The interface of the program is simply designed
with an image display panel and function buttons.
When you take a picture, the doctor just clicks the
capture button. White, green, and full-frame images
are captured automatically and continuously and
stored in a folder that records the shooting time.
The photos will be uploaded to the drive and
managed according to the patient's security account
without fear of system damage.
With the model of colposcopy using the
polarized light source we presented above, we
proceed to obtain cervical images with the help of
the obstetrician at the clinic. The results are shown
in Figure 5
Figure 5.A is a cervical image containing
Nabothian Cysts recorded by a model colposcopy
using a polarized light source. Looking at Figure
5.A, we can see some more clearly the features of
the Nabothian Cysts, such as: the cysts are ivory
white (marked with a square), around the cysts are
more redder (marked with an arrow) than the
normal area. Similarly, Figure 5.B is a cervical
image that is diagnosed as inflamed by
Trichomoniasis and is at an early stage. Looking at
the picture can be observed in the early stages, the
clinical manifestations are not serious, red marks
(marked with an arrow) are scattered on the surface
of the cervix. Finally, Figure 5.C is a cervical
image being treated at last stage. We can clearly see
that there is a drug tube (marked with a triangle) in
the cervix, the cervical surface almost no
appearance of red mark. Moreover, all three images
have effectively eliminated the glare and visible
water bubbles (marked with a circle) on the surface
of the cervix. Therefore, high quality of image
recognition has assisted the physician in diagnosing
cervical disease faster and more effectively.
                
              
                                            
                                
            
 
            
                 5 trang
5 trang | 
Chia sẻ: hachi492 | Lượt xem: 371 | Lượt tải: 0 
              
            Bạn đang xem nội dung tài liệu Mô hình thiết bị soi cổ tử cung đa bước sóng và hiệu quả ban đầu, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
96 SCIENCE & TECHNOLOGY DEVELOPMENT, Vol 20, No.K2- 2017 
Abstract — Cervical disease is one of the common 
diseases, it occurs in women and has a growing 
tendency. In particular, cervical cancer is one of the 
most common diseases. The disease can be cured if it 
is detected early and treated under the guidance of a 
physician. The usual cervical examination methods 
are biopsies, and colposcopy. Recently, many studies 
have applied imaging techniques in the analysis and 
evaluation of cervical pathology characteristics [1-3]. 
In this study, we improved the traditional colposcopy 
with a polarized light source, and captured images 
with high resolution. Based on the image obtained, we 
developed image processing algorithms, initially 
analyzed and evaluated some of the common features 
of cervical disease 
Index Terms— colposcopy, polarized 
1. INTRODUCTION 
n some reproductive health studies, the 
worldwide burden of cervical disease is 
enormous, with over 500 000 cases of cervical 
cancer diagnosed each year, resulting in 250,000 
cases dead. The incidence of cervical disease is 
highest in developing countries and lowest in 
Western developed countries, where the screening 
program has significantly reduced the incidence of 
the disease [4]. In Vietnam, cervical cancer is the 
second most common gynecological cancer, after 
breast cancer. Each year, there are more than 5,000 
new cases and more than 2,500 deaths caused by 
the disease. 
Manuscript Received on July 13th, 2016. Manuscript Revised 
December 06th, 2016. 
This work was supported by National Key Laboratory of 
Digital Control and System Engineering, and the department of 
Biomedical Engineering, HCMUT-VNU HCM 
Phan Ngoc Khuong Cat, Huynh Quang Linh, Nguyen Ngoc 
Quynh, Ly Cao Duong are with Department of Applied Physics, 
Faculty of Applied Science, Ho Chi Minh City University of 
Technology - VNU-HCM. 
Email: pnkhuongcat@hcmut.edu.vn. 
A statistic released in 2016 in Vietnam shows 
that about 14 people are diagnosed with cervical 
cancer every day, including 7 women dying of the 
disease. Therefore, the timely detection and 
treatment of cervical diseases as well as the 
precancerous urgent [2-3]. symptoms of cervical 
cancer become extremely In clinical terms, 
methods to diagnose uterine pathology can be 
divided into two main directions such as cytology 
and histopathology. Histology is a technique that 
uses tissue test results such as Pap smear, ThinPrep, 
HPV-DNA, and follows the criteria for pathology. 
