Mô hình thiết bị soi cổ tử cung đa bước sóng và hiệu quả ban đầu

The interface of the program is simply designed with an image display panel and function buttons. When you take a picture, the doctor just clicks the capture button. White, green, and full-frame images are captured automatically and continuously and stored in a folder that records the shooting time. The photos will be uploaded to the drive and managed according to the patient's security account without fear of system damage. With the model of colposcopy using the polarized light source we presented above, we proceed to obtain cervical images with the help of the obstetrician at the clinic. The results are shown in Figure 5 Figure 5.A is a cervical image containing Nabothian Cysts recorded by a model colposcopy using a polarized light source. Looking at Figure 5.A, we can see some more clearly the features of the Nabothian Cysts, such as: the cysts are ivory white (marked with a square), around the cysts are more redder (marked with an arrow) than the normal area. Similarly, Figure 5.B is a cervical image that is diagnosed as inflamed by Trichomoniasis and is at an early stage. Looking at the picture can be observed in the early stages, the clinical manifestations are not serious, red marks (marked with an arrow) are scattered on the surface of the cervix. Finally, Figure 5.C is a cervical image being treated at last stage. We can clearly see that there is a drug tube (marked with a triangle) in the cervix, the cervical surface almost no appearance of red mark. Moreover, all three images have effectively eliminated the glare and visible water bubbles (marked with a circle) on the surface of the cervix. Therefore, high quality of image recognition has assisted the physician in diagnosing cervical disease faster and more effectively.

pdf5 trang | Chia sẻ: hachi492 | Lượt xem: 41 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Mô hình thiết bị soi cổ tử cung đa bước sóng và hiệu quả ban đầu, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
96 SCIENCE & TECHNOLOGY DEVELOPMENT, Vol 20, No.K2- 2017 Abstract — Cervical disease is one of the common diseases, it occurs in women and has a growing tendency. In particular, cervical cancer is one of the most common diseases. The disease can be cured if it is detected early and treated under the guidance of a physician. The usual cervical examination methods are biopsies, and colposcopy. Recently, many studies have applied imaging techniques in the analysis and evaluation of cervical pathology characteristics [1-3]. In this study, we improved the traditional colposcopy with a polarized light source, and captured images with high resolution. Based on the image obtained, we developed image processing algorithms, initially analyzed and evaluated some of the common features of cervical disease Index Terms— colposcopy, polarized 1. INTRODUCTION n some reproductive health studies, the worldwide burden of cervical disease is enormous, with over 500 000 cases of cervical cancer diagnosed each year, resulting in 250,000 cases dead. The incidence of cervical disease is highest in developing countries and lowest in Western developed countries, where the screening program has significantly reduced the incidence of the disease [4]. In Vietnam, cervical cancer is the second most common gynecological cancer, after breast cancer. Each year, there are more than 5,000 new cases and more than 2,500 deaths caused by the disease. Manuscript Received on July 13th, 2016. Manuscript Revised December 06th, 2016. This work was supported by National Key Laboratory of Digital Control and System Engineering, and the department of Biomedical Engineering, HCMUT-VNU HCM Phan Ngoc Khuong Cat, Huynh Quang Linh, Nguyen Ngoc Quynh, Ly Cao Duong are with Department of Applied Physics, Faculty of Applied Science, Ho Chi Minh City University of Technology - VNU-HCM. Email: pnkhuongcat@hcmut.edu.vn. A statistic released in 2016 in Vietnam shows that about 14 people are diagnosed with cervical cancer every day, including 7 women dying of the disease. Therefore, the timely detection and treatment of cervical diseases as well as the precancerous urgent [2-3]. symptoms of cervical cancer become extremely In clinical terms, methods to diagnose uterine pathology can be divided into two main directions such as cytology and histopathology. Histology is a technique that uses tissue test results such as Pap smear, ThinPrep, HPV-DNA, and follows the criteria for pathology. Whereas the approach from the cytological level uses results from cervical surface observations by methods such as cervicography, colposcopy, VIA, to evaluate pathological conditions [5-6]. Each method has its own advantages and disadvantages, depending on the conditions