien1o~ib.
Thea(**).ta1o';lithem4ph'antli'nua1a:
(j sk 1),(ki 1s)=(i 1sk ),(1j s i)=(i 1j s ),(sk i j )=(ij sk)
Ta thfty: C6 20 ph'antti'cftp4 d~ubi lo';lilienthong c6 nh6mcan
H ==K ho~cH ==L. V~y:
55 c6 6 nh6mcancftp20 d~ng: D20n=«ijkls ),(jk~l» (n =1,6)
D201=«12345),(2354»
D203=«12435),(2354»
D20z=«12354),(2345»
D204=«12453),(2435»
D205=«13245),(2345» D206=«13452),(2435»
2.3.12.d=24 [ 5 , tr28-29]
C65nh6mcancftp24: 5ijkl=
D241=51234 =
D242=51235 =
D243=51245 =
D244=51345 =
D245=5Z345 =
2.3.13. d=30 [ 5 , tr29-30]
55khongc6nh6mcancftp30
2.3.14. d=40 [5 , tr30-33]
55khongc6nh6mcancftp40
2.3.15. d=60 [ 5, tr33]
55 c6 1nhomcancftp60la A5
33
As = {Id ,(123),(124),(125),(134), (135), (145), (132), (142),
(152),(143) ,(153),(154),(234),(235),(345),(243) ,(253),
(354),(245),(254),(12)(34),(12)(35),(12)(45),(13)(24),(13)(25),
(13)(45),(14)(23),(14)(25),(14)(35),(15)(23),(15)(24),(15)(34),
(23)(45),(24)(35),(34)(25),(12345),(13524),(14253),(15432),(12354),
(13425),(15243),(14532),(12435),(14523),(13254),(15342),(12453),
(14325),(15234),(13542),(13245),(12534),(14352),(15423),(13452),
(14235),(15324),(12543)}
=«123),(124),(125»=«12)(34),(25)(34),(13)(24».
2.3.16. d=120
5s={Id, (12),(13),(14), (15),(23),(24),(25),(34),(35),
(45),(123), (124),(125), (134), (135), (145), (132), (142),(152),
(143), (153), (154), (234), (235), (345), (243), (253), (354), (245),
(254),(12)(34),(12)(35), (12)(45), (13)(24),(13)(25), (13)(45),
(14)(23), (14)(25), (14)(35), (15)(23), (15)(24), (15)(34), (23)(45),
(24)(35), (34)(25), (1234), (1235), (1245), (1324), (1325), (1345),
(1432), (1532), (1542), (1423), (1523), (1543), (1243), (1253),
(1254),(1342), (1352), (1354), (2345), (2453), (1453),(2543),(2534),
(2435),(1452),(2354),(12345),(13524),(14253),(15432),(12354),
(13425),(15243),(14532),(12435),(14523),(13254),(15342),(12453),
(14325):(15234),(13542),(13245),(12534),(14352),(15423),(13452),
(14235),(15324),(12543),(13)(245),(13)(254),(14)(235),(14)(253),
34
(15)(234),(15)(243),(23)(145),(23)(154),(24)(135),(24)(153),
(34)(125),(34)(152),(35)(124),(35)(142),(45)(123),(45)(132),
(12)(345),(12)(354),(25)(143),(25)(134)}=
Vi~cmatacacnh6mcanD2o,D24,As,5stadungcacl~nhtrongphftn
m~mMaple [ Ph\llt;lc1]
2.4. Vai diicdidmCUBcacnh6mconCUBnh6mSf=-G .
DvavaomQts6ly thuy€tc6lienquandiigidithi~ud2.1,vi~cmata
cacnh6mcancua5svatucangthuctrongdinhly2.1.7:
c=IHgl=[G:No(H)]=IGI:'INo(H)1suyra INo(H)1=IGI: c (2.4.*)
lu~nvansephanlo<;ticacnh6mcancua5svaxacdinhchu§'nboaill'cua
chung
2.4.1.511lienh<;1pcuacacph'anor, caenh6mcantrong5s
Cacphftntuc6clingca'pva clingca'utrucvongxfchcua5sd~ulienh<;1p
voi nhau( dom~nhd~2.1.17).Tli d6suyracacnh6mcanclingca'pva
cunglo<;ti.d~ulien h<;1pvoinhau.