Whereas the approach from the cytological level 
uses results from cervical surface observations by 
methods such as cervicography, colposcopy, VIA, 
to evaluate pathological conditions [5-6]. Each 
method has its own advantages and disadvantages, 
depending on the conditions of the facilities, the 
level of disease, the patient's financial ability to 
choose a suitable method. Among the methods 
mentioned above, colposcopy is commonly used 
because it is easy to perform and has many 
advantages. On the other hand, in developing 
countries like Vietnam, setting up a colposcopy is 
possible 
Recognize that colposcopy is essential to help 
doctors diagnose diseases more quickly and 
effectively. In this study, we developed a model of 
colposcopy with a polarized light source and using 
CCD auto focus camera. At the same time, we also 
built our own management software. It is 
responsible for controlling the camera, recording 
and processing the captured image. Thereby it 
assists the doctor in observing, diagnosing and 
treating the patient. The initial results were high-
resolution image quality, feature-specific 
capabilities, as well as many additional features 
such as anti-glare on the surface and the 
observation of blood vessels. 
2. METHODS 
In this study, we developed the optical system by 
adding a polarized light source using two white and 
green LEDs. White light observes the cervical 
image in normal mode, green light is strongly 
Model of colposcopy using polarized light and 
effective early 
Phan Ngoc Khuong Cat, Huynh Quang Linh, 
Nguyen Ngoc Quynh, Ly Cao Duong. 
I
TẠP CHÍ PHÁT TRIỂN KH&CN, TẬP 20, SỐ K2-2017 
97 
absorbed  by  hemoglobin  (Hb),  which  is  an 
important component in the blood [7]. It helps us to 
easily  detect  areas  of  high  blood  concentration  on 
the  surface  of  the  cervix.  Because  of  the  light 
scattering  properties  of  biological  tissues,  the 
polarization angle is altered in the deeper layers of 
the cervical surface. On the other hand, the cervical 
surface  is  well  reflective,  so  the  photos  are  often 
dazzling and difficult for the doctor to observe and 
analyze  the  images.  There  are  some  algorithms  to 
handle  this  problem,  but  the  results  are  different 
from  the  original  image  [8-9].  Therefore,  we  will 
introduce  an  improved  method  that  uses  an  optics 
system consisting of two cross polarized glasses. A 
polarizer  is  placed  in  front  of  the  LEDs,  which 
produces  polarized  light  in  a  specified  direction. 
The  remaining  polarizer  is  placed  behind  the 
magnification  system.  This  special  technical 
solution  is  based  on  cross-polarized  light  to 
enhance  image  resolution  in  diagnostic  support. 
The  first  is  the  ability  to  remove  glare  from  the 
surface of the lesion and the shadow from the field 
of  vision.  Secondly,  image  of  polarized  light  is 
used to describe the cells and tissues just below the 
surface of the lesion [9-10]. 
From the above suggestions, we will simulate the 
illumination of the light source as shown in Figure 
1. 
Figure  1.  Light  source  diagram.  (1)  LEDs;  (2)  Lens;  (3),(4) 
Polarized glasses 
Light with different wavelengths from the LEDs 
(Figure  1.1)  passes  through  the  convergent  lens 
(Figure  1.2)  and  the  first  polarizer  (Figure  1.3)  to 
the  cervical  surface.  Light  reflected  or  scattered 
from  the  surface  of  the  cervix  will  return  through 
the  second  polarizer  (Figure  1.4)  and  into  the 
eyepiece  of  the  microscope.  The  control  of  the 
different  color  modes  of  the  LEDs  is  done  by  the 
control box. 
For  the  control  system,  we  built  the  model 
controller with  three main components  including a 
System Manager (SM), a Processing Module (PM) 
and a Colposcope Camera (CC) as shown in Figure 
2. 