of the facilities, the level of disease, the patient's financial ability to choose a suitable method. Among the methods mentioned above, colposcopy is commonly used because it is easy to perform and has many advantages. On the other hand, in developing countries like Vietnam, setting up a colposcopy is possible Recognize that colposcopy is essential to help doctors diagnose diseases more quickly and effectively. In this study, we developed a model of colposcopy with a polarized light source and using CCD auto focus camera. At the same time, we also built our own management software. It is responsible for controlling the camera, recording and processing the captured image. Thereby it assists the doctor in observing, diagnosing and treating the patient. The initial results were high- resolution image quality, feature-specific capabilities, as well as many additional features such as anti-glare on the surface and the observation of blood vessels. 2. METHODS In this study, we developed the optical system by adding a polarized light source using two white and green LEDs. White light observes the cervical image in normal mode, green light is strongly Model of colposcopy using polarized light and effective early Phan Ngoc Khuong Cat, Huynh Quang Linh, Nguyen Ngoc Quynh, Ly Cao Duong. I TẠP CHÍ PHÁT TRIỂN KH&CN, TẬP 20, SỐ K2-2017 97  absorbed  by  hemoglobin  (Hb),  which  is  an  important component in the blood [7]. It helps us to  easily  detect  areas  of  high  blood  concentration  on  the  surface  of  the  cervix.  Because  of  the  light  scattering  properties  of  biological  tissues,  the  polarization angle is altered in the deeper layers of  the cervical surface. On the other hand, the cervical  surface  is  well  reflective,  so  the  photos  are  often  dazzling and difficult for the doctor to observe and  analyze  the  images.  There  are  some  algorithms  to  handle  this  problem,  but  the  results  are  different  from  the  original  image  [8-9].  Therefore,  we  will  introduce  an  improved  method  that  uses  an  optics  system consisting of two cross polarized glasses. A  polarizer  is  placed  in  front  of  the  LEDs,  which  produces  polarized  light  in  a  specified  direction.  The  remaining  polarizer  is  placed  behind  the  magnification  system.  This  special  technical  solution  is  based  on  cross-polarized  light  to  enhance  image  resolution  in  diagnostic  support.  The  first  is  the  ability  to  remove  glare  from  the  surface of the lesion and the shadow from the field  of  vision.  Secondly,  image  of  polarized  light  is  used to describe the cells and tissues just below the  surface of the lesion [9-10].  From the above suggestions, we will simulate the  illumination of the light source as shown in Figure  1.  Figure  1.  Light  source  diagram.  (1)  LEDs;  (2)  Lens;  (3),(4)  Polarized glasses  Light with different wavelengths from the LEDs  (Figure  1.1)  passes  through  the  convergent  lens  (Figure  1.2)  and  the  first  polarizer  (Figure  1.3)  to  the  cervical  surface.  Light  reflected  or  scattered  from  the  surface  of  the  cervix  will  return  through  the  second  polarizer  (Figure  1.4)  and  into  the  eyepiece  of  the  microscope.  The  control  of  the  different  color  modes  of  the  LEDs  is  done  by  the  control box.  For  the  control  system,  we  built  the  model  controller with  three main components  including a  System Manager (SM), a Processing Module (PM)  and a Colposcope Camera (CC) as shown in Figure  2.  Figure 2. Control system of colposcopy   Firstly,  the  SM  is  the  computer  and  computer- related  accessories  use  to  operate  the  system.  It  includes  the  following  components:  computer,  flat  monitor,  USB  keyboard  and  optical  USB  mouse,  USB  wifi.  SM  controls  capture  and  storage  procedures,  manages  and  upload  images  to  Drive.  Secondly,  the  PM  consists  of  three  main  components:  Electronic  Power,  Control  and  Communication.  Electronic  Power  is  used  to   distribute  the  DC  voltages  needed  to  operate  the  system and accepts DC input voltage as +12 VDC.  Control  uses  microcontroller  to  controls  the  operation  of  Colposcope  Camera,  changes  Led  color  and  captures  images.  It  only  accepts  input  voltages as +5 VDC and output as 6 Pin I/O, 2 Pins  UART.  Communication  means  that  it  communicates  with  SM  by  Bluetooth,  using  Universal  Asynchronous  Receiver/Transmitter  (UART) with Baurate 9600 bit/s controlled through  315Mhz  RF  remote.  