Vi d\l : 35nh6mcanca'p4 chialam3lo<;ti:
* 15nh6mcancyclicd<;tng«ijkl» ==Z4 lienh<;1pnhau,VI voi a =(ijkl)va
~=(jksl)taluauHmdu'<;1cy=(ijks)E 5ssaochorail =~
* 15nh6mcand<;tng«ij),(kl» ==Z2XZ2lienh<;1pvoinhau
* 5 nh6mcand<;tng«ij)(kl),(ik)(jl» ==Z2XZ2lienh<;1pnhau
2.4.2.Phanlo~icacnh6meoneuaSs
2.4.2.1.Cacnh6mcanca'p2 :
C6 25nh6mcanca'p2 du'<;1cchialam2lo<;ti
35
. 10nh6mcancyclicH ca'p2d,;mg«ij»
Ta c6 I NG(H)I=120:10=12lien chu§:nhoatli'cuam6inhomcanca'p2
«ij» lamQtnhomcanca'p12(dihedral)«ij)(kls),(kl»
. 15nhomcanca'p2cyclicH dC;lng«ij)(kl»
Ta co I NG(H)I =120:15=8, nenchu§:nh6atli'cuam6inh6mcanca'p2
naylamQtnh6mcanca'p8 «ij)/ikjl» ~Ds
2.4.2.2.Caenh6mcanea'p3
Co 10nh6mcancyclicH ca'p3dC;lng«ijk»lien hQpnhauva I NG(H)I
=120: 10=12, nenchu§:nhoatli'cuam6inhomconca'p3 la mQtnhomcan
ca'p12dC;lngdihedral( theom~nhd'e2.1.15)
M6i nhomcanca'p3la 3-nh6mcanSylowcuaS5vala nh6mcantoidC;li
cuaS5
2.4.2.3. Caenh6mcanea"p4 :
Dtfavaod~ngthuc(2.4.*) taxacdinhduQcchu§:nhoatli'cuam6inh6m
canca'p4 dC;lng:
. «ijkl» la mQtnhomcanca'p8dC;lng«ijkl),(ik»
. «ij)(kl» la mQtnhomconca'p8d,;mg«ijkl),(ik»
. «ij)(kl),(ik)(jl»la nh6mcan ca'p24 d~lllgSijkl
2.4.2.4.Caenh6mcanca'p5 :
C6 6 nhomcanH ca'p5 dC;lng«ijkls» lienhQpnhauva ING(H)I =120:6=
20 , lienchu§:nhoatli'cuam6inh6mcanca'p5 la mQtnhomconca'p20
dC;lng«ijkls),(jksl» , m6inhomconca'p5 la mQt5-nhomcanSylowcua
S5,nenn6la nhomcantoid?i .
2.4.2.5.Caenh6mcanea'p6
36
C6 20nh6mconea'p6chia lam2 lo~i, caenh6mconeuam6ilo~i
lien h<;1pnhau
. 10nh6mconcyclicH ea'p6 d~ng«ij)(kls» , ehuftnhoarii'eua
m6inh6mconH ea'p6naylamQtnhomconea'p12d~ngdihedral
«ij)(kls),(kl» VI I NG(H)I =120:10=12
. 10nhomconH ca'p6 d~ngSijk==S3, ehuftnhoatli'cuam6inh6m
. connaylamQtnh6mconea'p12d~ngdihedral«ijk)(ls),(ij»
2.4.2.6. Caenh6mconea'p8
C6 15nh6mcon ea'p8 d~ng«ij),(ikjl» , chuftnh6a tU'cua m6i
nh6mcon H ea'p8 la mQtnh6mconea'p8 vIING(H)I= 120;15=8, tueIa
chungtvehuftnh6a.M6i nh6mconca'p8la 2-nh6mconSylowcuaS5,la
p- nh6mcont6id~icuaS5
2.4.2.7.Caenh6mconea"p10
C6 6 nh6mconea'p10d~ng«ijkls),(ij)(ks» ==DlO, lienh<;1p~au)
VI ING(H)\=120:6=20Denehuftnh6atU'cuam6inh6mcanH ca'p10la
mQtnh6mcanea'p20
2.4.2.8.Caenh6mconca"p12
C6 15nh6mconca'p12chialam2lo~i:
. 10nh6mconea'p12d~ngdihedral«ij)(kls),(kl» , m6inh6m
canH naytvchuftnh6avIING(H)I=120:10= 12. Cancuvaoph'antii'sinh
tatha'ym6inh6mconea'p24khongchuaph'antU'ea'p6va A5khongehua
caeehuy~nvLnenm6inh6mcannayt6id~itrongS5
. 5 nh6mcan ca'p12d~ngAijkl==~ , maA4 <JS~=SijklDenm6i
nh6mcanea'p12d~ngAijkle6ehuftnh6atU'lamQtnh6mcanea'p24.