Figure 2. Control system of colposcopy 
 Firstly,  the  SM  is  the  computer  and  computer-
related  accessories  use  to  operate  the  system.  It 
includes  the  following  components:  computer,  flat 
monitor,  USB  keyboard  and  optical  USB  mouse, 
USB  wifi.  SM  controls  capture  and  storage 
procedures,  manages  and  upload  images  to  Drive. 
Secondly,  the  PM  consists  of  three  main 
components:  Electronic  Power,  Control  and 
Communication.  Electronic  Power  is  used  to  
distribute  the  DC  voltages  needed  to  operate  the 
system and accepts DC input voltage as +12 VDC. 
Control  uses  microcontroller  to  controls  the 
operation  of  Colposcope  Camera,  changes  Led 
color  and  captures  images.  It  only  accepts  input 
voltages as +5 VDC and output as 6 Pin I/O, 2 Pins 
UART.  Communication  means  that  it 
communicates  with  SM  by  Bluetooth,  using 
Universal  Asynchronous  Receiver/Transmitter 
(UART) with Baurate 9600 bit/s controlled through 
315Mhz  RF  remote.  Finally,  the  CC  also  includes 
three  basic  parts:  Camera,  Light  Source  and 
Colposcope Head. For  the camera, we use the Full 
HD  digital  autofocus  camera  which uses  a  CMOS 
sensor  with  resolution:  1920x1080  60fps,  Output 
interface:  HDMI,  Power  requirements:  +  5V  max 
@ 1A. For light sources, we use Six Leds with two 
colors:  3  White  and  3  Green,  controlled  by  PM. 
Power  requirements:  +  3V  @  0.5A.  It  works  at  a 
distance of 30 cm and 12000 Lux Led lighting. For 
Colposcope  Head,  it  has  a  polarizer  filter  and  an 
illumination  optics,  fastened  to  the  Camera  and 
Light Source. 
3. RESULT 
Based  on  the  theory  and  goal  set,  we  have 
developed  a  model  of  colposcopy  using  polarized 
98          SCIENCE & TECHNOLOGY DEVELOPMENT, Vol 20, No.K2- 2017 
light consisting of six major components as shown 
in  Figure  3.  Each  component  is  selected  and 
designed  with  specialized  functionality  based  on 
the requirements of the scanning method. The first 
part is the optical microscope (Fig 3.1), which takes 
over the image magnification function. Microscope 
magnification system is a combination of objective 
and  eyepiece.  Object  lens  is  the  input  port,  the 
eyepiece is not only the output port but also where 
the  eye  to  observe.  During  colposcopy  and 
manipulation  of  the  doctor,  the  cervix  must  be 
continuously  illuminated.  Because  the  cervix  is 
deep  inside  the  body,  it  is  often  lack  of  light  The 
illuminating part of the scanning process is the light 
source (Fig 3.2). It is composed of many parts and 
they  are  joined  together,  then  it  is  enclosed  by  a 
cylindrical aluminum shell, on  the hinged cover  to 
be attached  to  the objective of  the microscope and 
fixed to the hexagonal screw. In particular, the light 
source  uses  polarizing  plates,  which  help  the 
images  get  high  resolution  and  no  blurring  due  to 
the presence of water bubbles on the surface of the 
cervix.  With  the  requirement  of  designing  a 
colposcopy  that  can  capture  images  and  display 
them on  the screen or store  image data. Therefore, 
at  the  camera's  microscope  connection  port,  we 
installed a digital camera for being used (Fig 3.3) to 
obtain a cervical image. Figure 3.4 is a control box, 
which  is  installed  on  the  body  of  the  bracket  (Fig 
3.5),  which  provides  power  and  adjusts  the  light 
source. Not only do manual controls use switch and 
push buttons, but also camera control program and 
image  processing  software  are  included  with  the 
colposcopy. 
Figure 3. The colposcopy model uses a polarized light source: 
(1) Microscope; (2) Light source; (3) Capture camera; (4) 
Control box; (5) Bracket; (6) Computers. 