Finally,  the  CC  also  includes  three  basic  parts:  Camera,  Light  Source  and  Colposcope Head. For  the camera, we use the Full  HD  digital  autofocus  camera  which uses  a  CMOS  sensor  with  resolution:  1920x1080  60fps,  Output  interface:  HDMI,  Power  requirements:  +  5V  max  @ 1A. For light sources, we use Six Leds with two  colors:  3  White  and  3  Green,  controlled  by  PM.  Power  requirements:  +  3V  @  0.5A.  It  works  at  a  distance of 30 cm and 12000 Lux Led lighting. For  Colposcope  Head,  it  has  a  polarizer  filter  and  an  illumination  optics,  fastened  to  the  Camera  and  Light Source.  3. RESULT  Based  on  the  theory  and  goal  set,  we  have  developed  a  model  of  colposcopy  using  polarized  98          SCIENCE & TECHNOLOGY DEVELOPMENT, Vol 20, No.K2- 2017 light consisting of six major components as shown  in  Figure  3.  Each  component  is  selected  and  designed  with  specialized  functionality  based  on  the requirements of the scanning method. The first  part is the optical microscope (Fig 3.1), which takes  over the image magnification function. Microscope  magnification system is a combination of objective  and  eyepiece.  Object  lens  is  the  input  port,  the  eyepiece is not only the output port but also where  the  eye  to  observe.  During  colposcopy  and  manipulation  of  the  doctor,  the  cervix  must  be  continuously  illuminated.  Because  the  cervix  is  deep  inside  the  body,  it  is  often  lack  of  light  The  illuminating part of the scanning process is the light  source (Fig 3.2). It is composed of many parts and  they  are  joined  together,  then  it  is  enclosed  by  a  cylindrical aluminum shell, on  the hinged cover  to  be attached  to  the objective of  the microscope and  fixed to the hexagonal screw. In particular, the light  source  uses  polarizing  plates,  which  help  the  images  get  high  resolution  and  no  blurring  due  to  the presence of water bubbles on the surface of the  cervix.  With  the  requirement  of  designing  a  colposcopy  that  can  capture  images  and  display  them on  the screen or store  image data. Therefore,  at  the  camera's  microscope  connection  port,  we  installed a digital camera for being used (Fig 3.3) to  obtain a cervical image. Figure 3.4 is a control box,  which  is  installed  on  the  body  of  the  bracket  (Fig  3.5),  which  provides  power  and  adjusts  the  light  source. Not only do manual controls use switch and  push buttons, but also camera control program and  image  processing  software  are  included  with  the  colposcopy.  Figure 3. The colposcopy model uses a polarized light source:  (1) Microscope; (2) Light source; (3) Capture camera; (4)  Control box; (5) Bracket; (6) Computers.  The interface of the program is simply designed  with  picture  frame  and  function  buttons.  The  attached program is written in the C# programming  language,  which  is  responsible  for  controlling  and  processing  images.  The  main  function  of  the  program  is connection  the camera  to  the computer  (Fig 3.6), manipulate the camera, store and manage  the  data.  Interface  of  the  program  is  shown  in  Figure 4.  Figure 4. Cervical imaging software interface  The interface of the program is simply designed  with  an  image  display  panel  and  function  buttons.  When you take a picture,  the doctor just clicks the  capture button. White, green, and full-frame images  are  captured  automatically  and  continuously  and  stored  in  a  folder  that  records  the  shooting  time.  The  photos  will  be  uploaded  to  the  drive  and  managed according to the patient's security account  without fear of system damage.  With  the  model  of  colposcopy  using  the  polarized  light  source  we  presented  above,  we  proceed  to obtain cervical  images with  the help of  the obstetrician at the clinic. The results are shown  in Figure 5.  Figure 5. Cervical polarized image. (A) Nabothian Cyst; (B)  Trichomonas; (C) Cervical disease is being treated  Figure  5.A  is  a  cervical  image  containing  Nabothian  Cysts  recorded  by  a  model  colposcopy  using  a  polarized  light  source.  Looking  at  Figure  5.A, we can see  some more clearly  the  features of  the  Nabothian  Cysts,  such  as:  the  cysts  are  ivory  TẠP CHÍ PHÁT TRIỂN KH&CN, TẬP 20, SỐ K2-2017 99 white (marked with a square), around the cysts are more redder (marked with an arrow) than the normal area. Similarly, Figure 5.B is a cervical image that is diagnosed as inflamed by Trichomoniasis and is at an early stage. Looking at the picture can be observed in the early stages, the clinical manifestations are not serious, red marks (marked with an arrow) are scattered on the surface of the cervix. Finally, Figure 5.C is a cervical image being treated at last stage. We can clearly see that there is a drug tube (marked with a triangle) in the cervix, the cervical surface almost no appearance of red mark. Moreover, all three images have effectively eliminated the glare and visible water bubbles (marked with a circle) on the surface of the cervix. Therefore, high quality of image recognition has assisted the physician in diagnosing cervical disease faster and more effectively. 