37
2.4.2.9. Caenh6mcanea'p20
Co 6 nh6rncancffp20 d~ng«ijkls),Uksl» , rn6inh6mcanH nayt1;(
ehugnhoavIING(H)1=120: 6=20vachungt6id~i( VIAskh6ngehuaph'antii
effp4 )
2.4.2.10.Caenh6mcanea'p24
C65nh6rncancffp24d~ngSijkl==S4, chungtvchugnh6aVI
INQ(H)I=120:5=24 .Ta c624kh6ngla tidecua60nenchungt6id~i
2.4.3. Quanh~"baaham" giuacaenh6mcancuaSs
I
. As chua:- Cacnh6mcaneffp12( d~ngAijkl) , cae nh6rneon:effp10j car5-.
- Caenhorncaneffp3(Aijk),eaenh6rnconeffp4( d~ng
«ij)(kl),(ik)Ul» )
- Caenh6mcancffp2(d~ng«ij)(kl»)
. M6i nhorn can effp24 ( Sijkl)chua :
- 3nhorncaneffp8 :«ijkl),(ik»,«ikjl),(ij»,«ijlk),(il»
- 4 nh6mcaneffp6 :Sijk,Sijj,Sjkl, Sikl
1nhomcaneffp12:Aijkl
- 7nhomcaneffp4( 3nhomcaneffp4lo~i1,3nhorncaneffp4
lo~i2, Inhorncaneffp4lo~i3)
- 6nhomcaneffp2d~ng«ij»,«ik»,«il»,<Uk»,<Ul»,«kl»
- 3nhomcaneffp2«ij)(kl»,«(ik)Ul»,(il)Uk»
- 4nhomcaneffp3 :«ijk»,«ijl»,<Ukl»,«ikl»
M6i nhornconeffp20ehuadung1nhorncanea'p10, 1nh6mcaneffp5.
, 5 nh6rncaneffp4 cyclic, 5 nh6mcaneffp2 d~ngtich2 chuySnvi
«ij)(kl»
. M6inh6rncandip 12d~ng:
38
- Dihedral «ijk)(ls),(ij» chua2 nhomconca'p6 : «ijk)(ls»,Sijk ,
1nhomconca'p3 ( Aijk), 3nhomconca'p4 d~ng
«ij),(kl», «ij),(ls», «ij),(ks»
- AijkIchua dung4 nhomcon ca'p3 ( Aijk ,Aiji ,Aikl,AjkI)
. M6i nhomconca'p10:chuadung1nhomconca'p5
. M6i nhomconca'p6 : .
- D~ngcyclic«ijk)(ls» chuadungmN nhomconca'p3 (AijJ,
1nhomcon ca'p2 «ls»
- D~ngd~ngca'uvoi S3:duQcchuatrong2 nhomconca'p24la Sijkl
, Sijks
. M6i nhomconca'p8 «ij)(ikjl» chua:
3nhomconca'p4lo~i1, 3nhomconca'p4 lo~i2,1nhomcon
ca'p4 lo~i3)
- 2 nhomconca'p2 «ij»,«kl»
3 nhomconca'p2 «ij)(kl»,«ik)UI»,«il)Uk»
. M6i nhomconca'p4 :
- D~ng«ijkl» duQchuatrong2nhomcolica'p20, 1nhomcon
ca'p8vanochua1nhomconca'p2la «ij)(kl»
- D~ng«ij),(kl» duQc huatrong1nhomconca'p8 vanochua1
nhomconca'p2 «ij)(kl», 2 nhomconca'p2 <ij»,«kl»
- D~ng«ij)(kl),(ik)(jl» chua3 nhomconca'p2 d~ngthu3 , no
duQcchuatrong3nh6mconca'p8 .
. M6i nhomconca'p3 «ijk» duQcchuatrong2 nhomconca'p12: Aijkl,
AijksvachuatrongmQtnhomconca'p12 dihedraltudngling.
39
M6i nhomconca'p3 la 3-nh6mconSylowchu§:nt~ctrongnh6m
conca'p12dihedral(theom~nhd~2.1.15)
. M6inh6mconca'p2 :
- D(~mg«ij» lanh6mconchu§:nt~ccua3nhomconca'p4 :
«ij),(kl»,«ij)(ks», «ij),(ls» , tud6nodu'<;1cchliatrong3
nh6mconca'p8tu'dngling. dod6, du'<;1cchli'atrong3 nh6mcon
ca'p24 : Sijkl,Sijks, Sijlsva n6 dU<;1cchlia trongmQtnhomcon ca'p
6 cyclic:
- D,;mg«ij)(kl» la nh6mconchu§:nt~ccua3 nh6mconca'p4
( m6iloq.i1nh6mcon)«ikjl»,«ij),(kl»,«ij)(kl),(ik)(jl»
* M6i quailh~baohamgiUamQts6nh6mcon d<;lidi~ncua55du<;1c
minhhQatrongphl,lll,lc4
* Bangphanlo<;licacnh6mconvachu§:nh6atlrcuachungduQcth6ng
ke trongphl,lll,lc3 .