The interface of the program is simply designed 
with  picture  frame  and  function  buttons.  The 
attached program is written in the C# programming 
language,  which  is  responsible  for  controlling  and 
processing  images.  The  main  function  of  the 
program  is connection  the camera  to  the computer 
(Fig 3.6), manipulate the camera, store and manage 
the  data.  Interface  of  the  program  is  shown  in 
Figure 4. 
Figure 4. Cervical imaging software interface 
The interface of the program is simply designed 
with  an  image  display  panel  and  function  buttons. 
When you take a picture,  the doctor just clicks the 
capture button. White, green, and full-frame images 
are  captured  automatically  and  continuously  and 
stored  in  a  folder  that  records  the  shooting  time. 
The  photos  will  be  uploaded  to  the  drive  and 
managed according to the patient's security account 
without fear of system damage. 
With  the  model  of  colposcopy  using  the 
polarized  light  source  we  presented  above,  we 
proceed  to obtain cervical  images with  the help of 
the obstetrician at the clinic. The results are shown 
in Figure 5. 
Figure 5. Cervical polarized image. (A) Nabothian Cyst; (B) 
Trichomonas; (C) Cervical disease is being treated 
Figure  5.A  is  a  cervical  image  containing 
Nabothian  Cysts  recorded  by  a  model  colposcopy 
using  a  polarized  light  source.  Looking  at  Figure 
5.A, we can see  some more clearly  the  features of 
the  Nabothian  Cysts,  such  as:  the  cysts  are  ivory 
TẠP CHÍ PHÁT TRIỂN KH&CN, TẬP 20, SỐ K2-2017 
99
white (marked with a square), around the cysts are 
more redder (marked with an arrow) than the 
normal area. Similarly, Figure 5.B is a cervical 
image that is diagnosed as inflamed by 
Trichomoniasis and is at an early stage. Looking at 
the picture can be observed in the early stages, the 
clinical manifestations are not serious, red marks 
(marked with an arrow) are scattered on the surface 
of the cervix. Finally, Figure 5.C is a cervical 
image being treated at last stage. We can clearly see 
that there is a drug tube (marked with a triangle) in 
the cervix, the cervical surface almost no 
appearance of red mark. Moreover, all three images 
have effectively eliminated the glare and visible 
water bubbles (marked with a circle) on the surface 
of the cervix. Therefore, high quality of image 
recognition has assisted the physician in diagnosing 
cervical disease faster and more effectively. 
4. CONCLUSIONS 
In this study, based on the theory and the 
necessity of improving colposcopy equipment, we 
have successfully built a model colposcopy using a 
polarized light source and set up a software to 
manage the data separately. Recorded images have 
important properties such as anti-glare and visible 
blood vessels. The results obtained can be seen as a 
new and objective approach to the development of 
colposcopy. 
REFERENCES 
[1] M.J. Lusk and P. Konecny, "Cervicitis: a review", Current 
opinion in infectious diseases, vol. 21, no. 1, p. 49-55, 
2008. 
[2] Compendium of Research on Reproductive Health in Viet 
Nam for the Period 2006-2010, Hanoi: UNFPA, 2012. 
[3] L. Bruni et al., “Human Papillomavirus and Related 
Diseases in Viet Nam”, Barcelona: ICO Information 
Centre on HPV and Cancer, Summary Report, 2017. 
[4] J. R. Carter, Z. Ding and B. R. Rose, “HPV infection and 
cervical disease: A review”, Australian and New Zealand 
Journal of Obstetrics and Gynaecology, vol. 51, p. 103–
108, 2011. 
[5] R. A. Kerkar et al, "Screening for cervical cancer: an 
overview". The Journal of Obstetrics and Gynecology of 
India, vol. 56, no. 2, p. 115-122, 2006. 
[6] Y. Jusman, "Review Article Intelligent Screening 
Systems for Cervical Cancer", The Scientific World 
Journal, 2014. 
[7] S. K. Chang et al, "Model-based analysis of clinical 
fluorescence spectroscopy for in vivo detection of 
cervical intraepithelial dysplasia", Journal of biomedical 
optics, vol. 11, no. 2, 2006. 
[8] A. Pierangelo et al., "Polarimetric imaging of uterine 
cervix: a case study", Optics express, vol. 21, no. 12, p. 