4. CONCLUSIONS In this study, based on the theory and the necessity of improving colposcopy equipment, we have successfully built a model colposcopy using a polarized light source and set up a software to manage the data separately. Recorded images have important properties such as anti-glare and visible blood vessels. The results obtained can be seen as a new and objective approach to the development of colposcopy. REFERENCES [1] M.J. Lusk and P. Konecny, "Cervicitis: a review", Current opinion in infectious diseases, vol. 21, no. 1, p. 49-55, 2008. [2] Compendium of Research on Reproductive Health in Viet Nam for the Period 2006-2010, Hanoi: UNFPA, 2012. [3] L. Bruni et al., “Human Papillomavirus and Related Diseases in Viet Nam”, Barcelona: ICO Information Centre on HPV and Cancer, Summary Report, 2017. [4] J. R. Carter, Z. Ding and B. R. Rose, “HPV infection and cervical disease: A review”, Australian and New Zealand Journal of Obstetrics and Gynaecology, vol. 51, p. 103– 108, 2011. [5] R. A. Kerkar et al, "Screening for cervical cancer: an overview". The Journal of Obstetrics and Gynecology of India, vol. 56, no. 2, p. 115-122, 2006. [6] Y. Jusman, "Review Article Intelligent Screening Systems for Cervical Cancer", The Scientific World Journal, 2014. [7] S. K. Chang et al, "Model-based analysis of clinical fluorescence spectroscopy for in vivo detection of cervical intraepithelial dysplasia", Journal of biomedical optics, vol. 11, no. 2, 2006. [8] A. Pierangelo et al., "Polarimetric imaging of uterine cervix: a case study", Optics express, vol. 21, no. 12, p. 14120-14130, 2013 [9] D. G. Ferris et al., "Enhancing colposcopy with polarized light", Journal of lower genital tract disease, vol. 14, no. 3, p. 149-154, 2010. [10] Jim O'Doherty et al, "Sub‐epidermal imaging using polarized light spectroscopy for assessment of skin microcirculation", Skin research and technology, vol. 13, no. 4, p. 472-484, 2007 Phan Ngoc Khuong Cat received the B.S. and M.S. Degrees in Photonics and applycations from the Voronezh state university, Russia, in 2009. She is now with the Department of Applied Sciences, Hochiminh City University of Technology - 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam. Her research interest includes the optics and photonics, image processing in biomedical and fabrication of medical equipment. (Email: pnkhuongcat@hcmut.edu.vn) Assoc. Prof. PhD. Huynh Quang Linh is now Dean of the Faculty of Applied Sciences, Hochiminh City University of Technology - 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam. His research interest includes the basic research: Modeling and simulation of photon and ionizing radiation penetration through matter, biomedical cybernetics, optical polarization etc and application research: Biosignal processing (ECG, EEG), biomedical image processing, bioinstrumentation etc. (Email: huynhqlinh@hcmut.edu.vn) Nguyen Ngoc Quynh is the final- year student in Biomedical Engineering, engineering physics, at Hochiminh City University of Technology - 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam. (Email: nguyenngocquynh95@gmail.com) Ly Cao Duong is the final- year student in Biomedical Engineering, engineering physics, at Hochiminh City University of Technology - 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam. (Email: lycaoduong@gmail.com) 100 SCIENCE & TECHNOLOGY DEVELOPMENT, Vol 20, No.K2- 2017 Tóm tắt - Bệnh lý cổ tử cung (CTC) là một trong những bệnh phổ biến ở phụ nữ, có xu hướng ngày càng gia tăng,trong đó ung thư CTC là một trong những bệnh thường gặp. Bệnh có thể chữa khỏi nếu phát hiện ở giai đoạn sớm và được điều trị theo sự hướng dẫn của bác sĩ. Các thủ thuật thăm khám CTC thông thường là sinh thiết, và soi CTC. Gần đây có nhiều nghiên cứu ứng dụng kỹ thuật xử lý ảnh trong phân tích, đánh giá các đặc tính bệnh lý CTC [1- 3]. Trong nghiên cứu này, chúng tôi cải tiến thiết bị soi CTC truyền thống với nguồn sáng LED phân cực đa bước sóng, đồng thời thu ảnh với độ phân giải cao. Trên cơ sở hình ảnh thu được, nhóm phát triển các thuật toán xử lý ảnh, bước đầu phân tích, đánh giá một số đặc tính thường gặp trong bệnh lý CTC. Từ khóa - soi cổ tử cung, phân cực. Mô hình thiết bị soi cổ tử cung đa bước sóng và hiệu quả ban đầu Phan Ngọc Khương Cát, Huỳnh Quang Linh, Nguyễn Ngọc Quỳnh, Lý Cao Dương

Các file đính kèm theo tài liệu này:

  • pdfmo_hinh_thiet_bi_soi_co_tu_cung_da_buoc_song_va_hieu_qua_ban.pdf
Tài liệu liên quan