14120-14130, 2013 
[9] D. G. Ferris et al., "Enhancing colposcopy with polarized 
light", Journal of lower genital tract disease, vol. 14, no. 
3, p. 149-154, 2010. 
[10] Jim O'Doherty et al, "Sub‐epidermal imaging using 
polarized light spectroscopy for assessment of skin 
microcirculation", Skin research and technology, vol. 13, 
no. 4, p. 472-484, 2007 
 Phan Ngoc Khuong Cat 
received the B.S. and M.S. 
Degrees in Photonics and 
applycations from the Voronezh 
state university, Russia, in 2009. 
She is now with the Department 
of Applied Sciences, Hochiminh 
City University of Technology - 268 Ly Thuong 
Kiet Street, District 10, Ho Chi Minh City, Viet 
Nam. Her research interest includes the optics and 
photonics, image processing in biomedical and 
fabrication of medical equipment. (Email: 
pnkhuongcat@hcmut.edu.vn) 
Assoc. Prof. PhD. Huynh Quang Linh is now 
Dean of the Faculty of Applied Sciences, 
Hochiminh City University of Technology - 268 Ly 
Thuong Kiet Street, District 10, Ho Chi Minh City, 
Viet Nam. His research interest includes the basic 
research: Modeling and simulation of photon and 
ionizing radiation penetration through matter, 
biomedical cybernetics, optical polarization etc and 
application research: Biosignal processing (ECG, 
EEG), biomedical image processing, 
bioinstrumentation etc. (Email: 
huynhqlinh@hcmut.edu.vn) 
Nguyen Ngoc Quynh is the final- year student 
in Biomedical Engineering, engineering physics, at 
Hochiminh City University of Technology - 268 Ly 
Thuong Kiet Street, District 10, Ho Chi Minh City, 
Viet Nam. (Email: 
nguyenngocquynh95@gmail.com) 
Ly Cao Duong is the final- year student in 
Biomedical Engineering, engineering physics, at 
Hochiminh City University of Technology - 268 Ly 
Thuong Kiet Street, District 10, Ho Chi Minh City, 
Viet Nam. (Email: lycaoduong@gmail.com)
100 SCIENCE & TECHNOLOGY DEVELOPMENT, Vol 20, No.K2- 2017 
Tóm tắt - Bệnh lý cổ tử cung (CTC) là một 
trong những bệnh phổ biến ở phụ nữ, có xu 
hướng ngày càng gia tăng,trong đó ung thư 
CTC là một trong những bệnh thường gặp. 
Bệnh có thể chữa khỏi nếu phát hiện ở giai đoạn 
sớm và được điều trị theo sự hướng dẫn của bác 
sĩ. Các thủ thuật thăm khám CTC thông thường 
là sinh thiết, và soi CTC. Gần đây có nhiều 
nghiên cứu ứng dụng kỹ thuật xử lý ảnh trong 
phân tích, đánh giá các đặc tính bệnh lý CTC [1-
3]. Trong nghiên cứu này, chúng tôi cải tiến thiết 
bị soi CTC truyền thống với nguồn sáng LED 
phân cực đa bước sóng, đồng thời thu ảnh với 
độ phân giải cao. Trên cơ sở hình ảnh thu được, 
nhóm phát triển các thuật toán xử lý ảnh, bước 
đầu phân tích, đánh giá một số đặc tính thường 
gặp trong bệnh lý CTC. 
Từ khóa - soi cổ tử cung, phân cực. 
Mô hình thiết bị soi cổ tử cung đa bước sóng và 
hiệu quả ban đầu 
Phan Ngọc Khương Cát, Huỳnh Quang Linh, 
Nguyễn Ngọc Quỳnh, Lý Cao Dương 
            Các file đính kèm theo tài liệu này:
 mo_hinh_thiet_bi_soi_co_tu_cung_da_buoc_song_va_hieu_qua_ban.pdf mo_hinh_thiet_bi_soi_co_tu_cung_da_buoc_song_va_hieu_qua_ban.pdf